74HC4051
※
※
※
Qualified for Automotive Applications
Wide Analog Input Voltage Range of
5 V Max
Low ON Resistance
70 Typical (VCC V
= 4.5 V)
EE
40 Typical (VCC VEE = 9 V)
※
※
※
Low Crosstalk Between Switches
※
Operation Control Voltage = 2 V to 6 V
※
Switch Voltage = 0 V to 10 V
※
M OR PW PACKAGE
(TOP VIEW)
Fast Switching and Propagation Speeds
CHANNEL I/O A4
CHANNEL I/O A6
Break-Before-Make Switching
High Noise Immunity N IL = 30%, N IH = 30%
of VCC , VCC = 5 V
COM OUT/IN A
3
14
VCC
CHANNEL I/O A2
CHANNEL I/O A1
CHANNEL I/O A7
4
13
CHANNEL I/O A0
CHANNEL I/O A5
5
12
CHANNEL I/O A3
E
6
11
ADDRESS SEL S0
VEE
GND
7
10
ADDRESS SEL S1
8
9
ADDRESS SEL S2
1
16
2
15
description
This device is a digitally controlled analog switch that
utilizes silicon-gate CMOS technology to achieve
operating speeds similar to LSTTL, with the low
power consumption of standard CMOS integrated
circuits.
This analog multiplexer/demultiplexer controls analog voltages that may vary across the voltage supply range
(i.e., VCC to VEE ). These bidirectional switches allow any analog input to be used as an output and vice versa.
The switches have low ON resistance and low OFF leakages. In addition, the device has an enable control (E)
that, when high, disables all switches to their OFF state.
http://www.hgsemi.com.cn
1
2018 AUG
74HC4051
FUNCTION TABLE
INPUTS
ON
CHANNEL(S)
E
S2
S1
L
L
L
L
A0
L
L
L
H
A1
L
L
H
L
A2
L
L
H
H
A3
L
H
L
L
A4
L
H
L
H
A5
L
H
H
L
A6
L
H
H
H
A7
H
X
X
X
None
S0
X = Don't care
logic diagram (positive logic)
CHANNEL I/O
VCC
A7
A6
A5
A4
A3
A2
A1
A0
16
4
2
5
1
12
15
14
13
TG
TG
S0
11
TG
S
1
S2
TG
Binary
To
1 of 8
Decoder
With
Enable
10
Logic
Level
Conversion
9
3
COM OUT/IN A
TG
TG
TG
E
6
TG
8
7
GND
VEE
http://www.hgsemi.com.cn
2
2018 AUG
74HC4051
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range, VCC
VEE (see Note 1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to 10.5 V
.........................................................
Supply voltage range, VCC
. 0.5 V to 7 V
........................................................
. +0.5 V to 7 V
Supply voltage range, VEE
+ 0.5 V)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 mA
Input clamp current, I IK (V I < 0.5 V or V I > VCC
+ 0.5 V)
. . . . . . . . . . . . . . . . . . . . . . . . . . . .20 mA
Output clamp current, IOK (V O < VEE
0.5 V or V O > VCC
+
0.5
V)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. . . . . . . . . . . . . . . . . . . . . . . . . .25 mA
Switch current (V I > VEE
0.5 V or V I < VCC
Continuous current through VCC or GND
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . .. . . .50 mA
VEE current, IEE
.......................................................................
. . 20 mA
Package thermal impedance,JA (see Note 2):
M package
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73C/W
PW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108C/W
Maximum junction temperature, TJ
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50C
Lead temperature (during soldering):
At distance 1/16 1/32 inch (1.59 0.79 mm) from case for 10 s max . . . . . . . . . . . . . . . . . . . . . . .
300C
Storage temperature range, Tstg
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65C to 150C
Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES:
1.
All voltages referenced to GND unless otherwise specified.
2.
The package thermal impedance is calculated in accordance with JESD 51-7.
†
recommended operating conditions (see Note 3)
MIN
VCC
Supply voltage (see Note 4)
Supply voltage, VCC VEE
VEE
(see Figure 1)
Supply voltage, (see Note 4 and Figure 2)
VCC = 2 V
VIH
VCC = 4.5 V
High-level input voltage
High level
VCC = 6 V
VCC =
VIL
VI
Input control voltage
VIS
Analog switch I/O voltage
tt
TA
NOTES:
Operating free-air temperature
3.
4.
V
2
10
V
0
6
V
1.5
3.15
V
4.2
2V
0.5
1.35
0
VCC
V
VEE
VCC
V
VCC = 2 V
0
1000
VCC = 4.5 V
0
500
VCC = 6 V
0
400
40
125
All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
In certain applications, the external load resistor current may include both VCC and signal-line components. To avoid drawing VCC
current when switch current flows into the transmission gate inputs, the voltage drop across the bidirectional switch must not exceed
0.6 V (calculated from ron values shown in electrical characteristics table). No VCC current flows through R L if the switch current flows
into the COM OUT/IN A terminal.
http://www.hgsemi.com.cn
3
V
1.8
VCC = 6 V
Input transition (rise and fall) time
UNIT
6
VCC = 4.5 V
Low-level input voltage
Low level
MAX
2
2018 AUG
ns
C
74HC4051
recommended operating area as a function of supply voltages
GND) V
CC
8
6
HCT
HC
4
2
6
HCT
2
0
0
2
4
6
8
10
HC
4
(V
(V
GND) V
CC
8
0
12
0
2
(VCC V ) V
EE
PARAMETER
over
recommended
operating
VEE
free-air
0V
See Figure
VIS = VCC or VEE
8
VIS = VCC to VEE
∆ Ron
IIZ
Between any two channels
For switch OFF:
When VIS = VCC , VOS = VEE;
When VIS = VEE , VOS = VCC
For switch ON:
All applicable combinations of VIS and VOS
ICC
http://www.hgsemi.com.cn
(unless
TA = 40C
TO 125C
UNIT
TYP
MAX
4.5 V
70
160
240
MIN
MAX
0V
6V
60
140
210
4.5 V
4.5 V
40
120
180
0V
4.5 V
90
180
270
0V
6V
80
160
240
4.5 V
4.5 V
45
130
195
0V
4.5 V
10
8.5
0V
6V
4.5 V
4.5 V
0V
6V
5
0.2
2
5 V
5V
0.4
4
0V
6V
0.1
1
When VIS = VEE,
VOS = VCC
0V
6V
8
160
When VIS = VCC,
VOS = VEE
5 V
5V
16
320
VI = VCC or GND
IO = 0,
VI 0,
or GND
= VCC
range
A
voltage levels,
VI = VIH or VIL
IIL
temperature
T A = 25C
VCC
MIN
Ron
8
Figure 2
TEST CONDITIONS
IO = 1 mA,
VI = VIH or V IL,
6
(VEE GND) V
Figure 1
electrical characteristics
otherwise noted)
4
A
A
4
2018 AUG
74HC4051
switching characteristics over recommended operating free-air temperature range (unless
otherwise noted) (see Figure 7)
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
LOAD
CAPACITANCE
VEE
V
CL = 15 pF
tpdpd
IN
OUT
CC
5V
0V
CL = 50 pF
4.5 V
MIN
TYP
4
ten
CL = 50 pF
4.5 V
12
18
6V
10
15
8
12
4.5 V
225
340
45
68
6V
38
57
32
48
4.5 V
5V
tdis
0V
CL = 50 pF
4.5 V
CI
Control
ns
19
225
340
4.5 V
45
68
6V
38
57
4.5 V
32
48
10
10
CL = 50 pF
ns
19
4.5 V
2V
OUT
ns
4.5 V
CL = 15 pF
ADDRESS SEL
or E
MAX
90
5V
0V
UNIT
MIN
60
2V
OUT
MAX
2V
CL = 15 pF
ADDRESS SEL
or E
TA = 40C
TO 125C
TA = 25C
ns
pF
operating characteristics, VCC = 5 V, T A = 25C, Input t r, t f = 6 ns
PARAMETER
Cpd
NOTE 5:
TYP
UNIT
50
Power dissipation capacitance (see Note 5)
Cpd is used to determine the dynamic power consumption, per package.
2f
PD = Cpd VCC 2 fI + (C L + C S)
O
VCC
f = output frequency
O
fI = input frequency
CL = output load capacitance
C = switch capacitance
S
VCC = supply voltage
http://www.hgsemi.com.cn
5
2018 AUG
pF
74HC4051
analog channel characteristics, T
A
PARAMETER
TEST CONDITIONS
CI
Switch input capacitance
CCOM
Common output capacitance
fmax
Minimum switch frequency
response at 3 dB
See Figure 3 and Figure 9, and
Notes 6 and 7
Sine wave distortion Sine-wave
See Figure 4
E or ADDRESS SEL to
switch feed-through noise
6.
VEE
See Figure 55, and Notes 7 and 8
Switch OFF signal feed
through
NOTES:
= 25C
See Figure 6 and Figure 10, and
Notes 7 and 8
VCC
MIN
TYP
MAX
UNIT
5
pF
25
pF
2.25 V
2.25 V
145
4.5 V
4.5 V
180
2.25 V
2.25 V
0.035
4.5 V
4.5 V
0.018
2.25 V
2.25 V
(TBD)
4.5 V
4.5 V
(TBD)
2.25 V
2.25 V
73
4.5 V
4.5 V
75
MHz
%
mV
dB
Adjust input voltage to obtain 0 dBm at VOS for fIN = 1 MHz.
7.
VIS is centered at (VCC VEE)/2.
8.
Adjust input for 0 dBm.
PARAMETER MEASUREMENT INFORMATION
VCC
VIS
0.1 mF
VCC
VOS
Switch
ON
50
10 pF
Sine
Wave
dB
Meter
VIS
VIS
VI = VIH
VOS
10 k
50 pF
Distortion
Meter
VCC/2
VCC/2
fIS = 1 kHz to 10 kHz
Figure 3. Frequency-Response Test Circuit
http://www.hgsemi.com.cn
10 mF
Switch
ON
Figure 4. Sine-Wave Distortion Test Circuit
6
2018 AUG
74HC4051
PARAMETER MEASUREMENT INFORMATION
E
VCC
f IS 1-MHz Sine Wave
VPP
VOS
600 W
VCC /2
Switch
Alternating
ON and OFF
tr , tf6 ns
fCONT = 1 MHz
50% Duty
Cycle
0.1F
VOS
50 pF
Scope
VC = VIL
R
R
VCC/2
VCC/2
VCC/2
Figure 5. Control to Switch Feedthrough Noise
Test Circuit
http://www.hgsemi.com.cn
Switch
OFF
VIS
600 W
R = 50
C = 10 pF
VCC
VOS
C
dB
Meter
Figure 6. Switch OFF Signal Feedthrough
Test Circuit
7
2018 AUG
74HC4051
PARAMETER MEASUREMENT INFORMATION
VCC
S1
Test
Point
From Output
Under Test
PARAMETER
ten
RL = 1 k
tdis
CL
(see Note A)
S2
S1
S2
tPZH
Open
Closed
tPZL
Closed
Open
tPHZ
Open
Closed
tPLZ
Closed
Open
Open
Open
tpd
VEE
LOAD CIRCUIT
Input
50% VCC
VCC
50% VCC
V
t PLH
In-Phase
Output
50%
10%
tr
tPHL
Out-of-Phase
Output
90%
90%
50% VCC
10%
V
OL
tf
50%
10%
90%
tr
tf
VOL
A.
B.
C.
50% VCC
CC
10%
VOL
t PHZ
50% V
90%
CC
V
OH
0 V
VOLTAGE WAVEFORMS
OUTPUT ENABLE AND DISABLE TIMES
C L includes probe and test-fixture capacitance.
Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following
characteristics: PRR 1 MHz, ZO = 50, t r = 6 ns, t f = 6 ns.
D.
For clock inputs, fmax is measured with the input duty cycle at 50%.
E.
The outputs are measured one at a time with one input transition per measurement.
F.
tPLZ and tPHZ are the same as tdis.
G.
tPZL and tPZH are the same as t
tPLH and tPHL are the same as t
H.
0V
tPLZ
t PZH
Output
Waveform 2
(see Note B)
CC
V
Output
Waveform 1
(see Note B)
VOH
VOLTAGE WAVEFORMS
PROPAGATION DELAY AND OUTPUT TRANSITION TIMES
NOTES:
tPZL
VOH
tPLH
50% VCC
10%
50% V
50% VCC
EE
tPHL
90%
VCC
Output
Control
http://www.hgsemi.com.cn
en
pd
.
.
8
2018 AUG
74HC4051
Figure 7. Load Circuit and Voltage Wavefor
TYPICAL CHARACTERISTICS
120
ON Resistance
100
80
VCC V
= 4.5 V
EE
60
VCC VEE =
6V
40
VCC VEE = 9 V
20
1
2
3
4
5
6
7
8
9
Input Signal Voltage V
Figure 8. Typical ON Resistance vs Input Signal Voltage
0
0
VCC = 4.5 V
GND = 4.5 V
VEE = 4.5 V
RL = 50
PIN 12 TO 3
4
20
dB
dB
2
VCC = 2.25 V
GND = 2.25 V
VEE = 2.25 V
RL = 50
PIN 12 TO 3
6
40
60
8
10
10K
VCC = 2.25 V
GND = 2.25 V
VEE = 2.25 V
RL = 50
PIN 12 TO 3
VCC = 4.5 V
GND = 4.5 V
VEE = 4.5 V
RL = 50
PIN 12 TO 3
80
100K
1M
10M
100M
Frequency Hz
10K
100K
1M
Frequency Hz
Figure 9. Channel ON Bandwidth
http://www.hgsemi.com.cn
100
10M
100M
Figure 10. Channel OFF Feedthrough
9
2018 AUG