Uniform Sector
Dual and Quad Serial Flash
GD25Q256E
DATASHEET
1
GD25Q256E
Uniform Sector
Dual and Quad Serial Flash
GD25Q256E
Contents
1
FEATURES .........................................................................................................................................................4
2
GENERAL DESCRIPTIONS .............................................................................................................................5
3
MEMORY ORGANIZATION ...............................................................................................................................8
4
DEVICE OPERATIONS......................................................................................................................................9
4.1
SPI MODE .............................................................................................................................................................. 9
4.2
HOLD FUNCTION ..................................................................................................................................................... 9
4.3
RESET FUNCTION .................................................................................................................................................. 10
5
DATA PROTECTION ........................................................................................................................................ 11
6
REGISTERS...................................................................................................................................................... 12
7
6.1
STATUS REGISTER ................................................................................................................................................... 12
6.2
EXTENDED ADDRESS REGISTER .................................................................................................................................. 16
COMMAND DESCRIPTIONS .......................................................................................................................... 17
7.1
WRITE ENABLE (WREN) (06H) ................................................................................................................................ 22
7.2
WRITE DISABLE (WRDI) (04H) ................................................................................................................................ 22
7.3
READ STATUS REGISTER (RDSR) (05H OR 35H OR 15H) .............................................................................................. 22
7.4
WRITE STATUS REGISTER (WRSR) (01H OR 31H OR 11H) ........................................................................................... 23
7.5
READ EXTENDED ADDRESS REGISTER (C8H) ................................................................................................................ 23
7.6
WRITE EXTENDED ADDRESS REGISTER (C5H)............................................................................................................... 24
7.7
WRITE ENABLE FOR VOLATILE STATUS REGISTER (50H) ................................................................................................. 24
7.8
READ DATA BYTES (03H/13H) ................................................................................................................................ 25
7.9
READ DATA BYTES AT HIGHER SPEED (0BH/0CH) ........................................................................................................ 25
7.10
DUAL OUTPUT FAST READ (3BH/3CH) ...................................................................................................................... 26
7.11
QUAD OUTPUT FAST READ (6BH/6CH) ..................................................................................................................... 26
7.12
DUAL I/O FAST READ (BBH/BCH) ............................................................................................................................ 27
7.13
QUAD I/O FAST READ (EBH/ECH) ........................................................................................................................... 28
7.14
SET BURST WITH WRAP (77H) ................................................................................................................................. 30
7.15
PAGE PROGRAM (PP 02H OR 4PP 12H) .................................................................................................................... 30
7.16
QUAD PAGE PROGRAM (32H/34H) .......................................................................................................................... 31
7.17
SECTOR ERASE (SE 20H OR 4SE 21H) ....................................................................................................................... 32
7.18
32KB BLOCK ERASE (BE32 52H OR 4BE32 5CH) ....................................................................................................... 32
7.19
64KB BLOCK ERASE (BE64 D8H OR 4BE64 DCH) ...................................................................................................... 33
7.20
CHIP ERASE (CE) (60/C7H) ..................................................................................................................................... 33
7.21
ENTER 4-BYTE ADDRESS MODE (EN4B) (B7H) ........................................................................................................... 34
7.22
EXIT 4-BYTE ADDRESS MODE (EX4B) (E9H) ............................................................................................................... 34
7.23
READ MANUFACTURE ID/ DEVICE ID (REMS) (90H) ................................................................................................... 35
7.24
READ IDENTIFICATION (RDID) (9FH) ......................................................................................................................... 35
2
Uniform Sector
Dual and Quad Serial Flash
7.25
READ UNIQUE ID (4BH) .......................................................................................................................................... 36
7.26
ERASE SECURITY REGISTERS (44H) ............................................................................................................................ 36
7.27
PROGRAM SECURITY REGISTERS (42H) ....................................................................................................................... 37
7.28
READ SECURITY REGISTERS (48H) ............................................................................................................................. 38
7.29
ENABLE RESET (66H) AND RESET (99H) ..................................................................................................................... 39
7.30
PROGRAM/ERASE SUSPEND (PES) (75H) ................................................................................................................... 39
7.31
PROGRAM/ERASE RESUME (PER) (7AH) ................................................................................................................... 40
7.32
DEEP POWER-DOWN (DP) (B9H) ............................................................................................................................. 40
7.33
RELEASE FROM DEEP POWER-DOWN AND READ DEVICE ID (RDI) (ABH) ......................................................................... 41
7.34
READ SERIAL FLASH DISCOVERABLE PARAMETER (5AH)................................................................................................. 41
ELECTRICAL CHARACTERISTICS .............................................................................................................. 43
8
8.1
POWER-ON TIMING ................................................................................................................................................ 43
8.2
INITIAL DELIVERY STATE ........................................................................................................................................... 43
8.3
ABSOLUTE MAXIMUM RATINGS ................................................................................................................................ 43
8.4
CAPACITANCE MEASUREMENT CONDITIONS................................................................................................................. 44
8.5
DC CHARACTERISTICS .............................................................................................................................................. 45
8.6
AC CHARACTERISTICS .............................................................................................................................................. 48
ORDERING INFORMATION............................................................................................................................ 55
9
9.1
10
11
GD25Q256E
VALID PART NUMBERS ............................................................................................................................................ 56
PACKAGE INFORMATION ......................................................................................................................... 57
10.1
PACKAGE SOP16 300MIL ...................................................................................................................................... 57
10.2
PACKAGE WSON8 (6X5MM) ................................................................................................................................... 58
10.3
PACKAGE WSON8 (8X6MM) ................................................................................................................................... 59
10.4
PACKAGE TFBGA-24BALL (5X5 BALL ARRAY) ............................................................................................................. 60
REVISION HISTORY .................................................................................................................................... 61
3
Uniform Sector
Dual and Quad Serial Flash
GD25Q256E
1 FEATURES
◆ 256M-bit Serial Flash
◆ Fast Program/Erase Speed
- 32M-Byte
- Page Program time: 0.25ms typical
- 256 Bytes per programmable page
- Sector Erase time: 30ms typical
- Block Erase time: 0.12s/0.15s typical
◆ Standard, Dual, Quad SPI
- Chip Erase time: 70s typical
- Standard SPI: SCLK, CS#, SI, SO, WP#, HOLD#, RESET#
- Dual SPI: SCLK, CS#, IO0, IO1, WP#, HOLD#, RESET#
◆ Flexible Architecture
- Quad SPI: SCLK, CS#, IO0, IO1, IO2, IO3, RESET#
- Uniform Sector of 4K-Byte
- 3 or 4-Byte Address Mode
- Uniform Block of 32/64K-Byte
◆ High Speed Clock Frequency
◆ Low Power Consumption
- 133MHz for fast read with 30PF load
- 16μA typical standby current
- Dual I/O Data transfer up to 266Mbits/s
- 1μA typical deep power down current
- Quad I/O Data transfer up to 532Mbits/s
◆ Advanced Security Features
◆ Software/Hardware Write Protection
- 128-bit Unique ID for each device
- Write protect all/portion of memory via software
- Serial Flash Discoverable parameters (SFDP) register
- Enable/Disable protection with WP# Pin
- 3x2048-Byte Security Registers With OTP Locks
- Top/Bottom Block protection
◆ Single Power Supply Voltage
◆ Endurance and Data Retention
- Full voltage range: 2.7-3.6V
- Minimum 100,000 Program/Erase Cycles
◆ Package Information
- 20-year data retention typical
- SOP16 300mil
◆ Allows XiP (eXecute In Place) Operation
- WSON8 (6x5mm)
- High speed Read reduce overall XiP instruction fetch time
- WSON8 (8x6mm)
- Continuous Read with Wrap further reduce data latency to
- TFBGA-24ball (5x5 Ball Array)
fill up SoC cache
4
Uniform Sector
Dual and Quad Serial Flash
2
GD25Q256E
GENERAL DESCRIPTIONS
The GD25Q256E (256M-bit) Serial flash supports the standard Serial Peripheral Interface (SPI), and the Dual/Quad SPI:
Serial Clock, Chip Select, Serial Data I/O0 (SI), I/O1 (SO), I/O2 (WP#), I/O3 (HOLD#/RESET#). The Dual I/O data is
transferred with speed of 266Mbit/s, and the Quad I/O data is transferred with speed of 532Mbit/s.
CONNECTION DIAGRAM
CS#
1
8
SO
(IO1)
2
HOLD#/
7 RESET#
(IO3)
WP#
(IO2)
3
6
SCLK
VSS
4
5
SI
(IO0)
Top View
VCC
8 - LEAD USON/WSON
Top View
HOLD#
(IO3)
1
16
SCLK
VCC
2
15
SI
(IO0)
3
14
NC
13
DNU
A2
A3
A4
A5
NC
NC
RESET#
DNU
B1
B2
B3
B4
B5
NC
SCLK
VSS
VCC
NC
C1
C2
C3
C4
C5
NC
CS#
DNU
WP#
(IO2)
NC
NC
5
12
NC
D3
D4
D5
NC
6
11
NC
CS#
7
10
VSS
SO
(IO1)
8
9
WP#
(IO2)
D1
D2
NC
SO
(IO1)
E1
E2
E3
E4
E5
NC
NC
NC
NC
NC
SI(IO0) HOLD#
(IO3)
RESET#
NC
4
Top View
NC
16-LEAD SOP
24-BALL TFBGA (5x5 ball array)
Note:
1. CS# must be driven high if chip is not selected. Please don’t leave CS# floating any time after power is on.
2. The DNU pin/ball must be floating. It may connect to internal signal inside.
3. The NC pin/ball is not connected to any internal signal. It is OK to connect it to the system ground (GND) or leave it
floating.
4. The pin of RESET# will remain internal pull up function while this pin is not physically connected in system configuration.
However, the internal pull up function will be disabled if the system has physical connection to RESET# pin.
5
Uniform Sector
Dual and Quad Serial Flash
GD25Q256E
PIN DESCRIPTION
Table 1. Pin Description for SOP16 Package
Pin No.
Pin Name
I/O
Description
1
HOLD# (IO3)
I/O
2
VCC
3
RESET#
I
Reset Input
7
CS#
I
Chip Select Input
8
SO (IO1)
I/O
Data Output (Data Input Output 1)
9
WP# (IO2)
I/O
Write Protect Input (Data Input Output 2)
10
VSS
Ground
13
DNU
Do Not Use (It may connect to internal signal inside)
15
SI (IO0)
I/O
16
SCLK
I
Hold Input (Data Input Output 3)
Power Supply
Data Input (Data Input Output 0)
Serial Clock Input
Table 2. Pin Description for WSON8 Package
Pin No.
Pin Name
I/O
Description
1
CS#
I
2
SO (IO1)
I/O
Data Output (Data Input Output 1)
3
WP# (IO2)
I/O
Write Protect Input (Data Input Output 2)
4
VSS
5
SI (IO0)
I/O
6
SCLK
I
7
HOLD#/RESET# (IO3)
I/O
8
VCC
Chip Select Input
Ground
Data Input (Data Input Output 0)
Serial Clock Input
Hold or Reset Input (Data Input Output 3)
Power Supply
Table 3. Pin Description for TFBGA24 Package
Pin No.
Pin Name
I/O
Description
A4
RESET#
I
A5/C3
DNU
B2
SCLK
B3
VSS
Ground
B4
VCC
Power Supply
C2
CS#
I
C4
WP# (IO2)
I/O
Write Protect Input (Data Input Output 2)
D2
SO (IO1)
I/O
Data Output (Data Input Output 1)
D3
SI (IO0)
I/O
Data Input (Data Input Output 0)
D4
HOLD# (IO3)
I/O
Hold Input (Data Input Output 3)
Reset Input
Do Not Use (It may connect to internal signal inside)
I
Serial Clock Input
Chip Select Input
Note: CS# must be driven high if chip is not selected. Please don’t leave CS# floating any time after power is on.
6
Uniform Sector
Dual and Quad Serial Flash
GD25Q256E
BLOCK DIAGRAM
Write Control
Logic
Status
Register
HOLD#/
RESET#
(IO3)
SCLK
SPI
Command &
Control Logic
High Voltage
Generators
Page Address
Latch/Counter
Write Protect Logic
and Row Decode
WP#(IO2)
Flash
Memory
CS#
Column Decode And
256-Byte Page Buffer
SI(IO0)
SO(IO1)
Byte Address
Latch/Counter
7
Uniform Sector
Dual and Quad Serial Flash
3
GD25Q256E
MEMORY ORGANIZATION
GD25Q256E
Each device has
Each block has
Each sector has
Each page has
32M
64/32K
4K
256
Bytes
128K
256/128
16
-
pages
8K
16/8
-
-
sectors
512/1K
-
-
-
blocks
UNIFORM BLOCK SECTOR ARCHITECTURE
GD25Q256E 64K Bytes Block Sector Architecture
Block
511
510
……
……
2
1
0
Sector
Address range
8191
1FFF000H
1FFFFFFH
……
……
……
8176
1FF0000H
1FF0FFFH
8175
1FEF000H
1FEFFFFH
……
……
……
8160
1FE0000H
1FE0FFFH
……
……
……
……
……
……
……
……
……
……
……
……
……
……
……
……
……
……
47
02F000H
02FFFFH
……
……
……
32
020000H
020FFFH
31
01F000H
01FFFFH
……
……
……
16
010000H
010FFFH
15
00F000H
00FFFFH
……
……
……
0
000000H
000FFFH
8
Uniform Sector
Dual and Quad Serial Flash
GD25Q256E
4 DEVICE OPERATIONS
4.1
SPI Mode
Standard SPI
The GD25Q256E features a serial peripheral interface on 4 signals bus: Serial Clock (SCLK), Chip Select (CS#), Serial
Data Input (SI) and Serial Data Output (SO). Both SPI bus mode 0 and 3 are supported. Input data is latched on the rising
edge of SCLK and data shifts out on the falling edge of SCLK.
Dual SPI
The GD25Q256E supports Dual SPI operation when using the “Dual Output Fast Read”, “Dual Output Fast Read with 4Byte address”, “Dual I/O Fast Read” and “Dual I/O Fast Read with 4-Byte address” commands (3BH, 3CH, BBH and BCH).
These commands allow data to be transferred to or from the device at twice the rate of the standard SPI. When using the
Dual SPI command, the SI and SO pins become bidirectional I/O pins: IO0 and IO1.
Quad SPI
The GD25Q256E supports Quad SPI operation when using the “Quad Output Fast Read”, “Quad Output Fast Read with 4Byte address”, “Quad I/O Fast Read”, “Quad I/O Fast Read with 4-Byte address” (6BH, 6CH, EBH, ECH) commands. These
commands allow data to be transferred to or from the device at four times the rate of the standard SPI. When using the
Quad SPI commands, the SI and SO pins become bidirectional I/O pins: IO0 and IO1, and the WP# and HOLD#/RESET#
pins become bidirectional I/O pins: IO2 and IO3. The Quad SPI commands require the non-volatile Quad Enable bit (QE)
in Status Register set to 1.
4.2
HOLD Function
The HOLD/RST bit is used to determine whether HOLD or RESET function should be implemented on the hardware pin for
8-pin packages. When HOLD/RST=0, the HOLD#/RESET# pin acts as HOLD# pin. The HOLD function is available when
QE=0. If QE=1, The HOLD function is disabled, and the HOLD#/RESET# pin acts as dedicated data I/O pin.
The HOLD# signal goes low to stop any serial communications with the device, except the operation of write status register,
programming, or erasing in progress.
The operation of HOLD needs CS# keep low, and starts on falling edge of the HOLD# signal, with SCLK signal being low.
If SCLK is not low, HOLD operation will not start until SCLK is low. The HOLD condition ends on rising edge of HOLD#
signal with SCLK being low. If SCLK is not low, HOLD operation will not end until SCLK is low.
The SO is high impedance, both SI and SCLK don’t care during the HOLD operation. If CS# is driven high during HOLD
operation, it will reset the internal logic of the device. To re-start communication with the chip, the HOLD# must be at high
and then CS# must be at low.
9
Uniform Sector
Dual and Quad Serial Flash
GD25Q256E
Figure 1 HOLD Condition
CS#
SCLK
HOLD#
HOLD
4.3
HOLD
RESET Function
The HOLD/RST bit is used to determine whether HOLD or RESET function should be implemented on the hardware pin for
8-pin packages. When HOLD/RST=1, the HOLD#/RESET# pin acts as RESET# pin. The hardware RESET function is
available when QE=0. If QE=1, The RESET function is disabled, and the HOLD#/RESET# pin acts as dedicated data I/O
pin. For 16-pin and 24-ball packages, a dedicated RESET# is used to do the hardware RESET and it is independent of QE
bit setting. The RESET# pin goes low for a minimum period of tRLRH (1μs) will reset the flash. After reset cycle, the flash
is at the following states:
- Standby mode
- All the volatile bits will return to the default status as power on.
Figure 2 RESET Condition
CS#
RESET#
RESET
10
Uniform Sector
Dual and Quad Serial Flash
5
GD25Q256E
DATA PROTECTION
The GD25Q256E provide the following data protection methods:
◆
Write Enable (WREN) command: The WREN command is set the Write Enable Latch bit (WEL). The WEL bit will
return to reset by the following situation:
-Power-Up / Software Reset (66H+99H)
-Write Disable (WRDI)
-Write Status Register (WRSR)
-Page Program (PP)
-Sector Erase (SE) / Block Erase (BE) / Chip Erase (CE)
◆
Software Protection Mode: The Block Protect bits (BP4-BP0) define the section of the memory array that can be
read but not changed.
◆
Hardware Protection Mode: WP# goes low to protect the Block Protect bits (BP4-BP0) and the SRP bits (SRP1 and
SRP0).
◆
Deep Power-Down Mode: In Deep Power-Down Mode, all commands are ignored except the Release from Deep
Power-Down Mode command and Software Reset (66H+99H).
◆
Write Inhibit Voltage (VWI): Device would reset automatically when VCC is below a certain threshold VWI.
Table 4. GD25Q256E Protected area size
Status Register Content
Memory Content
BP4
BP3
BP2
BP1
BP0
Blocks
Addresses
Density
Portion
X
0
0
0
0
NONE
NONE
NONE
NONE
0
0
0
0
1
511
01FF0000h-01FFFFFFh
64KB
Upper 1/512
0
0
0
1
0
510 to 511
01FE0000h-01FFFFFFh
128KB
Upper 1/256
0
0
0
1
1
508 to 511
01FC0000h-01FFFFFFh
256KB
Upper 1/128
0
0
1
0
0
504 to 511
01F80000h-01FFFFFFh
512KB
Upper 1/64
0
0
1
0
1
496 to 511
01F00000h-01FFFFFFh
1MB
Upper 1/32
0
0
1
1
0
480 to 511
01E00000h-01FFFFFFh
2MB
Upper 1/16
0
0
1
1
1
448 to 511
01C00000h-01FFFFFFh
4MB
Upper 1/8
0
1
0
0
0
384 to 511
01800000h-01FFFFFFh
8MB
Upper 1/4
0
1
0
0
1
256 to 511
01000000h-01FFFFFFh
16MB
Upper 1/2
1
0
0
0
1
0
00000000h-0000FFFFh
64KB
Lower 1/512
1
0
0
1
0
0 to 1
00000000h-0001FFFFh
128KB
Lower 1/256
1
0
0
1
1
0 to 3
00000000h-0003FFFFh
256KB
Lower 1/128
1
0
1
0
0
0 to 7
00000000h-0007FFFFh
512KB
Lower 1/64
1
0
1
0
1
0 to 15
00000000h-000FFFFFh
1MB
Lower 1/32
1
0
1
1
0
0 to 31
00000000h-001FFFFFh
2MB
Lower 1/16
1
0
1
1
1
0 to 63
00000000h-003FFFFFh
4MB
Lower 1/8
1
1
0
0
0
0 to 127
00000000h-007FFFFFh
8MB
Lower 1/4
1
1
0
0
1
0 to 255
00000000h-00FFFFFFh
16MB
Lower 1/2
X
1
1
0
X
ALL
00000000h-01FFFFFFh
32MB
ALL
X
1
X
1
X
ALL
00000000h-01FFFFFFh
32MB
ALL
11
Uniform Sector
Dual and Quad Serial Flash
GD25Q256E
6 REGISTERS
6.1
Status Register
Table 5. Status Register-SR No.1
No.
Name
Description
Note
S7
SRP0
Status Register Protection Bit
Non-volatile writable
S6
BP4
Block Protect Bit
Non-volatile writable
S5
BP3
Block Protect Bit
Non-volatile writable
S4
BP2
Block Protect Bit
Non-volatile writable
S3
BP1
Block Protect Bit
Non-volatile writable
S2
BP0
Block Protect Bit
Non-volatile writable
S1
WEL
Write Enable Latch
Volatile, read only
S0
WIP
Erase/Write In Progress
Volatile, read only
Table 6. Status Register-SR No.2
No.
Name
Description
Note
S15
SUS1
Erase Suspend Bit
Volatile, read only
S14
SRP1
Status Register Protection Bit
Non-volatile writable
S13
LB3
Security Register Lock Bit
Non-volatile writable (OTP)
S12
LB2
Security Register Lock Bit
Non-volatile writable (OTP)
S11
LB1
Security Register Lock Bit
Non-volatile writable (OTP)
S10
SUS2
Program Suspend Bit
Volatile, read only
S9
QE
Quad Enable Bit
Non-volatile writable
S8
ADS
Current Address Mode Bit
Volatile, read only
Table 7. Status Register-SR No.3
No.
Name
Description
Note
S23
HOLD/RST
HOLD# or RESET# Function
Non-volatile writable
S22
DRV1
Output Driver Strength Bit
Non-volatile writable
S21
DRV0
Output Driver Strength Bit
Non-volatile writable
S20
ADP
Power Up Address Mode Bit
Non-volatile writable
S19
EE
Erase Error Bit
Volatile, read only
S18
PE
Program Error Bit
Volatile, read only
S17
DC1
Dummy Configuration Bit
Non-volatile writable
S16
DC0
Dummy Configuration Bit
Non-volatile writable
The status and control bits of the Status Register are as follows:
WIP bit
The Write in Progress (WIP) bit indicates whether the memory is busy in program/erase/write status register progress. When
12
Uniform Sector
Dual and Quad Serial Flash
GD25Q256E
WIP bit sets to 1, means the device is busy in program/erase/write status register progress, when WIP bit sets 0, means
the device is not in program/erase/write status register progress.
WEL bit
The Write Enable Latch (WEL) bit indicates the status of the internal Write Enable Latch. When set to 1 the internal Write
Enable Latch is set, when set to 0 the internal Write Enable Latch is reset and no Write Status Register, Program or Erase
command is accepted.
BP4, BP3, BP2, BP1, BP0 bits
The Block Protect (BP4, BP3, BP2, BP1, and BP0) bits are non-volatile. They define the size of the area to be software
protected against Program and Erase commands. These bits are written with the Write Status Register (WRSR) command.
When the Block Protect (BP4, BP3, BP2, BP1, BP0) bits are set to 1, the relevant memory area (as defined in Table 4)
becomes protected against Page Program (PP), Sector Erase (SE), Block Erase (BE), and Chip Erase (CE) commands.
The Block Protect (BP4, BP3, BP2, BP1, and BP0) bits can be written provided that the Hardware Protected mode has not
been set.
SRP1, SRP0 bits
The Status Register Protect (SRP1 and SRP0) bits are non-volatile Read/Write bits in the status register. The SRP bits
control the method of write protection: software protection, hardware protection, power supply lock-down or one time
programmable protection.
SRP1
SRP0
#WP
Status Register
0
0
X
Software Protected
0
1
0
Hardware Protected
0
1
1
Hardware Unprotected
1
0
X
1
1
X
Power Supply LockDown(1)(2)
One Time Program(2)
Description
The Status Register can be written to after a Write Enable
command, WEL=1.(Default)
WP#=0, the Status Register locked and cannot be written to.
WP#=1, the Status Register is unlocked and can be written to
after a Write Enable command, WEL=1.
Status Register is protected and cannot be written to again until
the next Power-Down, Power-Up cycle.
Status Register is permanently protected and cannot be written
to.
NOTE:
1. When SRP1, SRP0= (1, 0), a Power-Down, Power-Up cycle will change SRP1, SRP0 to (0, 0) state.
2. This feature is available on special order. Please contact GigaDevice for details.
ADS bit
The Address Status (ADS) bit is a read only bit that indicates the current address mode the device is operating in. The
device is in 3-Byte address mode when ADS=0 (default), and in 4-Byte address mode when ADS=1.
QE bit
The Quad Enable (QE) bit is a non-volatile Read/Write bit in the Status Register that allows Quad operation. When the QE
bit is set to 0 (Default) the WP# pin and HOLD# pin are enable. When the QE pin is set to 1, the Quad IO2 and IO3 pins
are enabled. (It is best to set the QE bit to 0 to avoid short issues if the WP# or HOLD# pin is tied directly to the power
13
Uniform Sector
Dual and Quad Serial Flash
GD25Q256E
supply or ground.)
LB3, LB2, LB1 bits
The LB3, LB2 and LB1 bits are non-volatile One Time Program (OTP) bits in Status Register (S13, S12 and S11) that
provide the write protect control and status to the Security Registers. The default state of LB3, LB2 and LB1 bits are 0, the
security registers are unlocked. The LB3, LB2 and LB1 bits can be set to 1 individually using the Write Register instruction.
The LB3, LB2 and LB1 bits are One Time Programmable, once they are set to 1, the Security Registers will become readonly permanently.
SUS1, SUS2 bits
The SUS1 and SUS2 bits are read only bits in the status register (S15 and S10) that are set to 1 after executing an Erase/
Program Suspend (75H) command (The Erase Suspend will set the SUS1 bit to 1, and the Program Suspend will set the
SUS2 bit to 1). The SUS1 and SUS2 bits are cleared to 0 by Erase/Program Resume (7AH) command, software reset
(66H+99H) command, as well as a power-down, power-up cycle.
DC1, DC0 bits
The Dummy Configuration (DC) bits are non-volatile, which select the number of dummy cycles between the end of address
and the start of read data output. Dummy cycles provide additional latency that is needed to complete the initial read access
of the flash array before data can be returned to the host system. Some read commands require additional dummy cycles
as the SCLK frequency increases.
The following dummy cycle tables provide different dummy cycle settings that are configured.
Command
DC1, DC0
Dummy Cycles
Freq.(MHz)
00
4
104
01
8
133
10
4
104
11
8
133
00
6
104
01
10
133
10
6
104
11
10
133
BBH, BCH
EBH, ECH
PE bit
The Program Error (PE) bit is a read-only bit that indicates a program failure. It will also be set when the user attempts to
program a protected array sector or access the locked OTP space. PE is cleared to "0" after program operation resumes.
EE bit
The Erase Error (EE) bit is a read-only bit that indicates an erase failure. It will also be set when the user attempts to erase
a protected array sector or access the locked OTP space. EE is cleared to "0" after erase operation resumes
ADP bit
The Address Power-up (ADP) bit is a non-volatile writable bit that determines the initial address mode when the device is
powered on or reset. This bit is only used during the power on or device reset initialization period. When ADP=0 (factory
default), the device will power up into 3-Byte address mode, the Extended Address Register must be used to access memory
14
Uniform Sector
Dual and Quad Serial Flash
GD25Q256E
regions beyond 128Mb. When ADP=1, the device will power up into 4-Byte address mode directly.
Power Up
Device Initialization
& Status Register Refresh
(Non-Volatile Cells)
3-Byte Address
Standard SPI
Dual SPI
Quad SPI
ADP bit value
Enable 4-Byte (B7H)
Disable 4-Byte (E9H)
ADP = 1
4-Byte Address
Software Reset
(66H + 99H)
Hardware
Reset
ADP = 0
Standard SPI
Dual SPI
Quad SPI
DRV1, DRV0 bits
The DRV1 and DRV0 bits are used to determine the output driver strength for the Read operations.
Table 8. Driver Strength for Read Operations
DRV1, DRV0
Driver Strength
00
100%
01
75% (default)
10
50%
11
25%
HOLD/RST bit
The HOLD/RST bit is used to determine whether HOLD# or RESET# function should be implemented on the hardware pin
for 8-pin packages. When HOLD/RST=0, the pin acts as HOLD#, When the HOLD/RST=1, the pin acts as RESET#.
However, the HOLD# or RESET# function are only available when QE=0, If QE=1, The HOLD# and RESET# functions are
disabled, the pin acts as dedicated data I/O pin.
15
Uniform Sector
Dual and Quad Serial Flash
6.2
GD25Q256E
Extended Address Register
Table 9. Extended Address Register
No.
Name
Description
Note
EA7
Reserved
Reserved
Reserved
EA6
Reserved
Reserved
Reserved
EA5
Reserved
Reserved
Reserved
EA4
Reserved
Reserved
Reserved
EA3
Reserved
Reserved
Reserved
EA2
Reserved
Reserved
Reserved
EA1
Reserved
Reserved
Reserved
EA0
A24
Address bit
Volatile writable
The bits of the Extended Address Register are as follows:
A24 bit
The Extended Address Bits are used only when the device is operating in the 3-Byte Address Mode, which are volatile
writable by C5H command.
A24
Address
0
0000 0000h-00FF FFFFh
1
0100 0000h-01FF FFFFh
If the device powers up with ADP bit set to 1, or an “Enter 4-Byte Address Mode (B7H)” instruction is issued, the device will
require 4-Byte address input for all address related instructions, and the Extended Address Bit setting will be ignored.
Reserved bit
It is recommended to set the value of the reserved bit as “0”.
16
Uniform Sector
Dual and Quad Serial Flash
7
GD25Q256E
COMMAND DESCRIPTIONS
All commands, addresses and data are shifted in and out of the device, beginning with the most significant bit on the first
rising edge of SCLK after CS# is driven low. Then, the one-byte command code must be shifted in to the device, with most
significant bit first on SI, and each bit is latched on the rising edges of SCLK.
Every command sequence starts with a one-byte command code. Depending on the command, this might be followed by
address bytes, or by data bytes, or by both or none. CS# must be driven high after the last bit of the command sequence
has been completed. For the command of Read, Fast Read, Read Status Register or Release from Deep Power-Down,
and Read Device ID, the shifted-in command sequence is followed by a data-out sequence. All read instruction can be
completed after any bit of the data-out sequence is being shifted out, and then CS# must be driven high to return to
deselected status.
For the command of Page Program, Sector Erase, Block Erase, Chip Erase, Write Status Register, Write Enable, Write
Disable or Deep Power-Down command, CS# must be driven high exactly at a byte boundary, otherwise the command is
rejected, and is not executed. That is CS# must be driven high when the number of clock pulses after CS# being driven low
is an exact multiple of eight. For Page Program, if at any time the input byte is not a full byte, nothing will happen and WEL
will not be reset.
Table 10. Commands (3- or 4-Byte Addr. Mode)
Command Name
Byte 1
Byte 2
Byte 3
Write Enable
06H
Write Disable
04H
Read Status Register-1
05H
(S7-S0)
(cont.)
Read Status Register-2
35H
(S15-S8)
(cont.)
Read Status Register-3
15H
(S23-S16)
(cont.)
Write Status Register-1
01H
S7-S0
Write Status Register-2
31H
S15-S8
Write Status Register-3
11H
S23-S16
C8H
(EA7-EA0)
C5H
EA7-EA0
Read Extended Addr.
Register
Write Extended Addr.
Register
Volatile SR write
Enable
Set Burst with Wrap
Chip Erase
Enter 4-Byte Address
Mode
Exit 4-Byte Address
Mode
Byte 4
Byte 5
50H
77H
dummy(1)
dummy(1)
dummy(1) W7-W0(1)
C7/60H
B7H
E9H
17
Byte 6
Byte 7
Byte 8
Byte 9
Uniform Sector
Dual and Quad Serial Flash
Read Manufacturer/
Device ID
90H
Read Identification
9FH
Enable Reset
66H
Reset
99H
Program/Erase
Suspend
Program/Erase
Resume
Deep Power-Down
Release From Deep
Power-Down
00H
(MID7MID0)
00H
00H
(ID15-ID8) (ID7-ID0)
GD25Q256E
(MID7MID0)
(ID7-ID0)
(cont.)
(cont.)
75H
7AH
B9H
ABH
Release From Deep
Power-Down and Read
ABH
dummy
dummy
dummy
(ID7-ID0)
(cont.)
5AH
A23-A16
A15-A8
A7-A0
dummy
(D7-D0)
(cont.)
13H
A31-A24
A23-A16
A15-A8
A7-A0
(D7-D0)
(cont.)
0CH
A31-A24
A23-A16
A15-A8
A7-A0
dummy
(D7-D0)
(cont.)
3CH
A31-A24
A23-A16
A15-A8
A7-A0
dummy
(D7-D0)(2)
(cont.)
6CH
A31-A24
A23-A16
A15-A8
A7-A0
dummy
(D7-D0)(3)
(cont.)
Device ID
Read Serial Flash
Discoverable
Parameter
Read Data with 4-Byte
Address
Fast Read with 4-Byte
Address
Fast Read Dual Output
with 4-Byte Address
Fast Read Quad
Output with 4-Byte
Address
Fast Read Dual I/O
with 4-Byte Address
Fast Read Quad I/O
with 4-Byte Address
Page Program with 4Byte Address
Quad Page Program
with 4-Byte Address
Sector Erase with 4Byte Address
Block Erase (32K) with
4-Byte Address
Block Erase (64K) with
4-Byte Address
BCH
A31-A24(4) A23-A16(4) A15-A8(4)
A7-A0(4)
M7-M0(5) (D7-D0)(2)
(cont.)
ECH
A31-A24(6) A23-A16(6) A15-A8(6)
A7-A0(6)
M7-M0(7)
dummy
dummy
D7-D0
Next Byte
12H
A31-A24
A23-A16
A15-A8
A7-A0
34H
A31-A24
A23-A16
A15-A8
A7-A0
21H
A31-A24
A23-A16
A15-A8
A7-A0
5CH
A31-A24
A23-A16
A15-A8
A7-A0
DCH
A31-A24
A23-A16
A15-A8
A7-A0
18
D7-D0(8) Next Byte
(D7D0)(3)
Uniform Sector
Dual and Quad Serial Flash
GD25Q256E
Table 11. Commands (3-Byte Addr. Mode)
Command Name
Byte 1
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6
Read Data
03H
A23-A16
A15-A8
A7-A0
(D7-D0)
(cont.)
Fast Read
0BH
A23-A16
A15-A8
A7-A0
dummy
(D7-D0)
(cont.)
Dual Output Fast Read
3BH
A23-A16
A15-A8
A7-A0
dummy
(D7-D0)(2)
(cont.)
6BH
A23-A16
A15-A8
A7-A0
dummy
(D7-D0)(3)
(cont.)
M7-M0(5) (D7-D0)(2)
(cont.)
M7-M0(7)
dummy
dummy (D7-D0)(3) (cont.)
A7-A0
D7-D0
Next Byte
D7-D0(8)
Next Byte
Quad Output Fast
Read
Dual I/O Fast Read
BBH
Quad I/O Fast Read
EBH
Page Program
02H
A23-A16(9) A15-A8(9)
A23A16(10)
A23-A16
A7-A0(9)
A15-A8(10) A7-A0(10)
A15-A8
Quad Page Program
32H
A23-A16
A15-A8
A7-A0
Sector Erase
20H
A23-A16
A15-A8
A7-A0
Block Erase (32K)
52H
A23-A16
A15-A8
A7-A0
Block Erase (64K)
D8H
A23-A16
A15-A8
A7-A0
Read Unique ID
4BH
00H
00H
00H
44H
A23-A16
A15-A8
A7-A0
42H
A23-A16
A15-A8
A7-A0
D7-D0
Next Byte
48H
A23-A16
A15-A8
A7-A0
dummy
(D7-D0)
Erase Security
Registers(11)
Program Security
Registers(11)
Read Security
Registers(11)
dummy
(UID7UID0)
Byte 7
Byte 8
Byte 9
(cont.)
(cont.)
Table 12. Commands (4-Byte Addr. Mode)
Command Name
Byte 1
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6
Byte 7
Read Data
03H
A31-A24
A23-A16
A15-A8
A7-A0
(D7-D0)
(cont.)
Fast Read
0BH
A31-A24
A23-A16
A15-A8
A7-A0
dummy
(D7-D0)
(cont.)
Dual Output Fast Read
3BH
A31-A24
A23-A16
A15-A8
A7-A0
dummy
(D7-D0)(2)
(cont.)
6BH
A31-A24
A23-A16
A15-A8
A7-A0
dummy
(D7-D0)(3)
(cont.)
Quad Output Fast
Read
Byte 8
Dual I/O Fast Read
BBH
A31-A24(4) A23-A16(4) A15-A8(4)
A7-A0(4)
M7-M0(5) (D7-D0)(2)
(cont.)
Quad I/O Fast Read
EBH
A31-A24(6) A23-A16(6) A15-A8(6)
A7-A0(6)
M7-M0(6)
dummy
dummy
Page Program
02H
A31-A24
A23-A16
A15-A8
A7-A0
D7-D0
Next Byte
Quad Page Program
32H
A31-A24(6)
A23-A16(6)
A15-A8(6)
A7-A0(6)
D7-D0(8)
Next Byte
Sector Erase
20H
A31-A24
A23-A16
A15-A8
A7-A0
Block Erase (32K)
52H
A31-A24
A23-A16
A15-A8
A7-A0
Block Erase (64K)
D8H
A31-A24
A23-A16
A15-A8
A7-A0
19
Byte 9
(D7D0)(3)
Uniform Sector
Dual and Quad Serial Flash
Read Unique ID
Erase Security
Registers(11)
Program Security
Registers(11)
Read Security
Registers(11)
GD25Q256E
dummy
(UID7-
4BH
00H
00H
00H
00H
44H
A31-A24
A23-A16
A15-A8
A7-A0
42H
A31-A24
A23-A16
A15-A8
A7-A0
D7-D0
Next Byte
48H
A31-A24
A23-A16
A15-A8
A7-A0
dummy
(D7-D0)
Note:
1. Dummy bits and Wrap Bits
IO0 = (x, x, x, x, x, x, W4, x)
IO1 = (x, x, x, x, x, x, W5, x)
IO2 = (x, x, x, x, x, x, W6, x)
IO3 = (x, x, x, x, x, x, x, x)
2. Dual Output data
IO0 = (D6, D4, D2, D0)
IO1 = (D7, D5, D3, D1)
3. Quad Output Data
IO0 = (D4, D0, …)
IO1 = (D5, D1, …)
IO2 = (D6, D2, …)
IO3 = (D7, D3, …)
4. Dual Input 4-Byte Address
IO0 = A30, A28, A26, A24, A22, A20, A18, A16, A14, A12, A10, A8
A6, A4, A2, A0
IO1 = A31, A29, A27, A25, A23, A21, A19, A17, A15, A13, A11, A9
A7, A5, A3, A1
5. Dual Input Mode bit
IO0 = M6, M4, M2, M0
IO1 = M7, M5, M3, M1
6. Quad Input 4-Byte Address
IO0 = A28, A24, A20, A16, A12, A8,
A4, A0
IO1 = A29, A25, A21, A17, A13, A9,
A5, A1
IO2 = A30, A26, A22, A18, A14, A10, A6, A2
IO3 = A31, A27, A23, A19, A15, A11, A7, A3
7. Quad Input Mode bit
IO0 = M4, M0
IO1 = M5, M1
IO2 = M6, M2
IO3 = M7, M3
8. Quad Output Data
IO0 = D4, D0, …
IO1 = D5, D1, …
IO2 = D6, D2, …
IO3 = D7, D3, …
20
UID0)
(cont.)
(cont.)
Uniform Sector
Dual and Quad Serial Flash
GD25Q256E
9. Dual Input Address
IO0 = A22, A20, A18, A16, A14, A12, A10, A8
A6, A4, A2, A0
IO1 = A23, A21, A19, A17, A15, A13, A11, A9
A7, A5, A3, A1
10. Quad Input Address
IO0 = A20, A16, A12, A8,
A4, A0
IO1 = A21, A17, A13, A9,
A5, A1
IO2 = A22, A18, A14, A10, A6, A2
IO3 = A23, A19, A15, A11, A7, A3
11. Security Registers Address
Security Register1: A23-A16=00H, A15-A12=1H, A11 = 0b, A10-A0= Byte Address;
Security Register2: A23-A16=00H, A15-A12=2H, A11 = 0b, A10-A0= Byte Address;
Security Register3: A23-A16=00H, A15-A12=3H, A11 = 0b, A10-A0= Byte Address;
TABLE OF ID DEFINITIONS
GD25Q256E
Operation Code
MID7-MID0
ID15-ID8
ID7-ID0
9FH
C8
40
19
90H
C8
18
ABH
18
21
Uniform Sector
Dual and Quad Serial Flash
7.1
GD25Q256E
Write Enable (WREN) (06H)
The Write Enable (WREN) command is for setting the Write Enable Latch (WEL) bit. The Write Enable Latch (WEL) bit must
be set prior to every Page Program (PP), Quad Page Program (QPP), Sector Erase (SE), Block Erase (BE), Chip Erase
(CE), Write Status Register (WRSR) and Erase/Program Security Registers command.
The Write Enable (WREN) command sequence: CS# goes low sending the Write Enable command CS# goes high.
Figure 3. Write Enable Sequence Diagram
CS#
0
1
2
3
4
5
6
7
SCLK
Command
SI
06H
High-Z
SO
7.2 Write Disable (WRDI) (04H)
The Write Disable command is for resetting the Write Enable Latch (WEL) bit. The Write Enable Latch (WEL) bit may be
set to 0 by issuing the Write Disable (WRDI) command to disable Page Program (PP), Quad Page Program (QPP), Sector
Erase (SE), Block Erase (BE), Chip Erase (CE), Write Status Register (WRSR), that require WEL be set to 1 for execution.
The WRDI command can be used by the user to protect memory areas against inadvertent writes that can possibly corrupt
the contents of the memory. The WRDI command is ignored during an embedded operation while WIP bit =1.
The WEL bit is reset by following condition: Write Disable command (WRDI), Power-up, and upon completion of the Write
Status Register, Page Program, Sector Erase, Block Erase and Chip Erase commands.
The Write Disable command sequence: CS# goes low Sending the Write Disable command CS# goes high.
Figure 4. Write Disable Sequence Diagram
CS#
0
1
2
3
4
5
6
7
SCLK
Command
SI
SO
04H
High-Z
7.3 Read Status Register (RDSR) (05H or 35H or 15H)
The Read Status Register (RDSR) command is for reading the Status Register. The Status Register may be read at any
time, even while a Program, Erase or Write Status Register cycle is in progress. When one of these cycles is in progress, it
is recommended to check the Write in Progress (WIP) bit before sending a new command to the device. It is also possible
to read the Status Register continuously. For command code of “05H” / “35H” / “15H”, the SO will output Status Register
bits S7~S0 / S15~S8 / S23~S16.
22
Uniform Sector
Dual and Quad Serial Flash
GD25Q256E
Figure 5. Read Status Register Sequence Diagram
CS#
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
SCLK
Command
05H or 35H or 15H
SI
High-Z
SO
7
Status Register 1/2/3
6 5 4 3 2 1 0
MSB
7
Status Register 1/2/3
6 5 4 3 2 1 0
7
MSB
7.4 Write Status Register (WRSR) (01H or 31H or 11H)
The Write Status Register (WRSR) command allows new values to be written to the Status Register. Before it can be
accepted, a Write Enable (WREN) command must previously have been executed. After the Write Enable (WREN)
command has been decoded and executed, the device sets the Write Enable Latch (WEL).
The Write Status Register (WRSR) command has no effect on S19, S18, S15, S10, S8, S1 and S0 of the Status Register.
For command code of “01H” / “31H” / “11H”, the Status Register bits S7~S0 / S15~S8 / S23~S16 would be written. CS#
must be driven high after the eighth bit of the data byte has been latched in. Otherwise, the Write Status Register (WRSR)
command is not executed. As soon as CS# is driven high, the self-timed Write Status Register cycle (whose duration is tW)
is initiated. While the Write Status Register cycle is in progress, the Status Register may still be read to check the value of
the Write In Progress (WIP) bit. The Write In Progress (WIP) bit is 1 during the self-timed Write Status Register cycle, and
is 0 when it is completed. When the cycle is completed, the Write Enable Latch (WEL) is reset.
The Write Status Register (WRSR) command allows the user to change the values of the Block Protect (BP4, BP3, BP2,
BP1, and BP0) bits, to define the size of the area that is to be treated as read-only. The Write Status Register (WRSR)
command also allows the user to set or reset the Status Register Protect (SRP1 and SRP0) bits in accordance with the
Write Protect (WP#) signal. The Status Register Protect (SRP1 and SRP0) bits and Write Protect (WP#) signal allow the
device to be put in the Hardware Protected Mode. The Write Status Register (WRSR) command is not executed once the
Hardware Protected Mode is entered.
Figure 6. Write Status Register Sequence Diagram
CS#
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15
01H/31H/11H
7
6
High-Z
MSB
SCLK
Command
SI
SO
7.5
Status Register in
5
4
3
2
1
0
Read Extended Address Register (C8H)
The Read Extended Address Register instruction is entered by driving CS# low and shifting the instruction code “C8H” into
the SI pin on the rising edge of SCLK. The Extended Register bits are then shifted out on the SO pin at the falling edge of
SCLK with most significant bit (MSB) first.
23
Uniform Sector
Dual and Quad Serial Flash
GD25Q256E
Figure 7 Read Extended Address Register Sequence Diagram
CS#
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
7
6
SCLK
Command
SI
C8H
High-Z
SO
5
EAR out
4 3 2
MSB
7.6
1
0
7
6
5
EAR out
4 3 2
1
0
7
MSB
Write Extended Address Register (C5H)
The Write Extended Address Register instruction allows new Address bit values to be written to the Extended Address
Register. A Write Enable (WREN) instruction must be executed previously to set the Write Enable Latch (WEL) bit before it
can be accepted.
The Write Extended Address Register instruction is entered by driving CS# low, sending the instruction code “C5H”, and
then writing the Extended Register data Byte.
Upon power up or the execution of a Software/Hardware Reset, the Extended Address Register bit values will be cleared
to 0.
Figure 8 Write Extended Address Register Sequence Diagram
CS#
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15
C5H
7
Extended Addr.
Register In
6 5 4 3 2 1
High-Z
MSB
SCLK
Command
SI
SO
7.7
0
Write Enable for Volatile Status Register (50H)
The non-volatile Status Register bits can also be written to as volatile bits. This gives more flexibility to change the system
configuration and memory protection schemes quickly without waiting for the typical non-volatile bit write cycles or affecting
the endurance of the Status Register non-volatile bits. The Write Enable for Volatile Status Register command must be
issued prior to a Write Status Register command and any other commands can’t be inserted between them. Otherwise,
Write Enable for Volatile Status Register will be cleared. The Write Enable for Volatile Status Register command will not set
the Write Enable Latch bit, it is only valid for the Write Status Register command to change the volatile Status Register bit
values.
24
Uniform Sector
Dual and Quad Serial Flash
GD25Q256E
Figure 9. Write Enable for Volatile Status Register Sequence Diagram
CS#
0
1
2
3
4
5
6
7
SCLK
Command
SI
50H
High-Z
SO
7.8 Read Data Bytes (03H/13H)
The Read Data Bytes (READ) command is followed by a 3/4-Byte address, and each bit being latched-in on the rising edge
of SCLK. Then the memory content, at that address, is shifted out on SO, and each bit being shifted out, at a Max frequency
fR, on the falling edge of SCLK. The first Byte addressed can be at any location. The address is automatically incremented
to the next higher address after each Byte of data is shifted out. The whole memory can, therefore, be read with a single
Read Data Bytes (READ) command. Any Read Data Bytes (READ) command, while an Erase, Program or Write cycle is
in progress, is rejected without having any effects on the cycle that is in progress.
Figure 10. Read Data Bytes Sequence Diagram
CS#
0
1
2
3
4
5
6
7
8
9 10
28 29 30 31 32 33 34 35 36 37 38 39
SCLK
Command
SI
03H
High-Z
SO
24-bit address
23 22 21
3
2
1
0
MSB
MSB
7
6
5
Data Out1
4 3 2 1
Data Out2
0
Note: The device default is in 24-bit address mode. For 4-Byte mode or 4-Byte command, the address length is 32-bit.
7.9
Read Data Bytes at Higher Speed (0BH/0CH)
The Read Data Bytes at Higher Speed (Fast Read) command is for quickly reading data out. It is followed by a 3/4-Byte
address and a dummy Byte, and each bit being latched-in on the rising edge of SCLK. Then the memory content, at that
address, is shifted out on SO, and each bit being shifted out, at a Max frequency f C, on the falling edge of SCLK. The first
Byte addressed can be at any location. The address is automatically incremented to the next higher address after each
Byte of data is shifted out.
25
Uniform Sector
Dual and Quad Serial Flash
GD25Q256E
Figure 11. Read Data Bytes at Higher Speed Sequence Diagram
CS#
0
1
2
3
4
5
6
7
8
9 10
28 29 30 31
SCLK
Command
SI
24-bit address
0BH
23 22 21
3
2
1
0
High-Z
SO
CS#
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
SCLK
Dummy Byte
SI
7
6
5
4
3
2
1
0
7 6
MSB
SO
Data Out1
5 4 3 2
1
0
Data Out2
7 6 5
MSB
Note: The device default is in 24-bit address mode. For 4-Byte mode or 4-Byte command, the address length is 32-bit.
7.10 Dual Output Fast Read (3BH/3CH)
The Dual Output Fast Read command is followed by 3/4-Byte address and a dummy Byte, and each bit being latched in on
the rising edge of SCLK, then the memory contents are shifted out 2-bit per clock cycle from SI and SO.
The first Byte addressed can be at any location. The address is automatically incremented to the next higher address after
each Byte of data is shifted out.
Figure 12. Dual Output Fast Read Sequence Diagram
CS#
0
1
2
3
4
5
6
7
8
9 10
28 29 30 31
SCLK
Command
SI
SO
24-bit address
3BH
23 22 21
3
2
1
0
High-Z
CS#
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
SCLK
Dummy Clocks
SI
SO
6
4
2
0
6
4
2
0
6
Data Out1
Data Out2
7 5 3 1 7 5 3 1
MSB
MSB
7
Note: The device default is in 24-bit address mode. For 4-Byte mode or 4-Byte command, the address length is 32-bit.
7.11 Quad Output Fast Read (6BH/6CH)
The Quad Output Fast Read command is followed by 3/4-Byte address and a dummy Byte, and each bit being latched in
26
Uniform Sector
Dual and Quad Serial Flash
GD25Q256E
on the rising edge of SCLK, then the memory contents are shifted out 4-bit per clock cycle from IO3, IO2, IO1 and IO0. The
first Byte addressed can be at any location. The address is automatically incremented to the next higher address after each
Byte of data is shifted out. The Quad Enable bit (QE) of Status Register (S9) must be set to enable for the Quad Output
Fast Read command.
Figure 13 Quad Output Fast Read Sequence Diagram
CS#
0
1
2
3
4
5
6
7
8
9 10
28 29 30 31
SCLK
Command
IO0
24-bit address
6BH
23 22 21
IO1
High-Z
IO2
High-Z
IO3
High-Z
CS#
3
2
1
0
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
SCLK
Dummy Clocks
IO0
4
0
4
0
4
0
4
0
4
IO1
5
1
5
1
5
1
5
1
5
IO2
6
2
6
2
6
2
6
2
6
IO3
7 3 7 3 7 3 7 3 7
Byte1 Byte2 Byte3 Byte4
Note: The device default is in 24-bit address mode. For 4-Byte mode or 4-Byte command, the address length is 32-bit.
7.12 Dual I/O Fast Read (BBH/BCH)
The Dual I/O Fast Read command is similar to the Dual Output Fast Read command but with the capability to input the 3/4Byte address and a “Continuous Read Mode” Byte 2-bit per clock by SI and SO, and each bit being latched in on the rising
edge of SCLK, then the memory contents are shifted out 2-bit per clock cycle from SI and SO. The first Byte addressed can
be at any location. The address is automatically incremented to the next higher address after each Byte of data is shifted
out.
Dual I/O Fast Read with “Continuous Read Mode”
The Dual I/O Fast Read command can further reduce command overhead through setting the “Continuous Read Mode” bits
(M7-4) after the input 3- or 4-Byte address (A23-A0 or A31-A0). If the “Continuous Read Mode” bits (M5-4) = (1, 0), then
the next Dual I/O Fast Read command (after CS# is raised and then lowered) does not require the BBH command code. If
the “Continuous Read Mode” bits (M5-4) do not equal (1, 0), the next command requires the command code, thus returning
to normal operation. A Reset command can be also used to reset (M7-0) before issuing normal command.
27
Uniform Sector
Dual and Quad Serial Flash
GD25Q256E
Figure 14 Dual I/O Fast Read Sequence Diagram ((M5-4) ≠ (1, 0))
CS#
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
6
4
2
0
6
5
3
1
7
SCLK
Command
IO0
BBH
IO1
7
A23-16
CS#
4
2
0
6
5
3
1
7
A15-8
4
2
0
6
5
3
1
7
A7-0
4
2
0
5
3
1
M7-0
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
SCLK
IO0
6
4
2
0
6
4
2
0
6
4
2
0
6
4
2
0
6
IO1
7
5
3
1
7
5
3
1
7
5
3
1
7
5
3
1
7
Byte1
Byte2
Byte3
Byte4
Note: The device default is in 24-bit address mode. For 4-Byte mode or 4-Byte command, the address length is 32-bit.
Figure 15 Dual I/O Fast Read Sequence Diagram ((M5-4) = (1, 0))
CS#
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15
IO0
6
4
2
0
6
4
2
0
6
4
2
0
6
4
2
0
IO1
7
5
3
1
7
5
3
1
7
5
3
1
7
5
3
1
SCLK
A23-16
CS#
A15-8
A7-0
M7-0
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
SCLK
IO0
6
4
2
0
6
4
2
0
6
4
2
0
6
4
2
0
6
IO1
7
5
3
1
7
5
3
1
7
5
3
1
7
5
3
1
7
Byte1
Byte2
Byte3
Byte4
Note: The device default is in 24-bit address mode. For 4-Byte mode or 4-Byte command, the address length is 32-bit.
7.13 Quad I/O Fast Read (EBH/ECH)
The Quad I/O Fast Read command is similar to the Dual I/O Fast Read command but with the capability to input the 3/4Byte address and a “Continuous Read Mode” Byte and 4-dummy clock 4-bit per clock by IO0, IO1, IO2, IO3, and each bit
being latched in on the rising edge of SCLK, then the memory contents are shifted out 4-bit per clock cycle from IO0, IO1,
IO2, IO3. The first Byte addressed can be at any location. The address is automatically incremented to the next higher
28
Uniform Sector
Dual and Quad Serial Flash
GD25Q256E
address after each Byte of data is shifted out. The Quad Enable bit (QE) of Status Register (S9) must be set to enable for
the Quad I/O Fast read command.
Quad I/O Fast Read with “Continuous Read Mode”
The Quad I/O Fast Read command can further reduce command overhead through setting the “Continuous Read Mode”
bits (M7-0) after the input 3- or 4-Byte address (A23-A0 or A31-A0). If the “Continuous Read Mode” bits (M5-4) = (1, 0),
then the next Quad I/O Fast Read command (after CS# is raised and then lowered) does not require the EBH command
code. If the “Continuous Read Mode” bits (M5-4) do not equal to (1, 0), the next command requires the command code,
thus returning to normal operation. A Reset command can be also used to reset (M7-0) before issuing normal command.
Figure 16 Quad I/O Fast Read Sequence Diagram ((M5-4) ≠ (1, 0))
CS#
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
4
0
4
0
4
0
4
0
4
0
4
0
4
IO1
5
1
5
1
5
1
5
1
5
1
5
1
5
IO2
6
2
6
2
6
2
6
2
6
2
6
2
6
IO3
7
3
7
3
7
3
7
3
7
3
7
3
7
SCLK
Command
IO0
EBH
A23-16 A15-8 A7-0 M7-0
Dummy
Byte1 Byte2
Note: The device default is in 24-bit address mode. For 4-Byte mode or 4-Byte command, the address length is 32-bit.
Figure 17 Quad I/O Fast Read Sequence Diagram ((M5-4) = (1, 0))
CS#
0
5
6
7
8
13
14
15
SCLK
dummy
Address
IO[3:0]
Addr.
M7-4 M3-0
Byte 1
Byte 2
Data out
Data out
Note: The device default is in 24-bit address mode. For 4-Byte mode or 4-Byte command, the address length is 32-bit.
Quad I/O Fast Read with “8/16/32/64-Byte Wrap Around” in Standard SPI mode
The Quad I/O Fast Read command can be used to access a specific portion within a page by issuing “Set Burst with Wrap”
(77H) commands prior to EBH or ECH. The “Set Burst with Wrap” (77H) command can either enable or disable the “Wrap
Around” feature for the following EBH or ECH commands. When “Wrap Around” is enabled, the data being accessed can
be limited to either an 8/16/32/64-Byte section of a 256-Byte page. The output data starts at the initial address specified in
the command, once it reaches the ending boundary of the 8/16/32/64-Byte section, the output will wrap around the beginning
boundary automatically until CS# is pulled high to terminate the command.
The Burst with Wrap feature allows applications that use cache to quickly fetch a critical address and then fill the cache
afterwards within a fixed length (8/16/32/64-Byte) of data without issuing multiple read commands. The “Set Burst with Wrap”
command allows three “Wrap Bits” W6-W4 to be set. The W4 bit is used to enable or disable the “Wrap Around” operation
while W6-W5 is used to specify the length of the wrap around section within a page.
29
Uniform Sector
Dual and Quad Serial Flash
GD25Q256E
7.14 Set Burst with Wrap (77H)
The Set Burst with Wrap command is used in conjunction with “Quad I/O Fast Read” command to access a fixed length of
8/16/32/64-byte section within a 256-byte page, in standard SPI mode.
The Set Burst with Wrap command sequence: CS# goes low Send Set Burst with Wrap command Send 24 dummy
bits Send 8 bits “Wrap bits” CS# goes high.
W6,W5
W4=0
W4=1 (default)
Wrap Around
Wrap Length
Wrap Around
Wrap Length
0, 0
Yes
8-byte
No
N/A
0, 1
Yes
16-byte
No
N/A
1, 0
Yes
32-byte
No
N/A
1, 1
Yes
64-byte
No
N/A
If the W6-W4 bits are set by the Set Burst with Wrap command, all the following “Quad I/O Fast Read” command will use
the W6-W4 setting to access the 8/16/32/64-byte section within any page. To exit the “Wrap Around” function and return to
normal read operation, another Set Burst with Wrap command should be issued to set W4=1.
Figure 18. Set Burst with Wrap Sequence Diagram
CS#
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15
x
x
x
x
x
x
4
x
IO1
x
x
x
x
x
x
5
x
IO2
x
x
x
x
x
x
6
x
IO3
x
x
x
x
x
x
x
x
SCLK
Command
IO0
77H
W6-W4
7.15 Page Program (PP 02H or 4PP 12H)
The Page Program (PP) command is for programming the memory. A Write Enable (WREN) command must previously
have been executed to set the Write Enable Latch (WEL) bit before sending the Page Program command.
The Page Program (PP) command is entered by driving CS# Low, followed by the command code, three address Bytes
and at least one data Byte on SI. If the 8 least significant address bits (A7-A0) are not all zero, all transmitted data that goes
beyond the end of the current page are programmed from the start address of the same page (from the address whose 8
least significant bits (A7-A0) are all zero). CS# must be driven low for the entire duration of the sequence. The Page Program
command sequence: CS# goes low sending Page Program command 3 or 4-Byte address on SI at least 1 Byte
data on SI CS# goes high. If more than 256 Bytes are sent to the device, previously latched data are discarded and the
last 256 data Bytes are guaranteed to be programmed correctly within the same page. If less than 256 data Bytes are sent
to device, they are correctly programmed at the requested addresses without having any effects on the other Bytes of the
same page. CS# must be driven high after the eighth bit of the last data Byte has been latched in; otherwise the Page
Program (PP) command is not executed.
As soon as CS# is driven high, the self-timed Page Program cycle (whose duration is tPP) is initiated. While the Page
30
Uniform Sector
Dual and Quad Serial Flash
GD25Q256E
Program cycle is in progress, the Status Register may be read to check the value of the Write in Progress (WIP) bit. The
Write in Progress (WIP) bit is 1 during the self-timed Page Program cycle, and is 0 when it is completed. At some unspecified
time before the cycle is completed, the Write Enable Latch (WEL) bit is reset.
A Page Program (PP) command applied to a page which is protected by the Block Protect (BP4, BP3, BP2, BP1, and BP0)
is not executed.
Figure 19 Page Program Sequence Diagram (ADS=0)
CS#
0
1
2
3
4
5
6
7
8
9 10
28 29 30 31 32 33 34 35 36 37 38 39
SCLK
Command
23 22 21
3
2
1
0 7
MSB
5
4
3
2
1
2078
2079
2076
2077
2075
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
2072
CS#
6
0
MSB
2074
02H
Data Byte 1
2073
SI
24-bit address
1
0
SCLK
Data Byte 2
SI
7
6
5
4
3
2
MSB
Data Byte 3
1
0 7
6
5
4
3
2
MSB
Data Byte 256
1
0
7
6
5
4
3
2
MSB
Note: The device default is in 24-bit address mode. For 4-Byte mode or 4-Byte command, the address length is 32-bit.
7.16 Quad Page Program (32H/34H)
The Quad Page Program command is for programming the memory using four pins: IO0, IO1, IO2, and IO3. To use Quad
Page Program the Quad enable in status register Bit9 must be set (QE=1). A Write Enable (WREN) command must
previously have been executed to set the Write Enable Latch (WEL) bit before sending the Page Program command. The
quad Page Program command is entered by driving CS# Low, followed by the command code (32H), three address Bytes
and at least one data Byte on IO pins.
The command sequence is shown below. If more than 256 Bytes are sent to the device, previously latched data are
discarded and the last 256 data Bytes are guaranteed to be programmed correctly within the same page. If less than 256
data Bytes are sent to device, they are correctly programmed at the requested addresses without having any effects on the
other Bytes of the same page. CS# must be driven high after the eighth bit of the last data Byte has been latched in;
otherwise the Quad Page Program (PP) command is not executed.
As soon as CS# is driven high, the self-timed Quad Page Program cycle (whose duration is tPP) is initiated. While the Quad
Page Program cycle is in progress, the Status Register may be read to check the value of the Write In Progress (WIP) bit.
The Write in Progress (WIP) bit is 1 during the self-timed Quad Page Program cycle, and is 0 when it is completed. At some
unspecified time before the cycle is completed, the Write Enable Latch (WEL) bit is reset.
A Quad Page Program command applied to a page which is protected by the Block Protect (BP4, BP3, BP2, BP1, and BP0)
is not executed.
31
Uniform Sector
Dual and Quad Serial Flash
GD25Q256E
Figure 20 Quad Page Program Sequence Diagram
1
2
3
4
5
6
7
8
9 10
28 29 30 31 32 33 34 35
543
0
542
CS#
SCLK
0 4
0
4
0
Byte
256
4 0
IO1
5
1
5
1
5 1
IO2
6
2
6
2
6 2
IO3
7
3
7
3
7 3
Command
IO0
24-bit address
32H
23 22 21
3
2
Byte1 Byte2
1
MSB
Note: The device default is in 24-bit address mode. For 4-Byte mode or 4-Byte command, the address length is 32-bit.
7.17 Sector Erase (SE 20H or 4SE 21H)
The Sector Erase (SE) command is erased the all data of the chosen sector. A Write Enable (WREN) command must
previously have been executed to set the Write Enable Latch (WEL) bit. The Sector Erase (SE) command is entered by
driving CS# low, followed by the command code, and 3- or 4-address Byte on SI. Any address inside the sector is a valid
address for the Sector Erase (SE) command. CS# must be driven low for the entire duration of the sequence.
The Sector Erase command sequence: CS# goes low sending Sector Erase command 3-Byte or 4-Byte address on
SI CS# goes high. CS# must be driven high after the eighth bit of the last address Byte has been latched in; otherwise
the Sector Erase (SE) command is not executed. As soon as CS# is driven high, the self-timed Sector Erase cycle (whose
duration is tSE) is initiated. While the Sector Erase cycle is in progress, the Status Register may be read to check the value
of the Write in Progress (WIP) bit. The Write in Progress (WIP) bit is 1 during the self-timed Sector Erase cycle, and is 0
when it is completed. At some unspecified time before the cycle is completed, the Write Enable Latch (WEL) bit is reset. A
Sector Erase (SE) command applied to a sector which is protected by the Block Protect (BP4, BP3, BP2, BP1, and BP0)
bit is not executed.
Figure 21. Sector Erase Sequence Diagram
CS#
0
1
2
3
4
5
6
7
8
9
29 30 31
SCLK
Command
SI
20H
24 Bits Address
23 22
MSB
2
1
0
Note: The device default is in 24-bit address mode. For 4-Byte mode or 4-Byte command, the address length is 32-bit.
7.18 32KB Block Erase (BE32 52H or 4BE32 5CH)
The 32KB Block Erase command is for erasing the all data of the chosen block. A Write Enable (WREN) command must
previously have been executed to set the Write Enable Latch (WEL) bit. The 32KB Block Erase command is entered by
driving CS# low, followed by the command code, and three address bytes on SI. Any address inside the block is a valid
address for the 32KB Block Erase command. CS# must be driven low for the entire duration of the sequence.
The 32KB Block Erase command sequence: CS# goes low sending 32KB Block Erase command 3-Byte or 4-Byte
32
Uniform Sector
Dual and Quad Serial Flash
GD25Q256E
address on SI CS# goes high. CS# must be driven high after the eighth bit of the last address byte has been latched in;
otherwise the 32KB Block Erase command is not executed. As soon as CS# is driven high, the self-timed Block Erase cycle
(whose duration is tBE1) is initiated. While the Block Erase cycle is in progress, the Status Register may be read to check
the value of the Write in Progress (WIP) bit. The Write in Progress (WIP) bit is 1 during the self-timed Block Erase cycle,
and is 0 when it is completed. At some unspecified time before the cycle is completed, the Write Enable Latch (WEL) bit is
reset. A 32KB Block Erase command applied to a block which is protected by the Block Protect (BP4, BP3, BP2, BP1, and
BP0) bits is not executed.
Figure 22. 32KB Block Erase Sequence Diagram (ADS=0)
CS#
0
1
2
3
4
5
6
7
8
9
29 30 31
SCLK
Command
SI
24 Bits Address
52H
23 22
MSB
2
1
0
Note: The device default is in 24-bit address mode. For 4-Byte mode or 4-Byte command, the address length is 32-bit.
7.19 64KB Block Erase (BE64 D8H or 4BE64 DCH)
The 64KB Block Erase command is for erasing the all data of the chosen block. A Write Enable (WREN) command must
previously have been executed to set the Write Enable Latch (WEL) bit. The 64KB Block Erase (BE) command is entered
by driving CS# low, followed by the command code, and three address bytes on SI. Any address inside the block is a valid
address for the 64KB Block Erase command. CS# must be driven low for the entire duration of the sequence.
The 64KB Block Erase command sequence: CS# goes low sending 64KB Block Erase command 3-Byte or 4-Byte
address on SI CS# goes high. CS# must be driven high after the eighth bit of the last address byte has been latched in;
otherwise the 64KB Block Erase command is not executed. As soon as CS# is driven high, the self-timed Block Erase cycle
(whose duration is tBE2) is initiated. While the Block Erase cycle is in progress, the Status Register may be read to check
the value of the Write in Progress (WIP) bit. The Write in Progress (WIP) bit is 1 during the self-timed Block Erase cycle,
and is 0 when it is completed. At some unspecified time before the cycle is completed, the Write Enable Latch (WEL) bit is
reset. A 64KB Block Erase command applied to a block which is protected by the Block Protect (BP4, BP3, BP2, BP1, and
BP0) bits is not executed.
Figure 23. 64KB Block Erase Sequence Diagram (ADS=0)
CS#
0
1
2
3
4
5
6
7
8
9
29 30 31
SCLK
Command
SI
D8H
24 Bits Address
23 22
MSB
2
1
0
Note: The device default is in 24-bit address mode. For 4-Byte mode or 4-Byte command, the address length is 32-bit.
7.20 Chip Erase (CE) (60/C7H)
The Chip Erase (CE) command is for erasing the all data of the chip. A Write Enable (WREN) command must previously
have been executed to set the Write Enable Latch (WEL) bit .The Chip Erase (CE) command is entered by driving CS#
Low, followed by the command code on Serial Data Input (SI). CS# must be driven Low for the entire duration of the
sequence.
33
Uniform Sector
Dual and Quad Serial Flash
GD25Q256E
The Chip Erase command sequence: CS# goes low sending Chip Erase command CS# goes high. CS# must be
driven high after the eighth bit of the command code has been latched in; otherwise the Chip Erase command is not executed.
As soon as CS# is driven high, the self-timed Chip Erase cycle (whose duration is t CE) is initiated. While the Chip Erase
cycle is in progress, the Status Register may be read to check the value of the Write in Progress (WIP) bit. The Write in
Progress (WIP) bit is 1 during the self-timed Chip Erase cycle, and is 0 when it is completed. At some unspecified time
before the cycle is completed, the Write Enable Latch (WEL) bit is reset. The Chip Erase (CE) command is executed, if the
no block is protected by the Block Protect bits. The Chip Erase (CE) command is ignored if one or more sectors are protected.
Figure22. Chip Erase Sequence Diagram
CS#
0
1
2
3
4
5
6
7
SCLK
Command
SI
60H or C7H
7.21 Enter 4-Byte Address Mode (EN4B) (B7H)
The Enter 4-Byte Address Mode command enables accessing the address length of 32-bit for the memory area of higher
density (larger than 128Mb). The device default is in 24-bit address mode; after sending out the EN4B instruction, the bit
11 (ADS bit) of status register will be automatically set to “1” to indicate the 4-Byte address mode has been enabled. Once
the 4-Byte address mode is enabled, the address length becomes 32-bit instead of the default 24-bit.
All instructions are accepted normally, and just the address bit is changed from 24-bit to 32-bit.
The sequence of issuing EN4B instruction is: CS# goes low sending Enter 4-Byte mode command CS# goes high.
Figure 24 Enter 4-Byte Address Mode Sequence Diagram
CS#
SCLK
SI
SO
0
1
2
3
4
5
6
7
Command
B7H
High-Z
7.22 Exit 4-Byte Address Mode (EX4B) (E9H)
The Exit 4-Byte Address Mode command is executed to exit the 4-Byte address mode and return to the default 3-Byte
address mode. After sending out the EX4B instruction, the bit 11 (ADS bit) of status register will be cleared to “0” to indicate
the exit of the 4-Byte address mode. Once exiting the 4-Byte address mode, the address length will return to 24-bit.
The sequence of issuing EX4B instruction is: CS# goes low sending Exit 4-Byte Address Mode command CS# goes
high.
34
Uniform Sector
Dual and Quad Serial Flash
GD25Q256E
Figure 25 Exit 4-Byte Address Mode Sequence Diagram
CS#
0
SCLK
1
2
3
4
5
6
7
Command
SI
E9H
High-Z
SO
7.23 Read Manufacture ID/ Device ID (REMS) (90H)
The Read Manufacturer/Device ID command is an alternative to the Release from Power-Down / Device ID command that
provides both the JEDEC assigned Manufacturer ID and the specific Device ID.
The command is initiated by driving the CS# pin low and shifting the command code “90H” followed by a 24-bit address
(A23-A0) of 000000H. After which, the Manufacturer ID and the Device ID are shifted out on the falling edge of SCLK with
most significant bit (MSB) first.
Figure 26. Read Manufacture ID/ Device ID Sequence Diagram
CS#
0
1
2
3
4
5
6
7
8
9 10
28 29 30 31
SCLK
Command
SI
90H
23 22 21
3
2
1
0
High-Z
SO
CS#
24-bit address
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
SCLK
SI
SO
7
Manufacturer ID
6 5 4 3 2 1
MSB
Device ID
0
7
6
5
4
3
2
1
0
MSB
7.24 Read Identification (RDID) (9FH)
The Read Identification (RDID) command allows the 8-bit manufacturer identification to be read, followed by two bytes of
device identification. The device identification indicates the memory type in the first byte, and the memory capacity of the
device in the second byte. The Read Identification (RDID) command while an Erase or Program cycle is in progress, is not
decoded, and has no effect on the cycle that is in progress. The Read Identification (RDID) command should not be issued
while the device is in Deep Power-Down Mode.
The device is first selected by driving CS# low. Then, the 8-bit command code for the command is shifted in. This is followed
by the 24-bit device identification, stored in the memory. Each bit is shifted out on the falling edge of Serial Clock. The Read
Identification (RDID) command is terminated by driving CS# high at any time during data output. When CS# is driven high,
the device is in the Standby Mode. Once in the Standby Mode, the device waits to be selected, so that it can receive, decode
35
Uniform Sector
Dual and Quad Serial Flash
GD25Q256E
and execute commands.
Figure 27. Read Identification ID Sequence Diagram
CS#
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15
7
6
SCLK
SI
9FH
SO
Manufacturer ID
5 4 3 2 1
0
MSB
CS#
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
SCLK
SI
Memory Type ID15-ID8
7 6 5 4 3 2 1 0
SO
MSB
Capacity ID7-ID0
6 5 4 3 2 1
7
0
MSB
7.25 Read Unique ID (4BH)
The Read Unique ID command accesses a factory-set read-only 128bit number that is unique to each device. The Unique
ID can be used in conjunction with user software methods to help prevent copying or cloning of a system.
The Read Unique ID command sequence: CS# goes low sending Read Unique ID command 3- or 4-Byte Address
(000000H or 00000000H) Dummy Byte128bit Unique ID Out CS# goes high.
Figure 28. Read Unique ID Sequence Diagram
CS#
0
1
2
3
4
5
6
7
8
9 10
28 29 30 31
SCLK
24-bit address
(000000H)
23 22 21
3 2
Command
SI
4BH
1
0
High-Z
SO
CS#
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
SCLK
Dummy Byte
SI
7
6
5
4
3
2
1
SO
0
7 6
MSB
Data Out1
5 4 3 2
1
0
Data Out2
7 6 5
MSB
Note: The device default is in 24-bit address mode. For 4-Byte mode or 4-Byte command, the address length is 32-bit.
7.26 Erase Security Registers (44H)
The GD25Q256E provides 3x2048-Byte Security Registers which can be erased and programmed individually. These
36
Uniform Sector
Dual and Quad Serial Flash
GD25Q256E
registers may be used by the system manufacturers to store security and other important information separately from the
main memory array.
The Erase Security Registers command is similar to Sector/Block Erase command. A Write Enable (WREN) command must
previously have been executed to set the Write Enable Latch (WEL) bit.
The Erase Security Registers command sequence: CS# goes low sending Erase Security Registers command 3- or
4-Byte address on SI CS# goes high. The command sequence is shown below. CS# must be driven high after the eighth
bit of the last address Byte has been latched in; otherwise the Erase Security Registers command is not executed. As soon
as CS# is driven high, the self-timed Erase Security Registers cycle (whose duration is tSE) is initiated. While the Erase
Security Registers cycle is in progress, the Status Register may be read to check the value of the Write in Progress (WIP)
bit. The Write in Progress (WIP) bit is 1 during the self-timed Erase Security Registers cycle, and is 0 when it is completed.
At some unspecified time before the cycle is completed, the Write Enable Latch (WEL) bit is reset. The Security Registers
Lock Bit (LB1, LB2, LB3) in the Status Register can be used to OTP protect the security registers. Once the LB bit is set to
1, the Security Registers will be permanently locked; the Erase Security Registers command will be ignored.
Address
A23-16
A15-12
A11
A10-0
Security Register #1
00H
0001b
0b
Don't care
Security Register #2
00H
0010b
0b
Don't care
Security Register #3
00H
0011b
0b
Don't care
Figure 29. Erase Security Registers command Sequence Diagram
CS#
0
1
2
3
4
5
6
7
8
9
29 30 31
SCLK
Command
SI
44H
24 Bits Address
23 22
MSB
2
1
0
Note: The device default is in 24-bit address mode. For 4-Byte mode or 4-Byte command, the address length is 32-bit.
7.27 Program Security Registers (42H)
The Program Security Registers command is similar to the Page Program command. Each security register contains eight
pages content. A Write Enable (WREN) command must previously have been executed to set the Write Enable Latch (WEL)
bit before sending the Program Security Registers command. The Program Security Registers command is entered by
driving CS# Low, followed by the command code (42H), three address Bytes and at least one data Byte on SI. As soon as
CS# is driven high, the self-timed Program Security Registers cycle (whose duration is t PP) is initiated. While the Program
Security Registers cycle is in progress, the Status Register may be read to check the value of the Write in Progress (WIP)
bit. The Write in Progress (WIP) bit is 1 during the self-timed Program Security Registers cycle, and is 0 when it is completed.
At some unspecified time before the cycle is completed, the Write Enable Latch (WEL) bit is reset.
If the Security Registers Lock Bit (LB1, LB2, LB3) is set to 1, the Security Registers will be permanently locked. Program
Security Registers command will be ignored.
Address
A23-16
A15-12
A11
A10-0
Security Register #1
00H
0001b
0b
Byte Address
Security Register #2
00H
0010b
0b
Byte Address
Security Register #3
00H
0011b
0b
Byte Address
37
Uniform Sector
Dual and Quad Serial Flash
GD25Q256E
Figure 30. Program Security Registers command Sequence Diagram
CS#
0
1
2
3
4
5
6
7
8
9 10
28 29 30 31 32 33 34 35 36 37 38 39
SCLK
Command
23 22 21
3
2
Data Byte 1
1
0 7
MSB
5
4
3
2
1
0
2078
2079
6
2077
7
2076
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
2073
MSB
2072
CS#
6
2075
42H
2074
SI
24-bit address
1
0
SCLK
Data Byte 2
SI
7
6
5
4
3
Data Byte 3
2
1
0 7
MSB
6
5
4
3
Data Byte 256
2
1
0
MSB
5
4
3
2
MSB
Note: The device default is in 24-bit address mode. For 4-Byte mode or 4-Byte command, the address length is 32-bit.
7.28 Read Security Registers (48H)
The Read Security Registers command is similar to Fast Read command. The command is followed by a 3- or 4-Byte
address (A23-A0 or A31-A0) and a dummy Byte, and each bit is latched-in on the rising edge of SCLK. Then the memory
content, at that address, is shifted out on SO, and each bit is shifted out, at a Max frequency f C, on the falling edge of SCLK.
The first Byte addressed can be at any location. The address is automatically incremented to the next higher address after
each byte of data is shifted out. Once the A10-0 address reaches the last byte of the register (Byte 7FFH), it will reset to
000H, the command is completed by driving CS# high.
Address
A23-16
A15-12
A11
A10-0
Security Register #1
00H
0001b
0b
Byte Address
Security Register #2
00H
0010b
0b
Byte Address
Security Register #3
00H
0011b
0b
Byte Address
Figure 31. Read Security Registers command Sequence Diagram
CS#
0
1
2
3
4
5
6
7
8
9 10
28 29 30 31
SCLK
Command
SI
24-bit address
48H
23 22 21
3
2
1
0
High-Z
SO
CS#
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
SCLK
Dummy Byte
SI
SO
7
6
5
4
3
2
1
0
7 6
MSB
Data Out1
5 4 3 2
1
0
Data Out2
7 6 5
MSB
Note: The device default is in 24-bit address mode. For 4-Byte mode or 4-Byte command, the address length is 32-bit.
38
Uniform Sector
Dual and Quad Serial Flash
GD25Q256E
7.29 Enable Reset (66H) and Reset (99H)
If the Reset command is accepted, any on-going internal operation will be terminated and the device will return to its default
power-on state and lose all the current volatile settings, such as Volatile Status Register bits, Write Enable Latch status
(WEL), Program/Erase Suspend status, Read Parameter setting (P7-P0), Deep Power Down Mode, Continuous Read Mode
bit setting (M7-M0) and Wrap Bit Setting (W6-W4).
The “Enable Reset (66H)” and “Reset (99H)” command sequence as follow: CS# goes low Sending Enable Reset
command CS# goes high CS# goes low Sending Reset command CS# goes high. Once the Reset command is
accepted by the device, the device will take approximately t RST / tRST_E to reset. During this period, no command will be
accepted. Data corruption may happen if there is an on-going or suspended internal Erase or Program operation when
Reset command sequence is accepted by the device. It is recommended to check the WIP bit and the SUS1/SUS2 bit in
Status Register before issuing the Reset command sequence.
Figure 32. Enable Reset and Reset command Sequence Diagram
CS#
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
SCLK
SI
Command
Command
66H
99H
High-Z
SO
7.30 Program/Erase Suspend (PES) (75H)
The Program/Erase Suspend command “75H”, allows the system to interrupt a page program or sector/block erase
operation and then read data from any other sector or block. The Write Status Register command (01H, 31H, 11H) and
Erase/Program Security Registers command (44H, 42H) and Erase commands (20H, 21H, 52H, 5CH, D8H, DCH, C7H,
60H) and Page Program command (02H, 12H, 32H, 34H) are not allowed during Program suspend. The Write Status
Register command (01H, 31H, 11H) and Erase Security Registers command (44H) and Erase commands (20H, 21H, 52H,
5CH, D8H, DCH, C7H, 60H) are not allowed during Erase suspend. Program/Erase Suspend is valid only during the page
program or sector/block erase operation. A maximum of time of “tsus” (See AC Characteristics) is required to suspend the
program/erase operation.
The Program/Erase Suspend command will be accepted by the device only if the SUS1/SUS2 bit in the Status Register
equal to 0 and WIP bit equal to 1 while a Page Program or a Sector or Block Erase operation is on-going. If the SUS1/SUS2
bit equal to 1 or WIP bit equal to 0, the Suspend command will be ignored by the device. The WIP bit will be cleared from 1
to 0 within “tsus” and the SUS1/SUS2 bit will be set from 0 to 1 immediately after Program/Erase Suspend. A power-off
during the suspend period will reset the device and release the suspend state.
Figure 33. Program/Erase Suspend Sequence Diagram
CS#
0
1
2
3
4
5
6
7
tSUS
SCLK
Command
SI
SO
75H
High-Z
Accept read command
39
Uniform Sector
Dual and Quad Serial Flash
GD25Q256E
7.31 Program/Erase Resume (PER) (7AH)
The Program/Erase Resume command must be written to resume the program or sector/block erase operation after a
Program/Erase Suspend command. The Program/Erase Resume command will be accepted by the device only if the
SUS1/SUS2 bit equal to 1 and the WIP bit equal to 0. After issued the SUS1/SUS2 bit in the status register will be cleared
from 1 to 0 immediately, the WIP bit will be set from 0 to 1 within 200ns and the Sector or Block will complete the erase
operation or the page will complete the program operation. The Program/Erase Resume command will be ignored unless a
Program/Erase Suspend is active.
Figure 34. Program/Erase Resume Sequence Diagram
CS#
0
1
2
3
4
5
6
7
SCLK
Command
SI
7AH
Resume Erase/Program
7.32 Deep Power-Down (DP) (B9H)
Executing the Deep Power-Down (DP) command is the only way to put the device in the lowest consumption mode (the
Deep Power-Down Mode). It can also be used as an extra software protection mechanism, while the device is not in active
use, since in this mode, the device ignores all Write, Program and Erase commands. Driving CS# high deselects the device,
and puts the device in the Standby Mode (if there is no internal cycle currently in progress). But this mode is not the Deep
Power-Down Mode. The Deep Power-Down Mode can only be entered by executing the Deep Power-Down (DP) command.
Once the device has entered the Deep Power-Down Mode, all commands are ignored except the Release from Deep
Power-Down and Read Device ID (RDI) command or software reset command. The Release from Deep Power-Down and
Read Device ID (RDI) command releases the device from Deep Power-Down mode, also allows the Device ID of the device
to be output on SO.
The Deep Power-Down Mode automatically stops at Power-Down, and the device always in the Standby Mode after PowerUp.
The Deep Power-Down command sequence: CS# goes low sending Deep Power-Down command CS# goes high.
CS# must be driven high after the eighth bit of the command code has been latched in; otherwise the Deep Power-Down
(DP) command is not executed. As soon as CS# is driven high, it requires a delay of t DP before the supply current is reduced
to ICC2 and the Deep Power-Down Mode is entered. Any Deep Power-Down (DP) command, while an Erase, Program or
Write cycle is in progress, is rejected without having any effects on the cycle that is in progress.
Figure 35. Deep Power-Down Sequence Diagram
CS#
0
1
2
3
4
5
6
7
tDP
SCLK
Command
SI
Deep Power-down mode
B9H
40
Uniform Sector
Dual and Quad Serial Flash
GD25Q256E
7.33 Release from Deep Power-Down and Read Device ID (RDI) (ABH)
The Release from Power-Down and Read Device ID command is a multi-purpose command. It can be used to release the
device from the Power-Down state or obtain the devices electronic identification (ID) number.
To release the device from the Power-Down state, the command is issued by driving the CS# pin low, shifting the
instruction code “ABH” and driving CS# high. Release from Power-Down will take the time duration of tRES1 (See AC
Characteristics) before the device will resume normal operation and other command are accepted. The CS# pin must
remain high during the tRES1 time duration.
When used only to obtain the Device ID while not in the Power-Down state, the command is initiated by driving the CS#
pin low and shifting the instruction code “ABH” followed by 3-dummy byte. The ID7~ID0 are then shifted out on the falling
edge of SCLK with most significant bit (MSB) first. The Device ID value is listed in Manufacturer and Device Identification
table. The Device ID can be read continuously. The command is completed by driving CS# high.
When used to release the device from the Power-Down state and obtain the ID7~ID0, the command is the same as
previously described, except that after CS# is driven high it must remain high for a time duration of tRES2 (See AC
Characteristics). After this time duration the device will resume normal operation and other command will be accepted. If
the Release from Power-Down / Device ID command is issued while an Erase, Program or Write cycle is in process (when
WIP equals 1) the command is ignored and will not have any effects on the current cycle.
Figure 36. Release Power-Down Sequence Diagram
CS#
0
1
2
3
4
5
6
t RES1
7
SCLK
Command
SI
ABH
Deep Power-down mode
Stand-by mode
Figure 37. Release Power-Down/Read Device ID Sequence Diagram
CS#
0
1
2
3
4
5
6
7
8
9
29 30 31 32 33 34 35 36 37 38
SCLK
Command
SI
SO
ABH
High-Z
t RES2
3 Dummy Bytes
23 22
2
1
0
MSB
7
6
Device ID
5 4 3 2
MSB
1
0
Deep Power-down Mode Stand-by
Mode
7.34 Read Serial Flash Discoverable Parameter (5AH)
The Serial Flash Discoverable Parameter (SFDP) standard provides a consistent method of describing the functional and
feature capabilities of serial flash devices in a standard set of internal parameter tables. These parameter tables can be
interrogated by host system software to enable adjustments needed to accommodate divergent features from multiple
vendors. The concept is similar to the one found in the Introduction of JEDEC Standard, JESD68 on CFI. SFDP is a standard
of JEDEC Standard No.216B.
41
Uniform Sector
Dual and Quad Serial Flash
GD25Q256E
Figure 38. Read Serial Flash Discoverable Parameter command Sequence Diagram
CS#
0
1
2
3
4
5
6
7
8
9 10
28 29 30 31
SCLK
Command
SI
24-bit address
5AH
23 22 21
3
2
1
0
High-Z
SO
CS#
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
SCLK
Dummy Byte
SI
SO
7
6
5
4
3
2
1
0
7 6
MSB
Data Out1
5 4 3 2
1
0
Data Out2
7 6 5
MSB
Table 13. Signature and Parameter Identification Data Values (Please contact GigaDevice for Details)
42
Uniform Sector
Dual and Quad Serial Flash
8
GD25Q256E
ELECTRICAL CHARACTERISTICS
8.1 Power-On Timing
Figure 39. Power-On Timing Sequence Diagram
Vcc(max)
Chip Selection is not allowed
Vcc(min)
tVSL
Device is fully
accessible
VWI
Time
Table 14. Power-Up Timing and Write Inhibit Threshold
Symbol
Parameter
Min.
tVSL
VCC (min.) to device operation
2.5
VWI
Write Inhibit Voltage
1.5
Max.
Unit
ms
2.5
V
8.2 Initial Delivery State
The device is delivered with the memory array erased: all bits are set to 1 (each Byte contains FFH). The Status Register
contains 00H, except that DRV0 bit (S21) is set to 1.
8.3
Absolute Maximum Ratings
Parameter
Value
Ambient Operating Temperature (TA)
-40 to 85
Unit
℃
-40 to 105
-40 to 125
℃
Storage Temperature
-65 to 150
Transient Input/Output Voltage (note: overshoot)
-2.0 to VCC+2.0
V
Applied Input/Output Voltage
-0.6 to VCC+0.4
V
-0.6 to 4.2
V
VCC
43
Uniform Sector
Dual and Quad Serial Flash
GD25Q256E
Figure 40. Input Test Waveform and Measurement Level
Maximum Negative Overshoot Waveform
20ns
Maximum Positive Overshoot Waveform
20ns
20ns
Vss
Vcc + 2.0V
Vss-2.0V
Vcc
20ns
20ns
20ns
8.4 Capacitance Measurement Conditions
Symbol
Parameter
Min.
Typ.
Max.
Unit
Conditions
CIN
Input Capacitance
6
pF
VIN=0V
COUT
Output Capacitance
8
pF
VOUT=0V
CL
Load Capacitance
30
pF
Input Rise And Fall time
5
ns
Input Pulse Voltage
0.1VCC to 0.8VCC
V
Input Timing Reference Voltage
0.2VCC to 0.7VCC
V
0.5VCC
V
Output Timing Reference Voltage
Figure 41. Absolute Maximum Ratings Diagram
Input timing reference level
0.8VCC
0.7VCC
0.1VCC
0.2VCC
Output timing reference level
AC Measurement Level
Note: Input pulse rise and fall time are