0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MUN12AD03-SH

MUN12AD03-SH

  • 厂商:

    CYNTEC(乾坤)

  • 封装:

    QFN-10_3.5X3.5MM-EP

  • 描述:

    MUN12AD03-SH

  • 数据手册
  • 价格&库存
MUN12AD03-SH 数据手册
uPOL MODULE 3A, High Efficiency uPOL Module MUN12AD03-SH GENERAL DESCRIPTION: FEATURES: The uPOL module is non-isolated dc-dc converter that can deliver up to 3A of output current. The PWM switching regulator, high frequency power inductor are integrated in one hybrid package. It only needs input/output capacitors and one voltage dividing resistor to perform properly. High Density uPOL Module 3A Output Current 91% Peak Efficiency at 12VIN Input Voltage Range from 4.5V to 16V Output Voltage Range from 0.6V to 5.0V Enable / PGOOD Function Automatic Power Saving/PWM Mode Protections (OCP: Non-latching, OTP) Adjustable Soft Start Function Compact Size: 3.5mm*3.5mm*1.7mm Pb-free for RoHS compliant MSL 2, 260℃ Reflow             The module has automatic operation with PWM mode and power saving mode according to loading, through constant on-time control, the module offers a simpler control loop and faster transient response. Other features include remote enable function, internal soft-start, non-latching over current protection, power good, input under voltage locked-out capability. APPLICATIONS: Point of Load Conversion LDOs Replacement Set Top Box / DSL Modem / AP Router Industrial Personal Computer     The low profile and compact size package (3.5mm × 3.5mm x 1.7mm) is suitable for automated assembly by standard surface mount equipment. The uPOL module is Pb-free and RoHS compliance. TYPICAL APPLICATION CIRCUIT & PACKAGE: VBias EN VPGOOD RPG EN VIN PGOOD VIN SS CSS VOUT Vout uPOL Module CIN 1.7mm(Max) GND 3.5mm 3.5mm RFB_T COUT FB RFB_B FIGURE.2 High Density Low Profile FIGURE.1 Typical Application Circuit uPOL Module 1 Rev.05 MUN12AD03-SH ORDER INFORMATION: Part Number Ambient Temp. Range Package (°C) (Pb-Free) -40 ~ +85 QFN MUN12AD03-SH MSL Note Level 2 - Order Code Packing Quantity MUN12AD03-SH Tape and reel 1000 PIN CONFIGURATION: SS (1) (11) GND (8) VIN (7) EN FB (2) (10) GND (6) NC PGOOD (3) VOUT (4) (9) VOUT (5) GND TOP VIEW 2 Rev.05 MUN12AD03-SH PIN DESCRIPTION: Symbol Pin No. Description SS 1 FB 2 PGOOD 3 VOUT 4, 9 GND 5, 10, 11 NC 6 No connection EN 7 On/Off control pin for module. EN = LOW, the module is off. EN = HIGH, the module is on. Do not float. VIN 8 Power input pin. It needs to be connected to input rail. Leave SS pin floating for default 1ms soft-start time. For longer than 1ms soft-start time, connect a capacitor from SS to GND. Tss(ms)=Css(nF)*0.6V/4uA Feedback input. Connect an external resistor divider to set the output voltage. Power Good indicator. The pin output is an open drain that can connect to Vout by resistor. Power output pin. Connect to output for the load. Power ground pin for signal, input, and output return path. This pin needs to be connected to one or more ground plane directly. 3 Rev.05 MUN12AD03-SH ELECTRICAL SPECIFICATIONS: CAUTION: Do not operate at or near absolute maximum rating listed for an extended period of time. This stress may adversely impact product reliability and result in failures outside of warranty. Parameter  Min. Typ. Max. Unit VIN to GND - - +18.0 V VOUT to GND - - +6.5 V FB to GND - - +4.0 V EN to GND - - VIN+0.3 V PGOOD to GND - - +18.0 V - - +110 °C Absolute Maximum Ratings Tc Case Temperature of Inductor Tj Junction Temperature -40 - +125 °C Tstg Storage Temperature -40 - +125 °C Human Body Model (HBM) - - 2k V Machine Model (MM) - - 200 V Charge Device Model (CDM) - - 500 V Input Supply Voltage +4.5 - +16.0 V Adjusted Output Voltage +0.6 - +5.0 V - - +16.0 V -40 - +85 °C - 28.2 - °C/W ESD Rating  Recommendation Operating Ratings VIN VOUT PGOOD Ta  Description Power Good Voltage Ambient Temperature Thermal Information Rth(jchoke-a) Thermal resistance from junction to ambient. (Note 1) NOTES: 1. Rth(jchoke-a) is measured with the component mounted on an effective thermal conductivity test board on 0 LFM condition. The test board size is 30mm× 30mm× 1.6mm with 4 layers, 1oz. The test condition is complied with JEDEC EIJ/JESD 51 Standards. 4 Rev.05 MUN12AD03-SH ELECTRICAL SPECIFICATIONS: (Cont.) Conditions: TA = 25 ºC, unless otherwise specified. Test Board Information: 42mm× 42mm× 1.6mm, 4 layers, 1oz. The output ripple and transient response are measured by short loop probing and limited to 20MHz bandwidth. Cin = 10uF/16V/1206*2, Cout = 47uF/6.3V/0805*2. Symbol Parameter Conditions Min. Typ. Max. Unit Vin =12V, EN = GND - 5.5 - uA Vin =12V, EN = VIN - - - - Iout = 0A, Vout = 3.3V - 0.15 - mA Iout = 10mA, Vout = 3.3V - 3.2 - mA Iout = 3A, Vout = 3.3V - 0.96 - A 0 - 3 A Input Characteristics  ISD(IN) IS(IN) Input shutdown current Input supply current Output Characteristics  IOUT(DC) Output continuous current range ΔVOUT /ΔVIN Line regulation accuracy Vin = 5V to 16V Vout = 3.3V, Iout = 0A Vout = 3.3V, Iout = 3A - 0.5 - % VO(SET) ΔVOUT /ΔIOUT Load regulation accuracy Iout = 0A to 3A Vin = 12V, Vout = 3.3V -2 - +3 % VO(SET) Vin = 12V, Vout = 3.3V EN = VIN - - - - Iout = 10mA - 22 - mVp-p Iout = 3A - 13 - mVp-p - 50 - mVp-p - 50 - mVp-p PWM Mode 0.591 0.600 0.609 V PFM Mode 0.591 0.600 0.618 V - 1.0 - MHz - - 4.5 V 0.04 0.15 0.3 V Enable rising threshold voltage 1.5 - - V Enable falling threshold voltage - - 0.4 V - 150 - °C 3.8 - 5.2 A VOUT(AC)   Output ripple voltage Dynamic Characteristics ΔVOUT-DP Voltage change for positive load step ΔVOUT-DN Voltage change for negative load step Iout = 1.5 A to 3A Current slew rate = 0.15A/uS Vin = 12V, Vout = 3.3V Iout = 3A to 1.5A Current slew rate = 0.15A/uS Vin = 12V, Vout = 3.3V Control Characteristics VREF Referance voltage FOSC Oscillator frequency VUVLO Input UVLO threshold VPGL VEN_TH TOTP OCP PGOOD output low PWM Operation IPGOOD=4mA Over temp protection Protection Output Current 5 Rev.05 MUN12AD03-SH TYPICAL PERFORMANCE CHARACTERISTICS: (1.0VOUT) Conditions: TA = 25 ºC, unless otherwise specified. Test Board Information: 42mm× 42mm× 1.6mm, 4 layers, 1oz. The output ripple and transient response are measured by short loop probing and limited to 20MHz bandwidth. Cin = 10uF/16V/1206*2, Cout = 47uF/6.3V/0805*2. The following figures are the typical characteristic curves at 1.0Vout. FIG.3 Efficiency V.S. Load Current FIG.4 De-rating Curve at 12Vin VOUT VOUT FIG.5 Output Ripple (12Vin, Iout=0A) FIG.6 Output Ripple (12Vin, Iout=3A) VOUT VOUT PGOOD IOUT EN FIG.7 Transient Response (12Vin, 50% to 100% Load Step) FIG.8 Turn-on (12Vin, Iout=3A) 6 Rev.05 MUN12AD03-SH TYPICAL PERFORMANCE CHARACTERISTICS: (1.8VOUT) Conditions: TA = 25 ºC, unless otherwise specified. Test Board Information: 42mm× 42mm× 1.6mm, 4 layers, 1oz. The output ripple and transient response are measured by short loop probing and limited to 20MHz bandwidth. Cin = 10uF/16V/1206*2, Cout = 47uF/6.3V/0805*2. The following figures are the typical characteristic curves at 1.8Vout. FIG.9 Efficiency V.S. Load Current FIG.10 De-rating Curve at 12Vin VOUT VOUT FIG.11 Output Ripple (12Vin, Iout=0A) FIG.12 Output Ripple (12Vin, Iout=3A) VOUT VOUT IOUT PGOOD EN FIG.13 Transient Response (12Vin, 50% to 100% Load Step) FIG.14 Turn-on (12Vin, Iout=3A) 7 Rev.05 MUN12AD03-SH TYPICAL PERFORMANCE CHARACTERISTICS: (3.3VOUT) Conditions: TA = 25 ºC, unless otherwise specified. Test Board Information: 42mm× 42mm× 1.6mm, 4 layers, 1oz. The output ripple and transient response are measured by short loop probing and limited to 20MHz bandwidth. Cin = 10uF/16V/1206*2, Cout = 47uF/6.3V/0805*2. The following figures are the typical characteristic curves at 3.3Vout. FIG.15 Efficiency V.S. Load Current FIG.16 De-rating Curve at 12Vin VOUT VOUT FIG.17 Output Ripple (12Vin, Iout=0A) FIG.18 Output Ripple (12Vin, Iout=3A) VOUT VOUT PGOOD IOUT EN FIG.19 Transient Response (12Vin, 50% to 100% Load Step) FIG.20 Turn-on (12Vin, Iout=3A) 8 Rev.05 MUN12AD03-SH TYPICAL PERFORMANCE CHARACTERISTICS: (5.0VOUT) Conditions: TA = 25 ºC, unless otherwise specified. Test Board Information: 42mm× 42mm× 1.6mm, 4 layers, 1oz. The output ripple and transient response are measured by short loop probing and limited to 20MHz bandwidth. Cin = 10uF/16V/1206*2, Cout = 47uF/6.3V/0805*2. The following figures are the typical characteristic curves at 5.0Vout. FIG.21 Efficiency V.S. Load Current FIG.22 De-rating Curve at 12Vin VOUT VOUT FIG.23 Output Ripple (12Vin, Iout=0A) FIG.24 Output Ripple (12Vin, Iout=3A) VOUT VOUT PGOOD IOUT EN FIG.25 Transient Response (12Vin, 50% to 100% Load Step) FIG.26 Turn-on (12Vin, Iout=3A) 9 Rev.05 MUN12AD03-SH APPLICATIONS INFORMATION: REFERENCE CIRCUIT FOR GENERAL APPLICATION: Figure 27 show the module application schematics for input voltage +12V. VBias EN RPG VPGOOD 100k/0402 Enable/Disable control EN VIN PGOOD VIN uPOL Module CIN 10uF/16V/1206*2 SS CSS VOUT Vout GND DNP/0402 RFB_T FB Setting Output Voltage COUT 47uF/6.3V/0805*2 RFB_B FIG.27 Reference Circuit for General Application 10 Rev.05 MUN12AD03-SH APPLICATIONS INFORMATION: (Cont.) RECOMMENDATION LAYOUT GUIDE: In order to achieve stable, low losses, less noise or spike, and good thermal performance some layout considerations are necessary. The recommendation layout is shown as Figure 28. 1. The ground connection between pin 5, 10 and 11 should be a solid ground plane under the module. It can be connected one or more ground plane by using several Vias. 2. Place high frequency ceramic capacitors between pin 4 and 9 (VOUT), and pin 5, 10 and 11 (GND) for output side, as close to module as possible to minimize high frequency noise. 3. Keep the RFB_T and RFB_B connection trace to the module pin 2 (FB) short. 4. Use large copper area for power path (VIN, VOUT, and GND) to minimize the conduction loss and enhance heat transferring. Also, use multiple Vias to connect power planes in different layer. FIG.28 Recommendation Layout 11 Rev.05 MUN12AD03-SH APPLICATIONS INFORMATION: (Cont.) SAFETY CONSIDERATIONS: Certain applications and/or safety agencies may require fuses at the inputs of power conversion components. Fuses should also be used when there is the possibility of sustained input voltage reversal which is not current limited. For greatest safety, we recommend a fast blow fuse installed in the ungrounded input supply line. The installer must observe all relevant safety standards and regulations. For safety agency approvals, install the converter in compliance with the end-user safety standard. INPUT FILTERING: The module should be connected to a source supply of low AC impedance and high inductance in which line inductance can affect the module stability. An input capacitor must be placed as near as possible to the input pin of the module so to minimize input ripple voltage and ensure module stability. OUTPUT FILTERING: To reduce output ripple and improve the dynamic response as the step load changes, an additional capacitor at the output must be connected. Low ESR polymer and ceramic capacitors are recommended to improve the output ripple and dynamic response of the module. PROGRAMMING OUTPUT VOLTAGE: The module has an internal 0.6V±1.5% reference voltage. The output voltage can be programmed by the dividing resistor (RFB_T and RFB_B). The output voltage can be calculated by Equation 1, resistor choice may be referred to TABLE 1.  R FB_T   VOUT (V)  0.6  1   R  FB_B   (EQ.1) VOUT (V) RFB_T(k) RFB_B(k) 1.0 100 150 1.2 100 100 1.8 100 50 3.3 100 22.1 5.0 100 13.7 TABLE 1 Resistor values for common output voltages 12 Rev.05 MUN12AD03-SH APPLICATIONS INFORMATION: (Cont.) THERMAL CONSIDERATIONS: All of thermal testing condition is complied with JEDEC EIJ/JESD 51 Standards. Therefore, the test board size is 42mm× 42mm× 1.6mm with 4 layers. The case temperature of module sensing point is shown as Figure 29. Then Rth(jchoke-a) is measured with the component mounted on an effective thermal conductivity test board on 0 LFM condition. The MUN12AD03-SH power module is designed for using when the case temperature is below 110°C regardless the change of output current, input/output voltage or ambient temperature. Sensing Point (Defined case temperature) Figure 29. Case Temperature Sensing Point 13 Rev.05 MUN12AD03-SH REFLOW PARAMETERS: Lead-free soldering process is a standard of electronic products production. Solder alloys like Sn/Ag, Sn/Ag/Cu and Sn/Ag/Bi are used extensively to replace the traditional Sn/Pb alloy. Sn/Ag/Cu alloy (SAC) is recommended for this power module process. In the SAC alloy series, SAC305 is a very popular solder alloy containing 3% Ag and 0.5% Cu and easy to obtain. Figure 30 shows an example of the reflow profile diagram. Typically, the profile has three stages. During the initial stage from room temperature to 150°C, the ramp rate of temperature should not be more than 3°C/sec. The soak zone then occurs from 150°C to 200°C and should last for 60 to 120 seconds. Finally, keep at over 217°C for 60 seconds limit to melt the solder and make the peak temperature at the range from 240°C to 250°C. It is noted that the time of peak temperature should depend on the mass of the PCB board. The reflow profile is usually supported by the solder vendor and one should adopt it for optimization according to various solder type and various manufacturers’ formulae. ℃ FIG.30 Recommendation Reflow Profile 14 Rev.05 MUN12AD03-SH PACKAGE OUTLINE DRAWING: Unit: mm 15 Rev.05 MUN12AD03-SH LAND PATTERN REFERENCE: Unit: mm RECOMMENDED LAND PATTERN RECOMMENDED STENCIL PATTERN BASED ON 0.1mm THICKNESS STENCIL 16 Rev.05 MUN12AD03-SH PACKING REFERENCE: Unit: mm Package In Tape Loading Orientation Tape Dimension A0 3.80  0.10 E 1.75  0.10 B0 3.80  0.10 K0 1.88  0.10 F 5.50  0.05 P0 4.00  0.10 W 12.0  0.30 P1 8.00  0.10 D0 φ1.5 +0.10/-0.00 P2 2.00  0.05 D1 φ1.5 0.10 t 0.25  0.1 17 Rev.05 MUN12AD03-SH PACKING REFERENCE: (Cont.) Unit: mm Reel Dimension See Detail A Detail A Peel Strength of Top Cover Tape The peel speed shall be about 300mm/min. The peel force of top cover tape shall be between 0.1N to 1.3N 18 Rev.05 MUN12AD03-SH REVERSION HISTORY: Date Revision Changes 2015.09.11 00 Release the preliminary specification. 2015.11.13 01 Change recommendation reflow profile 2016.01.12 02 Update POD dimension 2016.03.30 03 Change PGOOD pin description 2016.06.28 04 Modify land pattern reference 2017.03.24 05 Add PGOOD sink current spec 19 Rev.05
MUN12AD03-SH 价格&库存

很抱歉,暂时无法提供与“MUN12AD03-SH”相匹配的价格&库存,您可以联系我们找货

免费人工找货
MUN12AD03-SH
    •  国内价格 香港价格
    • 1+60.056341+7.44996
    • 10+25.5962310+3.17520
    • 50+23.6212150+2.93020
    • 100+18.70737100+2.32064
    • 500+17.72776500+2.19912
    • 1000+16.937751000+2.10112

    库存:1000

    MUN12AD03-SH
      •  国内价格 香港价格
      • 1+60.056341+7.44996
      • 10+25.5962310+3.17520
      • 50+23.6212150+2.93020
      • 100+18.70737100+2.32064
      • 500+17.72776500+2.19912
      • 1000+16.937751000+2.10112

      库存:703

      MUN12AD03-SH
        •  国内价格
        • 1+37.38467
        • 10+37.29913

        库存:39

        MUN12AD03-SH
        •  国内价格
        • 1+6.32880
        • 10+5.35680
        • 30+4.81680

        库存:1