L298
DUAL FULL-BRIDGE DRIVER
..
..
.
OPERATING SUPPLY VOLTAGE UP TO 46 V
TOTAL DC CURRENT UP TO 4 A
LOW SATURATION VOLTAGE
OVERTEMPERATURE PROTECTION
LOGICAL ”0” INPUT VOLTAGE UP TO 1.5 V
(HIGH NOISE IMMUNITY)
DESCRIPTION
Multiw att15
The L298 is an integrated monolithic circuit in a 15lead Multiwatt and PowerSO20 packages. It is a
high voltage, high current dual full-bridge driver designed to accept standardTTL logic levels and drive
inductive loads such as relays, solenoids, DC and
stepping motors. Two enableinputs are provided to
enableor disable the deviceindependentlyof the input signals. The emitters of the lower transistors of
each bridge are connected together and the corresponding external terminal can be used for the con-
PowerSO20
O RDERING NUMBERS : L298N (Multiwatt Vert.)
L298HN (Multiwatt Horiz.)
L298P (PowerSO20)
nectionof an externalsensing resistor. Anadditional
supply input is provided so that the logic works at a
lower voltage.
BLOCK DIAGRAM
http://www.hgsemi.com.cn
1
2018 AUG
L298
ABSOLUTE MAXIMUM RATINGS
Symb ol
Value
Unit
VS
Power Supply
50
V
V SS
Logic Supply Voltage
7
V
–0.3 to 7
V
3
2.5
2
A
A
A
VI,Ven
IO
Vsens
Parameter
Input and Enable Voltage
Peak Output Current (each Channel)
– Non Repetitive (t = 100µs)
–Repetitive (80% on –20% off; ton = 10ms)
–DC Operation
Sensing Voltage
–1 to 2.3
V
25
W
Junction Operating Temperature
–25 to 130
°C
Storage and Junction Temperature
–40 to 150
°C
P tot
Total Power Dissipation (Tcase = 75°C)
Top
Tstg, Tj
PIN CONNECTIONS (top view)
Multiwatt15
15
CURRENT SENSING B
14
OUTPUT 4
13
OUTPUT 3
12
INPUT 4
11
ENABLE B
10
INPUT 3
9
LOGIC SUPPLY VOLTAGE VSS
8
GND
7
INPUT 2
6
ENABLE A
5
INPUT 1
4
SUPPLY VOLTAGE VS
3
OUTPUT 2
2
OUTPUT 1
1
CURRENT SENSING A
TAB CONNECTED TO PIN 8
D95IN240A
GND
1
20
GND
Sense A
2
19
Sense B
N.C.
3
18
N.C.
17
Out 4
16
Out 3
Out 1
4
Out 2
5
VS
6
15
Input 4
Input 1
7
14
Enable B
Enable A
8
13
Input 3
Input 2
9
12
VSS
10
11
GND
GND
PowerSO20
D95IN239
THERMAL DATA
Symb ol
Po werSO20
Mu ltiwatt15
Unit
Rth j-case
Thermal Resistance Junction-case
Parameter
Max.
–
3
°C/W
Rth j-amb
Thermal Resistance Junction-ambient
Max.
13 (*)
35
°C/W
(*) Mounted on aluminum substrate
http://www.hgsemi.com.cn
2
2018 AUG
L298
PIN FUNCTIONS (refer to the block diagram)
MW.15
Po werSO
Name
1;15
2;19
Sense A; Sense B
Between this pin and ground is connected the sense resistor to
control the current of the load.
Fun ction
2;3
4;5
Out 1; Out 2
Outputs of the Bridge A; the current that flows through the load
connected between these two pins is monitored at pin 1.
4
6
VS
Supply Voltage for the Power Output Stages.
A non-inductive 100nF capacitor must be connected between this
pin and ground.
5;7
7;9
Input 1; Input 2
6;11
8;14
Enable A; Enable B
TTL Compatible Inputs of the Bridge A.
8
1,10,11,20
GND
Ground.
9
12
VSS
Supply Voltage for the Logic Blocks. A100nF capacitor must be
connected between this pin and ground.
10; 12
13;15
Input 3; Input 4
13; 14
16;17
Out 3; Out 4
–
3;18
N.C.
TTL Compatible Enable Input: the L state disables the bridge A
(enable A) and/or the bridge B (enable B).
TTL Compatible Inputs of the Bridge B.
Outputs of the Bridge B. The current that flows through the load
connected between these two pins is monitored at pin 15.
Not Connected
ELECTRICAL CHARACTERISTICS (VS = 42V; VSS = 5V, Tj = 25°C; unless otherwise specified)
Symbol
Parameter
VS
Supply Voltage (pin 4)
VSS
Logic Supply Voltage (pin 9)
Test Co nditions
Operative Condition
Min .
4.5
Ven = H; IL = 0
Typ .
VIH +2.5
Unit
46
V
5
7
V
13
50
22
70
mA
mA
4
mA
24
7
36
12
mA
mA
6
mA
1.5
V
IS
Quiescent Supply Current (pin 4)
ISS
Quiescent Current from VSS (pin 9) Ven = H; IL = 0
V iL
Input Low Voltage
(pins 5, 7, 10, 12)
–0.3
ViH
Input High Voltage
(pins 5, 7, 10, 12)
2.3
VSS
V
IiL
Low Voltage Input Current
(pins 5, 7, 10, 12)
Vi = L
–10
µA
IiH
High Voltage Input Current
(pins 5, 7, 10, 12)
Vi = H ≤ VSS –0.6V
100
µA
Ven = L
Vi = L
Vi = H
Max.
Vi = X
Ven = L
Vi = L
Vi = H
Vi = X
30
Ven = L
Enable Low Voltage (pins 6, 11)
–0.3
1.5
V
Ven = H
Enable High Voltage (pins 6, 11)
2.3
VSS
V
Ien = L
Low Voltage Enable Current
(pins 6, 11)
Ven = L
–10
µA
Ien = H
High Voltage Enable Current
(pins 6, 11)
Ven = H ≤ VSS –0.6V
30
100
µA
0.95
1.35
2
1.7
2.7
V
V
1.2
1.7
1.6
2.3
V
V
VCEsat (H) Source Saturation Voltage
IL = 1A
IL = 2A
VCEsat (L) Sink Saturation Voltage
IL = 1A
IL = 2A
(5)
(5)
0.85
IL = 1A
IL = 2A
(5)
(5)
1.80
3.2
4.9
V
V
–1 (1)
2
V
VCEsat
Total Drop
Vsens
Sensing Voltage (pins 1, 15)
http://www.hgsemi.com.cn
3
2018 AUG
L298
ELECTRICAL CHARACTERISTICS (continued)
Symbol
Parameter
Test Co nditions
Min .
Typ .
Max.
Unit
T1 (Vi)
Source Current Turn-off Delay
0.5 V i to 0.9 I L
(2); (4)
1.5
µs
T2 (Vi)
Source Current Fall Time
0.9 IL to 0.1 IL
(2); (4)
0.2
µs
T3 (Vi)
Source Current Turn-on Delay
0.5 V i to 0.1 I L
(2); (4)
2
µs
T4 (Vi)
Source Current Rise Time
0.1 IL to 0.9 IL
(2); (4)
0.7
µs
T5 (Vi)
Sink Current Turn-off Delay
0.5 V i to 0.9 I L
(3); (4)
0.7
µs
T6 (Vi)
Sink Current Fall Time
0.9 IL to 0.1 IL
(3); (4)
0.25
µs
T7 (Vi)
Sink Current Turn-on Delay
0.5 V i to 0.9 I L
(3); (4)
1.6
µs
T8 (Vi)
Sink Current Rise Time
0.1 IL to 0.9 IL
(3); (4)
0.2
µs
Commutation Frequency
IL = 2A
T1 (Ven)
fc (Vi)
Source Current Turn-off Delay
0.5 V en to 0.9 IL
25
T2 (Ven)
Source Current Fall Time
0.9 IL to 0.1 IL
T3 (Ven)
Source Current Turn-on Delay
0.5 V en to 0.1 IL
T4 (Ven)
Source Current Rise Time
0.1 IL to 0.9 IL
T5 (Ven)
Sink Current Turn-off Delay
0.5 V en to 0.9 IL
(2); (4)
(2); (4)
(2); (4)
(2); (4)
T6 (Ven)
Sink Current Fall Time
0.9 IL to 0.1 IL
T7 (Ven)
Sink Current Turn-on Delay
0.5 V en to 0.9 IL
T8 (Ven)
Sink Current Rise Time
0.1 IL to 0.9 IL
(3); (4)
(3); (4)
(3); (4)
(3); (4)
40
KHz
3
µs
1
µs
0.3
µs
0.4
µs
2.2
µs
0.35
µs
0.25
µs
0.1
µs
1) 1)Sensing voltage can be –1 V for t ≤ 50 µsec; in steady state V sens min ≥ – 0.5 V.
2) See fig. 2.
3) See fig. 4.
4) The load must be a pure resistor.
Figure 1 : Typical Saturation Voltage vs. Output
Current.
Figure 2 : Switching Times Test Circuits.
Note : For INPUT Switching, set EN = H
For ENABLESwitching, set IN = H
http://www.hgsemi.com.cn
4
2018 AUG
L298
Figure 3 : Source Current Delay Times vs. Input or Enable Switching.
Figure 4 : Switching Times Test Circuits.
Note : For INPUT Switching, set EN = H
For ENABLE Switching, set IN = L
http://www.hgsemi.com.cn
5
2018 AUG
L298
Figure 5 : Sink Current Delay Times vs. Input 0 V Enable Switching.
Figure 6 : Bidirectional DC Motor Control.
In pu ts
Ven = H
Ven = L
L = Low
http://www.hgsemi.com.cn
6
Fu nctio n
C=H;D=L
Forward
C =L; D= H
Reverse
C=D
Fast Motor Stop
C=X;D=X
Free Running
Motor Stop
H = High
X = Don’t care
2018 AUG
L298
Figure 7 : For higher currents, outputs can be paralleled. Take care to parallel channel 1 with channel 4
and channel 2 with channel 3.
APPLICATION INFORMATION (Refer to the block diagram)
1.1. POWER OUTPUT STAGE
Each input must be connected to the source of the
driving signals by means of a very short path.
TheL298integratestwo poweroutputstages(A ; B).
The power output stage is a bridge configuration
Turn-On and Turn-Off : Before to Turn-ON the Supand its outputs can drive an inductive load in comply Voltageand beforeto Turnit OFF, the Enableinmon or differenzialmode, dependingon the state of
put must be driven to the Low state.
the inputs. The current that flows through the load
3. APPLICATIONS
comes out from the bridge at the sense output : an
Fig 6 shows a bidirectional DC motor control Scheexternal resistor (RSA ; RSB.) allows to detect the inmatic Diagram for which only one bridge is needed.
tensity of this current.
The external bridge of diodes D1 to D4 is made by
1.2. INPUT STAGE
four fast recovery elements (trr ≤ 200 nsec) that
Each bridge is driven by means of four gates the inmust be chosen of a VF as low as possible at the
put of which are In1 ; In2 ; EnA and In3 ; In4 ; EnB.
worst case of the load current.
The In inputs set the bridge state when The En input
The sense outputvoltage can be used to control the
is high ; a lowstate of the En inputinhibitsthe bridge.
current amplitude by chopping the inputs, or to proAll the inputs are TTL compatible.
vide overcurrent protection by switching low the enable input.
2. SUGGESTIONS
The brake function (Fast motor stop) requires that
A non inductive capacitor, usually of 100 nF, must
the Absolute Maximum Rating of 2 Amps must
be foreseen between both Vs and Vss, to ground,
never be overcome.
as near as possible to GND pin. When the large capacitor of the power supply is too far from the IC, a
When the repetitive peak current needed from the
second smaller one must be foreseen near the
load is higher than 2 Amps, a paralleled configuraL298.
tion can be chosen (See Fig.7).
The sense resistor, not of a wire wound type, must
An external bridge of diodes are required when inbe grounded near the negative pole of Vs that must
ductive loads are driven and when the inputs of the
be near the GND pin of the I.C.
IC are chopped; Shottkydiodeswould bepreferred.
http://www.hgsemi.com.cn
7
2018 AUG
L298
Fig 10 shows a second two phase bipolar stepper
motor control circuit where the current is controlled
by the I.C. L6506.
This solution can drive until 3 Amps In DC operation
and until 3.5 Amps of a repetitive peak current.
OnFig 8 it is shownthe driving ofa twophasebipolar
stepper motor ; the needed signals to drive the inputs of the L298 are generated, in this example,
from the IC L297.
Fig 9 shows an example of P.C.B. designed for the
application of Fig 8.
Figure 8 : Two Phase Bipolar Stepper Motor Circuit.
This circuit drives bipolar stepper motors with winding currents up to 2 A. The diodes are fast 2 A types.
RS1 = RS2 = 0.5 Ω
D1 to D8 = 2 A Fast diodes
http://www.hgsemi.com.cn
{
VF ≤ 1.2 V @ I = 2 A
trr ≤ 200 ns
8
2018 AUG
L298
Figure 9 : Suggested Printed Circuit Board Layout for the Circuit of fig. 8 (1:1 scale).
Figure 10 : Two Phase Bipolar Stepper Motor Control Circuit by Using the Current Controller L6506.
RR and Rsense depend from the load current
http://www.hgsemi.com.cn
9
2018 AUG
很抱歉,暂时无法提供与“L298N”相匹配的价格&库存,您可以联系我们找货
免费人工找货