nRF24LE1 OTP
Ultra-low Power Wireless System On-Chip
Solution
Product Specification v1.2
Key Features
•
•
•
•
•
•
•
•
•
•
•
nRF24L01+ 2.4 GHz transceiver (250 kbps,
1 Mbps and 2 Mbps air data rates)
Fast microcontroller (8051 compatible)
16 kB program memory (on-chip OTP)
1 kB data memory (on-chip RAM)
1 kB OTP data memory
AES encryption HW accelerator
16-32 bit multiplication/division co-processor
(MDU)
6–12 bit ADC
High flexibility IOs
Serves a set of power modes from ultra low
power to a power efficient active mode
Several versions in various QFN packages:
4×4 mm QFN24
5×5 mm QFN32
7×7 mm QFN48
Applications
•
•
•
•
•
•
Computer peripherals
Mouse
Keyboard
Remote control
Gaming
Advanced remote controls
Audio/Video
Entertainment centers
Home appliances
Goods tracking and monitoring:
Active RFID
Sensor networks
Security systems
Payment
Alarm
Access control
Health, wellness and sports
Watches
Mini computers
Sensors
Remote control toys
All rights reserved.
Reproduction in whole or in part is prohibited without the prior written permission of the copyright holder.
September 2010
nRF24LE1 OTP Product Specification
Liability disclaimer
Nordic Semiconductor ASA reserves the right to make changes without further notice to the product to
improve reliability, function or design. Nordic Semiconductor ASA does not assume any liability arising out
of the application or use of any product or circuits described herein.
All application information is advisory and does not form part of the specification.
Limiting values
Stress above one or more of the limiting values may cause permanent damage to the device. These are
stress ratings only and operation of the device at these or at any other conditions above those given in the
specifications are not implied. Exposure to limiting values for extended periods may affect device reliability.
Life support applications
Nordic Semiconductor’s products are not designed for use in life support appliances, devices, or systems
where malfunction of these products can reasonably be expected to result in personal injury. Nordic
Semiconductor ASA customers using or selling these products for use in such applications do so at their
own risk and agree to fully indemnify Nordic Semiconductor ASA for any damages resulting from such
improper use or sale.
Data sheet status
Objective product specification
This product specification contains target specifications for product
development.
Preliminary product specification This product specification contains preliminary data; supplementary
data may be published from Nordic Semiconductor ASA later.
Product specification
This product specification contains final product specifications. Nordic
Semiconductor ASA reserves the right to make changes at any time
without notice in order to improve design and supply the best possible
product.
Contact details
For your nearest dealer, please see www.nordicsemi.com
Main office:
Otto Nielsens veg 12
7004 Trondheim
Phone: +47 72 89 89 00
Fax: +47 72 89 89 89
www.nordicsemi.com
Revision 1.2
Page 2 of 190
nRF24LE1 OTP Product Specification
Revision History
Date
October 2009
May 2010
Version
1.0
1.1
September 2010
1.2
Description
Product specification
Updated section 2.1 on page 12, Table 14.
on page 58, Table 15. on page 59, Figure
34. on page 77, Table 34. on page 77, Table
57. on page 106, Table 113. on page 177,
chapter 12 on page 112, chapter 24 on
page 171.
Updated sections 2.4 on page 16, 6.3.6.1
and 6.3.6.2 on page 75, Table 56. on page
104, Table 57. on page 106, Table 87. on
page 146 , chapter 24 on page 171 and
chapter 28 on page 182.
RoHS statement
Nordic Semiconductor’s products meet the requirements of Directive 2002/95/EC of the European
Parliament and of the Council on the Restriction of Hazardous Substances (RoHS). Complete hazardous
substance reports as well as material composition reports for all active Nordic products can be found on
our web site www.nordicsemi.com.
Revision 1.2
Page 3 of 190
nRF24LE1 OTP Product Specification
Contents
1
Introduction ...............................................................................................
1.1
Prerequisites ........................................................................................
1.2
Writing conventions ..............................................................................
2
Product overview ......................................................................................
2.1
Features ...............................................................................................
2.2
Block diagram ......................................................................................
2.3
Pin assignments ...................................................................................
2.3.1
24-pin 4×4 QFN-package variant ....................................................
2.3.2
32-pin 5×5 QFN-package variant ....................................................
2.3.3
48-pin 7×7 QFN-package variant ....................................................
2.4
Pin functions.........................................................................................
3
RF transceiver ...........................................................................................
3.1
Features ...............................................................................................
3.2
Block diagram ......................................................................................
3.3
Functional description ..........................................................................
3.3.1
Operational Modes ..........................................................................
3.3.1.1
State diagram ...............................................................................
3.3.1.2
Power down mode........................................................................
3.3.1.3
Standby modes ............................................................................
3.3.1.4
RX mode ......................................................................................
3.3.1.5
TX mode.......................................................................................
3.3.1.6
Operational modes configuration .................................................
3.3.1.7
Timing information........................................................................
3.3.2
Air data rate .....................................................................................
3.3.3
RF channel frequency .....................................................................
3.3.4
Received Power Detector measurements .......................................
3.3.5
PA control ........................................................................................
3.3.6
RX/TX control ..................................................................................
3.4
Enhanced ShockBurst™ ......................................................................
3.4.1
Features ..........................................................................................
3.4.2
Enhanced ShockBurst™ overview ..................................................
3.4.3
Enhanced Shockburst™ packet format ...........................................
3.4.3.1
Preamble ......................................................................................
3.4.3.2
Address ........................................................................................
3.4.3.3
Packet Control Field (PCF) ..........................................................
3.4.3.4
Payload ........................................................................................
3.4.3.5
CRC (Cyclic Redundancy Check) ................................................
3.4.4
Automatic packet assembly .............................................................
3.4.5
Automatic packet disassembly ........................................................
3.4.6
Automatic packet transaction handling ............................................
3.4.6.1
Auto Acknowledgement................................................................
3.4.6.2
Auto Retransmission (ART)..........................................................
3.4.7
Enhanced ShockBurst™ flowcharts ................................................
Revision 1.2
Page 4 of 190
11
11
11
12
12
14
15
15
15
16
16
17
17
18
18
18
18
19
19
20
20
21
21
22
22
22
22
23
23
23
23
24
24
24
25
25
26
27
28
29
29
29
31
nRF24LE1 OTP Product Specification
3.4.7.1
3.4.7.2
3.4.8
3.4.9
3.4.10
3.4.10.1
3.4.10.2
3.4.10.3
3.4.10.4
3.4.10.5
3.4.10.6
PTX operation .............................................................................. 31
PRX operation .............................................................................. 33
MultiCeiver™ ................................................................................... 34
Enhanced ShockBurst™ timing ....................................................... 36
Enhanced ShockBurst™ transaction diagram ................................. 39
Single transaction with ACK packet and interrupts ...................... 40
Single transaction with a lost packet ............................................ 40
Single transaction with a lost ACK packet.................................... 41
Single transaction with ACK payload packet................................ 41
Single transaction with ACK payload packet and lost packet....... 42
Two transactions with ACK payload packet and the first ACK
packet lost ................................................................................... .42
3.4.10.7
Two transactions where max retransmissions is reached............ 43
3.4.11
Compatibility with ShockBurst™...................................................... 43
3.4.11.1
ShockBurst™ packet format......................................................... 43
3.5
Data and control interface .................................................................... 44
3.5.1
SFR registers................................................................................... 44
3.5.2
SPI operation ................................................................................... 45
3.5.2.1
SPI commands ............................................................................. 45
3.5.3
Data FIFO ........................................................................................ 47
3.5.4
Interrupt ........................................................................................... 48
3.6
Register map ........................................................................................ 49
3.6.1
Register map table .......................................................................... 49
4
MCU ............................................................................................................ 55
4.1
Block diagram ...................................................................................... 56
4.2
Features ............................................................................................... 56
4.3
Functional description .......................................................................... 57
4.3.1
Arithmetic Logic Unit (ALU) ............................................................. 57
4.3.2
Instruction set summary .................................................................. 57
4.3.3
Opcode map .................................................................................... 61
5
Memory and I/O organization ................................................................... 63
5.1
PDATA memory addressing................................................................. 64
5.2
MCU Special Function Registers ......................................................... 64
5.2.1
Accumulator - ACC .......................................................................... 64
5.2.2
B Register – B ................................................................................. 64
5.2.3
Program Status Word Register - PSW ............................................ 65
5.2.4
Stack Pointer – SP .......................................................................... 65
5.2.5
Data Pointer – DPH, DPL ................................................................ 65
5.2.6
Data Pointer 1 – DPH1, DPL1 ......................................................... 66
5.2.7
Data Pointer Select Register – DPS ................................................ 66
5.2.8
PCON register ................................................................................. 66
5.2.9
Special Function Register Map........................................................ 67
5.2.10
Special Function Registers reset values.......................................... 68
6
OTP memory.............................................................................................. 71
6.1
Features ............................................................................................... 71
6.2
Block diagram ...................................................................................... 71
Revision 1.2
Page 5 of 190
nRF24LE1 OTP Product Specification
6.3
Functional description ..........................................................................
6.3.1
Using the NV data memory .............................................................
6.3.2
OTP memory configuration..............................................................
6.3.2.1
InfoPage content ..........................................................................
6.3.2.2
Memory configuration SFR...........................................................
6.3.3
Brown-out ........................................................................................
6.3.4
Temperature restriction for OTP programming................................
6.3.5
OTP programming from the MCU....................................................
6.3.5.1
MCU operations in the main block ...............................................
6.3.6
OTP programming through SPI .......................................................
6.3.6.1
PROG pin requirements ...............................................................
6.3.6.2
SPI slave interface .......................................................................
7
Random Access memory (RAM)..............................................................
7.1
SRAM configuration .............................................................................
8
Timers/counters ........................................................................................
8.1
Features ...............................................................................................
8.2
Block diagram ......................................................................................
8.3
Functional description ..........................................................................
8.3.1
Timer 0 and Timer 1 ........................................................................
8.3.1.1
Mode 0 and Mode 1 .....................................................................
8.3.1.2
Mode 2 .........................................................................................
8.3.1.3
Mode 3 .........................................................................................
8.3.2
Timer 2 ............................................................................................
8.3.2.1
Timer 2 description.......................................................................
8.3.2.2
Timer mode ..................................................................................
8.3.2.3
Event counter mode .....................................................................
8.3.2.4
Gated timer mode.........................................................................
8.3.2.5
Timer 2 reload ..............................................................................
8.4
SFR registers .......................................................................................
8.4.1
Timer/Counter control register – TCON...........................................
8.4.2
Timer mode register - TMOD...........................................................
8.4.3
Timer 0 – TH0, TL0 .........................................................................
8.4.4
Timer 1 – TH1, TL1 .........................................................................
8.4.5
Timer 2 control register – T2CON....................................................
8.4.6
Timer 2 – TH2, TL2 .........................................................................
8.4.7
Compare/Capture enable register – CCEN .....................................
8.4.8
Capture registers – CC1, CC2, CC3................................................
8.4.9
Compare/Reload/Capture register – CRCH, CRCL.........................
8.5
Real Time Clock - RTC ........................................................................
8.5.1
Features ..........................................................................................
8.5.2
Functional description of SFR registers...........................................
9
Interrupts ...................................................................................................
9.1
Features ...............................................................................................
9.2
Block diagram ......................................................................................
9.3
Functional description ..........................................................................
9.4
SFR registers .......................................................................................
Revision 1.2
Page 6 of 190
71
72
72
72
73
73
74
74
74
74
75
75
79
79
81
81
81
82
82
82
83
84
84
85
85
85
85
86
86
86
87
87
87
88
88
89
89
90
90
90
90
94
94
94
95
95
nRF24LE1 OTP Product Specification
9.4.1
Interrupt Enable 0 Register – IEN0.................................................. 96
9.4.2
Interrupt Enable 1 Register – IEN1.................................................. 96
9.4.3
Interrupt Priority Registers – IP0, IP1 .............................................. 96
9.4.4
Interrupt Request Control Registers – IRCON................................. 97
10
Watchdog ................................................................................................... 98
10.1
Features ............................................................................................... 98
10.2
Block diagram ...................................................................................... 98
10.3
Functional description .......................................................................... 98
11
Power and clock management ................................................................ 100
11.1
Block diagram ..................................................................................... 100
11.2
Modes of operation ............................................................................. 100
11.3
Functional description ......................................................................... 105
11.3.1
Clock control ................................................................................... 105
11.3.2
Power down control – PWRDWN ................................................... 107
11.3.3
Operational mode control - OPMCON ............................................ 109
11.3.4
Reset result – RSTREAS ............................................................... 109
11.3.5
Wakeup configuration register – WUCON ...................................... 110
11.3.6
Pin wakeup configuration ............................................................... 110
12
Power supply supervisor ........................................................................ 112
12.1
Features .............................................................................................. 112
12.2
Block diagram ..................................................................................... 112
12.3
Functional description ......................................................................... 112
12.3.1
Power-on reset ............................................................................... 112
12.3.2
Brown-out reset .............................................................................. 113
12.3.3
Power-fail comparator .................................................................... 113
12.4
SFR registers ...................................................................................... 114
13
On-chip oscillators ................................................................................... 115
13.1
Features .............................................................................................. 115
13.2
Block diagrams .................................................................................... 115
13.3
Functional description ......................................................................... 116
13.3.1
16 MHz crystal oscillator ................................................................. 116
13.3.2
16 MHz RC oscillator ...................................................................... 117
13.3.3
External 16 MHz clock .................................................................... 117
13.3.4
32.768 kHz crystal oscillator ........................................................... 117
13.3.5
32.768 kHz RC oscillator ................................................................ 118
13.3.6
Synthesized 32.768 kHz clock ........................................................ 118
13.3.7
External 32.768 kHz clock .............................................................. 118
14
MDU – Multiply Divide Unit ...................................................................... 119
14.1
Features .............................................................................................. 119
14.2
Block diagram ..................................................................................... 119
14.3
Functional description ......................................................................... 119
14.4
SFR registers ...................................................................................... 119
14.4.1
Loading the MDx registers .............................................................. 120
14.4.2
Executing calculation ...................................................................... 121
14.4.3
Reading the result from the MDx registers ..................................... 121
14.4.4
Normalizing ..................................................................................... 121
Revision 1.2
Page 7 of 190
nRF24LE1 OTP Product Specification
14.4.5
Shifting ............................................................................................ 121
14.4.6
The mdef flag .................................................................................. 121
14.4.7
The mdov flag ................................................................................. 122
15
Encryption/decryption accelerator ......................................................... 123
15.1
Features .............................................................................................. 123
15.2
Block diagram ..................................................................................... 123
15.3
Functional description ......................................................................... 123
16
Random number generator ..................................................................... 125
16.1
Features .............................................................................................. 125
16.2
Block diagram ..................................................................................... 125
16.3
Functional description ......................................................................... 125
16.4
SFR registers ...................................................................................... 126
17
General purpose IO port and pin assignments ..................................... 127
17.1
Block diagram ..................................................................................... 127
17.2
Functional description ......................................................................... 128
17.2.1
General purpose IO pin functionality .............................................. 128
17.2.2
PortCrossbar functionality .............................................................. 129
17.2.2.1
Dynamic allocation of pins ........................................................... 129
17.2.2.2
Dynamic pin allocation for digital blocks ...................................... 129
17.2.2.3
Dynamic pin allocation for analog blocks .................................... 129
17.2.2.4
Default pin allocation ................................................................... 129
17.3
IO pin maps ......................................................................................... 130
17.3.1
Pin assignments in package 24 pin 4×4 mm .................................. 131
17.3.2
Pin assignments in package 32 pin 5×5 mm .................................. 132
17.3.3
Pin assignments in package 48 pin 7×7 mm .................................. 133
17.3.4
Programmable registers ................................................................. 135
18
SPI ............................................................................................................. 143
18.1
Features .............................................................................................. 143
18.2
Block diagram ..................................................................................... 143
18.3
Functional description ......................................................................... 144
18.3.1
SPI master ...................................................................................... 144
18.3.2
SPI slave ........................................................................................ 146
18.3.3
Slave SPI timing ............................................................................ 147
19
Serial port (UART) .................................................................................... 150
19.1
Features .............................................................................................. 150
19.2
Block diagram ..................................................................................... 150
19.3
Functional description ......................................................................... 150
19.3.1
Serial port 0 control register – S0CON ........................................... 151
19.3.2
Serial port 0 data buffer – S0BUF .................................................. 152
19.3.3
Serial port 0 reload register – S0RELH, S0RELL ........................... 152
19.3.4
Serial port 0 baud rate select register - ADCON ............................. 153
20
2-Wire ........................................................................................................ 154
20.1
Features .............................................................................................. 154
20.2
Functional description ......................................................................... 154
20.2.1
Recommended use ........................................................................ 154
20.2.2
Master transmitter/receiver ............................................................. 154
Revision 1.2
Page 8 of 190
nRF24LE1 OTP Product Specification
20.2.2.1
TX mode ...................................................................................... 154
20.2.2.2
RX mode ..................................................................................... 155
20.2.3
Slave transmitter/receiver ............................................................... 155
20.2.3.1
2-Wire timing ............................................................................... 156
20.3
SFR registers ...................................................................................... 157
21
ADC ........................................................................................................... 160
21.1
Features .............................................................................................. 160
21.2
Block diagram ..................................................................................... 160
21.3
Functional description ......................................................................... 160
21.3.1
Activation ........................................................................................ 160
21.3.2
Input selection ................................................................................ 161
21.3.3
Reference selection ........................................................................ 161
21.3.4
Resolution ....................................................................................... 161
21.3.5
Conversion modes .......................................................................... 161
21.3.6
Output data coding ......................................................................... 162
21.3.7
Driving the analog input .................................................................. 163
21.3.8
SFR registers .................................................................................. 164
22
Analog comparator .................................................................................. 166
22.1
Features .............................................................................................. 166
22.2
Block diagram ..................................................................................... 166
22.3
Functional description ......................................................................... 166
22.3.1
Activation ........................................................................................ 166
22.3.2
Input selection ................................................................................ 166
22.3.3
Reference selection ........................................................................ 167
22.3.4
Output polarity ................................................................................ 167
22.3.5
Input voltage range ......................................................................... 167
22.3.6
Configuration examples .................................................................. 167
22.3.7
Driving the analog input .................................................................. 167
22.3.8
SFR registers .................................................................................. 168
23
PWM .......................................................................................................... 169
23.1
Features .............................................................................................. 169
23.2
Block diagram ..................................................................................... 169
23.3
Functional description ......................................................................... 169
24
Absolute maximum ratings ..................................................................... 171
25
Operating condition ................................................................................. 172
26
Electrical specifications .......................................................................... 173
26.1
Power consumption ............................................................................. 178
27
Mechanical specifications ....................................................................... 180
28
Reference circuits .................................................................................... 182
28.1
nRF24LE1 OTP, 7×7 mm QFN48 ....................................................... 182
28.1.1
Schematics ..................................................................................... 182
28.1.2
Layout ............................................................................................. 183
28.1.3
Bill of Materials (BOM) .................................................................... 183
28.2
nRF24LE1 OTP, 5×5 mm QFN32 ....................................................... 184
28.2.1
Schematics ..................................................................................... 184
28.2.2
Layout ............................................................................................. 185
Revision 1.2
Page 9 of 190
nRF24LE1 OTP Product Specification
28.2.3
Bill Of Materials (BOM) ................................................................... 185
28.3
nRF24LE1 OTP, 4×4 mm QFN24 ....................................................... 186
28.3.1
Schematics ..................................................................................... 186
28.3.2
Layout ............................................................................................. 187
28.3.3
Bill Of Materials (BOM) ................................................................... 187
29
Ordering information ............................................................................... 188
29.1
Package marking ................................................................................ 188
29.1.1
Abbreviations .................................................................................. 188
29.2
Product options ................................................................................... 188
29.2.1
RF silicon ........................................................................................ 188
29.2.2
Development tools .......................................................................... 189
30
Glossary..................................................................................................... 190
Revision 1.2
Page 10 of 190
nRF24LE1 OTP Product Specification
1
Introduction
The nRF24LE1 OTP is a member of the low-cost, high-performance family of intelligent 2.4 GHz RF
transceivers with embedded microcontrollers. The nRF24LE1 OTP is optimized to provide a single chip
solution for ULP wireless applications. The combination of processing power, memory, low power
oscillators, real-time counter, AES encryption accelerator, random generator and a range of power saving
modes provides an ideal platform for implementation of RF protocols. Benefits of using nRF24LE1 OTP
include tighter protocol timing, security, lower power consumption and improved co-existence
performance. For the application layer the nRF24LE1 OTP offers a rich set of peripherals including: SPI,
2-wire, UART, 6 to 12 bit ADC, PWM and an ultra low power analog comparator for voltage level system
wake-up.
The nRF24LE1 OTP comes in different package variants:
•
•
•
nRF24LE1: An ultra compact 4×4mm 24 pin QFN (7 generic I/O pins)
nRF24LE1: A compact 5×5mm 32 pin QFN (15 generic I/O pins)
nRF24LE1: A 7×7mm 48 pin QFN (31 generic I/O pins)
The 4×4mm 24 pin QFN is ideal for low I/O count applications where small size is key. Examples include
wearable sports sensors and watches. The 5×5mm 32 pin QFN is ideal for medium I/O count applications
such as wireless mouse, remote controls and toys. The 7×7mm 48 pin QFN is designed for high I/O count
products like wireless keyboards.
1.1
Prerequisites
In order to fully understand the product specification, a good knowledge of electronic and software
engineering is necessary.
1.2
Writing conventions
This product specification follows a set of typographic rules to make the document consistent and easy to
read. The following writing conventions are used:
•
Commands, bit state conditions, and register names are written in Courier New.
•
Pin names and pin signal conditions are written in Courier New bold.
•
Cross references are underlined and highlighted in blue.
Revision 1.2
Page 11 of 190
nRF24LE1 OTP Product Specification
2
Product overview
2.1
Features
Features of the nRF24LE1 OTP include:
•
•
•
•
•
Fast 8-bit microcontroller:
Intel MCS 51 compliant instruction set
Reduced instruction cycle time, up to 12 times compared to legacy 8051
32 bit multiplication – division unit
Memory:
Program memory: 16 kB of OTP memory with security features
Data memory: 1 kB of on-chip RAM memory
Non-volatile data memory: 1 kB
A number of on-chip hardware resources are available through programmable multi purpose input/
output pins (7–31 pins dependent on package variant):
GPIO
SPI master
SPI slave
2-Wire master/ slave
Full duplex serial port
PWM
ADC
Analog comparator
External interrupts
Timer inputs
32.768 kHz crystal oscillator
High performance 2.4 GHz RF transceiver
True single chip GFSK transceiver
Enhanced ShockBurst™ link layer support in HW:
Packet assembly/disassembly
Address and CRC computation
Auto ACK and retransmit
On the air data rate 250 kbps, 1 Mbps or 2 Mbps
Digital interface (SPI) speed 0–8 Mbps
125 RF channels operation, with 79 (2.402 GHz –2.480 GHz) channels within 2.400–2.4835 GHz
Short switching time enable frequency hopping
Fully RF compatible with nRF24LXX
RF compatible with nRF2401A, nRF2402, nRF24E1, nRF24E2 in 250 kbps and 1 Mbps mode
A/D converter:
6, 8, 10 or 12 bit resolution
14 input channels
Single ended or differential input
Full-scale range set by internal reference, external reference or VDD
Single step mode with conversion time down to 3 μs
Continuous mode with 2, 4, 8 or 16 kbps sampling rate
Low current consumption; only 0.1mA at 2 ksps
Mode for measuring supply voltage
Revision 1.2
Page 12 of 190
nRF24LE1 OTP Product Specification
•
•
•
•
•
•
•
•
Analog comparator:
Used as wakeup source
Low current consumption (0.75μA typical)
Differential or single-ended input
Single-ended threshold programmable to 25%, 50%, 75% or 100% of VDD or an arbitrary reference voltage from pin
14-channel input multiplexer
Rail-to-rail input voltage range
Programmable output polarity
Encryption/decryption accelerator
Utilize time and power effective AES firmware
Random number generator:
Non-deterministic architecture based on thermal noise
No seed value required
Non-repeating sequence
Corrector algorithm ensures uniform statistical distribution
Data rate up to 10 kB per second
Operational while the processor is in standby
System reset and power supply monitoring:
On-chip power-on and brown-out reset
Watchdog timer reset
Reset from pin
Power-fail comparator with programmable threshold and interrupt to MCU
On-chip timers:
Three16-bit timers/counters operating at the system clock (sources from the 16 MHz on-chip
oscillators)
One 16-bit timer/counter operating at the low frequency clock (32.768 kHz)
On-chip oscillators:
16 MHz crystal oscillator XOSC16M
16 MHz RC-oscillator RCOSC16M
32.768 kHz crystal oscillator XOSC32K
32.768 kHz RC-oscillator RCOSC32K
Power management function:
Low power design supporting fully static stop/ standby
Programmable MCU clock frequency from 125 kHz to 16 MHz
On chip voltage regulators supporting low power mode
Watchdog and wakeup functionality running in low power mode
Complete firmware platform available:
Hardware abstraction layer (HAL) Functions
Library functions
Gazell Wireless protocol
Application examples
Revision 1.2
Page 13 of 190
nRF24LE1 OTP Product Specification
2.2
Block diagram
Figure 1. nRF24LE1 OTP block diagram
To find more information on the blocks shown in Figure 1, see Table 1. below:
Name
Reference
Memory (Program, Data, NVMEM) Chapter 5 on page 63
Power management
Chapter 11 on page 100
RF transceiver
Chapter 3 on page 17
2-Wire
Chapter 20 on page 154
SPI (Master and Slave)
Chapter 18 on page 143
GPIO
Chapter 17 on page 127
PWM
Chapter 23 on page 169
Watchdog
Chapter 10 on page 98
Table 1. Block diagram cross references
Revision 1.2
Page 14 of 190
nRF24LE1 OTP Product Specification
2.3
Pin assignments
2.3.1
24-pin 4×4 QFN-package variant
Figure 2. nRF24LE1 OTP pin assignment (top view) for a QFN24 4×4 mm package
2.3.2
32-pin 5×5 QFN-package variant
Figure 3. nRF24LE1 OTP pin assignment (top view) for a QFN32 5×5 mm package
Revision 1.2
Page 15 of 190
nRF24LE1 OTP Product Specification
2.3.3
48-pin 7×7 QFN-package variant
Figure 4. nRF24LE1 OTP pin assignment (top view) for a QFN48 7×7 mm package
2.4
Pin functions
Name
VDD
VSS
DEC1
DEC2
P0.0 – P3.6
PROG/VPP
Type
Power
Power
Power
Digital or analog I/O
Digital Input,High Voltage
RESET
IREF
Digital Input
Analog Input
VDD_PA
Power Output
ANT1, ANT2 RF
XC1, XC2 Analog Input
Exposed die Power/heat relief
pad
Description
Power supply (+1.9V to +3.6V DC)
Ground (0V)
Power supply outputs for de-coupling purposes
(100nF for DEC1, 33nF for DEC2)
General purpose I/O pins. Number of I/O available
depends on package type.
Input to enable OTP programming. This pin
requires an external pull-down resistor, or must be
connected to ground if external programming is
not needed.
Reset for microcontroller, active low
Device reference current output. To be connected
to reference resistor on PCB.
Power supply output (+1.8V) for on-chip RF
Power amplifier
Differential antenna connection (TX and RX)
Crystal connection for 16 MHz crystal
For the nRF24LE1 OTP QFN48 7×7mm and
QFN32 5×5mm connect the die pad to GND. For
nRF24LE1 OTP QFN24 4×4mm do not connect
the die pad to GND.
Table 2. nRF24LE1 OTP pin functions
Revision 1.2
Page 16 of 190
nRF24LE1 OTP Product Specification
3
RF transceiver
The nRF24LE1 OTP uses the same 2.4 GHz GFSK RF transceiver with embedded protocol engine
(Enhanced ShockBurst™) that is found in the nRF24L01+ single chip RF transceiver. The RF transceiver
is designed for operation in the world wide ISM frequency band at 2.400–2.4835 GHz and is very well
suited for ultra low power wireless applications.
The RF transceiver module is configured and operated through the RF transceiver map. This register map
is accessed by the MCU through a dedicated on-chip Serial Peripheral interface (SPI) and is available in all
power modes of the RF transceiver module.
The embedded protocol engine (Enhanced ShockBurst™) enables data packet communication and
supports various modes from manual operation to advanced autonomous protocol operation. Data FIFOs
in the RF transceiver module ensure a smooth data flow between the RF transceiver module and the
nRF24LE1 OTP MCU.
The rest of this chapter is written in the context of the RF transceiver module as the core and the rest of the
nRF24LE1 OTP as external circuitry to this module.
3.1
Features
Features of the RF transceiver include:
•
•
•
•
•
•
General
Worldwide 2.4 GHz ISM band operation
Common antenna interface in transmit and receive
GFSK modulation
250 kbps, 1 and 2 Mbps on air data rate
Transmitter
Programmable output power: 0, -6, -12 or -18dBm
11.1mA at 0dBm output power
Receiver
Integrated channel filters
13.3mA at 2 Mbps
-82 dBm sensitivity at 2 Mbps
-85 dBm sensitivity at 1 Mbps
-94 dBm sensitivity at 250 kbps
RF Synthesizer
Fully integrated synthesizer
1 MHz frequency programming resolution
Accepts low cost ±60ppm 16 MHz crystal
1 MHz non-overlapping channel spacing at 1 Mbps
2 MHz non-overlapping channel spacing at 2 Mbps
Enhanced ShockBurst™
1 to 32 bytes dynamic payload length
Automatic packet handling (assembly/disassembly)
Automatic packet transaction handling (auto ACK, auto retransmit)
6 data pipe MultiCeiver™ for 6:1 star networks
Revision 1.2
Page 17 of 190
nRF24LE1 OTP Product Specification
3.2
Block diagram
Figure 5. RF transceiver block diagram
3.3
Functional description
This section describes the different operating modes of the RF transceiver and the parameters used to
control it.
The RF transceiver module has a built-in state machine that controls the transitions between the different
operating modes. The state machine is controlled by SFR register RFCON and RF transceiver register
CONFIG, see section 3.5 for details.
3.3.1
Operational Modes
You can configure the RF transceiver to power down, standby, RX and TX mode. This section describes
these modes in detail.
3.3.1.1
State diagram
The state diagram (Figure 6.) shows the operating modes of the RF transceiver and how they function. At
the end of the reset sequence the RF transceiver enters Power Down mode. When the RF transceiver
enters Power Down mode the MCU can still control the module through the SPI and the rfcsn bit in the
RFCON register.
There are three types of distinct states highlighted in the state diagram:
•
•
•
Recommended operating mode: is a recommended state used during normal operation.
Possible operating mode: is a possible operating state, but is not used during normal operation.
Transition state: is a time limited state used during start up of the oscillator and settling of the PLL.
Revision 1.2
Page 18 of 190
nRF24LE1 OTP Product Specification
.
Figure 6. Radio control state diagram
3.3.1.2
Power down mode
In power down mode the RF transceiver is disabled with minimal current consumption. All the register
values available from the SPI are maintained and the SPI can be activated. For start up times see Table 5.
on page 23. Power down mode is entered by setting the PWR_UP bit in the CONFIG register low.
3.3.1.3
Standby modes
Standby-I mode
By setting the PWR_UP bit in the CONFIG register to 1, the RF transceiver enters standby-I mode. StandbyI mode is used to minimize average current consumption while maintaining short start up times. Change to
the active mode only happens if the rfce bit is enabled and when it is not enabled, the RF transceiver
returns to standby-I mode from both the TX and RX modes.
Revision 1.2
Page 19 of 190
nRF24LE1 OTP Product Specification
Standby-II mode
In standby-II mode extra clock buffers are active and more current is used compared to standby-I mode.
The RF transceiver enters standby-II mode if the rfce bit is held high on a PTX operation with an empty
TX FIFO. If a new packet is downloaded to the TX FIFO, the PLL immediately starts and the packet is
transmitted after the normal PLL settling delay (130 μs).
The register values are maintained and the SPI can be activated during both standby modes. For start up
times see Table 5. on page 23.
3.3.1.4
RX mode
The RX mode is an active mode where the RF transceiver is used as a receiver. To enter this mode, the
RF transceiver must have the PWR_UP bit, PRIM_RX bit and the rfce bit is set high.
In RX mode the receiver demodulates the signals from the RF channel, constantly presenting the
demodulated data to the baseband protocol engine. The baseband protocol engine constantly searches
for a valid packet. If a valid packet is found (by a matching address and a valid CRC) the payload of the
packet is presented in a vacant slot in the RX FIFOs. If the RX FIFOs are full, the received packet is
discarded.
The RF transceiver remains in RX mode until the MCU configures it to standby-I mode or power down
mode. However, if the automatic protocol features (Enhanced ShockBurst™) in the baseband protocol
engine are enabled, the RF transceiver can enter other modes in order to execute the protocol.
In RX mode a Received Power Detector (RPD) signal is available. The RPD is a signal that is set high
when a RF signal higher than -64 dBm is detected inside the receiving frequency channel. The internal
RPD signal is filtered before presented to the RPD register. The RF signal must be present for at least 40μs
before the RPD is set high. How to use the RPD is described in Section 3.3.4 on page 22.
3.3.1.5
TX mode
The TX mode is an active mode for transmitting packets. To enter this mode, the RF transceiver must have
the PWR_UP bit set high, PRIM_RX bit set low, a payload in the TX FIFO and a high pulse on the rfce bit
for more than 10 μs.
The RF transceiver stays in TX mode until it finishes transmitting a packet. If rfce = 0, RF transceiver
returns to standby-I mode. If rfce = 1, the status of the TX FIFO determines the next action. If the TX
FIFO is not empty the RF transceiver remains in TX mode and transmits the next packet. If the TX FIFO is
empty the RF transceiver goes into standby-II mode. The RF transceiver transmitter PLL operates in open
loop when in TX mode. It is important never to keep the RF transceiver in TX mode for more than 4 ms at
a time. If the Enhanced ShockBurst™ features are enabled, RF transceiver is never in TX mode longer
than 4 ms.
Revision 1.2
Page 20 of 190
nRF24LE1 OTP Product Specification
3.3.1.6
Operational modes configuration
The following table (Table 3.) describes how to configure the operational modes.
RX mode
TX mode
PWR_UP
register
1
1
PRIM_RX
register
1
0
TX mode
1
0
Standby-II
Standby-I
Power Down
1
1
0
0
-
Mode
FIFO state
rfce
1
1
Data in TX FIFO. Will empty all levels in TX FIFOa.
Minimum 10 μs Data in TX FIFO.Will empty one
high pulse level in TX FIFOb.
1
TX FIFO empty
0
No ongoing packet transmission
-
a. If the rfce bit is held high the TX FIFO is emptied and all necessary ACK and possible retransmits
are carried out. The transmission continues as long as the TX FIFO is refilled. If the TX FIFO is empty
when the rfce bit is still high, the RF transceiver enters standby-II mode. In this mode the
transmission of a packet is started as soon as the rfcsn is set high after an upload (UL) of a packet
to TX FIFO.
b. This operating mode pulses the rfce bit high for at least 10 μs. This allows one packet to transmit.
This is the normal operating mode. After the packet is transmitted, the RF transceiver enters standbyI mode.
Table 3. RF transceiver main modes
3.3.1.7
Timing information
The timing information in this section relates to the transitions between modes and the timing for the rfce
bit. The transition from TX mode to RX mode or vice versa is the same as the transition from the standby
modes to TX mode or RX mode (130 μs), as described in Table 4.
Name
Tpd2stby
Tstby2a
Thce
Tpece2csn
RF transceiver
Power Down Standby mode
Standby modes TX/RX mode
Minimum rfce high
Delay from rfce pos. edge to
rfcsn low
Max.
Min.
Comments
μsa
1
130 μs
10 μs
4 μs
a. This presupposes that the XO is running. Please refer to CLKLFCTRL for bit 3 in Table 58. on page
107.
Table 4. Operational timing of RF transceiver
Note: If VDD is turned off, or if the nRF24LE1 OTP enters Deep Sleep or Memory Retention mode,
the register values are lost and you must configure the RF transceiver before entering the TX
or RX modes.
Revision 1.2
Page 21 of 190
nRF24LE1 OTP Product Specification
3.3.2
Air data rate
The air data rate is the modulated signaling rate the RF transceiver uses when transmitting and receiving
data. It can be 250 kbps, 1 Mbps or 2 Mbps. Using lower air data rate gives better receiver sensitivity than
higher air data rate. But, high air data rate gives lower average current consumption and reduced
probability of on-air collisions.
The air data rate is set by the RF_DR bit in the RF_SETUP register. A transmitter and a receiver must be
programmed with the same air data rate to communicate with each other.
The RF transceiver is fully compatible with nRF24L01. For compatibility with nRF2401A, nRF2402,
nRF24E1, and nRF24E2 the air data rate must be set to 250 kbps or 1 Mbps.
3.3.3
RF channel frequency
The RF channel frequency determines the center of the channel used by the RF transceiver. The channel
occupies a bandwidth of less than 1 MHz at 250 kbps and 1 Mbps and a bandwidth of less than 2 MHz at 2
Mbps. The RF transceiver can operate on frequencies from 2.400 GHz to 2.525 GHz. The programming
resolution of the RF channel frequency setting is 1 MHz.
At 2 Mbps the channel occupies a bandwidth wider than the resolution of the RF channel frequency
setting. To ensure non-overlapping channels in 2 Mbps mode, the channel spacing must be 2 MHz or
more. At 1 Mbps and 250 kbps the channel bandwidth is the same or lower than the resolution of the RF
frequency.
The RF channel frequency is set by the RF_CH register according to the following formula:
F0= 2400 + RF_CH MHz
You must program a transmitter and a receiver with the same RF channel frequency to communicate with
each other.
3.3.4
Received Power Detector measurements
Received Power Detector (RPD), located in register 09, bit 0, triggers at received power levels above -64
dBm that are present in the RF channel you receive on. If the received power is less than -64 dBm,
RDP = 0.
The RPD can be read out at any time while the RF transceiver is in receive mode. This offers a snapshot of
the current received power level in the channel. The RPD is latched whenever a packet is received or
when the MCU sets rfce low.
The status of RPD is correct when RX mode is enabled and after a wait time of Tstby2a +Tdelay_AGC=
130 μs + 40 μs. The RX gain varies over temperature which means that the RPD threshold also varies
over temperature. The RPD threshold value is reduced by - 5dB at T = -40°C and increased by + 5dB at
85°C.
3.3.5
PA control
The PA (Power Amplifier) control is used to set the output power from the RF transceiver power amplifier.
In TX mode PA control has four programmable steps, see Table 5. on page 23
Revision 1.2
Page 22 of 190
nRF24LE1 OTP Product Specification
The PA control is set by the RF_PWR bits in the RF_SETUP register.
SPI RF-SETUP
RF output power
(RF_PWR)
11
0 dBm
10
-6 dBm
01
-12 dBm
00
-18 dBm
DC current
consumption
11.1mA
8.8mA
7.3mA
6.8mA
Conditions: VDD = 3.0V, VSS = 0V, TA = 27ºC, Load impedance = 15+j88.
Table 5. RF output power setting for the RF transceiver
3.3.6
RX/TX control
The RX/TX control is set by PRIM_RX bit in the CONFIG register and sets the RF transceiver in transmit/
receive.
3.4
Enhanced ShockBurst™
Enhanced ShockBurst™ is a packet based data link layer that features automatic packet assembly and
timing, automatic acknowledgement and retransmissions of packets. Enhanced ShockBurst™ enables the
implementation of ultra low power and high performance communication. The Enhanced ShockBurst™
features enable significant improvements of power efficiency for bi-directional and uni-directional systems,
without adding complexity on the host controller side.
3.4.1
Features
The main features of Enhanced ShockBurst™ are:
•
•
•
•
3.4.2
1 to 32 bytes dynamic payload length
Automatic packet handling
Auto packet transaction handling
Auto Acknowledgement
Auto retransmit
6 data pipe MultiCeiver™ for 1:6 star networks
Enhanced ShockBurst™ overview
Enhanced ShockBurst™ uses ShockBurst™ for automatic packet handling and timing. During transmit,
ShockBurst™ assembles the packet and clocks the bits in the data packet for transmission. During
receive, ShockBurst™ constantly searches for a valid address in the demodulated signal. When
ShockBurst™ finds a valid address, it processes the rest of the packet and validates it by CRC. If the
packet is valid the payload is moved into a vacant slot in the RX FIFOs. All high speed bit handling and
timing is controlled by ShockBurst™.
Enhanced ShockBurst™ features automatic packet transaction handling for the easy implementation of a
reliable bi-directional data link. An Enhanced ShockBurst™ packet transaction is a packet exchange
between two transceivers, with one transceiver acting as the Primary Receiver (PRX) and the other
transceiver acting as the Primary Transmitter (PTX). An Enhanced ShockBurst™ packet transaction is
always initiated by a packet transmission from the PTX, the transaction is complete when the PTX has
Revision 1.2
Page 23 of 190
nRF24LE1 OTP Product Specification
received an acknowledgment packet (ACK packet) from the PRX. The PRX can attach user data to the
ACK packet enabling a bi-directional data link.
The automatic packet transaction handling works as follows:
1.
You begin the transaction by transmitting a data packet from the PTX to the PRX. Enhanced
ShockBurst™ automatically sets the PTX in receive mode to wait for the ACK packet.
If the packet is received by the PRX, Enhanced ShockBurst™ automatically assembles and
transmits an acknowledgment packet (ACK packet) to the PTX before returning to receive mode.
If the PTX does not receive the ACK packet immediately, Enhanced ShockBurst™ automatically
retransmits the original data packet after a programmable delay and sets the PTX in receive
mode to wait for the ACK packet.
2.
3.
In Enhanced ShockBurst™ it is possible to configure parameters such as the maximum number of
retransmits and the delay from one transmission to the next retransmission. All automatic handling is done
without the involvement of the MCU.
3.4.3
Enhanced Shockburst™ packet format
The format of the Enhanced ShockBurst™ packet is described in this section. The Enhanced
ShockBurst™ packet contains a preamble field, address field, packet control field, payload field and a
CRC field. Figure 7. shows the packet format with MSB to the left.
Figure 7. An Enhanced ShockBurst™ packet with payload (0-32 bytes)
3.4.3.1
Preamble
The preamble is a bit sequence used to synchronize the receivers demodulator to the incoming bit stream.
The preamble is one byte long and is either 01010101 or 10101010. If the first bit in the address is 1 the
preamble is automatically set to 10101010 and if the first bit is 0 the preamble is automatically set to
01010101. This is done to ensure there are enough transitions in the preamble to stabilize the receiver.
3.4.3.2
Address
This is the address for the receiver. An address ensures that the correct packet is detected by the receiver.
The address field can be configured to be 3, 4 or, 5 bytes long with the AW register.
Note: Addresses where the level shifts only one time (that is, 000FFFFFFF) can often be detected
in noise and can give a false detection, which may give a raised Packet-Error-Rate.
Addresses as a continuation of the preamble (hi-low toggling) raises the Packet-Error-Rate.
Revision 1.2
Page 24 of 190
nRF24LE1 OTP Product Specification
3.4.3.3
Packet Control Field (PCF)
Figure 8. shows the format of the 9 bit packet control field, MSB to the left.
Figure 8. Packet control field (PCF)
The packet control field contains a 6 bit payload length field, a 2 bit PID (Packet Identity) field and a 1 bit
NO_ACK flag.
Payload length
This 6 bit field specifies the length of the payload in bytes. The length of the payload can be from 0 to 32
bytes.
Coding: 000000 = 0 byte (only used in empty ACK packets.) 100000 = 32 byte, 100001 = Don’t care.
This field is only used if the Dynamic Payload Length function is enabled.
PID (Packet identification)
The 2 bit PID field is used to detect if the received packet is new or retransmitted. PID prevents the PRX
operation from presenting the same payload more than once to the MCU. The PID field is incremented at
the TX side for each new packet received through the SPI. The PID and CRC fields (see section 3.4.3.5 on
page 26) are used by the PRX operation to determine if a packet is retransmitted or new. When several
data packets are lost on the link, the PID fields may become equal to the last received PID. If a packet has
the same PID as the previous packet, the RF transceiver compares the CRC sums from both packets. If
the CRC sums are also equal, the last received packet is considered a copy of the previously received
packet and discarded.
No Acknowledgment flag (NO_ACK)
The Selective Auto Acknowledgement feature controls the NO_ACK flag.
This flag is only used when the auto acknowledgement feature is used. Setting the flag high, tells the
receiver that the packet is not to be auto acknowledged.
3.4.3.4
Payload
The payload is the user defined content of the packet. It can be 0 to 32 bytes wide and is transmitted on-air
when it is uploaded (unmodified) to the device.
Enhanced ShockBurst™ provides two alternatives for handling payload lengths; static and dynamic.
The default is static payload length. With static payload length all packets between a transmitter and a
receiver have the same length. Static payload length is set by the RX_PW_Px registers on the receiver
side. The payload length on the transmitter side is set by the number of bytes clocked into the TX_FIFO
and must equal the value in the RX_PW_Px register on the receiver side.
Revision 1.2
Page 25 of 190
nRF24LE1 OTP Product Specification
Dynamic Payload Length (DPL) is an alternative to static payload length. DPL enables the transmitter to
send packets with variable payload length to the receiver. This means that for a system with different
payload lengths it is not necessary to scale the packet length to the longest payload.
With the DPL feature the nRF24L01+ can decode the payload length of the received packet automatically
instead of using the RX_PW_Px registers. The MCU can read the length of the received payload by using
the R_RX_PL_WID command.
Note: Always check if the packet width reported is 32 bytes or shorter when using the
R_RX_PL_WID command. If its width is longer than 32 bytes then the packet contains errors
and must be discarded. Discard the packet by using the Flush_RX command.
In order to enable DPL the EN_DPL bit in the FEATURE register must be enabled. In RX
mode the DYNPD register must be set. A PTX that transmits to a PRX with DPL enabled must have the
DPL_P0 bit in DYNPD set.
3.4.3.5
CRC (Cyclic Redundancy Check)
The CRC is the error detection mechanism in the packet. It may either be 1 or 2 bytes and is calculated
over the address, Packet Control Field and Payload.
The polynomial for 1 byte CRC is X8 + X2 + X + 1. Initial value 0xFF.
The polynomial for 2 byte CRC is X16+ X12 + X5 + 1. Initial value 0xFFFF.
No packet is accepted by Enhanced ShockBurst™ if the CRC fails.
Revision 1.2
Page 26 of 190
nRF24LE1 OTP Product Specification
3.4.4
Automatic packet assembly
The automatic packet assembly assembles the preamble, address, packet control field, payload and CRC
to make a complete packet before it is transmitted.
Figure 9. Automatic packet assembly
Revision 1.2
Page 27 of 190
nRF24LE1 OTP Product Specification
3.4.5
Automatic packet disassembly
After the packet is validated, Enhanced ShockBurst™ disassembles the packet and loads the payload into
the RX FIFO, and asserts the RX_DR IRQ.
Figure 10. Automatic packet disassembly
Revision 1.2
Page 28 of 190
nRF24LE1 OTP Product Specification
3.4.6
Automatic packet transaction handling
Enhanced ShockBurst™ features two functions for automatic packet transaction handling; auto
acknowledgement and auto re-transmit.
3.4.6.1
Auto Acknowledgement
Auto Acknowledgment is a function that automatically transmits an ACK packet to the PTX after it has
received and validated a packet. The Auto Acknowledgement function reduces the load of the system
MCU and reduces average current consumption. The Auto Acknowledgement feature is enabled by setting
the EN_AA register.
Note: If the received packet has the NO_ACK flag set, auto acknowledgement is not executed.
An ACK packet can contain an optional payload from PRX to PTX. In order to use this feature, the
Dynamic Payload Length (DPL) feature must be enabled. The MCU on the PRX side has to upload the
payload by clocking it into the TX FIFO by using the W_ACK_PAYLOAD command. The payload is pending
in the TX FIFO (PRX) until a new packet is received from the PTX. The RF transceiver can have three ACK
packet payloads pending in the TX FIFO (PRX) at the same time.
Figure 11. TX FIFO (PRX) with pending payloads
Figure 11. shows how the TX FIFO (PRX) is operated when handling pending ACK packet payloads. From
the MCU the payload is clocked in with the W_ACK_PAYLOAD command. The address decoder and buffer
controller ensure that the payload is stored in a vacant slot in the TX FIFO (PRX). When a packet is
received, the address decoder and buffer controller are notified with the PTX address. This ensures that
the right payload is presented to the ACK generator.
If the TX FIFO (PRX) contains more than one payload to a PTX, payloads are handled using the first in –
first out principle. The TX FIFO (PRX) is blocked if all pending payloads are addressed to a PTX where the
link is lost. In this case, the MCU can flush the TX FIFO (PRX) by using the FLUSH_TX command.
In order to enable Auto Acknowledgement with payload the EN_ACK_PAY bit in the FEATURE
register must be set.
3.4.6.2
Auto Retransmission (ART)
The Auto Retransmission is a function that retransmits a packet if an ACK packet is not received. It is used
in an Auto Acknowledgement system on the PTX. When a packet is not acknowledged, you can set the
number of times it is allowed to retransmit by setting the ARC bits in the SETUP_RETR register. PTX enters
RX mode and waits a time period for an ACK packet each time a packet is transmitted. The amount of time
the PTX is in RX mode is based on the following conditions:
Revision 1.2
Page 29 of 190
nRF24LE1 OTP Product Specification
•
•
•
Auto Retransmit Delay (ARD) elapsed.
No address match within 250 μs.
After received packet (CRC correct or not) if address match within 250 μs.
The RF transceiver asserts the TX_DS IRQ when the ACK packet is received.
The RF transceiver enters standby-I mode if there is no more untransmitted data in the TX FIFO and the
rfce bit in the RFCON register is low. If the ACK packet is not received, the RF transceiver goes back to TX
mode after a delay defined by ARD and retransmits the data. This continues until acknowledgment is
received, or the maximum number of retransmits is reached.
Two packet loss counters are incremented each time a packet is lost, ARC_CNT and PLOS_CNT in the
OBSERVE_TX register. The ARC_CNT counts the number of retransmissions for the current transaction.
You reset ARC_CNT by initiating a new transaction. The PLOS_CNT counts the total number of
retransmissions since the last channel change. You reset PLOS_CNT by writing to the RF_CH register. It is
possible to use the information in the OBSERVE_TX register to make an overall assessment of the channel
quality.
The ARD defines the time from the end of a transmitted packet to when a retransmit starts on the PTX.
ARD is set in SETUP_RETR register in steps of 250 μs. A retransmit is made if no ACK packet is received
by the PTX.
There is a restriction on the length of ARD when using ACK packets with payload. The ARD time must
never be shorter than the sum of the startup time and the time on-air for the ACK packet.
•
•
For 2 Mbps data rate and 5-byte address; 15 byte is maximum ACK packet payload length for
ARD=250 μs (reset value).
For 1 Mbps data rate and 5-byte address; 5 byte is maximum ACK packet payload length for
ARD=250 μs (reset value).
ARD=500 μs is long enough for any ACK payload length in 1 or 2 Mbps mode.
•
For 250kbps data rate and 5-byte address the following values apply:
ARD
1500μs
1250μs
1000μs
750μs
500μs
ACK packet size (in bytes)
All ACK payload sizes
< 24
< 16