0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
GTT70A-TPR-BLM-B0-H1-CT-V5

GTT70A-TPR-BLM-B0-H1-CT-V5

  • 厂商:

    MATRIXORBITAL

  • 封装:

    -

  • 描述:

    LCD TOUCH TFT 7.0" TTL/I2C

  • 数据手册
  • 价格&库存
GTT70A-TPR-BLM-B0-H1-CT-V5 数据手册
GTT70A Hardware Manual Revision 1.6 PCB Revision: 3.0 or Higher Firmware Revision: 2.0 or Higher Revision History Revision 1.6 1.5 1.4 1.3 1.2 1.1 1.0 Date st December 1 , 2016 th September 20 , 2016 th April 27 , 2015 nd July 22 , 2014 th May 16 ,2014 th January 8 , 2014 th October 24 , 2013 Description Author Updated Specifications for 3.0 Release Updated Drawing for PCB 3.0 Updated Mass Storage for Firmware 2.3 Correction to RS422 Pinout (Table 9) Removed V3 Option Minor Details and Formatting Initial Release Divino Clark Clark Martino Martino Clark Clark Contents 1 Introduction ............................................................................................................................................... 1 2 Features ..................................................................................................................................................... 2 3 Ordering ..................................................................................................................................................... 3 3.1 Ordering Part Numbering Scheme ...................................................................................................... 3 3.2 Options ................................................................................................................................................ 3 3.3 Recommended Parts ........................................................................................................................... 4 Serial Communication ........................................................................................................................... 4 I2C Communication ............................................................................................................................... 4 USB Communication ............................................................................................................................. 4 Power .................................................................................................................................................... 4 Mass Storage ......................................................................................................................................... 4 4 Hardware.................................................................................................................................................... 5 4.1 Available Headers ............................................................................................................................... 5 4.2 Extended Serial Communication/Power Header ................................................................................ 6 4.3 Mini-B USB Communication Connector .............................................................................................. 6 Alternate USB Communication Header................................................................................................. 7 Drivers ................................................................................................................................................... 7 4.4 I2C Communication/Power Header ..................................................................................................... 7 4.1 Power Adaptor .................................................................................................................................... 7 4.2 Alternate Power Connector ................................................................................................................ 8 4.3 RS422 Header ...................................................................................................................................... 8 4.4 Mass Storage Mini-B USB Header ....................................................................................................... 9 Alternate USB Mass Storage Header..................................................................................................... 9 Mass Storage Mode .............................................................................................................................. 9 SD Memory Card ................................................................................................................................... 9 4.5 General Purpose Outputs ................................................................................................................. 10 4.6 Keypad Header .................................................................................................................................. 10 5 Troubleshooting ....................................................................................................................................... 11 5.1 Power ................................................................................................................................................ 11 5.2 Display ............................................................................................................................................... 11 5.3 Communication ................................................................................................................................. 11 5.4 Factory Defaults ................................................................................................................................ 11 6 Appendix .................................................................................................................................................. 12 6.1 Dimensional Drawing ........................................................................................................................ 12 6.2 Power Consumption.......................................................................................................................... 13 6.3 Environmental ................................................................................................................................... 13 6.4 Touch Specifications .......................................................................................................................... 13 6.5 Optical Characteristics....................................................................................................................... 13 6.6 ESD Performance............................................................................................................................... 13 6.7 Electrical Characteristics ................................................................................................................... 13 Absolute Maximum Ratings ................................................................................................................ 13 Communication Characteristics .......................................................................................................... 14 6.8 Defect Criteria ................................................................................................................................... 14 Display Specifications .......................................................................................................................... 14 Appearance Specifications .................................................................................................................. 14 7 Definitions ................................................................................................................................................ 15 8 Contact ..................................................................................................................................................... 15 Figure 1: The GTT70A Display 1 Introduction The Matrix Orbital GTT70A is a full colour TFT display with an integrated touch screen, crafted to become a crisp, controllable canvas for creativity. Utilizing an extended version of our widely used command library and industry standard communication protocols, the customizable GTT70A series contains an intelligent display that will quickly become the gorgeous face of your application. 1 GTT70A Hardware Manual 2 Features In addition to a beautiful full-colour TFT screen, seamless incorporation of a touch panel provides sleek user input while a small piezo speaker and vibratory motor can offer audio and tactile feedback for a completely interactive experience. Storage of fonts and bitmaps within the swappable onboard SD memory card allows for a co-ordinated appearance in any design. The elegant simplicity of the familiar Matrix Orbital command structure now provides updates to the user and optional flow control for full two-way communication. Also new are animations, full-colour graphs, automated display initialization, and field upgradeability. Figure 2: Functional Diagram Available flow controlled RS232 and TTL interfaces, as well as an I2C protocol provide versatile communication schemes, while USB and RS422 versions ensure that any controller can have a beautiful user interface. Scorching fast communication speeds, up to 256kbps in serial modes and 400kHz in I2C, ensure important information is relayed on time. GTT70A Hardware Manual 2 3 Ordering The innovative GTT70A, with all of the features mentioned above, is available in various voltage and communication options to provide a sleek touch of creativity to any project. 3.1 Ordering Part Numbering Scheme Table 1: Part Numbering Scheme GTT 70 A -TPR -BLS -B0 -H1 -CU -V5 1 2 3 4 5 6 7 8 9 3.2 Options Table 2: Display Options # Designator Options 1 2 3 4 Product Type Display Size Screen Type Touch 5 Backlight 6 Bezel 7 Headers 8 Protocol 9 Voltage GTT: Graphic TFT Display 70: 7.0" A: A Type -TPN: No touch panel -TPR: Resistive touch panel -TPC: Capacitive touch panel -BLM: 300 Nit < Brightness < 600 Nit -BLH: 600 Nit < Brightness < 1000 Nit -BLD: Brightness > 1000 Nit -B0: None -B1: Metal -B2: Plastic -H0: No Connectors -H1: Standard Connectors -H2: Locking Connectors -H3: Right Angle, Locking Connectors -H4: Terminal Blocks -CS: RS232 Model -CT: TTL Model -CU: USB Model -C4: RS422 Model -CE: Ethernet Model -CC: CAN Model -CI: I2C Model -V5: 5.0V Input Voltage -VPT: Regulated 9V-35V Input Voltage *Note: All options may not be available, please consult www.matrixorbital.com for a list of purchasable products. 3 GTT70A Hardware Manual 3.3 Recommended Parts Serial Communication The most common cable choice for the any GTT display, the Extended Communication/ Power Cable offers a simple connection to the unit with familiar interfaces. A DB9 and floppy power header provide all necessary input to communicate to and power your display. Figure 3: ESCCPC5V I2C Communication For a more flexible interface to the GTT, especially with the I2C protocol, a Breadboard Cable may be used. This provides a simple four wire connection that is popular among developers for its ease of use in a breadboard environment. Figure 4: BBC USB Communication The External Mini-B USB Cable is recommended for USB communication. It will connect to the Mini-B style header on the unit and provide a connection to a regular A style USB connector, commonly found on a PC. Figure 5: EXTMUSB3FT Power Figure 6: PCS The standard power cable can be used to apply power to the GTT, either in conjunction with the ESCCPC5V cable, or via a direct connection to the Alternate Power Header. It connects to a standard PC power supply. Mass Storage An External Mini-B USB Cable may also be used to access data within the onboard SD card when removing the card itself is not possible. This connection also provides power to the GTT and can be more convenient than moving the SD card from one location to another. Figure 7: EXTMUSB3FT GTT70A Hardware Manual 4 4 Hardware 4.1 Available Headers Figure 8: GTT70A Header Locations Table 3: List of Available Headers # 1 2 3 4 5 6 7 8 9 10 12 5 Header Extended Serial Communication & Power USB Communication & Power Alternate USB I2C Communication & Power Alternate Power RS422 Communication & Power Mass Storage Alternate Mass Storage Keypad GPO Power Adaptor Standard Mate ESCCPC5V, ISCCPC5V EXTPUSB6FT None Offered BBC PCS 16-30 AWG Wire EXTPUSB6FT None Offered KPP4x4 None Offered None Offered GTT70A Hardware Manual Population RS232/TTL Models Only USB Model Only Custom Only All Models USB Model Only RS422 Model Only All Models Custom Only All Models All Models All Models 4.2 Extended Serial Communication/Power Header The communication/power header provides an interface for the two most common GTT70A protocols: RS232 and TTL. With the ability to connect to a PC serial port or microcontroller and optional hardware flow control, this is the most versatile header available on the GTT70A. Table 4: Extended Communication/Power Pinout Pin 6 5 4 3 2 1 Function RTS CTS Gnd Tx Rx Vcc Figure 9: Extended Communication/Power Header Voltage is applied through pins one and four of the header, please reference electrical specifications before applying power. Pins two and three are reserved for serial transmission using either RS-232/TTL levels, depending on what model has been ordered. Finally, pins five and six are used for optional hardware flow control. The Serial Molex 22-04-1061 style header used can be mated to a number of connectors, including a 22-01-1062. 4.3 Mini-B USB Communication Connector USB protocol offers an easy connection to any host computer. The simple and widely available protocol can be accessed using the familiar Mini-B USB connector to fulfill communication needs. Table 5: Mini USB Pinout Pin 1 2 3 5 Function Vcc DD+ Gnd Figure 10: Mini USB Connector The USB model can be connected to virtually any USB host using the appropriate cable; however, additional power must be supplied through the alternate power header. Most commonly used with a PC, this connection creates a virtual com port that offers a simple power solution with a familiar communication scheme. GTT70A Hardware Manual 6 Alternate USB Communication Header Some advanced applications may prefer the straight four pin connection offered through the optional Alternate USB Header. The Alternate USB Header may be added to the USB model for an added charge as part of a custom order. Please use the Contact section to reach Sales for additional details. Drivers The latest drivers are available for download in a zipped file format at www.matrixorbital.ca/drivers. To install or update the drivers installed on your PC, locate the GTT70A in your device manager, right click its’ icon, select Update Driver Software, and manually point to the unzipped driver file. 4.4 I2C Communication/Power Header A dedicated I2C header is available on all GTT70A models and provides the most basic protocol connection to the unit. 2 Table 6: I C Communication/Power Pinout Pin 1 2 3 4 Function Vcc SCL SDA Gnd 2 Figure 11: I C Communication/Power Header Voltage is applied through pins one and four of the header, please reference the electrical specifications before applying power. Pins two and three are reserved for I2C clock and data signals respectively, both of which should be pulled up to five volts using a resistance between one and ten kilohms. The Tyco 640456-4-LF style header used can be mated to a number of connectors, including Molex 22-01-3047. 4.1 Power Adaptor A power adaptor may be applied to the GTT70A to provide power to the display. When choosing an adaptor, please ensure it is a center positive model that conforms to the voltage and current requirements of your display. Please consult the Power Consumption section for details. Table 7: Power Adaptor Pinout Pin 1 2 Function Vcc Gnd Figure 12: Power Adaptor Please note that the USB model will require power from this header or the Alternate Power Connector. 7 GTT70A Hardware Manual 4.2 Alternate Power Connector The Alternate Power Connector provides the ability to power the GTT70A using a second cable. This connection is required for USB protocol due to the power requirements of the GTT70A. Table 8: Alternate Power Pinout Pin 1 2 3 4 Function 5V Gnd Gnd NC* Figure 13: Alternate Power Connector The standard Tyco 171825-4 style header is particularly useful for connecting to an unmodified floppy power cable, a 171822-4 for example, from a PC power supply for a simple bench power solution. *Note: When using a –VPT model, it may be desirable to input power to the GTT using the floppy power cable 12V connection. Please Contact a friendly Matrix Orbital support representative for modification details. 4.3 RS422 Header RS422 communication provides an industrial alternative to the standard RS232 communication protocol. Rather than single receive and transmit lines, the RS422 model uses a differential pair for each receive and transmit signals to reduce degradation and increase transmission lengths. Table 9: RS422 Pinout Pin 1 2 3 4 5 6 Function Vcc Tx (A) Inv Tx (B) Inv Rx (Z) Rx (Y) Gnd Figure 14: RS422 Header The six pin RS422 Header offers a power and ground connections at either end, and two differential pair communication lines in the middle. Regular and inverted lines, labelled A/B and Z/Y, are provided for receive and transmit signals. The standard Tyco 282834-6 style header populated is best mated to a sized 16 to 30 on the American Wire Gauge connections that are secured via the header screws. GTT70A Hardware Manual 8 4.4 Mass Storage Mini-B USB Header The GTT70A comes with a secondary Mini-B USB connector to access the SD memory card as a mass storage device for easier access to the files contained on the card. Table 10: Mass Storage USB Pinout Figure 15: Mass Storage USB Connector Pin 1 2 3 5 Function Vcc DD+ Gnd A jumper must be placed on the pins 6 and 7 of the keypad header to use this function, please refer to the Mass Storage Mode section for further information. Alternate USB Mass Storage Header Some advanced applications may prefer the straight four pin connection offered through the optional Alternate Mass Storage Header. The Alternate Mass Storage Header may be added to the GTT70A as part of a custom order. Please use the Contact section to reach Sales for additional details. Mass Storage Mode By placing a jumper on pins 6 and 7 of the keypad header, the unit will appear to any PC as a mass storage device when powered, giving you access to the contents of the SD memory card directly. When connected to the GTT Designer Tool, users will be able to place their GTT display in Mass Storage Mode using a software switch found in Designer Tools. The software switch allows users to switch between Mass Storage, and normal operating modes without having to manually reboot and reposition their jumpers. Please note, the speed of data transfers in mass storage mode is limited, and is only intended to be used in situations where an external SD memory card reader is not available. SD Memory Card The SD Memory Card is used to store all user fonts, bitmaps, 9-slices, animations and start-up settings. The start-up settings are stored in a binary file called AUTOEXEC. This file contains a simple stream of characters stored just as they would be if they were sent to the display at runtime, this will store all the commands to change the initial settings for your application. Start-up settings are stored in this location alone; therefore, simply removing the AUTOEXEC file will restore the display to factory defaults. Please refer to the Protocol Manual at http://www.matrixorbital.ca/manuals/GTT Series/ for a complete list of available commands executable not only at start up but runtime as well. 9 GTT70A Hardware Manual 4.5 General Purpose Outputs A unique feature of the GTT70A is the ability to control relays* and other external devices using either one of six General Purpose Outputs. Table 11: GPO Pinout Pin 1 2 3 4 5 6 7 8 Figure 16: GPO Header Function Gnd GPO 1 GPO 2 GPO 3 GPO 4 GPO 5 GPO 6 Vcc Pin 8 9 10 11 12 13 14 16 Function Gnd Gnd Gnd Gnd Gnd Gnd Gnd Gnd Each can source up to 15mA of current at five volts when on, or sink 15mA at zero volts when off. The two row, fourteen pin header can be interfaced to a number of female connectors to provide control to any peripheral devices required. 4.6 Keypad Header To facilitate user input, the GTT70A provides a Keypad Connector which allows a matrix style keypad of up to twenty-five keys to be directly connected to the display module. Key presses are generated when a short is detected between a row and a column. When a key press is generated, a character specific to that key press is automatically sent on the Tx communication line. If the display module is running in I²C mode, the key press will remain in the buffer until it is accessed using the display read address. Table 12: Keypad Pinout Figure 17: Keypad Header Pin 1 2 3 4 5 6 Function Gnd Row 1 Row 2 Row 3 Row 4 Row 5 Pin 7 8 9 10 11 12 Function Column 1 Column 2 Column 3 Column 4 Column 5 Gnd/Vcc** The character that is associated with each key press may be altered using the “Assign Key Codes” command. The straight twelve pin header of the Keypad Interface Connector will interface to a variety of different devices including the Matrix Orbital KPP4x4 keypad. *Note: If connecting a relay, be sure that it is fully clamped using a diode and capacitor in order to absorb any electro-motive force (EMF) which will be generated. **Note: The Ground / +5V pin is toggled by the jumper to the right of the keypad connector. Jump pads 1 & 2 for +5V or 2 & 3 for GND. GTT70A Hardware Manual 10 5 Troubleshooting 5.1 Power To function correctly, the GTT70A must be supplied with the appropriate power. If the power LED near the top right corner of the board is not illuminated, power is not applied correctly. Try the tips below.    GTT devices have specific power requirements. Ensure the correct voltage and sufficient current are available to your device by consulting the Power Consumption table. Check the power cable which you are using for continuity. If you don't have an ohm meter, try using a different power cable, if this does not help try a different power supply. Check the power connector in use on your display. If the connector has become loose or you are unable to resolve the issue, please use the Contact section to reach a friendly Matrix Orbital support representative. 5.2 Display If your display is powered successfully with an AUTOEXEC file present, the Matrix Orbital logo or user specified screen should display briefly on start up. If this is not the case, check out these tips.  If any start-up issues are encountered, it is recommended that you remove the AUTOEXEC file from the SD card to allow the unit to start with factory defaults. 5.3 Communication When communication of either text or commands is interrupted, try the steps below.       First, check the communication cable for continuity. If you don't have an ohm meter, try using a different communication cable. If you are using a PC try using a different Com Port. In USB protocol, ensure that a connection is made to the header labelled USB, not Mass Storage and check that the mode selection jumper is not placed on keypad pins 6 and 7. In serial protocol, ensure that the host system and display module are both communicating on the same baud rate. The default baud rate for the display module is 115,200 bps. Match Rx from the display to the transmit pin from your host and the Tx pin to receive. If you are communicating to the display via I²C* please ensure that the data is being sent to the correct address. The default slave address is decimal 80 (0x50 hex). In I2C mode, connect SDA to the data line of your controller and SCL to the clock output. 5.4 Factory Defaults If the settings of your display become altered in a way that dramatically impacts usability, the default settings can be restored simply by removing the AUTOEXEC file in the memory card’s root directory. This will remove the start screen and reset the baud rate to 115,200. If the Matrix Orbital start screen is desired, default files are available at www.matrixorbital.ca/manuals/GTT_Series/GTT_Example_Files. *Note: I²C communication will always require pull up resistors on SCL and SDA of one to ten kilohms. 11 GTT70A Hardware Manual 6 Appendix 6.1 Dimensional Drawing Figure 18: GTT70A Drawing GTT70A Hardware Manual 12 6.2 Power Consumption 6.3 Environmental Table 13: Required Supply Voltage Parameter Supply Voltage Min Typ Max Unit 4.75 5.0 5.25 V 9.0 12.0 35.0 V Table 15: Environmental Specifications Remarks Standard Voltage (V5) Wide Voltage (VPT) Table 14: Operating Current Draw Parameter Min Typ Max Unit Remarks Logic Backlight Piezo Motor GPO - 280 - mA Backlight Off 205 490 mA Off, Mid, Max - 60 - mA Burst - 110 - mA Burst - 15 mA Each -20°C to +70°C Operating Temperature -30°C to +80°C Storage Temperature 90% (T < 60°C) Operating Relative Humidity* *Note: No condensation at any temperature 6.4 Touch Specifications Table 16: Touch Screen Attributes 3.0 Hardness 20 Required Force 153.68 x 85.52 Active Area 6.5 Optical Characteristics 6.6 ESD Performance Table 17: Optical Characteristics Table 18: ESD Resistance Data 185.00x 102.00 x 17.93 Module Size 157.00 x 89.10 Viewing Area 153.84 x 85.63 Active Area 800 x RGB x 480 Pixel Pattern 0.1923 x 0.1784 Pixel Pitch 472 Luminance 70° Left, Right, Up Viewing Angle Contrast Ratio H N mm mm mm mm Component Value Unit mm cd/m2 ±15 kV Serial Translator ±15 (RS232, RS422) kV ±8 kV ±4 kV Controller 2 (I C, TTL) 60° Down 500:1 Remarks Human Body Model Air Gap (IEC 1000-4-2) Contact (IEC 1000-4-2) Human Body Model 6.7 Electrical Characteristics Absolute Maximum Ratings Table 19: GTT70A Limiting Values Parameter Supply Voltage RS232 Pins RS422 Pins I2C/TTL pins USB Pins 13 Min Max Unit Remarks -0.5 -0.5 -25 -13.2 -13 -0.5 -0.5 6 35 25 13.2 13 3.6 3.8 V V V V V V V Standard Voltage (V5) Option Extended Wide Voltage (VPT) Option Input Signals Output Signals Inverting and Non, Input and Output Signals SCL, SDA, Input and Output Signals Input and Output Signals GTT70A Hardware Manual Communication Characteristics Table 20: RS232 Interface Characteristics Parameter Table 21: USB Interface Characteristics Parameter Min Typ Max Unit Input Threshold Low Input Threshold High Output Voltage Swing 0.6 1.2 - V - 1.5 2.4 V - V 7 kΩ - Ω ±5.0 ±5.4 Input Resistance 3 Output Resistance 5 300 10M Output Short Circuit Current - Min Typ Max Unit Static Output High 2.8 - 3.6 V Static Output Low - - 0.3 V Input Differential Threshold 0.2 - - V Common Mode Output Voltage 0.8 - 2.5 V 29 44 Ω Driver Output Impedance 26 ±35 ±60 mA 2 Table 22: I C Interface Characteristics Table 23: TTL Interface Characteristics Parameter Parameter Input Threshold Low Input Threshold High Output Voltage Low Min Typ Max Unit - 0 Min Typ Max nit 1.0 V Input Threshold Low - 0 1.0 V 2.3 3.3 3.6 V Input Threshold High 2.3 3.3 3.6 V Output Voltage Low - 0 0.4 V Output Voltage High 2.9 3 3.3 V - ±50 mA - 0 0.4 Output Short Circuit Current - - ±50 mA V Output Short Circuit Current Table 24: RS422 Interface Characteristics Parameter Min Typ Max Unit Input Voltage (A and B) -7.0 - 12.0 Input Differential Threshold -200 -125 -50 Differential Driver Output 2 3.3 Common Mode Output Voltage - 1.65 3 Input Resistance 96 Driver Short Circuit Current Limit - 250 Receiver Output Short Circuit Current 95 V mV V V kΩ mA mA Remarks -7V < Vin < +12V RL = 100Ω -7V < Vin < +12V 6.8 Defect Criteria Display Specifications Appearance Specifications Table 25: Display Defect Criteria Item/LCD size Color bad dot-bright dot(R,G,B) Two adjacent bright points Three or more adjacent points Total points for bright dot faults Bad dot – Dark dot Two adjacent dark points Three or more adjacent point Total points for dark dot faults Table 26: Screen and Touch Defect Criteria Criteria 2 1 0 2 4 2 1 6 Defect* Condition D ≤ 0.1mm 0.1mm < D ≤ 0.2mm Dot defect 0.2mm < D ≤ 0.3mm 0.3mm < D ≤ 0.5mm D > 0.5mm W ≤ 0.05mm L ≤ 5mm, 0.05mm < W ≤ Line defect 0.1mm L > 5mm, W > 0.1mm *Note: Defects must occur in Active Area GTT70A Hardware Manual Criteria Allowed Allowed 5 0 0 Allowed 5 0 14 7 Definitions 9-Slice: Graphic format used to scale bitmaps, usually rectangular, without distorting their geometry. Nine regions define the object center, four corners, and four sides for accurate up or down scaling. ASCII: American standard code for information interchange used to give standardized numeric codes to alphanumeric characters. BPS: Bits per second, a measure of transmission speed. GUI: Graphical user interface. Hexadecimal: A base 16 number system utilizing symbols 0 through F to represent the values 0-15. I2C: Inter-integrated circuit protocol uses clock and data lines to communicate short distances at slow speeds from a master to up to 128 addressable slave devices. A display is a slave device. LSB: Least significant bit or byte in a transmission, the rightmost when read. MSB: Most significant bit or byte in a transmission, the leftmost when read. RS232: Recommended standard 232, a common serial protocol. Logic levels can be as high as +/-30V, a high level is negative, a low is positive. RS422: Recommended standard 422, a more robust differential pair serial protocol. SDA: Serial data line used to transfer data in I2C protocol. This open drain line should be pulled high through a resistor. Nominal values are between 1K and 10K Ω. SCL: Serial clock line used to designate data bits in I2C protocol. This open drain line should be pulled high through a resistor. Nominal values are between 1K and 10K Ω. TTL: Transistor-transistor logic applied to serial protocol. Low level is 0V while high logic is 5V. USB: Universal Serial Bus protocol widely used in PCs. 8 Contact Sales Support Online Phone: 403.229.2737 Phone: 403.229.2737 Purchasing: www.matrixorbital.com Email: sales@matrixorbital.ca Email: support@matrixorbital.ca Support: www.matrixorbital.ca 15 GTT70A Hardware Manual
GTT70A-TPR-BLM-B0-H1-CT-V5 价格&库存

很抱歉,暂时无法提供与“GTT70A-TPR-BLM-B0-H1-CT-V5”相匹配的价格&库存,您可以联系我们找货

免费人工找货