0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
X1000E

X1000E

  • 厂商:

    INGENIC(君正)

  • 封装:

    BGA190

  • 描述:

    X1000E

  • 数据手册
  • 价格&库存
X1000E 数据手册
X1000/E IoT Application Processor Data Sheet Release Date: Sep. 6, 2017 X1000/E IoT Application Processor Data Sheet Copyright © 2005-2017 Ingenic Semiconductor Co., Ltd. All rights reserved. Disclaimer This documentation is provided for use with Ingenic products. No license to Ingenic property rights is granted. Ingenic assumes no liability, provides no warranty either expressed or implied relating to the usage, or intellectual property right infringement except as provided for by Ingenic Terms and Conditions of Sale. Ingenic products are not designed for and should not be used in any medical or life sustaining or supporting equipment. All information in this document should be treated as preliminary. Ingenic may make changes to this document without notice. Anyone relying on this documentation should contact Ingenic for the current documentation and errata. Ingenic Semiconductor Co., Ltd. Ingenic Headquarters, East Bldg. 14, Courtyard #10, Xibeiwang East Road, Haidian District, Beijing 100193, China Tel: 86-10-56345000 Fax: 86-10-56345001 Http: //www.ingenic.com CONTENTS CONTENTS 1 Overview .......................................................................................... 1 1.1 Block Diagram ......................................................................................................................... 1 1.2 Features .................................................................................................................................. 1 1.2.1 CPU Core ........................................................................................................................ 1 1.2.2 Image Core ...................................................................................................................... 2 1.2.3 Display/Camera/Audio ..................................................................................................... 2 1.2.4 Memory Interface ............................................................................................................ 4 1.2.5 System Functions ............................................................................................................ 5 1.2.6 Peripherals ...................................................................................................................... 6 1.2.7 Bootrom ........................................................................................................................... 8 2 Pinout Information ............................................................................ 9 2.1 Pin Map ................................................................................................................................... 9 2.2 Pin Descriptions ..................................................................................................................... 11 2.2.1 GPIO Group A ................................................................................................................ 11 2.2.2 GPIO Group B ............................................................................................................... 12 2.2.3 GPIO Group C ............................................................................................................... 14 2.2.4 GPIO Group D ............................................................................................................... 15 2.3 X1000/E FUNCTION PIN DESCRIPTION ............................................................................ 16 2.4 X1000/E FUNCTION DESCRIPTION ................................................................................... 20 3 Electrical Specifications .................................................................. 26 3.1 Absolute Maximum Ratings .................................................................................................. 26 3.2 Recommended operating conditions .................................................................................... 27 3.3 DC Specifications .................................................................................................................. 28 3.4 Audio codec .......................................................................................................................... 30 3.5 Power On, Reset and BOOT ................................................................................................ 31 3.5.1 Power-On Timing........................................................................................................... 31 3.5.2 Reset procedure ............................................................................................................ 33 3.5.3 BOOT ............................................................................................................................ 34 4 Packaging Information .................................................................... 36 4.1 Overview ............................................................................................................................... 36 4.2 X1000/E Device Dimensions ................................................................................................ 36 4.3 Solder Ball Materials ............................................................................................................. 37 4.4 Moisture Sensitivity Level ..................................................................................................... 37 5 PCB Mounting Guidelines............................................................... 38 5.1 RoHS compliance ................................................................................................................. 38 5.2 Reflow profile ........................................................................................................................ 38 i X1000 IoT Application Processor Data Sheet Copyright © 2005-2017 Ingenic Semiconductor Co., Ltd. All rights reserved. TABLES TABLES Table 2-1 GPIO Group A Pinmux(32) ................................................................................................. 11 Table 2-2 GPIO Group B Pinmux(32) ...............................................................................................12 Table 2-3 GPIO Group C Pinmux(26) .................................................................................................14 Table 2-4 GPIO Group D Pinmux(6) ...................................................................................................15 Table 2-5 X1000/E function pin description ........................................................................................16 Table 2-6 X1000/E Function Description ............................................................................................20 Table 3-1 Absolute Maximum Ratings ................................................................................................26 Table 3-2 Recommended operating conditions for power supplies....................................................27 Table 3-3 Recommended operating conditions for VDDMEM supplied pins .....................................27 Table 3-4 Recommended operating conditions for VDDIO/VDDIO_5T/VDDIO_Codec/VDDRTC supplied pins .........................................................................................................................................27 Table 3-5 Recommended operating conditions for others ..................................................................28 Table 3-6 DC characteristics for VREFMEM ..........................................................................................28 Table 3-7 DC characteristics for VDDmem supplied pins in LPDDR application .............................28 Table 3-8 DC characteristics for VDDIO/VDDIO_5T/VDDIO_Codec/VDDRTC supplied pins for 1.8V application .............................................................................................................................................28 Table 3-9 DC characteristics for VDDIO/VDDIO_5T/VDDIO_Codec/VDDRTC supplied pins for 2.5V application .............................................................................................................................................29 Table 3-10 DC characteristics for VDDIO/VDDIO_5T/VDDIO_Codec/VDDRTC supplied pins for 3.3V application .............................................................................................................................................30 Table 3-11 Power-On Timing Parameters ..........................................................................................32 Table 3-12 Boot Configuration of X1000/E .......................................................................................34 i X1000 IoT Application Processor Data Sheet Copyright © 2005-2017 Ingenic Semiconductor Co., Ltd. All rights reserved. FIGURES FIGURES Figure 1-1 X1000/E Diagram ................................................................................................................. 1 Figure 2-1 X1000/E pin to ball assignment .......................................................................................... 10 Figure 3-1 Power-On Timing Diagram ................................................................................................. 33 Figure 3-2 Boot flow diagram of X1000/E ............................................................................................ 35 Figure 4-1 X1000/E package outline drawing ...................................................................................... 37 i X1000 IoT Application Processor Data Sheet Copyright © 2005-2017 Ingenic Semiconductor Co., Ltd. All rights reserved. Overview 1 Overview X1000/E is a low power consumption, high performance and high integrated application processor, the application is focus on IoT devices. And it can match the requirements of many other embedded products. NAME SIP LPDDR X1000 32MB X1000E 64MB 1.1 Block Diagram Figure 1-1 X1000/E Diagram 1.2 Features 1.2.1 CPU Core ®  MIPS-Based XBurst cores (up to 1.0GHz)  MIPS-Based ® XBurst CPU – XBurst ® RISC instruction set – XBurst ® SIMD instruction set – XBurst ® FPU instruction set supporting both single and double floating point format 1 X1000 IoT Application Processor Data Sheet Copyright © 2005-2017 Ingenic Semiconductor Co., Ltd. All rights reserved. Overview which are IEEE754 compatible – XBurst  ® 9-stage pipeline micro-architecture MMU – 32-entry joint-TLB – 4 entry Instruction TLB – 4 entry data TLB  L1 Cache – 16KB instruction cache – 16KB data cache  Hardware debug support  16KB tight coupled memory  L2 Cache – 128KB unify cache  1.2.2  The XBurst® processor system supports little endian only Image Core Hardware JPEG encoder – Baseline ISO/IEC 10918-1 JPEG compliant – 8-bit pixel depth support – Support for YUY2 ([Y0,U0,Y1,V0]) color – Up to four programmable Quantization tables – Fully programmable Huffman tables – Image size up to 2M pixels 1.2.3  Display/Camera/Audio LCD controller – Basic Features  Display size up to 640x480@60Hz,24BPP – Colors Supports  Support up to 16,777,216 (16M) colors – Panel Supports   16bit 8080 once parallel interface  9 bits twice 8080 parallel interface  8 bits twice/third times 8080 parallel  Supports different size of display panel  Supports internal DMA operation and register operation Camera interface module – Input image size up to 2M pixels – Integrated DMA – Supported data format: YCbCr 4:2:2 – Supports ITU656 (YCbCr 4:2:2) input 2 X1000 IoT Application Processor Data Sheet Copyright © 2005-2017 Ingenic Semiconductor Co., Ltd. All rights reserved. Overview – Configurable VSYNC and HSYNC signals: active high/low – Configurable PCLK: active edge rising/falling – PCLK max. 80MHz – Configurable output order  AIC controller – I2S features  8, 16, 18, 20 and 24 bit audio sample data sizes supported, 16 bits packed sample data is supported  Up to 8 channels sample data supported  DMA transfer mode supported  Stop serial clock supported  Programmable Interrupt function supported  Support share clock mode and split clock mode.  Support mono PCM data to stereo PCM data expansion on audio play back  Support endian switch on 16-bits normal audio samples play back  Internal programmable or external serial clock and optional system clock supported for I2S or MSB-Justified format   Internal I2S CODEC supported  Two FIFOs for transmit and receive respectively PCM interface – Support master mode and slave mode – Data starts with the frame PCMSYN or one PCMCLK later – Support three modes of operation for PCM  Short frame sync mode  Long frame sync mode  Multi-slot mode – Data is transferred and received with the MSB first – The PCM serial output data, PCMDOUT, is clocked out using the rising edge of the PCMSCLK – The PCM serial input data, PCMDIN, is clocked in on the falling edge of the PCMSCLK – 8/16 bit sample data sizes supported – DMA transfer mode supported – Two FIFOs for transmit and receive respectively with 16 samples capacity in every direction  Internal CODEC – 24 bits ADC and DAC(digital output) – PWM line out and can load down to 16 Ohm – Sample rate supported: 8k, 11.025k, 12k, 16k, 22.05k, 24k, 32k, 44.1k, 48k, 88.2k, 96k, 176.4k, and 192k – Mono line input – DAC(digital output and converter to analog by external circuit): SNR: 95dB A-Weighted, THD: -80dB @FS-1dB – Line input to ADC path: SNR: 90dB A-Weighted, THD: -80dB @FS-1dB 3 X1000 IoT Application Processor Data Sheet Copyright © 2005-2017 Ingenic Semiconductor Co., Ltd. All rights reserved. Overview – Separate power-down modes for ADC and DAC path with several shutdown modes – Reduction of audible glitches systems: Soft Mute mode – Embedded low noise Linear Regulator – 1 MIC in path or 1 line in path Maximum (Total 1 analog input)  Low power DMIC Controller – 16 bits data interface and 20bit precision internal controller. – SNR: 90dB, THD: -90dB @ FS -20dB – Linear high pass filter include. Attenuation: -2.9dB@100Hz, -22dB@27Hz. -36dB@10Hz – Low power voice trigger when waiting to start talking. – 1 to 4 channel MIC support. – Support voice data pre-fetch when trigger enable and the data interface disable, but do not increase the power dissipation. – Sample rate supported: 8k, 16k. – Support low power mode 1.2.4  Memory Interface DDR Controller – Support LPDDR, DDR2, DDR3 – 16 bit data width – Support size up to 1GB (1 chip select, 3-bit Bank,15-bit Row, 11-bit Column,) – Asynchornize to system bus and each port. – Support clock-stop mode – Support auto self-refresh mode – Support power-down mode and deep-power-down mode – Programmable DDR timing parameters – Programmable DDR row and column address width and order  X1000: 32MB SIP LPDDR X1000E: 64MB SIP LPDDR  Serial nand/nor flash interface(SFC) – SPI protocol support: Standard, Dual, Quad SPI – Standard I/O data transfer up to 80Mbits/s – Dual I/O data transfer up to 160Mbits/s – Quad I/O data transfer up to 240Mbits/s – transmit-only or receive-only operation – MSB always be first in intra transfer of one byte. Least Significant Byte first for inter transfer of data bytes, and Most Significant Byte first for inter transfer of command or address bytes. – one device select – Configurable sampling point for reception – Configurable timing parameters: tSLCH, tCHSH and tSHSL – Configurable flash address wide are supported 4 X1000 IoT Application Processor Data Sheet Copyright © 2005-2017 Ingenic Semiconductor Co., Ltd. All rights reserved. Overview – 7 transfer formats: Standard SPI, Dual-Output/Dual-Input SPI, Quad-Output/Quad-Input SPI, Dual-I/O SPI, Quad-I/O SPI, Full Dual-I/O SPI, Full Quad-I/O SPI – two data transfer mode: slave mode and DMA mode – Configurable 6 phases for software flow 1.2.5  System Functions Clock generation and power management – On-chip oscillator circuit (support 24MHz, 26MHz) – Two phase-locked loops (PLL) with programmable multiplier – CCLK, HHCLK, H2CLK, PCLK, H0CLK, DDR_CLK frequency can be changed separately for software by setting registers – Functional-unit clock gating – Supply block power shut down  Timer and counter unit with PWM output and/or input edge counter – Provide 5 channels, all can generate PWM, two of them have input signal transition edge counter – 16-bit A counter and 16-bit B counter with auto-reload function every channel – Support interrupt generation when the A counter underflows – Three clock sources: RTCLK (real time clock), EXCLK (external clock input), PCLK (APB Bus clock) selected with 1, 4, 16, 64, 256 and 1024 clock dividing selected  OS timer – One channel – 32-bit counter and 32-bit compare register – Support interrupt generation when the counter matches the compare register – Three clock sources: RTCLK (real time clock), EXCLK (external clock input), PCLK (APB Bus clock) selected with 1, 4, 16, 64, 256 and 1024 clock dividing selected  Interrupt controller – Total 64 interrupt sources – Each interrupt source can be independently enabled – Priority mechanism to indicate highest priority interrupt – All the registers are accessed by CPU and PDMA – Unmasked interrupts can wake up the chip in sleep mode – Another set of source, mask and pending registers to serve for PDMA  Watchdog timer – Generates WDT reset – A 16-bit Data register and a 16-bit counter – Counter clock uses the input clock selected by software  PCLK, EXTAL and RTCCLK can be used as the clock for counter 5 X1000 IoT Application Processor Data Sheet Copyright © 2005-2017 Ingenic Semiconductor Co., Ltd. All rights reserved. Overview   The division ratio of the clock can be set to 1, 4, 16, 64, 256 and 1024 by software PDMA Controller – Support up to 8 independent DMA channels – Descriptor or No-Descriptor Transfer mode ® – A simple Xburst -1 CPU supports smart transfer mode controlled by programmable firmware – Transfer data units: 1-byte, 2-byte, 4-byte, 16-byte, 32-byte, 64-byte, 128-byte – Transfer number of data unit: 1 ~ 2 24 -1 – Independent source and destination port width: 8-bit, 16-bit, 32-bit – Fixed three priorities of channel groups: 0~3, highest; 4~11: mid; 12~31: lowest – An extra INTC IRQ can be bound to one programmable DMA channel  RTC (Real Time Clock) – Need external 32768Hz oscillator for 32KHz clock generation. – RTCLK selectable from the oscillator or from the divided clock of EXCLK, so that 32k crystal can be absent if the hibernating mode is not needed – 32-bits second counter – Programmable and adjustable counter to generate accurate 1 Hz clock – Alarm interrupt, 1Hz interrupt – Stand alone power supply, work in hibernating mode – Power down controller – Alarm wakeup – External pin wakeup with up to 2s glitch filter 1.2.6  Peripherals General-Purpose I/O ports – Each port can be configured as an input, an output or an alternate function port – Each port can be configured as an interrupt source of low/high level or rising/falling edge triggering. Every interrupt source can be masked independently – Each port has an internal pull-up or pull-down resistor connected. The pull-up/down resistor can be disabled – GPIO output 4 interrupts, 1 for every group, to INTC  Three I2C Controller (I2C0, I2C1, I2C2) – Two-wire I2C serial interface – consists of a serial data line (SDA) and a serial clock (SCL) – Two speeds  Standard mode (100 Kb/s)  Fast mode (400 Kb/s) – Device clock is identical with pclk – Programmable SCL generator 6 X1000 IoT Application Processor Data Sheet Copyright © 2005-2017 Ingenic Semiconductor Co., Ltd. All rights reserved. Overview – Master or slave I2C operation – 7-bit addressing/10-bit addressing – -level transmit and receive FIFOs – Interrupt operation – The number of devices that you can connect to the same I2C-bus is limited only by the maximum bus capacitance of 400pF  One Smart Card Controller (SCC) – Supports normal card and UIM card. – Supports asynchronous character (T=0) communication modes. – Supports asynchronous block (T=1) communication modes. – Supports setting of clock-rate conversion factor F (372, 512, 558, etc.), and bit-rate adjustment factor D (1, 2, 4, 8, 16, 32, 12, 20, etc.). – Supports extra guard time waiting. – Auto-error detection in T=0 receive mode. – Auto-character repeat in T=0 transmit mode. – Transforms inverted format to regular format and vice versa. – Support stop clock function in some power consuming sensitive applications.  One Synchronous serial interfaces (SSI0) – 3 protocols support: National’s Microwire, TI’s SSP, and Motorola’s SPI – Full-duplex or transmit-only or receive-only operation – Programmable transfer order: MSB first or LSB first – Configurable normal transfer mode or Interval transfer mode – Programmable clock phase and polarity for Motorola’s SSI format – Two slave select signal (SSI0_CE0_ / SSI0_CE1_) supporting up to 2 slave devices – Back-to-back character transmission/reception mode – Loop back mode for testing – Data transfer up to 30Mbits/s  Three UARTs (UART0, UART1, UART2) – Full-duplex operation – 5-, 6-, 7- or 8-bit characters with optional no parity or even or odd parity and with 1, 1½, or 2 stop bits – Independently controlled transmit, receive (data ready or timeout), line status interrupts – Internal diagnostic capability Loopback control and break, parity, overrun and framing-error is provided – Separate DMA requests for transmit and receive data services in FIFO mode – Supports modem flow control by software or hardware – Slow infrared asynchronous interface that conforms to IrDA specification  Two MMC/SD/SDIO controllers (MSC0, MSC1) – Fully compatible with the MMC System Specification version 4.5 7 X1000 IoT Application Processor Data Sheet Copyright © 2005-2017 Ingenic Semiconductor Co., Ltd. All rights reserved. Overview – Support SD Specification 3.0 – Support SD I/O Specification 1.0 with 1 command channel and 4 data channels – Consumer Electronics Advanced Transport Architecture (CE-ATA – version 1.1) – Maximum data rate is 50MBps – Both support MMC data width 1bit ,4bit, only MSC0 support 8bit – Built-in programmable frequency divider for MMC/SD bus – Built-in Special Descriptor DMA – Mask-able hardware interrupt for SDIO interrupt, internal status and FIFO status – Multi-SD function support including multiple I/O and combined I/O and memory – IRQ supported enable card to interrupt MMC/SD controller – Single or multi block access to the card including erase operation – Stream access to the MMC card – Supports SDIO read wait, interrupt detection during 1-bit or 4-bit access – Supports CE-ATA digital protocol commands – Support Command Completion Signal and interrupt to CPU – Command Completion Signal disable feature – The maximum block length is 4096bytes  USB 2.0 OTG interface – Complies with the USB 2.0 standard for high-speed (480 Mbps) functions and with the On-The-Go supplement to the USB 2.0 specification – Operates either as the function controller of a high- /full-speed USB peripheral or as the host/peripheral in point-to-point or multi-point communications with other USB functions – Supports Session Request Protocol (SRP) and Host Negotiation Protocol (HNP) – UTMI+ Level 3 Transceiver Interface – Soft connect/disconnect – 8 endpoints in device mode, 16 channels for host mode. – Dedicate FIFO – Supports control, interrupt, ISO and bulk transfer  MAC controller – 10/100 Mbps operation – Supports RMII PHY interfaces – Supports VLAN and CRC – Station Management Agent (SMA) – remote wake-up frame and magic packet frame processing  OTP Slave Interface – Total 1Kb. 1.2.7 Bootrom 16KB Boot ROM memory 8 X1000 IoT Application Processor Data Sheet Copyright © 2005-2017 Ingenic Semiconductor Co., Ltd. All rights reserved. Pinout Information 2 Pinout Information 2.1 Pin Map The X1000/E pin to ball assignment is shown in Figure 2-1. 9 X1000 IoT Application Processor Data Sheet Copyright © 2005-2017 Ingenic Semiconductor Co., Ltd. All rights reserved. Pinout Information Figure 2-1 X1000/E pin to ball assignment 10 X1000 IoT Application Processor Data Sheet Copyright © 2005-2017 Ingenic Semiconductor Co., Ltd. All rights reserved. Pinout Information 2.2 Pin Descriptions 2.2.1 GPIO Group A Table 2-1 GPIO Group A Pinmux(32) Ball No. Ball Name In/Out Pull Pull Driven Default Strength Schmitt Slewrate limitate GPIO Func0 Func1 Func2 Extra Func Power F16 SD0_SLCD_D0_I2C1_SCK_PA00 IO PU Enable 8mA No GPA[0] SD0 SLCD_D0 I2C1_SCK WKUP VDDIO G15 SD1_SLCD_D1_I2C1_SDA_PA01 IO PU Enable 8mA No GPA[1] SD1 SLCD_D1 I2C1_SDA WKUP VDDIO E16 SD2_SLCD_D2_UART2_RXD_PA02 IO PU Enable 8mA No GPA[2] SD2 SLCD_D2 UART2_RXD WKUP VDDIO F15 SD3_SLCD_D3_UART2_TXD_PA03 IO PU Enable 8mA No GPA[3] SD3 SLCD_D3 UART2_TXD WKUP VDDIO D16 SD4_SLCD_D4_UART1_RXD_PA04 IO PU Enable 8mA No GPA[4] SD4 SLCD_D4 UART1_RXD WKUP VDDIO C16 SD5_SLCD_D5_UART1_TXD_PA05 IO PU Enable 8mA No GPA[5] SD5 SLCD_D5 UART_TXD WKUP VDDIO E15 SD6_SLCD_D6_PA06 IO PU Enable 8mA No GPA[6] SD6 SLCD_D6 WKUP VDDIO B16 SD7_SLCD_D7_PA07 IO PU Enable 8mA No GPA[7] SD7 SLCD_D7 WKUP VDDIO C15 SD8_SLCD_D8_CIM_PCLK_PA08 IO PU Enable 8mA No GPA[8] SD8 SLCD_D8 CIM_PCLK WKUP VDDIO B15 SD9_SLCD_D9_CIM_HSYN_PA09 IO PU Enable 8mA No GPA[9] SD9 SLCD_D9 CIM_HSYN WKUP VDDIO A15 SD10_SLCD_D10_CIM_VSYN_PA10 IO PU Enable 8mA No GPA[10] SD10 SLCD_D10 CIM_VSYN WKUP VDDIO C14 SD11_SLCD_D11_CIM_MCLK_PA11 IO PU Enable 8mA No GPA[11] SD11 SLCD_D11 CIM_MCLK WKUP VDDIO D11 SD12_SLCD_D12_CIM_D7_PA12 IO PU Enable 8mA No GPA[12] SD12 SLCD_D12 CIM_D7 WKUP VDDIO C11 SD13_SLCD_D13_CIM_D6_PA13 IO PU Enable 8mA No GPA[13] SD13 SLCD_D13 CIM_D6 WKUP VDDIO A11 SD14_SLCD_D14_CIM_D5_PA14 IO PU Enable 8mA No GPA[14] SD14 SLCD_D14 CIM_D5 WKUP VDDIO B11 SD15_SLCD_D15_CIM_D4_PA15 IO PU Enable 8mA No GPA[15] SD15 SLCD_D15 CIM_D4 WKUP VDDIO C10 MSC0_D7_CIM_D3_PA16 IO PU Enable 8mA No GPA[16] MSC0_D7 CIM_D3 WKUP VDDIO A9 MSC0_D6_CIM_D2_PA17 IO PU Enable 8mA No GPA[17] MSC0_D6 CIM_D2 WKUP VDDIO B10 MSC0_D5_CIM_D1_PA18 IO PU Enable 8mA No GPA[18] MSC0_D5 CIM_D1 WKUP VDDIO 11 X1000 IoT Application Processor Data Sheet Copyright © 2005-2017 Ingenic Semiconductor Co., Ltd. All rights reserved. Pinout Information A10 MSC0_D4_CIM_D0_PA19 IO PU Enable 8mA No GPA[19] MSC0_D4 CIM_D0 WKUP VDDIO B14 MSC0_D3_SSI0_GPC_PA20 IO PU Enable 8mA No GPA[20] MSC0_D3 SSI0_GPC WKUP VDDIO A14 MSC0_D2_SSI0_CE1_PA21 IO PU Enable 8mA No GPA[21] MSC0_D2 SSI0_CE1 WKUP VDDIO B13 MSC0_D1_SSI0_DT_PA22 IO PU Enable 8mA No GPA[22] MSC0_D1 SSI0_DT WKUP VDDIO A13 MSC0_D0_SSI0_DR_PA23 IO PU Enable 8mA No GPA[23] MSC0_D0 SSI0_DR WKUP VDDIO B12 MSC0_CLK_SSI0_CLK_PA24 IO PU Enable 8mA No GPA[24] MSC0_CLK SSI0_CLK WKUP VDDIO A12 MSC0_CMD_SSI0_CE0_PA25 IO PU Enable 8mA No GPA[25] MSC0_CMD SSI0_CE0 WKUP VDDIO A7 SFC_CLK_SSI0_CLK_PA26 IO PU Enable 8mA No GPA[26] SFC_CLK SSI0_CLK WKUP VDDIO C7 SFC_CE_SSI0_CE0_PA27 IO PU Enable 8mA No GPA[27] SFC_CE SSI0_CE0 WKUP VDDIO B8 SFC_DR_SSI0_DR_PA28 IO PU Enable 8mA No GPA[28] SFC_DR SSI0_DR WKUP VDDIO B7 SFC_DT_SSI0_DT_PA29 IO PU Enable 8mA No GPA[29] SFC_DT SSI0_DT WKUP VDDIO D6 SFC_WP_SSI0_CE1_PA30 IO PU Enable 8mA No GPA[30] SFC_WP SSI0_CE1 WKUP VDDIO C6 SFC_HOLD_SSI0_GPC_PA31 IO PU Enable 8mA No GPA[31] SFC_HOLD SSI0_GPC WKUP VDDIO 2.2.2 GPIO Group B Table 2-2 GPIO Group B Pinmux(32) Ball Ball Name No. In/Out Pull Pull Driven Default Strength Schmitt Slewrate limitate GPIO Func0 Func1 Func2 Extra Func Power R2 SA0_I2S_MCLK_PB00 IO PU Enable 8mA No GPB[0] SA0 I2S_MCLK WKUP VDDIO T2 SA1_I2S_BCLK_PB01 IO PU Enable 8mA No GPB[1] SA1 I2S_BCLK WKUP VDDIO T3 SA2_I2S_LRCLK_PB02 IO PU Enable 8mA No GPB[2] SA2 I2S_LRCLK WKUP VDDIO R3 SA3_I2S_DI_PB03 IO PU Enable 8mA No GPB[3] SA3 I2S_DI WKUP VDDIO R4 SA4_I2S_DO_PB04 IO PU Enable 8mA No GPB[4] SA4 I2S_DO WKUP VDDIO 12 X1000 IoT Application Processor Data Sheet Copyright © 2005-2017 Ingenic Semiconductor Co., Ltd. All rights reserved. Pinout Information T4 SA5_DMIC1_IN_PB05 IO PU Enable 8mA No GPB[5] SA5 DMIC1_IN WKUP VDDIO L15 SA6_MAC_PHY_CLK_PWM3_PB06 IO PU Enable 8mA No GPB[6] SA6 MAC_PHY_CLK WKUP VDDIO L14 SA7_MAC_CRS_DV_PB07 IO PU Enable 8mA No GPB[7] SA7 MAC_CRS_DV WKUP VDDIO K16 SA8_MAC_RXD1_PB08 IO PU Enable 8mA No GPB[8] SA8 MAC_RXD1 WKUP VDDIO K15 SA9_MAC_RXD0_PB09 IO PU Enable 8mA No GPB[9] SA9 MAC_RXD0 WKUP VDDIO K14 SA10_MAC_TXEN_PB10 IO PU Enable 8mA No GPB[10] SA10 MAC_TXEN WKUP VDDIO J16 SA11_MAC_TXD1_PB11 IO PU Enable 8mA No GPB[11] SA11 MAC_TXD1 WKUP VDDIO H16 SA12_MAC_TXD0_PB12 IO PU Enable 8mA No GPB[12] SA12 MAC_TXD0 WKUP VDDIO J15 SA13_MAC_MDC_PB13 IO PU Enable 8mA No GPB[13] SA13 MAC_MDC WKUP VDDIO G16 SA14_MAC_MDIO_PB14 IO PU Enable 8mA No GPB[14] SA14 MAC_MDIO WKUP VDDIO H15 SA15_MAC_REF_CLK_PB15 IO PU Enable 8mA No GPB[15] SA15 MAC_REF_CLK WKUP VDDIO G14 RD_SLCD_RD_PB16 IO PU Enable 8mA No GPB[16] RD SLCD_RD WKUP VDDIO D15 WE_SLCD_WR_PB17 IO PU Enable 8mA No GPB[17] WE SLCD_WR WKUP VDDIO F14 CS1_SLCD_CE_PB18 IO PU Enable 8mA No GPB[18] CS1 SLCD_CE WKUP VDDIO E13 CS2_SLCD_TE_PB19 IO PU Enable 8mA No GPB[19] CS2 SLCD_TE WKUP VDDIO E14 WAIT_SLCD_DC_PB20 IO PU Enable 8mA No GPB[20] WAIT SLCD_DC WKUP VDDIO R5 DMIC_CLK_PB21 IO PU Enable 8mA No GPB[21] DMIC_CLK WKUP VDDIO G3 DMIC0_IN_PB22 IO PU Enable 8mA No GPB[22] DMIC0_IN WKUP VDDIO J2 I2C0_SCK_SCC_CLK_PB23 IO PU Enable 8mA No GPB[23] I2C0_SC SCC_CLK WKUP VDDIO H1 I2C0_SDA_SCC_DATA_PB24 IO PU Enable 8mA No GPB[24] I2C0_SDA SCC_DATA WKUP VDDIO T11 DRV_VBUS_PB25 IO PD Enable 8mA No GPB[25] DRV_VBUS WKUP VDDIO T5 RTC32K_PB26 IO PU Enable 8mA No GPB[26] RTC32K WKUP VDDIO F1 EXCLK_PB27 IO PU Enable 8mA No GPB[27] EXCLK WKUP VDDIO M2 BOOT_SEL0_PB28 IO PU Disable 8mA No GPB[28] BOOT_SEL0 WKUP VDDIO L2 BOOT_SEL1_PB29 IO PU Disable 8mA No GPB[29] BOOT_SEL1 WKUP VDDIO PWM3 13 X1000 IoT Application Processor Data Sheet Copyright © 2005-2017 Ingenic Semiconductor Co., Ltd. All rights reserved. Pinout Information M1 BOOT_SEL2_PB30 IO PU Disable 8mA No GPB[30] BOOT_SEL2 WKUP VDDIO R6 WKUP_PB31 IO PU Enable 8mA Yes GPB[31] WKUP WKUP VDDRTC 2.2.3 GPIO Group C Table 2-3 GPIO Group C Pinmux(26) Ball Ball Name No. In/Out Pull Pull Driven Default Strength Schmitt Slewrate limitate GPIO Func0 Func1 Func2 Extra Func Power E1 MSC1_CLK_PC00 IO PU Enable 8mA No GPC[0] MSC1_CLK WKUP VDDIO F2 MSC1_CMD_PC01 IO PU Enable 8mA No GPC[1] MSC1_CMD WKUP VDDIO D1 MSC1_D0_PC02 IO PU Enable 8mA No GPC[2] MSC1_D0 WKUP VDDIO E2 MSC1_D1_PC03 IO PU Enable 8mA No GPC[3] MSC1_D1 WKUP VDDIO F3 MSC1_D2_PC04 IO PU Enable 8mA No GPC[4] MSC1_D2 WKUP VDDIO E3 MSC1_D3_PC05 IO PU Enable 8mA No GPC[5] MSC1_D3 WKUP VDDIO C1 PCM_CLK_PC06 IO PU Enable 8mA No GPC[6] PCM_CLK WKUP VDDIO B1 PCM_DO_PC07 IO PU Enable 8mA No GPC[7] PCM_DO WKUP VDDIO D2 PCM_DI_PC08 IO PU Enable 8mA No GPC[8] PCM_DI WKUP VDDIO C2 PCM_SYN_PC09 IO PU Enable 8mA No GPC[9] PCM_SYN WKUP VDDIO B6 UART0_RXD_PC10 IO PU Enable 8mA No GPC[10] UART0_RXD WKUP VDDIO A6 UART0_TXD_PC11 IO PU Enable 8mA No GPC[11] UART0_TXD WKUP VDDIO B5 UART0_CTS_PC12 IO PU Enable 8mA No GPC[12] UART0_CTS WKUP VDDIO A5 UART0_RTS_PC13 IO PU Enable 8mA No GPC[13] UART0_RTS WKUP VDDIO B2 PC16 IO PU Enable 8mA Yes GPC[16] WKUP VDDIO A2 PC17 IO PU Enable 8mA Yes GPC[17] WKUP VDDIO C3 PC18 IO PU Enable 8mA Yes GPC[18] WKUP VDDIO 14 X1000 IoT Application Processor Data Sheet Copyright © 2005-2017 Ingenic Semiconductor Co., Ltd. All rights reserved. Pinout Information B3 PC19 IO PU Enable 8mA Yes GPC[19] WKUP VDDIO A3 PC20 IO PU Enable 8mA Yes GPC[20] WKUP VDDIO E4 PC21 IO PU Enable 8mA Yes GPC[21] WKUP VDDIO B4 PC22 IO PU Disable 8mA Yes GPC[22] WKUP VDDIO A4 PC23 IO PU Disable 8mA Yes GPC[23] WKUP VDDIO L1 PWM4_PC24 IO PU Enable 8mA No GPC[24] PWM4 WKUP VDDIO K1 PWM0_PC25 IO PD Enable 8mA No GPC[25] PWM0 WKUP VDDIO K2 I2C1_SCK_PWM1_PC26 IO PU Enable 8mA No GPC[26] I2C1_SCK PWM1 WKUP VDDIO J1 I2C1_SDA_PWM2_PC27 IO PU Enable 8mA No GPC[27] I2C1_SDA PWM2 WKUP VDDIO 2.2.4 GPIO Group D Table 2-4 GPIO Group D Pinmux(6) Ball No. Ball Name In/ Out Pull Pull Driven Default Strength Schmitt Slewrate limitate GPIO Func0 Func1 Func2 Extra Func Power P3 SSI0_CLK_I2C2_SCK_PD00 IO PU Enable 8mA No 5V GPD[0] SSI0_CLK I2C2_SCK WKUP VDDIO_5T R1 SSI0_CE0_I2C2_SDA_PD01 IO PU Enable 8mA No 5V GPD[1] SSI0_CE0 I2C2_SDA WKUP VDDIO_5T P2 SSI0_DT_UART1_RXD_PD02 IO PU Enable 8mA No 5V GPD[2] SSI0_DT UART1_RXD WKUP VDDIO_5T P1 SSI0_DR_UART1_TXD_PD03 IO PU Enable 8mA No 5V GPD[3] SSI0_DR UART1_TXD WKUP VDDIO_5T N2 UART2_TXD_UART1_CTS_PD04 IO PU Enable 8mA No 5V GPD[4] UART2_TXD UART1_CTS WKUP VDDIO_5T N1 UART2_RXD_UART1_RTS_PD05 IO PU Enable 8mA No 5V GPD[5] UART2_RXD UART1_RTS WKUP VDDIO_5T 15 X1000 IoT Application Processor Data Sheet Copyright © 2005-2017 Ingenic Semiconductor Co., Ltd. All rights reserved. Pinout Information 2.3 X1000/E FUNCTION PIN DESCRIPTION Table 2-5 X1000/E function pin description Ball No. Pin Names IO Power Pin Description K3 pad_TRST_ I VDDIO JTAG reset G1 TDO_UART2_TXD O VDDIO JTAG serial data output G2 TDI_UART2_RXD I VDDIO JTAG serial data input L3 TCK I VDDIO JTAG clock M3 TMS I VDDIO JTAG mode select E6 LPDDR_VDD P - Power for SIP LPDDR 1.8V F6 LPDDR_VDD P - Power for SIP LPDDR 1.8V G6 LPDDR_VDD P - Power for SIP LPDDR 1.8V J7 LPDDR_VSS P - Ground for SIP LPDDR K7 LPDDR_VSS P - Ground for SIP LPDDR L7 LPDDR_VSS P - Ground for SIP LPDDR F5 LPDDR_VDDQ P - Power for SIP LPDDR 1.8V G5 LPDDR_VDDQ P - Power for SIP LPDDR 1.8V H5 LPDDR_VDDQ P - Power for SIP LPDDR 1.8V H6 LPDDR_VDDQ P - Power for SIP LPDDR 1.8V H7 LPDDR_VDDQ P - Power for SIP LPDDR 1.8V J5 LPDDR_VSSQ P - Ground for SIP LPDDR J6 LPDDR_VSSQ P - Ground for SIP LPDDR K5 LPDDR_VSSQ P - Ground for SIP LPDDR Debug Memory 16 X1000 IoT Application Processor Data Sheet Copyright © 2005-2017 Ingenic Semiconductor Co., Ltd. All rights reserved. Pinout Information K6 LPDDR_VSSQ P - Ground for SIP LPDDR L6 LPDDR_VSSQ P - Ground for SIP LPDDR B9 ZQ DDR PHY ZQ calibration resistor A8 VREF0 DDR PHY VREF Power and Ground E7 VDDMEM P - IO digital power for DRAM 1.8V E8 VDDMEM P - IO digital power for DRAM 1.8V F7 VDDMEM P - IO digital power for DRAM 1.8V F8 VDDMEM P - IO digital power for DRAM 1.8V G7 VDDMEM P - IO digital power for DRAM 1.8V G8 VDDMEM P - IO digital power for DRAM 1.8V E9 VSSMEM P - IO digital ground for DRAM, 0V E10 VSSMEM P - IO digital ground for DRAM, 0V F9 VSSMEM P - IO digital ground for DRAM, 0V F10 VSSMEM P - IO digital ground for DRAM, 0V G9 VSSMEM P - IO digital ground for DRAM, 0V G10 VSSMEM P - IO digital ground for DRAM, 0V K11 VDDIO P - IO digital power for none DRAM 1.8~3.3V K12 VDDIO P - IO digital power for none DRAM 1.8~3.3V L12 VDDIO P - IO digital power for none DRAM 1.8~3.3V N6 VDDIO_5T P - IO digital power for none DRAM (5V tolerant) J10 VSS P - Core digital gound for none DRAM and CORE digital ground, 0V K8 VSS P - Core digital gound for none DRAM and CORE digital ground, 0V K9 VSS P - Core digital gound for none DRAM and CORE digital ground, 0V K10 VSS P - Core digital gound for none DRAM and CORE digital ground, 0V L8 VSS P - Core digital gound for none DRAM and CORE digital ground, 0V 17 X1000 IoT Application Processor Data Sheet Copyright © 2005-2017 Ingenic Semiconductor Co., Ltd. All rights reserved. Pinout Information L9 VSS P - Core digital gound for none DRAM and CORE digital ground, 0V L10 VSS P - Core digital gound for none DRAM and CORE digital ground, 0V L11 VSS P - Core digital gound for none DRAM and CORE digital ground, 0V M8 VSS P - Core digital gound for none DRAM and CORE digital ground, 0V M9 VSS P - Core digital gound for none DRAM and CORE digital ground, 0V M10 VSS P - Core digital gound for none DRAM and CORE digital ground, 0V F11 VDD P - CORE digital power, 1.2V G11 VDD P - CORE digital power, 1.2V G12 VDD P - CORE digital power, 1.2V H10 VDD P - CORE digital power, 1.2V H11 VDD P - CORE digital power, 1.2V H12 VDD P - CORE digital power, 1.2V J11 VDD P - CORE digital power, 1.2V J12 VDD P - CORE digital power, 1.2V Audio Codec P16 CODEC_AVDD S - Analog positive power supply P14 CODEC_AVSS S - Analog negative power supply 2 Ohms max P15 CODEC_VREFP S - Analog negative power supply for ADC part T15 VCAP AO AVD Decoupling cap for internal biasing voltage for core part R16 AIP AI AVD Left channel single-ended or positive analog input R15 AIN AI AVD R14 MICBIAS AO AVD L16 VDDIO_CODEC S - PWM digital line out IO positive power supply M14 VSSIO_CODEC S - PWM digital line out IO negative power supply N15 CODEC_PWMLP DO VDDIO_CODEC Left channel negative analog input 1.Must be left floating in single-ended configuration Electric microphone biasing voltage PWM digital line out positive left channel 18 X1000 IoT Application Processor Data Sheet Copyright © 2005-2017 Ingenic Semiconductor Co., Ltd. All rights reserved. Pinout Information N16 CODEC_PWMLN DO VDDIO_CODEC PWM digital line out negative left channel M15 COEDC_PWMRP DO VDDIO_CODEC PWM digital line out positive right channel M16 CODEC_PWMRN DO VDDIO_CODEC PWM digital line out negative right channel R12 USB_DP0(OTG_DP) AIO AVDUSB33 USB OTG data plus T12 USB_DM0(OTG_DM) AIO AVDUSB33 USB OTG data minus P13 USB_VBUS(OTG_VBUS) AIO 5V P11 USB_ID(OTG_ID) AI AVDUSB25 R13 OTG_TXR_RKL AIO AVDUSB25 T14 AVDOTG P - USB analog power.3.3V R11 AVSOTG P - USB analog ground. T13 AVDOTG25 P - USB OTG analog power, 2.5V AVDEFUSE P AVEFUSE T10 EXCLK_XI(EXCLK_I) AI VDDIO OSC input. R10 EXCLK_XO(EXCLK_O) AO VDDIO OSC output. USB OTG USB 5-V power supply pin for USB OTG. An external charge pump must provide power to this pin USB mini-receptacle identifier. It differentiates a mini-A from a mini-B plug. If this signal is not used, internal resistance pulls the signal’s voltage level to AVDUSB25. Transmitter resister tune. It connects to an external resistor of 43.2Ω with 1% tolerance to analog ground, that adjusts the USB 2.0 high-speed source impedance EFUSE H2 EFUSE programming power, 0V/2.5V CPM T9 PLL_DVDD P - PLL digital power, 1.2V P9 PLL_DVSS P - PLL digital ground R9 PLL_AVDD P - PLL analog power, 1.2V P10 PLL_AVSS P - PLL analog ground R8 RTCLK AI VDDRTC T8 XRTCLK AO - RTC OSC input or 32768Hz clock input OSC output 19 X1000 IoT Application Processor Data Sheet Copyright © 2005-2017 Ingenic Semiconductor Co., Ltd. All rights reserved. Pinout Information R7 PWRON O VDDRTC Power on/off control of main power P6 PPRST_ I VDDRTC RTC power on reset and RESET-KEY reset input P7 TEST_TE I VDDRTC Manufacture test enable, program readable T7 LDOOUT P - capacitor pin for RTC LDO need a 1nF decoupling capacitor to ground N7 VSSRTC P - RTC ground T6 VDDRTC P - VDDRTC: 3.3V power for RTC and hibernating mode controlling that never power down(normally you can use 1.8V instead to reduce power consumption) 2.4 X1000/E FUNCTION DESCRIPTION Table 2-6 X1000/E Function Description Signal Name In/Out Description SLCD(Smart LCD) SLCD_D0 Output Smart LCD data output bit 0 SLCD_D1 Output Smart LCD data output bit 1 SLCD_D2 Output Smart LCD data output bit 2 SLCD_D3 Output Smart LCD data output bit 3 SLCD_D4 Output Smart LCD data output bit 4 SLCD_D5 Output Smart LCD data output bit 5 SLCD_D6 Output Smart LCD data output bit 6 SLCD_D7 Output Smart LCD data output bit 7 SLCD_D8 Output Smart LCD data output bit 8 SLCD_D9 Output Smart LCD data output bit 9 SLCD_D10 Output Smart LCD data output bit 10 SLCD_D11 Output Smart LCD data output bit 11 20 X1000 IoT Application Processor Data Sheet Copyright © 2005-2017 Ingenic Semiconductor Co., Ltd. All rights reserved. Pinout Information SLCD_D12 Output Smart LCD data output bit 12 SLCD_D13 Output Smart LCD data output bit 13 SLCD_D14 Output Smart LCD data output bit 14 SLCD_D15 Output Smart LCD data output bit 15 SLCD_RD Output Smart LCD read signal SLCD_WR Output Smart LCD write signal SLCD_CE Output Smart LCD chip select signal SLCD_TE Input SLCD_DC Output Smart LCD tearing effect signal Smart LCD data/command select signal CIM(Camera Interface) CIM_PCLK Input CIM pixel clock input CIM_HSYN Input CIM line horizonal sync input CIM_VSYN Input CIM vertical sync input CIM_MCLK Output CIM_D7 Input CIM data input bit 7 CIM_D6 Input CIM data input bit 6 CIM_D5 Input CIM data input bit 5 CIM_D4 Input CIM data input bit 4 CIM_D3 Input CIM data input bit 3 CIM_D2 Input CIM data input bit 2 CIM_D1 Input CIM data input bit 1 CIM_D0 Input CIM data input bit 0 I2S_MCLK Output I2S master clock out I2S_BCLK Bidirection I2S bit clock I2S_LRCLK Bidirection I2S LR clock CIM master clock output I2S 21 X1000 IoT Application Processor Data Sheet Copyright © 2005-2017 Ingenic Semiconductor Co., Ltd. All rights reserved. Pinout Information I2S_DI Input I2S_DO Output PCM_CLK Bidirection PCM_DO Output PCM_DI Input PCM_SYN Bidirection I2S data input I2S data output PCM PCM clock PCM data out PCM data in PCM sync DMIC DMIC0_IN Input Digital MIC data input(Left/Right Front/Back channel) DMIC1_IN Input Digital MIC data input(channel) DMIC_CLK Output Digital MIC clock output SFC_CLK Output Serial Flash clock output SFC_CE_ Output Serial Flash chip enable SFC_DR Bidirection Serial Flash data input SFC_DT Bidirection Serial Flash data output SFC_WP Bidirection Serial Flash write protect signal SRC_HOLD Bidirection Serial Flash hold signal PWMn Bidirection PWM output or pulse input channel n RTC32K Output I2Cn_SCK Bidirection I2C n serial clock I2Cn_SDA Bidirection I2C n serial data SFC PWM RTC 32768Hz clock output I2C SCC 22 X1000 IoT Application Processor Data Sheet Copyright © 2005-2017 Ingenic Semiconductor Co., Ltd. All rights reserved. Pinout Information SCC_CLK Bidirection Smart Card clock SCC_DATA Bidirection Smart Card data SSIn_CLK Output SSI n clock output SSIn_CE0_ Output SSI n chip enable 0 SSIn_CE1_ Output SSI n chip enable 1 SSIn_GPC Output SSI n general-purpose control signal SSIn_DT Output SSI n data output SSIn_DR Input SSI n data input UARTn_RXD Input UART n receiving data UARTn_TXD Output UARTn_CTS_ Input UARTn_RTS_ Output SSI UART UART n transmitting data UART Clear to send control UART Request to send control MSC MSCn_D7 Bidirection MSC(MMC/SD) n data bit 7 MSCn_D6 Bidirection MSC(MMC/SD) n data bit 6 MSCn_D5 Bidirection MSC(MMC/SD) n data bit 5 MSCn_D4 Bidirection MSC(MMC/SD) n data bit 4 MSCn_D3 Bidirection MSC(MMC/SD) n data bit 3 MSCn_D2 Bidirection MSC(MMC/SD) n data bit 2 MSCn_D1 Bidirection MSC(MMC/SD) n data bit 1 MSCn_D0 Bidirection MSC(MMC/SD) n data bit 0 MSCn_CLK Output MSCn_CMD Bidirection MSC(MMC/SD) n clock output MSC(MMC/SD) n command USB 2.0 OTG 23 X1000 IoT Application Processor Data Sheet Copyright © 2005-2017 Ingenic Semiconductor Co., Ltd. All rights reserved. Pinout Information DRV_VBUS Output USB OTG VBUS driver control signal MAC_PHY_CLK Output Ethernet PHY clock (50MHz) MAC_CRS_DV Input Ethernet carrier sense MAC_RXD1 Input Ethernet receive data bit 1 for RMII MAC_RXD0 Input Ethernet receive data bit 0 for RMII MAC_TXEN Output Ethernet transmit enable MAC_TXD1 Output Ethernet transmit data bit 1 for RMII MAC_TXD0 Output Ethernet transmit data bit 0 for RMII MAC_MDC Output Ethernet management clock MAC_MDIO Bidirection Ethernet management data MAC_REF_CLK Input MAC Ethernet reference clock (50MHz) NOTES: 1 The meaning of phases in IO cell characteristics are: a Bi-dir, Single-end: bi-direction and single-ended DDR IO are used. b Output, Single-end: output and single-ended DDR IO are used. c Output, Differential: output and differential signal DDR IO are used. d Bi-dir, Differential: bi-direction and differential signal DDR IO are used. e 4mA, 8mA, 16mA out: The IO cell’s output driving strength is about 4mA,8mA,16mA. 4/8mA means the IO cell's output driving strength is selected and can be set as 4mA or 8mA. 2/4mA means the IO cell's output driving strength is selected and can be set as 2mA or 4mA. f Pull-up: The IO cell contains a pull-up resistor. g Pull-down: The IO cell contains a pull-down resistor. h Pullup-pe: The IO cell contains a pull-up resistor and the pull-up resistor can be enabled or disabled by setting corresponding register. i Pulldown-pe: The IO cell contains a pull-down resistor and the pull-down resistor can be enabled or disabled by setting corresponding register. j rst-pe: these pins are initialed (during reset and after reset) to IO internal pull (up or down) enabled. Otherwise, the pins are initialed to pull 24 X1000 IoT Application Processor Data Sheet Copyright © 2005-2017 Ingenic Semiconductor Co., Ltd. All rights reserved. Pinout Information disabled 2 k Schmitt: The IO cell is Schmitt trig input. l ~SL: The IO cell do not limited slew rate. All GPIO shared pins are reset to GPIO input 25 X1000 IoT Application Processor Data Sheet Copyright © 2005-2017 Ingenic Semiconductor Co., Ltd. All rights reserved. Electrical Specifications 3 Electrical Specifications 3.1 Absolute Maximum Ratings The absolute maximum ratings for the processors are listed in Table 3-1. Do not exceed these parameters or the part may be damaged permanently. Operation at absolute maximum ratings is not guaranteed. Table 3-1 Absolute Maximum Ratings Parameter Min Max Unit Storage Temperature -65 150 C Operation Temperature -40 85 C VDDMEM power supplies voltage -0.5 1.98 V VDDIO power supplies voltage -0.5 3.6 V VDDIO_5T -0.5 3.6 V -0.5 3.6 V VDD core power supplies voltage -0.2 1.32 V PLLVDD12 power supplies voltage -0.2 1.32 V PLLAVDD power supplies voltage -0.2 1.32 V AVDEFUSE power supplies voltage -0.5 2.75 V VDDRTC power supplies voltage -0.5 3.63 V AVDUSB25 power supplies voltage -0.5 2.75 V AVDUSB33 power supplies voltage -0.5 3.63 V AVDCDC power supplies voltage -0.5 3.63 V Input voltage to VDDMEM supplied non-supply pins -0.3 1.98 V -0.5 5.5 V Input voltage to VDDIO supplied non-supply pins without 5V tolerance -0.5 3.6 V Input voltage to VDDIO_Codec supplied non-supply pins -0.5 3.6 V Input voltage to VDDRTC supplied non-supply pins -0.5 3.6 V Input voltage to AVDCDC supplied non-supply pins -0.5 3.63 V Input voltage to AVDUSB25 supplied non-supply pins -0.5 2.75 V Input voltage to AVDUSB33 supplied non-supply pins -0.5 3.63 V Output voltage from VDDMEM supplied non-supply pins -0.5 1.98 V Output voltage from VDDIO supplied non-supply pins -0.5 3.6 V Output voltage from VDDIO_Codec supplied non-supply pins -0.5 3.6 V Output voltage from VDDIO_5T supplied non-supply pins -0.5 3.6 V Output voltage from VDDRTC supplied non-supply pins -0.5 3.6 V Output voltage from AVDUSB25 supplied non-supply pins -0.5 2.75 V Output voltage from AVDUSB33 supplied non-supply pins -0.5 3.6 V Output voltage from AVDCDC supplied non-supply pins -0.5 3.63 V power supplies voltage VDDIO_Codec power supplies voltage Input voltage to VDDIO_5T supplied non-supply pins with 5V tolerance 26 X1000 IoT Application Processor Data Sheet Copyright © 2005-2017 Ingenic Semiconductor Co., Ltd. All rights reserved. Electrical Specifications Maximum ESD stress voltage, Human Body Model; Any pin to any supply pin, either polarity, or Any pin to all non-supply pins together, 2000 V either polarity. Three stresses maximum. 3.2 Recommended operating conditions Table 3-2 Recommended operating conditions for power supplies Symbol Description Min Typical Max Unit VDDMEM voltage for LPDDR 1.65 1.8 1.95 V VDDMEM voltage for SSTL18 (DDR2) 1.7 1.8 1.9 V VDDMEM voltage for DDR3 1.425 1.5 1.575 V VDDMEM voltage for DDR3L 1.28 1.35 1.45 V VIO(1.8V) VDDIO voltage, use as 1.8V 1.62 1.8 1.98 V VIO5(1.8V) VDDIO_5T voltage, use as 1.8V 1.62 1.8 1.98 V VIOC(1.8V) VDDIO_Codec voltage, use as 1.8V 1.62 1.8 1.98 V VIO(2.5V) VDDIO voltage, use as 2.5V 2.25 2.5 2.75 V VIO5(2.5V) VDDIO_5T voltage, use as 2.5V 2.25 2.5 2.75 V VIOC(2.5V) VDDIO_Codec voltage, use as 2.5V 2.25 2.5 2.75 V VIO(3.3V) VDDIO voltage, use as 3.3V 2.97 3.3 3.63 V VIO5(3.3V) VDDIO_5T voltage, use as 3.3V 2.97 3.3 3.63 V VIOC(3.3V) VDDIO_Codec voltage, use as 3.3V 2.97 3.3 3.63 V VCORE VDD core voltage 1.08 1.2 1.32 V VPLL12 PLLVDD, PLLAVDD voltage 1.08 1.2 1.32 V VEFUSE AVDEFUSE voltage 2.25 2.5 2.75 V VRTC33 VDDRTC voltage 1.8 1.8 3.63 V VUSB25 AVDOTG25 voltage 2.25 2.5 2.75 V VUSB33 AVDOTG voltage 3.0 3.3 3.6 V 2.97 3.3 3.63 V VMEM VCDC CODEC_AVDD voltage Table 3-3 Recommended operating conditions for VDDMEM supplied pins Symbol Parameter Min Typical Max Unit VI18 Input voltage for LPDDR applications 0 1.8 1.9 V VO18 Output voltage for LPDDR applications 0 1.8 1.9 V Table 3-4 Recommended operating conditions for VDDIO/VDDIO_5T/VDDIO_Codec/VDDRTC supplied pins Symbol Parameter Min Typical Max Unit VIH18 Input high voltage for 1.8V I/O application 1.17 1.8 3.6 V VIL18 Input low voltage for 1.8V I/O application –0.3 0 0.63 V 27 X1000 IoT Application Processor Data Sheet Copyright © 2005-2017 Ingenic Semiconductor Co., Ltd. All rights reserved. Electrical Specifications VIH25 Input high voltage for 2.5V I/O application 1.7 2.5 3.6 V VIL25 Input low voltage for 2.5V I/O application –0.3 0 0.7 V VIH33 Input high voltage for 3.3V I/O application 2 3.3 3.6 V VIL33 Input low voltage for 3.3V I/O application –0.3 0 0.8 V Max Unit 85 C Table 3-5 Recommended operating conditions for others Symbol Description TA Min Typical –40 Ambient temperature 3.3 DC Specifications The DC characteristics for each pin include input-sense levels and output-drive levels and currents. These parameters can be used to determine maximum DC loading, and also to determine maximum transition times for a given load. All DC specification values are valid for the entire temperature range of the device. Table 3-6 DC characteristics for VREFMEM Symbol VREFM Parameter Min Typical Max Unit Reference voltage supply 0.49 0.5 0.51 VMEM Table 3-7 DC characteristics for VDDmem supplied pins in LPDDR application Symbol VIH(DC) Parameter Input logic threshold High VIL(DC) Min Typical Max Unit 0.7* VMEM VMEM+0.3 V Input logic threshold Low VMEM-0.3 0.3* VMEM V VIH(AC) AC Input logic High 0.8* VMEM VMEM+0.3 V VIL(AC) AC Input logic Low VMEM-0.3 0.2* VMEM V VOH DC output logic High 0.9*VMEM V (IOH=-0.1mA) VOL DC output logic Low 0.1 *VMEM V (IOL=0.1mA) ILL Input leakage current 0.01 6.45 uA IMEM VMEM quiescent current 0.02 15.03 uA Table 3-8 DC characteristics for VDDIO/VDDIO_5T/VDDIO_Codec/VDDRTC supplied pins for 1.8V application Symbol Parameter Min Typical Max Unit VT Threshold point 0.79 0.86 0.94 V VT+ Schmitt trig low to high threshold point 0.95 1.06 1.16 V 28 X1000 IoT Application Processor Data Sheet Copyright © 2005-2017 Ingenic Semiconductor Co., Ltd. All rights reserved. Electrical Specifications VT– Schmitt trig high to low threshold point 0.58 0.69 0.79 V VTPU Threshold point with pull-up resistor enabled 0.79 0.86 0.94 V VTPD Threshold point with pull-down resistor enabled 0.79 0.86 0.94 V 0.95 1.06 1.16 V 0.58 0.68 0.78 V 0.96 1.07 1.17 V 0.59 0.69 0.79 V VTPU+ VTPU– VTPD+ VTPD– Schmitt trig low to high threshold point with pull-up resistor enabled Schmitt trig high to low threshold point with pull-down resistor enabled Schmitt trig low to high threshold point with pull-down resistor enabled Schmitt trig high to low threshold point with pull-up resistor enabled IL Input Leakage Current @ VI=1.8V or 0V ±10 μA IOZ Tri-State output leakage current @ VI=1.8V or 0V ±10 μA RPU Pull-up Resistor 66 114 211 kΩ RPD Pull-down Resistor 58 103 204 kΩ VOL Output low voltage 0.45 V VOH Output high voltage IOL Low level output current @ VOL(max) IOH High level output current @ VOH(min) 1.35 V 8mA 5.3 9.8 15.8 mA 16mA 10.8 19.7 31.8 mA 8mA 3.3 8.3 16.6 mA 16mA 6.6 16.5 33.2 mA Table 3-9 DC characteristics for VDDIO/VDDIO_5T/VDDIO_Codec/VDDRTC supplied pins for 2.5V application Symbol Parameter Min Typical Max Unit VT Threshold point 1.06 1.17 1.27 V VT+ Schmitt trig low to high threshold point 1.27 1.40 1.50 V VT– Schmitt trig high to low threshold point 0.86 0.98 1.09 V VTPU Threshold point with pull-up resistor enabled 1.05 1.16 1.25 V VTPD Threshold point with pull-down resistor enabled 1.06 1.17 1.27 V 1.27 1.39 1.48 V 0.85 0.97 1.08 V 1.27 1.41 1.50 V 0.88 0.99 1.10 V VTPU+ VTPU– VTPD+ VTPD– Schmitt trig low to high threshold point with pull-up resistor enabled Schmitt trig high to low threshold point with pull-down resistor enabled Schmitt trig low to high threshold point with pull-down resistor enabled Schmitt trig high to low threshold point with pull-up resistor enabled IL Input Leakage Current @ VI=1.8V or 0V ±10 μA IOZ Tri-State output leakage current @ VI=1.8V or 0V ±10 μA RPU Pull-up Resistor 120 kΩ 43 69 29 X1000 IoT Application Processor Data Sheet Copyright © 2005-2017 Ingenic Semiconductor Co., Ltd. All rights reserved. Electrical Specifications RPD Pull-down Resistor 41 VOL Output low voltage VOH Output high voltage IOL Low level output current @ VOL(max) IOH High level output current @ VOH(min) 66 124 kΩ 0.7 V 1.7 V 8mA 11.6 19.4 28.4 mA 16mA 23.3 39.1 57.2 mA 8mA 9.3 19.4 34.6 mA 16mA 18.6 38.7 69.2 mA Table 3-10 DC characteristics for VDDIO/VDDIO_5T/VDDIO_Codec/VDDRTC supplied pins for 3.3V application Symbol Parameter Min Typical Max Unit VT Threshold point 1.39 1.50 1.65 V VT+ Schmitt trig low to high threshold point 1.62 1.75 1.90 V VT– Schmitt trig high to low threshold point 1.18 1.29 1.44 V VTPU Threshold point with pull-up resistor enabled 1.36 1.48 1.64 V VTPD Threshold point with pull-down resistor enabled 1.40 1.52 1.66 V 1.62 1.75 1.89 V 1.16 1.28 1.43 V 1.64 1.77 1.91 V 1.19 1.31 1.45 V VTPU+ VTPU– VTPD+ VTPD– Schmitt trig low to high threshold point with pull-up resistor enabled Schmitt trig high to low threshold point with pull-down resistor enabled Schmitt trig low to high threshold point with pull-down resistor enabled Schmitt trig high to low threshold point with pull-up resistor enabled IL Input Leakage Current @ VI=1.8V or 0V ±10 μA IOZ Tri-State output leakage current @ VI=1.8V or 0V ±10 μA RPU Pull-up Resistor 34 51 81 kΩ RPD Pull-down Resistor 35 51 88 kΩ VOL Output low voltage 0.4 V VOH Output high voltage IOL Low level output current @ VOL(max) IOH High level output current @ VOH(min) 2.4 V 8mA 10.0 15.2 20.2 mA 16mA 20.2 30.6 40.6 mA 8mA 13.9 28.0 48.2 mA 16mA 27.8 56.0 96.3 mA 3.4 Audio codec 30 X1000 IoT Application Processor Data Sheet Copyright © 2005-2017 Ingenic Semiconductor Co., Ltd. All rights reserved. Electrical Specifications Analog power supply 10 uF 0.1 uF Logic Power Supply X1000 VDDD VSSD AVDCDC AIP1 VREFP MICBIAS 1nF AVSCDC AGND Differential analog input AIN1 Low noise Linear Regulator VCAP 10 uF 0.1 uF VSSIO_CODEC Low noise High PSRR power supply LDO O 10 uF line out P 4.7nF 150 line out P 150 4.7nF line out N 150 1uF 150 1uF 150 1uF 150 1uF 150 line out N 150 VDDIO_CODEC 0.1 uF 4.7nF 4.7nF CODEC_PWMLP CODEC_PWMLN CODEC_PWMRP CODEC_PWMRN Note: 1. The single-ended/differential input port AIP1/AIN1 can be configure to microphone input or line input by software. 2. VCAP/AVDCDC each of them requires connecting decoupling capacitors (0.1uF) between the pads VCAP/AVDCDC and AVSCDC. This ceramic capacitor has to be kept as close as possible to IC package (closer than 0.2 inch). 3.5 Power On, Reset and BOOT 3.5.1 Power-On Timing The external voltage regulator and other power-on devices must provide the X1000/E processor with a specific sequence of power and resets to ensure proper operation. Figure 3-1shows this sequence and Table 3-11 gives the timing parameters. Following are the name of the power.   VDDRTC: VDDRTC AVDAUD: AVDCDC 31 X1000 IoT Application Processor Data Sheet Copyright © 2005-2017 Ingenic Semiconductor Co., Ltd. All rights reserved. Electrical Specifications   VDD: all 1.2V power supplies, include VDDCORE, PLLVDD12, PLLAVDD   AVD: all other analog power supplies: VDDIO: all other digital IO, include DDR power supplies: VDDMEM, VDDIO, VDDIO_5T, VDDIO_Codec AVDUSB25, AVDUSB33 AVDEFUSE Table 3-11 Power-On Timing Parameters Symbol tR_VDDRTC tR_VDDIO Parameter VDDRTC rise time VDDIO rise time [1] [1] Delay between VDD arriving 50% (or 90%) to VDDIO tD_VDDIO arriving 50% (or 90%) tR_VDD VDD rise time [1] Delay between VDDRTC arriving 50% (or 90%) to VDD tD_VDD arriving 50% (or 90%) [1] tR_AVDAUD AVDAUD rise time tD_AVDAUD Delay between AVDAUD arriving 90% to VDD arriving 90% [1] tR_AVD AVD rise time tD_AVD Delay between VDDIO arriving 90% to AVD arriving 90% tD_PPRST_ tD_AVDEFUSE Delay between AVD stable and PPRST_ de-asserted Delay between PPRST_ finished and E-fuse programming power apply Min Max 0 5 ms 0 5 ms 0 – ms 0 5 ms 0 1 ms 0 5 ms 0.01 1 ms 0 5 ms 1 ms – ms – ms 0 TBD 0 [3] Unit [2] NOTES: 1 The power rise time is defined as 10% to 90%. 2 The PPRST_ must be kept at least 100us. After PPRST_ is deasserted, the corresponding chip reset will be extended at least 40ms. 3 It must make sure the EXCLK is stable and all power(except AVDEFUSE) is stable. 32 X1000 IoT Application Processor Data Sheet Copyright © 2005-2017 Ingenic Semiconductor Co., Ltd. All rights reserved. Electrical Specifications tR_VDDRTC VDDRTC tD_VDD tD_VDD tR_VDD VDD tD_VDDIO tD_VDDIO tR_VDDIO VDDIO tD_AVD tR_AVD AVD tD_AVDAUD tR_AVDAUD AVDAUD tD_PPRST_ PPRST_ tD_AVDEFUSE AVDEFUSE Figure 3-1 Power-On Timing Diagram 3.5.2 Reset procedure There 3 reset sources: 1 PPRST_ pin reset; 2 WDT timeout reset; and 3 hibernating reset when exiting hibernating mode. After reset, program start from boot. 1 PPRST_ pin reset. This reset is trigged when PPRST_ pin is put to logic 0. It happens in power on RTC power and RESET-KEY pressed to reset the chip from unknown dead state. The reset end time is about 1M EXCLK cycles after rising edge of PPRST_. 2 WDT reset. This reset happens in case of WDT timeout. The reset keeps for about a few RTCLK cycles. 3 Hibernating reset. This reset happens in case of wakeup the main power from power down. The reset keeps for about 1ms ~ 125ms programable, plus 1M EXCLK cycles, start after WKUP_ signal is recognized. 33 X1000 IoT Application Processor Data Sheet Copyright © 2005-2017 Ingenic Semiconductor Co., Ltd. All rights reserved. Electrical Specifications After reset, all GPIO shared pins are put to GPIO input function and most of their internal pull-up/down resistor are set to on, see “2.5 Pin Descriptions” for details. The PWRON is output 1. The oscillators are on. The USB 2.0 OTG PHY, the audio CODEC DAC/ADC put in suspend mode. 3.5.3 BOOT The boot sequence of the X1000/E is controlled by boot_sel [2:0] pin values. The following table lists them: Table 3-12 Boot Configuration of X1000/E boot_sel[2] boot_sel[1] boot_sel[0] Boot configuration 1 X X EXTCLK is 26MHz 0 X X EXTCLK is 24MHz X 1 1 Boot from SFC0 X 0 1 Boot from MSC0 X 1 0 Boot from USB 2.0 device X: means "Don't Care" The boot procedure is showed in the following flow chart: After reset, the boot program on the internal boot ROM executes as follows: 1 Disable all interrupts and read boot_sel[2:0] to determine the boot method. 2 If it is boot from MMC/SD card at MSC0, its function pins MSC0_D0, MSC0_CLK, MSC0_CMD are initialized, the boot program loads the 12KB code from MMC/SD card to tcsm and jump to it. Only one data bus which is MSC0_D0 is used. The clock EXTCLK/128 is used initially. When reading data, the clock EXTCLK/4 is used. 3 If it is boot from USB, a block of code will be received through USB cable connected with host PC and be stored in tcsm. Then branch to this area in tcsm. 4 If it is boot from SPI nor/nand at SFC, its function pins SFC_CLK,SFC_CE,SFC_DR,SFC_DT, SFC_WP, SFC_HOLD are initialized, the boot program loads the 12KB code from MMC/SD card to tcsm and jump to it. 34 X1000 IoT Application Processor Data Sheet Copyright © 2005-2017 Ingenic Semiconductor Co., Ltd. All rights reserved. Electrical Specifications Figure 3-2 Boot flow diagram of X1000/E 35 X1000 IoT Application Processor Data Sheet Copyright © 2005-2017 Ingenic Semiconductor Co., Ltd. All rights reserved. Packaging Information 4 Packaging Information 4.1 Overview X1000/E processor is offered in 190-pin BGA package, which is 13mm x 13mm x 1.2mm outline, 16 x 16 matrix ball grid array and 0.8mm ball pitch, show in Figure 4-1. 4.2 X1000/E Device Dimensions 36 X1000 IoT Application Processor Data Sheet Copyright © 2005-2017 Ingenic Semiconductor Co., Ltd. All rights reserved. Packaging Information Figure 4-1 X1000/E package outline drawing Notes: 1. BALL PAD OPENING: 0.315mm; 2. PRIMARY DATUM C AND SEATING PLANE ARE THE SOLDER BALLS; 3. DIMENSION b IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER,PARALLEL TO PRIMARY DATUM C; 4. SPECIAL CHARACTERISTICS C CLASS: bbb,ddd; 5. THE PATTERN OF PIN 1 FIDUCIAL IS FOR REFERENCE ONLY; 6. BAN TO USE THE LEVEL 1 ENVIRONMENT-RELATED SUBSTANCES OF JCET PRESCRIBING; 7. ALL UNITS ARE IN MILLIMETER; 4.3 Solder Ball Materials Both the top (joint) and bottom solder ball materials of X1000/E are SAC105. 4.4 Moisture Sensitivity Level X1000/E package moisture sensitivity is level 3. 37 X1000 IoT Application Processor Data Sheet Copyright © 2005-2017 Ingenic Semiconductor Co., Ltd. All rights reserved. PCB Mounting Guidelines 5 PCB Mounting Guidelines 5.1 RoHS compliance TBD. 5.2 Reflow profile X1000/E package is lead-free. It’s reflow profile follows the IPC/JEDEC lead-free reflow profile as contained in J-STD-020C. 38 X1000 IoT Application Processor Data Sheet Copyright © 2005-2017 Ingenic Semiconductor Co., Ltd. All rights reserved.
X1000E 价格&库存

很抱歉,暂时无法提供与“X1000E”相匹配的价格&库存,您可以联系我们找货

免费人工找货