ES8396
FEATURES
Low Power Stereo Audio CODEC
DAC
•
•
System
•
•
•
•
•
•
•
•
•
•
•
•
High performance and low power multibit delta-sigma stereo ADC and DAC
Two independent I2S/PCM master or
slave serial data port
Three pairs of analog input
Four pairs of analog output
2x0.9W stereo or 1.8W mono class D
speaker driver
Ground centered headphone driver
Mono ear speaker driver
256/384Fs, USB 12/24 MHz, fractional
PLL for wide range of system clocks
Sophisticated analog input and output
routing, mixing and gain
Support analog and digital microphone
GPIO
I2C interface
•
•
DSP
•
•
•
•
•
•
•
•
Flexible digital signal routing and mixing
Asynchronous sample rate conversion
Six programmable digital filters for PEQ
and noise reduction
Stereo enhancement
Support u/A law
Low Power
•
•
ADC
•
•
24-bit, 8 to 96 kHz sampling frequency
95 dB dynamic range, 95 dB signal to
noise ratio, -85 dB THD+N
Digital peak limiter (DPL)
Pop and click noise suppression
1.8V to 3.3V operation
7 mW playback; 16 mW playback and
record
APPLICATIONS
24-bit, 8 to 96 kHz sampling frequency
95 dB dynamic range, 95 dB signal to
noise ratio, -85 dB THD+N
Low noise pre-amplifier
Auto level control (ALC) and noise gate
Microphone bias
•
•
•
MID/Phoblet
Smart Phone
Digital amplifier
ORDERING INFORMATION
ES8396 -40°C ~ +85°C
QFN-48
1
Everest Semiconductor
Confidential
ES8396
1. BLOCK DIAGRAM
ADCDAT2
DACDAT2
LRCK2
BCLK2
ADCDAT1
DACDAT1
LRCK1
BCLK1
2
IC
GPIO2/DMIC_SCL2
GPIO1/DMIC_SCL1
SDA
SCL
MCLK
PLL
Clock Mgr
2
GPIO
L/R Line Mixer Out
L/R Aux Mixer Out
L/R Mono Mixer Out
I S/PCM 1
Stereo
ADC
PGA
L/R ADC PGA Out
2
I S/PCM 2
DSP
ASRC
Mixing
ADC ALC
DAC DPL
Programmable Filters
PEQ
SE
u/A Law
Stereo
DAC
L/R DAC Out
AINL/AINR
MONOP/MONON
L/R Line Mixer Out
Line Mixer
AINL/AINR
MONOP/MONON
MIC1P/MIC1N
MIC2P/MIC2N
MICP/MICN
D2S
Preamp
Charge
Pump
L/R Mono Mixer Out
Mono Mixer
L/R HP Mixer Out
HP Mixer
L/R, P/N SPK Mixer Out
SPK Mixer
Aux Driver
MONOUTP/MONOUTN
Mono Driver
HPLOUT/HPROUT
HP Driver
SPKLOUTP/SPKLOUTN
SPK Driver
SPKROUTP/SPKROUTN
Analog Reference
Power Supply and LDO
DCVDD
DPVDD
DGND
AVDD
AVDDLDO
AGND
SPKVDD1
SPKVDD2
SPKLDO
SPKGND
ADCVRP
DACVRP
VMID
MICBIAS
CPVDD
CPGND
CPTOP
CPBOT
CPVSSP
Revision 5.0
Mic Bias
L/R Aux Mixer Out
Aux Mixer
LOUT1/ROUT1 (LOUT1N)
Line Driver
2
March 2018
Everest Semiconductor
Confidential
ES8396
2. PIN OUT AND DESCRIPTION
CPGND
CPBOT
HPROUT
HPLOUT
SPKLDO
SPKGND
SPKLOUTP
SPKVDD1
SPKLOUTN
SPKROUTN
SPKVDD2
SPKROUTP
37
38
39
40
41
42
43
44
45
46
47
48
GPIO1
DACDAT1
ADCDAT1
BCLK1
LRCK1
SDA
SCL
DPVDD
DGND
DCVDD
MCLK
GPIO2
1
2
3
4
5
6
7
8
9
10
11
12
ES8396
QFN 48
36
35
34
33
32
31
30
29
28
27
26
25
CPVSSP
CPTOP
CPVDD
DACVRP
MONOUTN
MONOUTP
AVDDLDO
AVDD
AGND
VMID
ADCVRP
MICN
24
23
22
21
20
19
18
17
16
15
14
13
MICP
AINL
AINR
MONON
MONOP
MICBIAS
LOUT
ROUT
ADCDAT2
DACDAT2
LRCK2
BCLK2
Name
Type
MCLK
SDA
SCL
GPIO1
GPIO2
DI
DIO
DI
DIO
DIO
Master clock
I2C data
I2C clock
GPIO (digital mic clock, ADC LRCK, etc)
GPIO (digital mic clock, ADC LRCK, etc)
ADCDAT1/AD0
DACDAT1
LRCK1
BCLK1
ADCDAT2
DACDAT2
LRCK2
BCLK2
DIO
DI
DIO
DIO
DIO
DI
DIO
DIO
I2S/PCM serial data out; Also used as I2C address
I2S/PCM serial data in
I2S/PCM left and right clock
I2S/PCM bit clock
I2S/PCM serial data out
I2S/PCM serial data in
I2S/PCM left and right clock
I2S/PCM bit clock
AINL/JD1
AINR/JD2
MONOP
MONON
MICP
MICN/DMIC_SDA
AI
AI
AI
AI
AI
AI
Left analog line input or jack detect 1
Right analog line input or jack detect 2
Mono positive input or left analog line input
Mono negative input or right analog line input
Mic positive input or left analog line input
Mic negative input or right analog line input or digital mic data
Revision 5.0
Description
3
March 2018
Everest Semiconductor
LOUT
ROUT/LOUTN
MONOUTP
MONOUTN
HPLOUT
HPROUT
SPKLOUTP
SPKLOUTN
SPKROUTP
SPKROUTN
AO
AO
AO
AO
AO
AO
AO
AO
AO
AO
Left line out
Right line out or negative left line out
Mono positive output
Mono negative output
Left headphone out
Right headphone out
Positive left speaker out
Negative left speaker out
Positive right speaker out
Negative right speaker out
AO
Mic bias
ADCVRP
DACVRP
VMID
ADC reference filtering
DAC reference filtering
Common mode filtering
DCVDD
DPVDD
DGND
AVDD
AVDDLDO
AGND
SPKVDD1
SPKVDD2
SPKLDO
SPKGND
Digital core power supply
Digital IO power supply
Digital ground
Analog power supply
Analog LDO power supply
Analog ground
Speaker driver power supply
Speaker driver power supply
Speaker driver LDO power supply
Speaker driver ground
Revision 5.0
ES8396
Charge pump power supply
Charge pump ground
Charge pump capacitor top
Charge pump capacitor bottom
Charge pump filtering
CPVDD
CPGND
CPTOP
CPBOT
CPVSSP
MICBIAS
Confidential
4
March 2018
Everest Semiconductor
Confidential
ES8396
3. TYPICAL APPLICATION CIRCUIT
SPKR_P
8OHMRSPEAKER
SPK_GND
AGND
DGND
SPKR_N
SPKL_N
8OHMLSPEAKER
SPKL_P
HP_L
HP_R
VP_DUT
5
4
3
2
6
1
VSPK_DUT(+2.5V - 4.3V)
10K
10uF
0.1uF
10uF
0.1uF
VP_DUT
I2CA0
SPK_GND
HPDETECT
10uF
1
I2C_SDA
I2S1_ALRCK_GPIO
I2S1_DACDAT
I2S1_ADCDAT
I2S1_BCLK
I2S1_LRCK
I2C_SCL
VP_DUT(+1.8V- +3.3V)
10uF
0
I2CA0
0.1uF
DGND
10uF
1
2
3
4
5
6
7
8
9
10
11
12
0
48
47
46
45
44
43
42
41
40
39
38
37
AGND
AGND
33
ADCLRCK/GPIO
DACDAT1
ADCDAT1
BCLK1
LRCK1
SDA
SCL
DPVDD
DGND
DCVDD
MCLK
ADCLRCK2/GPIO
CPVSSP
CPTOP
CPVDD
DACVRP
MONOOUTN
MONOOUTP
AVDDLDO
AVDD
AGND
VMID
ADCVRP
MICN
ES8396
0.01uF 0.01uF
MOUT_P
AGND
AGND
VCP_DUT(+1.8V)
10uF
AGND
0.1uF
10uF
0.1uF
VA_DUT(+3.3V)
AGND
AGND
0.1uF
0.1uF
10uF
10uF
10uF
0.1uF
AGND
AGND
13
14
15
16
17
18
19
20
21
22
23
24
DGND
33
10uF
0.1uF
36
35
34
33
32
31
30
29
28
27
26
25
MOUT_N
Receiver earpiece
10uF
0.1uF
BCLK2
LRCK2
DACDAT2
ADCDAT2
ROUT
LOUT
MICBIAS
MONOP
MONON
AINR
AINL
MICP
0.1uF
1
VD_DUT(+1.8V- +3.3V)
MCLK
I2S2_ALRCK
49
SPK_GND
THERMAL
10K
Headphone
0.1uF
SPK_GND
SPKROUTP
SPKVDD2
SPKROUTN
SPKLOUTN
SPKVDD1
SPKLOUTP
SPKGND
SPKLDO
HPLOUT
HPROUT
CPBOT
CPGND
VP_DUT
10K
10K
4.7uF
I2S2_SCLK
I2S2_LRCK
I2S2_DACDAT
I2S2_ADCDAT
0.1uF
AGND
4.7uF
ROUT_N
4.7uF
10K
MONOIN_P
4.7uF
MONOIN_N
4.7uF
AIN_R
4.7uF
AIN_L
4.7uF
MICBIAS
10uF
AGND
0.1uF
2.2K
4.7uF
4.7uF
MICP
AGND
10K
MICROPHONE
2.2K
MICN
LOUT_P
AGND
Revision 5.0
5
March 2018
Everest Semiconductor
Confidential
ES8396
4. CLOCK MODES AND SAMPLING FREQUENCIES
The device supports three types of clocking: standard audio clocks (256Fs, 384Fs, 512Fs, etc),
USB clocks (12/24 MHz), and an on-chip 22-bit fractional PLL clock.
According to the serial audio data sampling frequency (Fs), the device can work in two speed
modes: single speed mode or double speed mode. In single speed mode, Fs normally ranges
from 8 kHz to 48 kHz, and in double speed mode, Fs normally range from 64 kHz to 96 kHz.
The device can work either in master clock mode or slave clock mode. In slave mode, LRCK and
SCLK are supplied externally, and LRCK and SCLK must be synchronously derived from the
system clock with specific rates. In master mode, LRCK and SCLK are derived internally from
device master clock.
5. MICRO-CONTROLLER CONFIGURATION INTERFACE
The device supports standard I2C micro-controller configuration interface. External microcontroller can completely configure the device through writing to internal configuration
registers.
I2C interface is a bi-directional serial bus that uses a serial data line (SDA) and a serial clock line
(SCL) for data transfer. The timing diagram for data transfer of this interface is given in Figure 1.
Data are transmitted synchronously to SCL clock on the SDA line on a byte-by-byte basis. Each
bit in a byte is sampled during SCL high with MSB bit being transmitted firstly. Each transferred
byte is followed by an acknowledge bit from receiver to pull the SDA low. The transfer rate of
this interface can be up to 100 kbps.
Figure 1 Data Transfer for I2C Interface
A master controller initiates the transmission by sending a “start” signal, which is defined as a
high-to-low transition at SDA while SCL is high. The first byte transferred is the slave address. It
is a seven-bit chip address followed by a RW bit. The chip address must be 001000x, where x
equals AD0. The RW bit indicates the slave data transfer direction. Once an acknowledge bit is
received, the data transfer starts to proceed on a byte-by-byte basis in the direction specified by
the RW bit. The master can terminate the communication by generating a “stop” signal, which is
defined as a low-to-high transition at SDA while SCL is high.
Revision 5.0
6
March 2018
Everest Semiconductor
Confidential
ES8396
In I2C interface mode, the registers can be written and read. The formats of “write” and “read”
instructions are shown in Table 1 and Table 2. Please note that, to read data from a register, you
must set R/W bit to 0 to access the register address and then set R/W to 1 to read data from the
register. There are no acknowledge bit after data to be written or read, this is the only
difference from the I2C protocol.
Table 1 Write Data to Register in I2C Interface Mode
Chip Address
001000
AD0
R/W
0
Register Address
RAM
ACK
ACK
Data to be written
DATA
Table 2 Read Data from Register in I2C Interface Mode
Chip Address
001000
Chip Address
001000
AD0
AD0
R/W
0
R/W
1
Register Address
RAM
Data to be read
Data
ACK
ACK
6. DIGITAL AUDIO INTERFACE
The device provides many formats of serial audio data interface to the input of the DAC or
output from the ADC through LRCK, BCLK (SCLK) and DACDAT/ADCDAT pins. These formats are
I2S, left justified, right justified, DSP/PCM and TDM mode. DAC input DACDAT is sampled by the
device on the rising edge of SCLK. ADC data is out at ADCDAT on the falling edge of SCLK. The
relationship of SDATA (DACDAT/ADCDAT), SCLK and LRCK with these formats are shown through
Figure 2 to Figure 6.
1 SCLK
SDATA
1
2
1 SCLK
3
n-2 n-1
MSB
n
1
LSB
MSB
2
3
n-2 n-1
n
LSB
SCLK
LEFT CHANNEL
LRCK
RIGHT CHANNEL
Figure 2 I2S Serial Audio Data Format Up To 24-bit
SDATA
1
2
3
n-2 n-1
MSB
n
1
LSB
MSB
2
3
n-2 n-1
n
LSB
SCLK
LRCK
RIGHT CHANNEL
LEFT CHANNEL
Figure 3 Left Justified Serial Audio Data Format Up To 24-bit
Revision 5.0
7
March 2018
Everest Semiconductor
SDATA
Confidential
1
2
n-2 n-1
3
MSB
ES8396
n
1
LSB
MSB
2
3
n-2 n-1
n
LSB
SCLK
LRCK
RIGHT CHANNEL
LEFT CHANNEL
Figure 4 Right Justified Serial Audio Data Format Up To 24-bit
Figure 5 DSP/PCM Mode A
Figure 6 DSP/PCM Mode B
Revision 5.0
8
March 2018
Everest Semiconductor
Confidential
ES8396
7. ELECTRICAL CHARACTERISTICS
ABSOLUTE MAXIMUM RATINGS
Continuous operation at or beyond these conditions may permanently damage the device.
PARAMETER
Analog Supply Voltage Level
Digital Supply Voltage Level
Input Voltage Range
Operating Temperature Range
Storage Temperature
MIN
-0.3V
-0.3V
DGND-0.3V
-40°C
-65°C
MAX
+4.5V
+5.0V
DVDD+0.3V
+85°C
+150°C
RECOMMENDED OPERATING CONDITIONS
PARAMETER
Analog Supply Voltage Level
Analog Supply Voltage Level – Class D
Digital Supply Voltage Level – DCVDD
Digital Supply Voltage Level – DPVDD
(recommend to be the same as DCVDD)
MIN
2.0
2.5
1.6
1.6
TYP
3.3
4.0
3.3
3.3
MAX
3.6
4.3
3.6
3.6
UNIT
V
V
V
V
ADC ANALOG AND FILTER CHARACTERISTICS AND SPECIFICATIONS
Test conditions are as the following unless otherwise specify: AVDD=3.3V, DCVDD=1.8V,
AGND=0V, DGND=0V, Ambient temperature=25°C, Fs=48 KHz, 96 KHz or 192 KHz,
MCLK/LRCK=256.
PARAMETER
ADC Performance
Signal to Noise ratio (A-weigh)
THD+N
Channel Separation (1KHz)
Interchannel Gain Mismatch
Gain Error
Filter Frequency Response – Single Speed
Passband
Stopband
Passband Ripple
Stopband Attenuation
Filter Frequency Response – Double Speed
Passband
Stopband
Passband Ripple
Stopband Attenuation
Analog Input
Full Scale Input Level
Input Impedance
Revision 5.0
MIN
TYP
MAX
UNIT
85
-88
80
95
-85
85
0.1
98
-75
90
dB
dB
dB
dB
%
0
0.5465
0.4535
±0.05
50
0
0.5833
0.4167
±0.005
50
AVDD/3.3
20
9
±5
Fs
Fs
dB
dB
Fs
Fs
dB
dB
Vrms
KΩ
March 2018
Everest Semiconductor
Confidential
ES8396
DAC ANALOG AND FILTER CHARACTERISTICS AND SPECIFICATIONS
Test conditions are as the following unless otherwise specify: AVDD=3.3V, DCVDD=1.8V,
AGND=0V, DGND=0V, Ambient temperature=25°C, Fs=48 KHz, 96 KHz or 192 KHz,
MCLK/LRCK=256.
PARAMETER
MIN
DAC Performance
Signal to Noise ratio (A-weigh)
83
THD+N
-85
Channel Separation (1KHz)
80
Interchannel Gain Mismatch
Filter Frequency Response – Single Speed
Passband
0
Stopband
0.5465
Passband Ripple
Stopband Attenuation
40
Filter Frequency Response – Double Speed
Passband
0
Stopband
0.5833
Passband Ripple
Stopband Attenuation
40
De-emphasis Error at 1 KHz (Single Speed Mode Only)
Fs = 32KHz
Fs = 44.1KHz
Fs = 48KHz
Analog Output
Full Scale Output Level
TYP
MAX
UNIT
96
-83
85
0.05
98
-75
90
dB
dB
dB
dB
0.4535
Fs
Fs
dB
dB
±0.05
0.4167
±0.005
0.002
0.013
0.0009
AVDD/3.3
Fs
Fs
dB
dB
dB
Vrms
POWER CONSUMPTION CHARACTERISTICS
PARAMETER
Normal Operation Mode
DVDD=1.8V, AVDD=1.8V:
Play back
Play back and record
DVDD=3.3V, AVDD=3.3V:
Play back
Play back and record
Power Down Mode
DVDD=1.8V, AVDD=1.8V
DVDD=3.3V, AVDD=3.3V
MIN
TYP
MAX
UNIT
mW
7
16
31
59
TBD
TBD
mW
SERIAL AUDIO PORT SWITCHING SPECIFICATIONS
PARAMETER
MCLK frequency
MCLK duty cycle
LRCK frequency
Revision 5.0
Symbol
MIN
40
10
MAX
51.2
60
200
UNIT
MHz
%
KHz
March 2018
Everest Semiconductor
Confidential
LRCK duty cycle
SCLK frequency
SCLK pulse width low
SCLK Pulse width high
SCLK falling to LRCK edge
SCLK falling to SDOUT valid
SDIN valid to SCLK rising setup time
SCLK rising to SDIN hold time
ES8396
40
TSCLKL
TSCLKH
TSLR
TSDO
TSDIS
TSDIH
15
15
–10
0
10
10
60
26
10
%
MHz
ns
ns
ns
ns
ns
ns
Figure 8 Serial Audio Port Timing
I2C SWITCHING SPECIFICATIONS
PARAMETER
SCL Clock Frequency
Bus Free Time Between Transmissions
Start Condition Hold Time
Clock Low time
Clock High Time
Setup Time for Repeated Start Condition
SDA Hold Time from SCL Falling
SDA Setup time to SCL Rising
Rise Time of SCL
Fall Time SCL
Revision 5.0
Symbol
FSCL
TTWID
TTWSTH
TTWCL
TTWCH
TTWSTS
TTWDH
TTWDS
TTWR
TTWF
11
MIN
1.3
0.6
1.3
0.4
0.6
100
MAX
400
900
300
300
UNIT
KHz
us
us
us
us
us
ns
ns
ns
ns
March 2018
Everest Semiconductor
Confidential
ES8396
SDA
TTWSTS
TTWSTH
TTWCL
SCL
TTWDH
TTWID
TTWDS
TTWCH
S
TTWF TTWR
P
S
Figure 10 I2C Timing
Revision 5.0
12
March 2018
Everest Semiconductor
Confidential
ES8396
8. PACKAGE
9. CORPORATE INFORMATION
Everest Semiconductor Co., Ltd.
苏州工业园区金鸡湖大道 1355 号国际科技园, 邮编 215021
Email: info@everest-semi.com
Revision 5.0
13
March 2018