LM78XX
POSITIVE VOLTAGE REGULATORS
■
■
■
■
■
OUTPUT CURRENT TO 1.5A
OUTPUT VOLTAGES OF 5; 6; 8; 9;
10; 12; 15; 18; 24V
THERMAL OVERLOAD PROTECTION
SHORT CIRCUIT PROTECTION
OUTPUT TRANSITION SOA PROTECTION
DESCRIPTION
The LM78XX series of three-terminal positive
regulators is available in TO-220, TO263,
packages and several fixed output voltages,
making it useful in a wide range of applications.
These regulators can
provide local on-card regulation, eliminating the
distribution problems associated with single point
regulation. Each type employs internal current
limiting, thermal shut-down and safe area
protection, making it essentially indestructible. If
adequate heat sinking is provided, they can
deliver over 1A output current. Although designed
primarily as fixed voltage regulators, these
devices can be used with external components to
obtain adjustable voltage and currents.
TO-220
Top View
DDPAK/TO-263
Top View
Figure 1: Schematic Diagram
http:www.hgsemi.com.cn
1
2018 MAY
LM78XX
Table 1: Absolute Maximum Ratings
Symbol
VI
Parameter
DC Input Voltage
Value
for VO= 5 to 18V
35
for VO= 20, 24V
40
Unit
V
Output Current
Internally Limited
Ptot
Power Dissipation
Internally Limited
Tstg
Storage Temperature Range
-65 to 150
°C
Top
Operating Junction Temperature for L7800
Range
for L7800C
-55 to 150
0 to 150
°C
IO
Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is
not implied.
Table 2: Thermal Data
TO-220
TO-263
Unit
Rthj-case Thermal Resistance Junction-case Max
5
5
°C/W
Thermal Resistance Junction-ambient
Rthj-amb
Max
50
60
°C/W
Symbol
Parameter
Figure 2: Schematic Diagram
http:www.hgsemi.com.cn
2
2018 MAY
LM78XX
Figure 4: Application Circuits
TEST CIRCUITS
Figure 5: DC Parameter
Figure 6: Load Regulation
http:www.hgsemi.com.cn
3
2018 MAY
LM78XX
Figure 7: Ripple Rejection
Table 4: Electrical Characteristics Of LM7805 (refer to the test circuits, TJ = -55 to 150°C, VI = 10V,
IO = 500 mA, CI = 0.33 µF, CO = 0.1 µF unless otherwise specified).
Symbol
Parameter
Test Conditions
Min.
Typ.
Max.
Unit
4.8
5
5.2
V
4.65
5
5.35
V
TJ = 25°C
3
50
mV
1
VO
Output Voltage
TJ = 25°C
VO
Output Voltage
IO = 5 mA to 1 A
VI = 8 to 20 V
∆VO(*)
Line Regulation
VI = 7 to 25 V
VI = 8 to 12 V
TJ = 25°C
∆VO(*)
Load Regulation
IO = 5 mA to 1.5 A
TJ = 25°C
100
IO = 250 to 750 mA
TJ = 25°C
25
Quiescent Current
TJ = 25°C
Id
∆Id
Quiescent Current Change
∆VO/∆T Output Voltage Drift
eN
SVR
PO ≤ 15W
25
mV
6
mA
IO = 5 mA to 1 A
0.5
mA
VI = 8 to 25 V
0.8
IO = 5 mA
0.6
Output Noise Voltage
B =10Hz to 100KHz
Supply Voltage Rejection
VI = 8 to 18 V
Vd
Dropout Voltage
IO = 1 A
RO
Output Resistance
f = 1 KHz
Isc
Short Circuit Current
VI = 35 V
Iscp
Short Circuit Peak Current
TJ = 25°C
TJ = 25°C
f = 120Hz
mV/°C
µV/VO
40
68
TJ = 25°C
dB
2
2.5
17
TJ = 25°C
1.3
V
mΩ
0.75
1.2
A
2.2
3.3
A
(*) Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account
separately. Pulse testing with low duty cycle is used.
http:www.hgsemi.com.cn
4
2018 MAY
LM78XX
Table 5: Electrical Characteristics Of LM7806 (refer to the test circuits, TJ = -55 to 150°C, VI = 11V,
IO = 500 mA, CI = 0.33 µF, CO = 0.1 µF unless otherwise specified).
Symbol
Parameter
Test Conditions
Min.
Typ.
Max.
Unit
5.75
6
6.25
V
5.65
6
6.35
V
60
mV
VO
Output Voltage
TJ = 25°C
VO
Output Voltage
IO = 5 mA to 1 A
VI = 9 to 21 V
∆VO(*)
Line Regulation
VI = 8 to 25 V
TJ = 25°C
VI = 9 to 13 V
TJ = 25°C
30
∆VO(*)
Load Regulation
IO = 5 mA to 1.5 A
TJ = 25°C
100
IO = 250 to 750 mA
TJ = 25°C
30
Quiescent Current
TJ = 25°C
Id
∆Id
Quiescent Current Change
∆VO/∆T Output Voltage Drift
eN
SVR
PO ≤ 15W
mV
6
mA
IO = 5 mA to 1 A
0.5
mA
VI = 9 to 25 V
0.8
IO = 5 mA
0.7
Output Noise Voltage
B =10Hz to 100KHz
Supply Voltage Rejection
VI = 9 to 19 V
Vd
Dropout Voltage
IO = 1 A
RO
Output Resistance
f = 1 KHz
Isc
Short Circuit Current
VI = 35 V
Iscp
Short Circuit Peak Current
TJ = 25°C
TJ = 25°C
f = 120Hz
mV/°C
40
65
TJ = 25°C
dB
2
2.5
19
TJ = 25°C
1.3
µV/VO
V
mΩ
0.75
1.2
A
2.2
3.3
A
(*) Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account
separately. Pulse testing with low duty cycle is used.
Table 6: Electrical Characteristics Of LM7808 (refer to the test circuits, TJ = -55 to 150°C, VI = 14V,
IO = 500 mA, CI = 0.33 µF, CO = 0.1 µF unless otherwise specified).
Symbol
Parameter
Test Conditions
VO
Output Voltage
TJ = 25°C
VO
Output Voltage
IO = 5 mA to 1 A
VI = 11.5 to 23 V
∆VO(*)
Line Regulation
VI = 10.5 to 25 V
VI = 11 to 17 V
∆VO(*)
Id
∆Id
Load Regulation
Min.
Typ.
7.7
8
8.3
V
8
8.4
V
TJ = 25°C
80
mV
TJ = 25°C
40
IO = 5 mA to 1.5 A
TJ = 25°C
100
IO = 250 to 750 mA
TJ = 25°C
40
TJ = 25°C
Quiescent Current Change
IO = 5 mA to 1 A
PO ≤ 15W
VI = 11.5 to 25 V
eN
SVR
Unit
7.6
Quiescent Current
∆VO/∆T Output Voltage Drift
Max.
B =10Hz to 100KHz
TJ = 25°C
Supply Voltage Rejection
VI = 11.5 to 21.5 V
f = 120Hz
Dropout Voltage
IO = 1 A
Output Resistance
f = 1 KHz
Isc
Short Circuit Current
VI = 35 V
Iscp
Short Circuit Peak Current
TJ = 25°C
mA
mA
1
Output Noise Voltage
Vd
6
0.5
0.8
IO = 5 mA
RO
mV
mV/°C
40
62
TJ = 25°C
dB
2
2.5
16
TJ = 25°C
1.3
µV/VO
V
mΩ
0.75
1.2
A
2.2
3.3
A
(*) Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account
separately. Pulse testing with low duty cycle is used.
http:www.hgsemi.com.cn
5
2018 MAY
LM78XX
Table 7: Electrical Characteristics Of LM7812 (refer to the test circuits, TJ = -55 to 150°C, VI = 19V,
IO = 500 mA, CI = 0.33 µF, CO = 0.1 µF unless otherwise specified).
Symbol
Parameter
Test Conditions
VO
Output Voltage
TJ = 25°C
VO
Output Voltage
IO = 5 mA to 1 A
VI = 15.5 to 27 V
∆VO(*)
Line Regulation
VI = 14.5 to 30 V
VI = 16 to 22 V
∆VO(*)
Id
∆Id
Load Regulation
Min.
Typ.
11.5
12
12.5
V
12
12.6
V
TJ = 25°C
120
mV
TJ = 25°C
60
IO = 5 mA to 1.5 A
TJ = 25°C
100
IO = 250 to 750 mA
TJ = 25°C
60
TJ = 25°C
Quiescent Current Change
IO = 5 mA to 1 A
PO ≤ 15W
VI = 15 to 30 V
eN
SVR
Unit
11.4
Quiescent Current
∆VO/∆T Output Voltage Drift
Max.
B =10Hz to 100KHz
TJ = 25°C
Supply Voltage Rejection
VI = 15 to 25 V
f = 120Hz
Dropout Voltage
IO = 1 A
Output Resistance
f = 1 KHz
Isc
Short Circuit Current
VI = 35 V
Iscp
Short Circuit Peak Current
TJ = 25°C
mA
mA
1.5
Output Noise Voltage
Vd
6
0.5
0.8
IO = 5 mA
RO
mV
mV/°C
µV/VO
40
61
TJ = 25°C
dB
2
2.5
18
TJ = 25°C
1.3
V
mΩ
0.75
1.2
A
2.2
3.3
A
(*) Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account
separately. Pulse testing with low duty cycle is used.
Table 8: Electrical Characteristics Of LM7815 (refer to the test circuits, TJ = -55 to 150°C, VI = 23V,
IO = 500 mA, CI = 0.33 µF, CO = 0.1 µF unless otherwise specified).
Symbol
Parameter
Test Conditions
VO
Output Voltage
TJ = 25°C
VO
Output Voltage
IO = 5 mA to 1 A
VI = 18.5 to 30 V
∆VO(*)
Line Regulation
VI = 17.5 to 30 V
VI = 20 to 26 V
∆VO(*)
Id
∆Id
Load Regulation
Min.
Typ.
14.4
15
15.6
V
15
15.75
V
TJ = 25°C
150
mV
TJ = 25°C
75
IO = 5 mA to 1.5 A
TJ = 25°C
150
IO = 250 to 750 mA
TJ = 25°C
75
TJ = 25°C
Quiescent Current Change
IO = 5 mA to 1 A
PO ≤ 15W
VI = 18.5 to 30 V
eN
SVR
Unit
14.25
Quiescent Current
∆VO/∆T Output Voltage Drift
Max.
B =10Hz to 100KHz
TJ = 25°C
Supply Voltage Rejection
VI = 18.5 to 28.5 V
f = 120Hz
Dropout Voltage
IO = 1 A
Output Resistance
f = 1 KHz
Isc
Short Circuit Current
VI = 35 V
Iscp
Short Circuit Peak Current
TJ = 25°C
mA
mA
1.8
Output Noise Voltage
Vd
6
0.5
0.8
IO = 5 mA
RO
mV
mV/°C
40
60
TJ = 25°C
dB
2
2.5
19
TJ = 25°C
1.3
µV/VO
V
mΩ
0.75
1.2
A
2.2
3.3
A
(*) Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account
separately. Pulse testing with low duty cycle is used.
http:www.hgsemi.com.cn
6
2018 MAY
LM78XX
Table 9: Electrical Characteristics Of LM7818 (refer to the test circuits, TJ = -55 to 150°C, VI = 26V,
IO = 500 mA, CI = 0.33 µF, CO = 0.1 µF unless otherwise specified).
Symbol
Parameter
Test Conditions
VO
Output Voltage
TJ = 25°C
VO
Output Voltage
IO = 5 mA to 1 A
VI = 22 to 33 V
∆VO(*)
Line Regulation
VI = 21 to 33 V
VI = 24 to 30 V
∆VO(*)
Id
∆Id
Load Regulation
SVR
Typ.
Max.
Unit
17.3
18
18.7
V
17.1
18
18.9
V
TJ = 25°C
180
mV
TJ = 25°C
90
IO = 5 mA to 1.5 A
TJ = 25°C
180
IO = 250 to 750 mA
TJ = 25°C
90
PO ≤ 15W
mV
Quiescent Current
TJ = 25°C
6
mA
Quiescent Current Change
IO = 5 mA to 1 A
0.5
mA
VI = 22 to 33 V
0.8
∆VO/∆T Output Voltage Drift
eN
Min.
IO = 5 mA
2.3
Output Noise Voltage
B =10Hz to 100KHz
TJ = 25°C
f = 120Hz
Supply Voltage Rejection
VI = 22 to 32 V
Vd
Dropout Voltage
IO = 1 A
RO
Output Resistance
f = 1 KHz
Isc
Short Circuit Current
VI = 35 V
Iscp
Short Circuit Peak Current
TJ = 25°C
mV/°C
40
59
µV/VO
dB
TJ = 25°C
2
2.5
TJ = 25°C
0.75
1.2
A
2.2
3.3
A
22
1.3
V
mΩ
(*) Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account
separately. Pulse testing with low duty cycle is used.
Table 11: Electrical Characteristics Of LM7824 (refer to the test circuits, TJ = -55 to 150°C, VI = 33V,
IO = 500 mA, CI = 0.33 µF, CO = 0.1 µF unless otherwise specified).
Symbol
Parameter
Test Conditions
Min.
Typ.
Max.
Unit
23
24
25
V
22.8
24
25.2
V
TJ = 25°C
240
mV
VI = 30 to 36 V
TJ = 25°C
120
IO = 5 mA to 1.5 A
TJ = 25°C
240
TJ = 25°C
120
VO
Output Voltage
TJ = 25°C
VO
Output Voltage
IO = 5 mA to 1 A
VI = 28 to 38 V
∆VO(*)
Line Regulation
VI = 27 to 38 V
∆VO(*)
Load Regulation
IO = 250 to 750 mA
Quiescent Current
TJ = 25°C
Id
∆Id
Quiescent Current Change
∆VO/∆T Output Voltage Drift
eN
SVR
PO ≤ 15W
mV
6
mA
IO = 5 mA to 1 A
0.5
mA
VI = 28 to 38 V
0.8
IO = 5 mA
3
Output Noise Voltage
B =10Hz to 100KHz
TJ = 25°C
Supply Voltage Rejection
VI = 28 to 38 V
f = 120Hz
Vd
Dropout Voltage
IO = 1 A
RO
Output Resistance
f = 1 KHz
Isc
Short Circuit Current
VI = 35 V
Iscp
Short Circuit Peak Current
TJ = 25°C
mV/°C
40
56
TJ = 25°C
dB
2
2.5
28
TJ = 25°C
1.3
µV/VO
V
mΩ
0.75
1.2
A
2.2
3.3
A
(*) Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account
separately. Pulse testing with low duty cycle is used.
http:www.hgsemi.com.cn
7
2018 MAY
LM78XX
Table 12: Electrical Characteristics Of LM7805C (refer to the test circuits, TJ = 0 to 125°C, VI = 10V,
IO = 500 mA, CI = 0.33 µF, CO = 0.1 µF unless otherwise specified).
Symbol
Parameter
Test Conditions
Min.
Typ.
Max.
Unit
4.8
5
5.2
V
4.75
5
5.25
V
TJ = 25°C
3
100
mV
VI = 8 to 12 V
TJ = 25°C
1
IO = 5 mA to 1.5 A
TJ = 25°C
100
IO = 250 to 750 mA
TJ = 25°C
50
VO
Output Voltage
TJ = 25°C
VO
Output Voltage
IO = 5 mA to 1 A
VI = 7 to 20 V
∆VO(*)
Line Regulation
VI = 7 to 25 V
∆VO(*)
Load Regulation
Id
∆Id
Quiescent Current
TJ = 25°C
Quiescent Current Change
IO = 5 mA to 1 A
PO ≤ 15W
VI = 7 to 25 V
∆VO/∆T Output Voltage Drift
eN
SVR
Output Noise Voltage
B =10Hz to 100KHz
Supply Voltage Rejection
VI = 8 to 18 V
Vd
Dropout Voltage
IO = 1 A
Output Resistance
f = 1 KHz
Isc
Short Circuit Current
VI = 35 V
Iscp
Short Circuit Peak Current
TJ = 25°C
mV
8
mA
0.5
mA
0.8
IO = 5 mA
RO
50
TJ = 25°C
f = 120Hz
-1.1
mV/°C
40
µV/VO
62
TJ = 25°C
TJ = 25°C
dB
2
V
17
mΩ
0.75
A
2.2
A
(*) Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account
separately. Pulse testing with low duty cycle is used.
Table 14: Electrical Characteristics Of LM7806C (refer to the test circuits, TJ = 0 to 125°C, VI = 11V,
IO = 500 mA, CI = 0.33 µF, CO = 0.1 µF unless otherwise specified).
Symbol
Parameter
Test Conditions
Min.
Typ.
Max.
Unit
5.75
6
6.25
V
5.7
6
6.3
V
120
mV
VO
Output Voltage
TJ = 25°C
VO
Output Voltage
IO = 5 mA to 1 A
VI = 8 to 21 V
∆VO(*)
Line Regulation
VI = 8 to 25 V
TJ = 25°C
VI = 9 to 13 V
TJ = 25°C
60
∆VO(*)
Load Regulation
IO = 5 mA to 1.5 A
TJ = 25°C
120
IO = 250 to 750 mA
TJ = 25°C
60
Quiescent Current
TJ = 25°C
Id
∆Id
Quiescent Current Change
∆VO/∆T Output Voltage Drift
eN
SVR
PO ≤ 15W
mV
8
mA
IO = 5 mA to 1 A
0.5
mA
VI = 8 to 25 V
1.3
IO = 5 mA
Output Noise Voltage
B =10Hz to 100KHz
Supply Voltage Rejection
VI = 9 to 19 V
Vd
Dropout Voltage
IO = 1 A
RO
Output Resistance
f = 1 KHz
Isc
Short Circuit Current
VI = 35 V
Iscp
Short Circuit Peak Current
TJ = 25°C
TJ = 25°C
f = 120Hz
TJ = 25°C
TJ = 25°C
-0.8
mV/°C
45
µV/VO
59
dB
2
V
19
mΩ
0.55
A
2.2
A
(*) Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account
separately. Pulse testing with low duty cycle is used.
http:www.hgsemi.com.cn
8
2018 MAY
LM78XX
Table 15: Electrical Characteristics Of LM7808C (refer to the test circuits, TJ = 0 to 125°C, VI = 14V,
IO = 500 mA, CI = 0.33 µF, CO = 0.1 µF unless otherwise specified).
Symbol
Parameter
Test Conditions
Min.
Typ.
Max.
Unit
7.7
8
8.3
V
7.6
8
8.4
V
160
mV
VO
Output Voltage
TJ = 25°C
VO
Output Voltage
IO = 5 mA to 1 A
VI = 10.5 to 25 V
∆VO(*)
Line Regulation
VI = 10.5 to 25 V
VI = 11 to 17 V
TJ = 25°C
80
∆VO(*)
Load Regulation
IO = 5 mA to 1.5 A
TJ = 25°C
160
IO = 250 to 750 mA
TJ = 25°C
80
Quiescent Current
TJ = 25°C
Id
∆Id
Quiescent Current Change
∆VO/∆T Output Voltage Drift
eN
SVR
PO ≤ 15W
TJ = 25°C
mV
8
mA
IO = 5 mA to 1 A
0.5
mA
VI = 10.5 to 25 V
1
IO = 5 mA
Output Noise Voltage
B =10Hz to 100KHz
TJ = 25°C
f = 120Hz
Supply Voltage Rejection
VI = 11.5 to 21.5 V
Vd
Dropout Voltage
IO = 1 A
RO
Output Resistance
f = 1 KHz
Isc
Short Circuit Current
VI = 35 V
Iscp
Short Circuit Peak Current
TJ = 25°C
-0.8
mV/°C
52
µV/VO
56
dB
TJ = 25°C
2
V
16
mΩ
TJ = 25°C
0.45
A
2.2
A
(*) Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account
separately. Pulse testing with low duty cycle is used.
Table 17: Electrical Characteristics Of LM7809C (refer to the test circuits, TJ = 0 to 125°C, VI = 15V,
IO = 500 mA, CI = 0.33 µF, CO = 0.1 µF unless otherwise specified).
Symbol
Parameter
Test Conditions
Min.
Typ.
Max.
Unit
8.64
9
9.36
V
8.55
9
9.45
V
180
mV
VO
Output Voltage
TJ = 25°C
VO
Output Voltage
IO = 5 mA to 1 A
VI = 11.5 to 26 V
∆VO(*)
Line Regulation
VI = 11.5 to 26 V
TJ = 25°C
VI = 12 to 18 V
TJ = 25°C
90
∆VO(*)
Load Regulation
IO = 5 mA to 1.5 A
TJ = 25°C
180
IO = 250 to 750 mA
TJ = 25°C
90
Id
∆Id
Quiescent Current
TJ = 25°C
Quiescent Current Change
IO = 5 mA to 1 A
PO ≤ 15W
VI = 11.5 to 26 V
∆VO/∆T Output Voltage Drift
eN
SVR
Output Noise Voltage
B =10Hz to 100KHz
TJ = 25°C
Supply Voltage Rejection
VI = 12 to 23 V
f = 120Hz
Vd
Dropout Voltage
IO = 1 A
Output Resistance
f = 1 KHz
Isc
Short Circuit Current
VI = 35 V
Iscp
Short Circuit Peak Current
TJ = 25°C
8
mA
0.5
mA
1
IO = 5 mA
RO
mV
TJ = 25°C
TJ = 25°C
-1
mV/°C
70
µV/VO
55
dB
2
V
17
mΩ
0.40
A
2.2
A
(*) Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account
separately. Pulse testing with low duty cycle is used.
http:www.hgsemi.com.cn
9
2018 MAY
LM78XX
Table 18: Electrical Characteristics Of LM7810C (refer to the test circuits, TJ = 0 to 125°C, VI = 16V,
IO = 500 mA, CI = 0.33 µF, CO = 0.1 µF unless otherwise specified).
Symbol
Parameter
Test Conditions
Min.
Typ.
Max.
Unit
9.6
10
10.4
V
9.5
10
10.5
V
mV
VO
Output Voltage
TJ = 25°C
VO
Output Voltage
IO = 5 mA to 1 A
VI = 12.5 to 26 V
∆VO(*)
Line Regulation
VI = 12.5 to 26 V
TJ = 25°C
200
VI = 13.5 to 19 V
TJ = 25°C
100
∆VO(*)
Load Regulation
IO = 5 mA to 1.5 A
TJ = 25°C
200
IO = 250 to 750 mA
TJ = 25°C
100
Quiescent Current
TJ = 25°C
Id
∆Id
Quiescent Current Change
∆VO/∆T Output Voltage Drift
eN
SVR
PO ≤ 15W
mV
8
mA
IO = 5 mA to 1 A
0.5
mA
VI = 12.5 to 26 V
1
IO = 5 mA
Output Noise Voltage
B =10Hz to 100KHz
TJ = 25°C
f = 120Hz
Supply Voltage Rejection
VI = 13 to 23 V
Vd
Dropout Voltage
IO = 1 A
RO
Output Resistance
f = 1 KHz
Isc
Short Circuit Current
VI = 35 V
Iscp
Short Circuit Peak Current
TJ = 25°C
-1
mV/°C
70
µV/VO
55
TJ = 25°C
TJ = 25°C
dB
2
V
17
mΩ
0.40
A
2.2
A
(*) Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account
separately. Pulse testing with low duty cycle is used.
Table 19: Electrical Characteristics Of LM7812C (refer to the test circuits, TJ = 0 to 125°C, VI = 19V,
IO = 500 mA, CI = 0.33 µF, CO = 0.1 µF unless otherwise specified).
Symbol
Parameter
Test Conditions
Min.
Typ.
Max.
Unit
11.5
12
12.5
V
11.4
12
12.6
V
mV
VO
Output Voltage
TJ = 25°C
VO
Output Voltage
IO = 5 mA to 1 A
VI = 14.5 to 27 V
∆VO(*)
Line Regulation
VI = 14.5 to 30 V
TJ = 25°C
240
VI = 16 to 22 V
TJ = 25°C
120
∆VO(*)
Load Regulation
IO = 5 mA to 1.5 A
TJ = 25°C
240
IO = 250 to 750 mA
TJ = 25°C
120
Quiescent Current
TJ = 25°C
Id
∆Id
Quiescent Current Change
∆VO/∆T Output Voltage Drift
eN
SVR
PO ≤ 15W
mV
8
mA
IO = 5 mA to 1 A
0.5
mA
VI = 14.5 to 30 V
1
IO = 5 mA
Output Noise Voltage
B =10Hz to 100KHz
TJ = 25°C
f = 120Hz
Supply Voltage Rejection
VI = 15 to 25 V
Vd
Dropout Voltage
IO = 1 A
RO
Output Resistance
f = 1 KHz
Isc
Short Circuit Current
VI = 35 V
Iscp
Short Circuit Peak Current
TJ = 25°C
-1
mV/°C
75
µV/VO
55
dB
TJ = 25°C
2
V
18
mΩ
TJ = 25°C
0.35
A
2.2
A
(*) Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account
separately. Pulse testing with low duty cycle is used.
http:www.hgsemi.com.cn
10
2018 MAY
LM78XX
Table 20: Electrical Characteristics Of LM7815C (refer to the test circuits, TJ = 0 to 125°C, VI = 23V,
IO = 500 mA, CI = 0.33 µF, CO = 0.1 µF unless otherwise specified).
Symbol
Parameter
Test Conditions
Min.
Typ.
Max.
VO
Output Voltage
TJ = 25°C
VO
Output Voltage
IO = 5 mA to 1 A
VI = 17.5 to 30 V
∆VO(*)
Line Regulation
VI = 17.5 to 30 V
VI = 20 to 26 V
IO = 5 mA to 1.5 A
TJ = 25°C
300
IO = 250 to 750 mA
TJ = 25°C
150
∆VO(*)
Id
∆Id
Load Regulation
SVR
14.5
15
15.6
V
14.25
15
15.75
V
TJ = 25°C
300
mV
TJ = 25°C
150
PO ≤ 15W
mV
Quiescent Current
TJ = 25°C
8
mA
Quiescent Current Change
IO = 5 mA to 1 A
0.5
mA
VI = 17.5 to 30 V
1
∆VO/∆T Output Voltage Drift
eN
Unit
IO = 5 mA
Output Noise Voltage
B =10Hz to 100KHz
TJ = 25°C
f = 120Hz
Supply Voltage Rejection
VI = 18.5 to 28.5 V
Vd
Dropout Voltage
IO = 1 A
RO
Output Resistance
f = 1 KHz
Isc
Short Circuit Current
VI = 35 V
Iscp
Short Circuit Peak Current
TJ = 25°C
-1
mV/°C
90
µV/VO
54
dB
TJ = 25°C
2
V
19
mΩ
TJ = 25°C
0.23
A
2.2
A
(*) Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account
separately. Pulse testing with low duty cycle is used.
Table 21: Electrical Characteristics Of LM7818C (refer to the test circuits, TJ = 0 to 125°C, VI = 26V,
IO = 500 mA, CI = 0.33 µF, CO = 0.1 µF unless otherwise specified).
Symbol
Parameter
Test Conditions
Min.
Typ.
Max.
Unit
17.3
18
18.7
V
17.1
18
18.9
V
TJ = 25°C
360
mV
VI = 24 to 30 V
TJ = 25°C
180
IO = 5 mA to 1.5 A
TJ = 25°C
360
TJ = 25°C
180
VO
Output Voltage
TJ = 25°C
VO
Output Voltage
IO = 5 mA to 1 A
VI = 21 to 33 V
∆VO(*)
Line Regulation
VI = 21 to 33 V
∆VO(*)
Load Regulation
IO = 250 to 750 mA
Quiescent Current
TJ = 25°C
Quiescent Current Change
IO = 5 mA to 1 A
Id
∆Id
PO ≤ 15W
VI = 21 to 33 V
∆VO/∆T Output Voltage Drift
eN
SVR
Output Noise Voltage
B =10Hz to 100KHz
TJ = 25°C
Supply Voltage Rejection
VI = 22 to 32 V
f = 120Hz
Vd
Dropout Voltage
IO = 1 A
Output Resistance
f = 1 KHz
Isc
Short Circuit Current
VI = 35 V
Iscp
Short Circuit Peak Current
TJ = 25°C
8
mA
0.5
mA
1
IO = 5 mA
RO
mV
TJ = 25°C
TJ = 25°C
-1
mV/°C
110
µV/VO
53
dB
2
V
22
mΩ
0.20
A
2.1
A
(*) Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account
separately. Pulse testing with low duty cycle is used.
http:www.hgsemi.com.cn
11
2018 MAY
LM78XX
Table 23: Electrical Characteristics Of LM7824C (refer to the test circuits, TJ = 0 to 125°C, VI = 33V,
IO = 500 mA, CI = 0.33 µF, CO = 0.1 µF unless otherwise specified).
Symbol
Parameter
Test Conditions
Min.
Typ.
Max.
Unit
23
24
25
V
22.8
24
25.2
V
TJ = 25°C
480
mV
VI = 30 to 36 V
TJ = 25°C
240
IO = 5 mA to 1.5 A
TJ = 25°C
480
TJ = 25°C
240
VO
Output Voltage
TJ = 25°C
VO
Output Voltage
IO = 5 mA to 1 A
VI = 27 to 38 V
∆VO(*)
Line Regulation
VI = 27 to 38 V
∆VO(*)
Load Regulation
IO = 250 to 750 mA
Quiescent Current
TJ = 25°C
Id
∆Id
Quiescent Current Change
PO ≤ 15W
IO = 5 mA to 1 A
VI = 27 to 38 V
∆VO/∆T Output Voltage Drift
eN
SVR
IO = 5 mA
B =10Hz to 100KHz
TJ = 25°C
Supply Voltage Rejection
VI = 28 to 38 V
f = 120Hz
Vd
Dropout Voltage
IO = 1 A
Output Resistance
f = 1 KHz
Isc
Short Circuit Current
VI = 35 V
Iscp
Short Circuit Peak Current
TJ = 25°C
8
mA
0.5
mA
1
Output Noise Voltage
RO
mV
TJ = 25°C
TJ = 25°C
-1.5
mV/°C
170
µV/VO
50
dB
2
V
28
mΩ
0.15
A
2.1
A
(*) Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account
separately. Pulse testing with low duty cycle is used.
Figure 8: Dropout Voltage vs Junction
Temperature
http:www.hgsemi.com.cn
Figure 9: Peak Output Current vs Input/output
Differential Voltage
12
2018 MAY
LM78XX
Figure 13: Quiescent Current vs Junction
Temperature
Figure 10: Supply Voltage Rejection vs
Frequency
Figure 11: Output Voltage vs Junction
Temperature
Figure 14: Load Transient Response
Figure 12: Output Impedance vs Frequency
Figure 15: Line Transient Response
http:www.hgsemi.com.cn
13
2018 MAY
LM78XX
Figure 16: Quiescent Current vs Input Voltage
Figure 17: Fixed Output Regulator
NOTE:
1. To specify an output voltage, substitute voltage value for "XX".
2. Although no output capacitor is need for stability, it does improve transient response.
3. Required if regulator is locate an appreciable distance from power supply filter.
Figure 18: Current Regulator
Vxx
IO =
+ Id
R1
http:www.hgsemi.com.cn
14
2018 MAY
LM78XX
Figure 19: Circuit for Increasing Output Voltage
IR1 ≥ 5 Id
R2
VO = VXX (1+ ) + Id R2
R1
Figure 20: Adjustable Output Regulator (7 to 30V)
Figure 21: 0.5 to 10V Regulator
R4
VO = V xx
R1
http:www.hgsemi.com.cn
15
2018 MAY
LM78XX
Important statement:
Huaguan Semiconductor Co,Ltd. reserves the right to change
the products and services provided without notice. Customers
should obtain the latest relevant information before ordering,
and verify the timeliness and accuracy of this information.
Customers are responsible for complying with safety
standards and taking safety measures when using our
products for system design and machine manufacturing to
avoid potential risks that may result in personal injury or
property damage.
Our products are not licensed for applications in life support,
military, aerospace, etc., so we do not bear the consequences
of the application of these products in these fields.
Our documentation is only permitted to be copied without
any tampering with the content, so we do not accept any
responsibility or liability for the altered documents.
http:www.hgsemi.com.cn
16
2018 MAY