0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ZD25WD40BUIGR

ZD25WD40BUIGR

  • 厂商:

    ZETTA(澜智)

  • 封装:

    USON8_2X3MM_EP

  • 描述:

  • 数据手册
  • 价格&库存
ZD25WD40BUIGR 数据手册
ZD25WD40B ZD25WD40B Ultra Low Power, 4M-bit Serial Multi I/O Flash Memory Datasheet Performance Highlight  Wide Supply Range from 1.65 to 2.0V for Read, Erase and Program  Ultra Low Power consumption for Read, Erase and Program  X1 and X2 Multi I/O Support  High reliability with 100K cycling and 20 Year-retention 1 ZD25WD40B 1. 2. 3. 4. 5. Contents Overview.............................................................................................................................................. 4 1.1. General....................................................................................................................................4 1.2. Performance............................................................................................................................4 1.3. Software features.................................................................................................................... 5 1.4. Hardware features...................................................................................................................5 Description............................................................................................................................................6 2.1. Pin Definition......................................................................................................................... 7 2.2. Block Diagram........................................................................................................................7 2.3. Memory Address Mapping..................................................................................................... 8 Device Operation.................................................................................................................................. 9 3.1. Mode0 and Mode3..................................................................................................................9 3.2. IO MODE............................................................................................................................... 9 3.3. Status Register...................................................................................................................... 10 3.4. Data Protection..................................................................................................................... 11 Electrical Specifications..................................................................................................................... 14 4.1. Absolute Maximum Ratings................................................................................................. 14 4.2. DC Characteristics................................................................................................................15 4.3. AC Characteristics................................................................................................................ 16 4.4. AC Characteristics for Program and Erase...........................................................................17 4.5. Operation Conditions............................................................................................................19 Commands.......................................................................................................................................... 21 5.1. Commands listing................................................................................................................. 21 5.2. Write Enable (WREN)..........................................................................................................23 5.3. Write Disable (WRDI)..........................................................................................................23 5.4. Write Enable for Volatile Status Register............................................................................ 24 5.5. Read Status Register (RDSR)............................................................................................... 25 5.6. Active Status Interrupt (ASI)................................................................................................26 5.7. Write Status Register (WRSR).............................................................................................. 27 5.8. Read Data Bytes (READ).....................................................................................................28 5.9. Read Data Bytes at HigherSpeed (FAST_READ)............................................................... 29 5.10. Dual Read Mode (DREAD)..................................................................................................30 5.11. 2 X IO Read Mode (2READ)................................................................................................31 5.12. 2 X IO Read PerformerEnhance Mode................................................................................. 32 5.13. Page Erase (PE).....................................................................................................................33 5.14. Sector Erase (SE)...................................................................................................................33 5.15. Block Erase (BE32K)............................................................................................................35 5.16. Block Erase (BE)...................................................................................................................35 5.17. Chip Erase (CE).................................................................................................................... 36 5.18. Page Program (PP)................................................................................................................37 5.19. Dual Input Page Program (DPP)........................................................................................... 38 5.20. Erase Security Registers (ERSCUR)..................................................................................... 39 5.21. Program Security Registers (PRSCUR).................................................................................40 5.22. Erase Security Registers (RDSCUR)....................................................................................41 5.23. Deep Power-down (DP)........................................................................................................42 5.24. Release form Deep Power-Down (RDP), Read Electronic Signature (RES)..........................43 5.25. Read Electronic Manufacturer ID & Device ID (REMS).......................................................44 5.26. Dual I/O Read Electronic Manufacturer ID & Device ID (DREMS).....................................45 5.27. Read Identification (RDID)................................................................................................... 46 5.28. Program/Erase Suspend/Resume.......................................................................................... 47 2 ZD25WD40B 6. 7. 8. 5.29. Erase Suspend to Program.................................................................................................... 48 5.30. Program Resume and Erase Resume..................................................................................... 49 5.31. No Operation (NOP)............................................................................................................. 49 5.32. Software Reset (RSTEN/RST).............................................................................................. 50 5.33. Read Unique ID (RUID)........................................................................................................51 5.34. Read SFDP Mode (RDSFDP)...............................................................................................52 Ordering Information..........................................................................................................................55 Package Information...........................................................................................................................56 7.1. 8-Lead SOP(150mil).............................................................................................................56 7.2. 8-Lead SOP(208mil).............................................................................................................57 7.3. 8-Lead TSSOP(173mil)........................................................................................................ 58 7.4. 8-Land USON(3x2mm,THICKNESS 0.55MM)..................................................................59 7.5. 8-Land USON(3x2mm,THICKNESS 0.45MM)..................................................................60 7.6. 8-Land USON(1.5x1.5mm).................................................................................................. 61 Revision History................................................................................................................................62 3 ZD25WD40B 1. Overview 1.1. General  Single 1.65V to 2.0V supply - 1.65V-2.0V for Read, Erase and Program Operations  Industrial Temperature Range -40C to 85C  Serial Peripheral Interface (SPI) Compatible: - Mode 0 and Mode 3  Single and Dual IO mode 4M x 1 bit - 2M x 2 bits  Flexible Architecture for Code and Data Storage - Uniform 256-byte Page Program - Uniform 256-byte Page Erase - Uniform 4K-byte Sector Erase - Uniform 32K/64K-byte - Full Chip Erase Block Erase 1.2. Performance  Fast read - 2 I/O 104MHz with 4 dummy cycles,equivalent to 208M - 1 I/O 104MHz with 8 dummy cycles  Fast Program and Erase Speed - 1.3ms Page program time - 10ms Page erase time - 10ms 4K-byte sector erase time - 10ms 32K-byte block erase time - 10ms 64K-byte block erase time  Ultra Low Power Consumption - 0.1uA Deep Power Down current - 9uA Standby current - 0.6mA Active Read current at 33MHz - 1.8mA Active Program or Erase current  High Reliability - 100,000 Program / Erase Cycles - 20-year Data Retention 4 ZD25WD40B 1.3. Software features  One Time Programmable (OTP) Security Register 3*512-Byte Security Registers With OTP Lock  Software Protection Mode - The Block Protect (BP4, BP3, BP2, BP1, and BP0) bits define the section of the memory array that can be read but not change.  128 bit unique ID for each device  Program/Erase Suspend and Program/Erase Resume  JEDEC Standard Manufacturer and Device ID Read Methodology 1.4. Hardware features  Hardware Protection Mode - Hardware Controlled Locking of Protected Sectors by WP Pin  Industry Standard Green Package Options - 8-PACKAGE SOP (150mil/208mil) - 8-PACKAGE USON (3x2x0.55mm) - 8-PACKAGE USON (3x2x0.45mm) - 8-PACKAGE USON (1.5x1.5mm) 5 ZD25WD40B 2. Description The ZD25WD40B is a serial interface Flash memory device designed for use in a wide variety of high-volume consumer based applications in which program code is shadowed from Flash memory into embedded or external RAM for execution. The flexible erase architecture of the device, with its page erase granularity it is ideal for data storage as well, eliminating the need for additional data storage devices. The erase block sizes of the device have been optimized to meet the needs of today's code and data storage applications. By optimizing the size of the erase blocks, the memory space can be used much more efficiently. Because certain code modules and data storage segments must reside by themselves in their own erase regions, the wasted and unused memory space that occurs with large sectored and large block erase Flash memory devices can be greatly reduced. This increased memory space efficiency allows additional code routines and data storage segments to be added while still maintaining the same overall device density. The device also contains an additional 3*512-byte security registers with OTP lock (One-Time Programmable), can be used for purposes such as unique device serialization, system-level Electronic Serial Number (ESN) storage, locked key storage, etc. Specifically designed for use in many different systems, the device supports read, program, and erase operations with a wide supply voltage range of 1.65V to 2.0V. No separate voltage is required for programming and erasing. 6 ZD25WD40B 2.1. Pin Definition Pin Configurations CS# SO WP# GND 1 8 2 7 3 6 4 5 Vcc NC# SCLK SI 8-PIN SOP (150mil/200mil) and TSSOP Pin Descriptions No. Symbol Extension Remarks 1 CS# Chip select 2 SO SIO1 3 4 WP# GND SIO2 - 5 SI SIO0 6 7 SCLK Nc - Serial data output for 1 x I/O Serial data input and output for 2 x I/O read mode Write protection active low Ground of the device Serial data input for 1x I/O Serial data input and output for 2 x I/O read mode Serial interface clock input Not Connection 8 VCC - Power supply of the device 2.2. Block Diagram Din Hv PageLatch High Voltage Generator (O3) R o w SI(IO0) SCLK WP#(IO2) SO(IO1) SPI Command & Control Logic D e c o d e r High Voltage Control Flash- cell Array Address Latch CS Coumun Mux Dout Sense Amplifier 7 ZD25WD40B 2.3. Memory Address Mapping The memory array can be erased in three levels of granularity including a full chip erase. The size of the erase blocks is optimized for both code and data storage applications, allowing both code and data segments to reside in their own erase regions. ZD25WD40B Memory Organization Block64K …… …… 1-0 0 …… 3-2 1 …… 5-4 2 13 - 12 6 15 - 14 7 Block32K Sector Address Range 127 07F000H 07FFFFH …… …… …… 112 070000H 070FFFH 111 06F000H 06FFFFH …… …… …… 96 060000H 060FFFH …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… 47 02F000H 02FFFFH …… …… …… 32 020000H 020FFFH 31 01F000H 01FFFFH …… …… …… 16 010000H 010FFFH 15 00F000H 00FFFFH …… …… …… 0 000000H 000FFFH 8 ZD25WD40B 3. Device Operation 3.1. Mode0 and Mode3 Before a command is issued, status register should be checked to ensure device is ready for the intended operation. When incorrect command is inputted to this LSI, this LSI becomes standby mode and keeps the standby mode until next CS# falling edge. In standby mode, SO pin of this LSI should be High-Z. When correct command is inputted to this LSI, this LSI becomes active mode and keeps the active mode until next CS# rising edge. Input data is latched on the rising edge of Serial Clock (SCLK) and data shifts out on the falling edge of SCLK.The difference of serial peripheral interface mode 0 and mode 3 is shown as Figure 3-1. For the following instructions: RDID, RDSR, RDSR1, RDSCUR, READ, FAST_READ, DREAD, 2READ, RDSFDP, RES, REMS, DREMS, the shifted-in instruction sequence is followed by a data-out sequence. After any bit of data being shifted out, the CS# can be high. For the following instructions: WREN, WRDI, WRSR, PE, SE, BE32K, BE, CE, PP, DPP, DP, ERSCUR, PRSCUR, SUSPEND, RESUME, RSTEN, RST, the CS# must go high exactly at the byte boundary; otherwise, the instruction will be rejected and not executed. During the progress of Write Status Register, Program, Erase operation, to access the memory array is neglected and not affect the current operation of Write Status Register, Program, Erase. Figure 3-1 Serial Peripheral Interface Modes Supported CPOL CPHA shift in (Serial mode 0) 0 0 SCLK (Serial mode 3) 1 1 SCLK SI SO shift out MSB MSB Note: CPOL indicates clock polarity of serial master, CPOL=1 for SCLK high while idle, CPOL=0 for SCLK low while not transmitting. CPHA indicates clock phase. The combination of CPOL bit and CPHA bit decides which serial mode is supported. 3.2. IO MODE Standard SPI The ZD25WD40B features a serial peripheral interface on 4 signals bus: Serial Clock (SCLK), Chip Select (CS#), Serial Data Input (SI) and Serial Data Output (SO). Both SPI bus mode 0 and 3 are supported. Input data is latched on the rising edge of SCLK and data shifts out on the falling edge of SCLK. Dual SPI The ZD25WD40B supports Dual SPI operation when using the “Dual Output Fast Read” and “Dual I/O Fast 9 ZD25WD40B Read”(3BHand BBH) commands. These commands allow data to be transferred to or from the device at two times the rate of the standard SPI. When using the Dual SPI command the SI and SO pins become bidirectional I/O pins: IO0 and IO1. 3.3. Status Register S15 SUS1 S14 CMP S13 LB3 S12 LB2 S11 LB1 S10 SUS2 S9 Reserved S8 SRP1 S7 SRP0 S6 BP4 S5 BP3 S4 BP2 S3 BP1 S2 BP0 S1 WEL S0 WIP The definition of the status register bits is as below: WIP bit. The Write in Progress (WIP) bit indicates whether the memory is busy in program/erase/write status register progress. When WIP bit sets to 1, means the device is busy in program/erase/write status register progress, when WIP bit sets 0, means the device is not in program/erase/write status register progress. WEL bit. The Write Enable Latch (WEL) bit indicates the status of the internal Write Enable Latch. When set to 1 the internal Write Enable Latch is set, when set to 0 the internal Write Enable Latch is reset and no Write Status Register, Program or Erase command isaccepted. BP4, BP3, BP2, BP1, BP0 bits. The Block Protect (BP4, BP3, BP2, BP1, and BP0) bits are non-volatile. They define the size of the area to be software protected against Program and Erase commands. These bits are written with the Write Status Register (WRSR) command. When the Block Protect (BP4, BP3, BP2, BP1, BP0) bits are set to 1, the relevant memory area (as defined in Table “Protected Area Sizes”).becomes protected against Page Program (PP), Page Erase (PE), Sector Erase (SE) and Block Erase (BE) commands. The Block Protect (BP4, BP3, BP2, BP1, and BP0) bits can be written provided that the Hardware Protected mode has not been set. The Chip Erase (CE) command is executed, only if the Block Protect (BP4, BP3, BP2, BP1and BP0) are set to “None protected”. SRP1, SRP0 bits. The Status Register Protect (SRP1 and SRP0) bits are non-volatile Read/Write bits in the status register. The SRP bits control the method of write protection: software protection, hardware protection, power supply lock-down or one time programmable protection SRP1 SRP0 WP# Status Register 0 0 x Software Protected 0 1 0 Hardware Protected 0 1 1 Hardware Unprotected 1 0 x 1 1 x Description The Status Register can be written to after a Write Enable command, WEL=1.(Default) WP#=0, the Status Register locked and can not be write to. WP#=1, the Status Register is unlocked and can be written to after a Write Enable command, WEL=1. Power Supply Status Register is protected and can not be written to Lock-Down(1) again until the next Power-Down, Power-Up cycle. One Time Program(2) Status Register is permanently protected and can not be written to. 10 ZD25WD40B NOTE: 1. When SRP1, SRP0=(1, 0), a Power-Down, Power-Up cycle will change SRP1, SRP0 to (0, 0) state. 2. This feature is available on special order. Please contact Zetta fordetails. LB3, LB2, LB1, bits. The LB3, LB2, LB1, bits are non-volatile One Time Program (OTP) bits in Status Register (S13-S11) that provide the write protect control and status to the Security Registers. The default state of LB3-LB1are0, the security registers are unlocked. The LB3-LB1bitscan be set to 1 individually using the Write Register instruction. The LB3-LB1bits are One Time Programmable, once its set to 1, the Security Registers will become read-only permanently. CMP bit The CMP bit is a non-volatile Read/Write bit in the Status Register(S14). It is used in conjunction the BP4-BP0 bits to provide more flexibility for the array protection. Please see the table “Protected Area Size” for details. The default setting is CMP=0. SUS1, SUS2 bit The SUS1 and SUS2bit are read only bit in the status register (S15and S10) that are set to 1 after interrupting an program/erase/write status register progress by Program/Erase Suspend (75H or B0H) command (The Erase Suspend will set the SUS1 to 1,and the Program Suspend will set the SUS2 to 1). The SUS1 and SUS2 bit are cleared to 0 by Program/Erase Resume (7AH or 30H) command as well as a power-down, power-up cycle. 3.4. Data Protection During power transition, there may be some false system level signals which result in inadvertent erasure or programming. The device is designed to protect itself from these accidental write cycles. The state machine will be reset as standby mode automatically during power up. In addition, the control register architecture of the device constrains that the memory contents can only be changed after specific command sequences have completed successfully. In the following, there are several features to protect the system from the accidental write cycles during VCC power-up and power-down or from system noise. • Power-on reset: to avoid sudden power switch by system power supply transition, the power-on reset may protect the Flash. • Valid command length checking: The command length will be checked whether it is at byte base and completed on byte boundary. • Write Enable (WREN) command: WREN command is required to set the Write Enable Latch bit (WEL) before issuing other commands to change data. • Software Protection Mode: The Block Protect (BP4, BP3, BP2, BP1, and BP0) bits define the section of the memory array that can be read but not change. • Hardware Protection Mode: WP# going low to protected the BP0~BP4bits and SRP0~1bits • Deep Power-Down Mode: By entering deep power down mode, the flash device is under protected from writing all commands except the Release form Deep Power-Down Mode command. 11 ZD25WD40B Table 3-1. Protected Area Sizes ZD25WD40B Protected Area Sizes (CMP bit = 0) Status bit Memory Content BP4 BP3 BP2 BP1 BP0 Blocks Addresses Density Portion x x 0 0 0 NONE NONE NONE NONE 0 0 0 0 1 7 070000H-07FFFFH 64KB Upper 1/8 0 0 0 1 0 6 and 7 060000H-07FFFFH 128KB Upper 1/4 0 0 0 1 1 4 to 7 040000H-07FFFFH 256KB Upper 1/2 0 1 0 0 1 0 000000H-00FFFFH 64KB Lower 1/8 0 1 0 1 0 0 and 1 000000H-01FFFFH 128KB Lower 1/4 0 1 0 1 1 0 to 3 000000H-03FFFFH 256KB Lower 1/2 0 x 1 x x 0 to 7 000000H-07FFFFH 512KB ALL 1 0 0 0 1 7 07F000H-07FFFFH 4KB Upper 1/128 1 0 0 1 0 7 07E000H-07FFFFH 8KB Upper 1/64 1 0 0 1 1 7 07C000H-07FFFFH 16KB Upper 1/32 1 0 1 0 x 7 078000H- 07FFFFH 32KB Upper 1/16 1 0 1 1 0 7 078000H-07FFFFH 32KB Upper 1/16 1 1 0 0 1 0 000000H-000FFFH 4KB Lower 1/128 1 1 0 1 0 0 000000H-001FFFH 8KB Lower 1/64 1 1 0 1 1 0 000000H-003FFFH 16KB Lower 1/32 1 1 1 0 x 0 000000H-007FFFH 32KB Lower 1/16 1 1 1 1 0 0 000000H-007FFFH 32KB Lower 1/16 1 x 1 1 1 0 to 7 000000H-07FFFFH 512KB ALL 12 ZD25WD40B ZD25WD40B Protected Area Sizes (CMP bit = 1) Status bit Memory Content BP4 BP3 BP2 BP1 BP0 Blocks Addresses Density Portion x x 0 0 0 0 to 7 000000H-07FFFFH 512KB ALL 0 0 0 0 1 0 to 6 000000H-06FFFFH 448KB Lower 7/8 0 0 0 1 0 0 to 5 000000H-05FFFFH 384KB Lower 3/4 0 0 0 1 1 0 to 3 000000H-03FFFFH 256KB Lower 1/2 0 1 0 0 1 1 to 7 010000H-07FFFFH 448KB Upper 7/8 0 1 0 1 0 2 to 7 020000H-07FFFFH 384KB Upper 3/4 0 1 0 1 1 4 to 7 040000H-07FFFFH 256KB Upper 1/2 0 x 1 x x NONE NONE NONE NONE 1 0 0 0 1 0 to 7 000000H-07EFFFH 508KB Lower 127/128 1 0 0 1 0 0 to 7 000000H-07DFFFH 504KB Lower 63/64 1 0 0 1 1 0 to 7 000000H-07BFFFH 496KB Lower 31/32 1 0 1 0 x 0 to 7 000000H-077FFFH 480KB Lower 15/16 1 0 1 1 0 0 to 7 000000H-077FFFH 480KB Lower 15/16 1 1 0 0 1 0 to 7 001000-07FFFFH 508KB Upper 127/128 1 1 0 1 0 0 to 7 002000-07FFFFH 504KB Upper 63/64 1 1 0 1 1 0 to 7 004000-07FFFFH 496KB Upper 31/32 1 1 1 0 x 0 to 7 008000-07FFFFH 480KB Upper 15/16 1 1 1 1 0 0 to 7 008000-07FFFFH 480KB Upper 15/16 1 x 1 1 1 NONE NONE NONE NONE Note: 1. X=don’t care 2. If any erase or program command specifies a memory that contains protected data portion, this command will be ignored. 13 ZD25WD40B 4. Electrical Specifications 4.1. Absolute Maximum Ratings Parameters Value Storage Temperature -65°C to +150°C Operation Temperature .-40°C to +85°C Maximum Operation Voltage 2.5V Voltage on Any Pin with respect to Ground -0.6V to + 2.5V DC Output Current 5.0 mA NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Figure 4-1 Maximum Overshoot Waveform Maxinum Positive Overshoot Waveform Maxinum Negative Overshoot Waveform VCC+0.5V 20ns 0V VCC 20ns -0.6V Table 4-1 Pin Capacitance [1] Symbol Parameter Max. Units Test Condition COUT Output Capacitance 8 pF VOUT=GND CIN Input Capacitance 6 pF VIN=GND Note: Test Conditions: TA = 25°C, F = 1MHz, Vcc = 3.0V. Figure 4-2 Input Test Waveforms and Measurement Level Input timing referencelevel 0.7VCC 0.3VCC Output timing referencelevel Ac MersurementLevel 0.5VCC Note:Inputpulse rise and fall time eara < 5ns Figure 4-3 Output Loading 25K ohm DEVICE UNDER TEST VCC CL 25K ohm CL=15/30pF Including jig capacitance 14 ZD25WD40B 4.2. DC Characteristics Table 4-2 DC parameters Sym. Parameter IDPD Deep power down current ISB Standby current ICC1 Low power read current (03h) ICC2 Read current (0Bh) ICC3 ICC4 Conditions 1.65V to 2.0V Min. CS#=Vcc, all other inputs at 0V or Vcc CS#, WP#=VIH all inputs at CMOS levels f=33MHz; IOUT=0mA Typ. Max. 0.1 0.6 9 Units uA uA 0.6 1.2 f=55MHz; IOUT=0mA f=85MHz; IOUT=0mA 0.9 1.3 1.5 2.0 mA mA mA mA Program current CS#=Vcc 1.8 3.0 mA Erase current CS#=Vcc 1.8 3.0 mA ILI ILO Input load current All inputs at CMOS level 1.0 uA Output leakage All inputs at CMOS level 1.0 uA VIL VIH Input low voltage 0.3Vcc V VOL VOH Output low voltage IOL=100uA Output high voltage IOH=-100uA Input high voltage 0.7Vcc V 0.2 Vcc-0.2 V V Note 1. Typical values measured at 1.8V @ 25°C . 15 ZD25WD40B 4.3. AC Characteristics Symbol Alt. fSCLK fC 1.65V~2.0V Parameter Clock Frequency for the min . max . Unit D.C. 85 MHz following instructions: FAST_READ, RDSFDP, PP, SE, BE32K, BE, CE, DP, RES, fRSCLK fR Clock Frequency for READ instructions 33 MHz fTSCLK fT Clock Frequency for 2READ,DREAD instructions 85 MHz tCH(1) tCLH Clock High Time tCL(1) tCLL Clock Low Time tCLCH(7) tCHCL(7) tSLCH tCSS tCHSL 4.5 ns 4.5 ns Clock Rise Time (peak to peak) 0.1 ns/v Clock Fall Time (peak to peak) 0.1 ns/v CS# Active Setup Time (relative to SCLK) 5 ns CS# Not Active Hold Time (relative to SCLK) 5 ns (fSCLK) 45% x (1fSCLK) tDVCH tDSU Data In Setup Time 2 ns tCHDX tDH Data In Hold Time 3 ns tCHSH CS# Active Hold Time (relative to SCLK) 5 ns tSHCH CS# Not Active Setup Time (relative to SCLK) 5 ns CS# Deselect Time From Read to next Read 15 ns 30 ns tSHSL tCSH CS# Deselect Time From Write,Erase,Program to Read Status Register tSHQZ(7) tDIS Output Disable Time 6 ns Clock Low to Output Valid Loading 30pF 7 ns Clock Low to Output Valid Loading 15pF 6 ns tCLQV tV tCLQX tHO Output Hold Time 0 ns tWHSL(3) Write Protect Setup Time 20 ns tSHWL(3) Write Protect Hold Time 100 ns tDP CS# High to Deep Power-down Mode CS# High To Standby Mode Without Electronic Signature tRES1 Read CS# High To Standby Mode Without Electronic Signature tRES2 tW tReady Read Write Status Register Cycle Time Reset recovery time(for erase/program operation except WRSR) Reset recovery time(for WRSR operation) 8 3 us 8 us 8 us 12 ms 30 us 8 12 ms Table 4-3 AC parameters 16 ZD25WD40B 4.4. AC Characteristics for Program and Erase Table 4-4 AC parameters fro program and erase Sym. Parameter 1.65V to 2.0V Min. Typ. Max. Units TESL(6) TPSL(6) Erase Suspend Latency 30 us Program Suspend Latency 30 us TPRS(4) TERS(5) Latency between Program Resume and next Suspend 0.3 Latency between Erase Resume and next Suspend 0.3 us us tPP tPE Page program time (up to 256 bytes) 1.3 1.6 ms Page erase time 10 12 ms tSE tBE1 Sector erase time 10 12 ms Block erase time for 32K bytes 10 12 ms Block erase time for 64K bytes 10 12 ms Chip erase time 10 12 ms tBE2 tCE Note 1. tCH + tCL must be greater than or equal to 1/ Frequency. 2. Typical values givenfor TA=25°C. Not 100% tested. 3. Only applicable as a constraint for a WRSR instruction. 4. Program operation may be interrupted as often as system request. The minimum timing of tPRS must be observed before issuing the next program suspend command. However, in order for an Program operation to make progress, tPRS ≥ 100us must be included in resume-to-suspend loop(s). Not 100% tested. 5. Erase operation may be interrupted as often as system request. The minimum timing of tERS must be observed before issuing the next erase suspend command. However, in order for an Erase operation to make progress, tERS ≥ 200us must be included in resume-to-suspend loop(s). Notes. Not 100% tested. 6. Latency time is required to complete Erase/Program Suspend operation. 7. The value guaranteed by characterization, not 100% tested in production. Figure 4-4 Serial Input Timing tSHSL CS# tCHSL SCLK tSLCH tCLH tCLL tDVCH tCHDX SI MSB SO High - Z tCHSH tSHCH tCHCL tCLCH LSB 17 ZD25WD40B Figure 4-5 Output Timing CS# tSHQZ tCLH SCLK tCLQV tCLQX tCLQV tCLQX tCLL tQLQH LSB tQHQL SO SI Least significant address bit (LIB) in 18 ZD25WD40B 4.5. Operation Conditions At Device Power-Up and Power-Down AC timing illustrated in "Figure AC Timing at Device Power-Up" and "Figure Power-Down Sequence" are for the supply voltages and the control signals at device power-up and power-down. If the timing in the figures is ignored, the device will not operatecorrectly. During power-up and power-down, CS# needs to follow the voltage applied on VCC to keep the device not to be selected. The CS# can be driven low when VCC reach Vcc(min.) and wait a period of tVSL. Figure 4-7 AC Timing at Device Power-Up VCC VCC( min) GND tVR tSHSL CS# tCHSL tSLCH tCHSH tSHCH SCLK tDVCH tCHCL tCHDX LSB MSB SI tCLCH High-Z SO Figure 4-8 Power-Up Timing Vcc(max) Chip Selectionis not allowed Vcc(min) VWI tVSL Device is fully accessible Time 19 ZD25WD40B Power Up/Down and Voltage Drop For Power-down to Power-up operation, the VCC of flash device must below VPWD for at least tPWD timing. Please check the table below for more detail. Figure 4-9 Power down-up Timing Vcc(max) Chip Selection is not allowed Vcc(min) tVSL VPWD(max) Device is fully accessible tPWD Time Symbol Parameter VPWD VCC voltage needed to below VPWD for ensuring initialization will occur tPWD tVSL tVR VWI The minimum duration for ensuring initialization will occur VCC(min.) to device operation VCC Rise Time Write Inhibit Voltage min 300 70 1 1.45 max unit 1 V 500000 1.55 us us us/V V 20 ZD25WD40B 5. Commands 5.1. Commands listing Figure 5-1 Command set Abbr. Code ADR Bytes Read Array (fast) FREAD 0Bh 3 1 1+ n bytes read out until CS# goes high Read Array (low power) READ 03h 3 0 1+ n bytes read out until CS# goes high Read Dual Output DREAD 3Bh 3 1 1+ n bytes read out by Dual output Read 2x I/O 2READ BBh 3 1 1+ n bytes read out by 2 x I/O Page Erase PE 81h 3 0 0 erase selected page Sector Erase (4K bytes) SE 20h 3 0 0 erase selected sector Block Erase (32K bytes) BE32 52h 3 0 0 erase selected 32K block Block Erase (64K bytes) BE64 D8h 3 0 0 erase selected 64K block CE 60h 0 0 0 erase whole chip C7h 0 0 0 erase whole chip Commands DMY Bytes Data Bytes Function description Read Program and Erase Chip Erase Page Program PP 02h 3 0 1+ program selected page Dual-IN Page Program 2PP A2h 3 0 1+ program selected page by Dual input Program/Erase Suspend PES 75h 0 0 0 suspend program/erase operation B0h 0 0 0 suspend program/erase operation 7Ah 0 0 0 continue program/erase operation 30h 0 0 0 continue program/erase operation sets the (WEL) write enable latch bit Program/Erase Resume PER Protection Write Enable WREN 06h 0 0 0 Write Disable WRDI 04h 0 0 0 VWREN 50h 0 0 0 Erase Security Registers ERSCUR 44h 3 0 0 Erase security registers Program Security Registers PRSCUR 42h 3 0 1+ Program security registers Read Security Registers RDSCUR 48h 3 1 1+ Read value of security register RDSR 05h 0 0 1 read out status register RDSR2 35h 0 0 1 Read out status register-1 ASI 25h 0 1 0 Enable the active status interrupt WRSR 01h 0 0 2 Write data to status registers Volatile SR Write Enable resets the (WEL) write enable latch bit Write enable for volatile status register Security Status Register Read Status Register Active Status Interrupt Write Status Register 21 ZD25WD40B Command set (Cont’d) Abbr. Code ADR Bytes DMY Bytes RSTEN 66h 0 0 0 Enable reset Reset RST 99h 0 0 0 Reset Read Manufacturer/device ID Read Manufacture ID Dual Read Manufacture ID RDID 9Fh 0 0 1 to 3 output JEDEC ID: 1-byte manufacturer ID & 2-byte device ID REMS DREMS 90h 92h 3 3 1 1+ 1 Read manufacturer ID/device ID data Dual output read manufacture/device ID DP B9h RDP/RES ABh 0 3 0 0 0 1 enters deep power-down mode Read electronic ID data Commands Data Bytes Function Other Commands Reset Enable Deep Power-down Release Deep Power-down / Read Electronic ID Read SFDP RDSFDP Release read enhanced Read unique ID RUID 5Ah Read SFDP parameter FFh Release from read enhanced 4Bh 4 1+ Read unique ID NOTE: 1. Dual Output data IO0 = (D6, D4, D2, D0) IO1 = (D7, D5, D3, D1) 2. Dual Input Address IO0 = A22, A20, A18, A16, A14, A12, A10, A8 A6, A4, A2, A0, M6, M4, M2, M0 IO1 = A23, A21, A19, A17, A15, A13, A11, A9 A7, A5, A3, A1, M7, M5, M3, M1 3. Security Registers Address: Security Register1: A23-A16=00H, A15-A9=0001000, A8-A0= Byte Address; Security Register2: A23-A16=00H, A15-A9=0010000, A8-A0= Byte Address; Security Register3: A23-A16=00H, A15-A9=0011000, A8-A0= Byte Address; 22 ZD25WD40B 5.2. Write Enable (WREN) The Write Enable (WREN) instruction is for setting Write Enable Latch (WEL) bit. For those instructions like PP,DPP, PE,SE, BE32K,BE, CE, and WRSR,ERSCUR, PRSCUR which are intended to change the device content, should be set every time after the WREN instruction setting the WEL bit. The sequence of issuing WREN instruction is: CS# goes low→ sending WREN instruction code→ CS# goes high. 5.3. Write Disable (WRDI) The Write Disable (WRDI) instruction is for resetting Write Enable Latch (WEL) bit. The sequence of issuing WRDI instruction is: CS# goes low→ sending WRDI instruction code→ CS# goes high. The WEL bit is reset by following situations: - Power-up - Write Disable (WRDI) instructioncompletion - Write Status Register (WRSR) instruction completion - Page Program (PP) instruction completion - Dual Input Page Program (DPP) instructioncompletion - Page Erase (PE) instruction completion - Sector Erase (SE) instruction completion - Block Erase (BE32K,BE) instruction completion - Chip Erase (CE) instruction completion - Erase Security Register (ERSCUR) instruction completion - Program Security Register (PRSCUR) instruction completion - Reset (RST) instruction completion 23 ZD25WD40B Figure 5-3 Write Disable (WRDI) Sequence (Command 04) CS # 0 1 2 3 4 5 6 7 SCLK Command SI 04H SO High-Z 5.4. Write Enable for Volatile Status Register The non-volatile Status Register bits can also be written to as volatile bits. This gives more flexibility to change the system configuration and memory protection schemes quickly without waiting for the typical non-volatile bit write cycles or affecting the endurance of the Status Register non-volatile bits. The Write Enable for Volatile Status Register command must be issued prior to a Write Status Register command. The Write Enable for Volatile Status Register command will not set the Write Enable Latch bit, it is only valid for the Write Status Register command to change the volatile Status Register bit values. The sequence of issuing Write Enable for Volatile Status Register instruction is: CS# goes low→ sending Write Enable for Volatile Status Register instruction code→ CS# goes high. Figure 5-4 Write Enable for Volatile Status Register Sequence (Command 50) CS # 0 1 2 3 4 5 6 7 SCLK Command(50H) SI SO High-Z 24 ZD25WD40B 5.5. Read Status Register (RDSR) The RDSR instruction is for reading Status Register Bits. The Read Status Register can be read at any time (even in program/erase/write status register condition). It is recommended to check the Write in Progress (WIP) bit before sending a new instruction when a program, erase, or write status register operation is in progress. For command code “05H”, the SO will output Status Register bits S7~S0. The command code “35H”, theSO will output Status Register bits S15~S8. The sequence of issuing RDSR instruction is: CS# goes low→ sending RDSR instruction code→ Status Register data out on SO. The SIO[2:1] are "don't care". Figure 5-5 Read Status Register (RDSR) Sequence (Command 05 or 35) CS # 0 SCLK SI SO 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Command 05H or 35H 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 25 ZD25WD40B 5.6.Active Status Interrupt (ASI) To simplify the readout of the WIP bit, the Active Status Interrupt command (25h) may be used. It is then not necessary to continuously read the status register, it is sufficient to monitor the value of the SO line. If the SO line is connected to an interrupt line on the host controller, the host controller may be in sleep mode until the SO line indicates that the device is ready for the next command. The WIP bit can be read at any time, including during an internally self-timed program or erase operation. To enable the Active Status Interrupt command, the CS pin must first be asserted and the opcode of 25h must be clocked into the device. For SPI Mode0 and Mode3, at least one dummy bit has to be clocked into the device after the last bit of the opcode has been clocked in. (In most cases, this is most easily done by sending a dummy byte to the device.) The value of the SI line after the opcode is clocked in is of no significance to the operation. The value of WIP is then output on the SO line, and is continuously updated by the device for as long as the CS pin remains asserted. Additional clocks on the SCLK pin are not required. For SPI Mode3, SCLK must keep low. If the WIP bit changes from 1 to 0 while the CS pin is asserted, the SO line will change from 1 to 0. (The WIP bit cannot change from 0 to 1 during an operation, so if the SO line already is 0, it will not change.) Deasserting the CS pin will terminate the Active Status Interrupt operation and put the SO pin into a high-impedance state. The CS pin can be deasserted at any time and does not require that a full byte of data be read. The sequence of issuing ASI instruction is: CS# goes low→ sending ASI instruction code→ WIP data out on SO. Figure 5-6 Active Status Interrupt (ASI) Sequence (Command 25) CS # 0 1 2 3 4 5 6 7 8 SCLK Command 25 H SI SO High-z RDY / BSY High-z 5.7. Write Status Register (WRSR) The Write Status Register (WRSR) command allows new values to be written to the Status Register. Before it can be accepted, a Write Enable (WREN) command must previously have been executed. After the Write Enable (WREN) command has been decoded and executed, the device sets the Write Enable Latch (WEL). The Write Status Register (WRSR) command has no effect on S15, S10, S1 and S0 of the Status Register. CS# must be driven high after the eighth or sixteen bit of the data byte has been latched in. If not, the Write Status Register (WRSR) command is not executed. If CS# is driven high after eighth bit of the data byte, the CMP and SRP1 bits will not change. As soon as CS# is driven high, the self-timed Write Status Register cycle (whose duration is tW) is initiated. While the Write Status Register cycle is in progress, the Status Register may still be read to check the value of the Write In Progress (WIP) bit. The Write In Progress (WIP) bit is 1 during the self-timed Write Status Register cycle, and is 0 when it is completed. When the cycle is 26 ZD25WD40B completed, the Write Enable Latch (WEL) is reset. The Write Status Register (WRSR) command allows the user to change the values of the Block Protect (BP4, BP3, BP2, BP1, and BP0) bits, to define the size of the area that is to be treated as read-only, as defined in Table1. The Write Status Register (WRSR) command also allows the user to set or reset the Status Register Protect (SRP1 and SRP0) bits in accordance with the Write Protect (WP#) signal. The Status Register Protect (SRP1 and SRP0) bits and Write Protect (WP#) signal allow the device to be put in the Hardware Protected Mode. The Write Status Register (WRSR) command is not executed once the Hardware Protected Mode is entered. The sequence of issuing WRSR instruction is: CS# goes low→ sending WRSR instruction code→ Status Register data on SI→CS# goes high. The CS# must go high exactly at the 8 bits or 16 bits data boundary; otherwise, the instruction will be rejected and not executed. The self-timed Write Status Register cycle time (tW) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress (WIP) bit still can be checked during the Write Status Register cycle is in progress. The WIP sets 1 during the tW timing, and sets 0 when Write Status Register Cycle is completed, and the Write Enable Latch (WEL) bit is reset. 5.8. Read Data Bytes (READ) The read instruction is for reading data out. The address is latched on rising edge of SCLK, and data shifts out on the falling edge of SCLK at a maximum frequency fR. The first address byte can be at any location. The address is automatically increased to the next higher address after each byte data is shifted out, so the whole memory can be read out at a single READ instruction. The address counter rolls over to 0 when the highest address has been reached. 27 ZD25WD40B The sequence of issuing READ instruction is: CS# goes low→ sending READ instruction code→ 3-byte address on SI→ data out on SO→ to end READ operation can use CS# to high at any time during data out. Figure 5-8 Read Data Bytes (READ) Sequence (Command 03) CS# SCLK 0 1 2 3 4 5 6 7 8 SO 03H High - Z 28 29 30 31 32 33 34 35 36 37 38 39 24 -bit address Command SI 9 10 23 22 21 3 2 1 0 Data Out1 MSB MSB 7 6 5 4 3 2 Data Out2 1 0 5.9. Read Data Bytes at Higher Speed(FAST_READ) The FAST_READ instruction is for quickly reading data out. The address is latched on rising edge of SCLK, and data of each bit shifts out on the falling edge of SCLK at a maximum frequency fC. The first address byte can be at any location. The address is automatically increased to the next higher address after each byte data is shifted out, so the whole memory can be read out at a single FAST_READ instruction. The address counter rolls over to 0 when the highest address has been reached. The sequence of issuing FAST_READ instruction is: CS# goes low→ sending FAST_READ instruction code→3-byte address on SI→ 1-dummy byte address on SI→data out on SO→ to end FAST_READ operation can use CS# to high at any time during data out. While Program/Erase/Write Status Register cycle is in progress, FAST_READ instruction is rejected without any impact on the Program/Erase/Write Status Register current cycle. Figure 5-9 Read at Higher Speed (FAST_READ) Sequence (Command 0B) 28 ZD25WD40B CS# 0 1 SCLK 2 5 4 3 6 7 8 9 10 Command SI 28 29 30 31 24- bit address 0BH 23 22 21 3 1 2 0 SO CS# 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 SCLK Dummy Byte SI 7 6 5 4 3 2 1 0 Data Out1 SO 7 6 5 MSB 4 3 Data Out2 2 1 0 7 6 5 MSB 29 ZD25WD40B 5.10. Dual Read Mode (DREAD) The DREAD instruction enable double throughput of Serial NOR Flash in read mode. The address is latched on rising edge of SCLK, and data of every two bits (interleave on 2 I/O pins) shift out on the falling edge of SCLK at a maximum frequency fT. The first address byte can be at any location. The address is automatically increased to the next higher address after each byte data is shifted out, so the whole memory can be read out at a single DREAD instruction. The address counter rolls over to 0 when the highest address has been reached. Once writing DREAD instruction, the following data out will perform as 2-bit instead of previous 1-bit. The sequence of issuing DREAD instruction is: CS# goes low → sending DREAD instruction → 3-byte address on SI → 8-bit dummy cycle → data out interleave on SIO1 & SIO0 → to end DREAD operation can use CS# to high at any time during data out. While Program/Erase/Write Status Register cycle is in progress, DREAD instruction is rejected without any impact on the Program/Erase/Write Status Register current cycle. Figure 5-10 Dual Read Mode Sequence (Command 3B) CS# 0 SCLK 1 2 3 4 5 6 7 8 9 10 Command SI 28 29 30 31 24- bit address 3BH 23 22 21 3 2 1 0 SO CS# 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 SCLK Dummy Clocks SI SO 6 4 2 0 6 4 2 0 7 5 3 1 7 5 3 1 MSB MSB 30 ZD25WD40B 5.11. 2 X IO Read Mode (2READ) The 2READ instruction enables Double Transfer Rate of Serial NOR Flash in read mode. The address is latched on rising edge of SCLK, and data of every two bits (interleave on 2 I/O pins) shift out on the falling edge of SCLK at a maximum frequency fT. The first address byte can be at any location. The address is automatically increased to the next higher address after each byte data is shifted out, so the whole memory can be read out at a single 2READ instruction. The address counter rolls over to 0 when the highest address has been reached. Once writing 2READ instruction, the following address/dummy/data out will perform as 2-bit instead of previous 1-bit. The sequence of issuing 2READ instruction is: CS# goes low→ sending 2READ instruction→ 24-bit address interleave on SIO1 & SIO0→ 8-bit dummy cycle on SIO1 & SIO0→ data out interleave on SIO1 & SIO0→ to end 2READ operation can use CS# to high at any time during data out. While Program/Erase/Write Status Register cycle is in progress, 2READ instruction is rejected without any impact on the Program/Erase/Write Status Register current cycle. Figure 5-11 2 X IO Read Mode Sequence (Command BB M5-4 ≠ (1,0)) CS# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 6 4 2 0 6 4 2 0 6 4 2 0 6 4 2 7 5 3 1 7 5 3 1 7 5 3 1 7 5 3 1 SCLK Command SI BBH SO A23-16 A15-8 A7-0 0 M7-0 CS# 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 SCLK SI 6 4 2 0 6 4 2 0 6 4 2 0 6 4 2 0 SO 7 5 3 1 7 5 3 1 7 5 3 1 7 5 3 1 Byte1 Byte2 Byte3 Byte4 31 ZD25WD40B 5.12. 2 X IO Read Performer Enhance Mode “BBh” command supports 2 X IO Performance Enhance Mode which can further reduce command overhead through setting the “Continuous Read Mode” bits (M7-0) after the input 3-byte address (A23-A0). If the “Continuous Read Mode” bits (M5-4) = (1, 0), then the next 2 X IO Read command (after CS# is raised and then lowered) does not require the BBH command code. If the “Continuous Read Mode” bits (M5-4) do not equal (1, 0), the next command requires the first BBH command code, thus returning to normal operation. A “Continuous Read Mode” Reset command can be used to reset (M5-4) before issuing normal command. Figure 5-12 2 X IO Read Performance Enhance Mode ( M5-4 = (1,0) ) CS# 0 1 2 5 6 4 3 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 6 4 2 0 6 4 2 0 6 4 2 0 6 4 2 0 7 5 3 1 7 5 3 1 7 5 3 1 7 5 3 1 SCLK Command BBH SI SO A23-16 CS# A15-8 A7-0 M7-0 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 SCLK SI SO 6 4 2 0 6 4 2 0 6 7 5 3 1 7 5 3 1 7 Byte1 Byte2 2 0 6 4 2 0 5 3 1 7 5 3 1 4 Byte4 Byte3 CS# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 6 4 2 0 6 4 2 0 6 4 2 0 6 4 2 0 6 4 2 0 6 4 2 0 7 5 3 1 7 5 3 1 7 5 3 1 7 5 3 1 7 5 3 1 7 5 3 1 SCLK SI SO A23-16 A15-8 A7-0 M7-0 Byte1 Byte2 Note: 2 X IO Read Performance Enhance Mode, if M5-4 = 1, 0. If not using performance enhance recommend to set M5-4 ≠ 1, 0. 32 ZD25WD40B 5.13. Page Erase (PE) The Page Erase (PE) instruction is for erasing the data of the chosen Page to be "1". A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL) bit before sending the Page Erase (PE). To perform a Page Erase with the standard page size (256 bytes), an opcode of 81h must be clocked into the device followed by three address bytes comprised of 2 page address bytes that specify the page in the main memory to be erased, and 1 dummy byte. The sequence of issuing PE instruction is: CS# goes low → sending PE instruction code→ 3-byte address on SI → CS# goes high Figure 5-13 Page Erase Sequence (Command 81) CS # 0 1 2 3 4 5 6 7 8 9 29 30 31 SCLK Command SI 81H 24- bit address 23 22 2 1 0 MSB 5.14. Sector Erase (SE) The Sector Erase (SE) instruction is for erasing the data of the chosen sector to be "1". A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL) bit before sending the Sector Erase (SE). Any address of the sector is a valid address for Sector Erase (SE) instruction. The CS# must go high exactly at the byte boundary (the latest eighth of address byte been latched-in); otherwise, the instruction will be rejected and not executed. Address bits [Am-A12] (Am is the most significant address) select the sector address. The sequence of issuing SE instruction is: CS# goes low → sending SE instruction code→ 3-byte address on SI → CS# goes high. The SIO[2:1] are don't care. The self-timed Sector Erase Cycle time (tSE) is initiated as soon as Chip Select (CS#) goes high. The Write in progress (WIP) bit still can be check out during the Sector Erase cycle is in progress. The WIP sets 1 during the tSE timing, and sets 0 when Sector Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the sector is protected by BP4, BP3, BP2, BP1, BP0 bits, the Sector Erase (SE) instruction will not be executed on the sector. 33 ZD25WD40B 5.15. Block Erase (BE32K) The Block Erase (BE32K) instruction is for erasing the data of the chosen block to be "1". The instruction is used for 32K-byte block erase operation. A Write Enable (WREN) instruction must be executed to set the Write Enable Latch (WEL) bit before sending the Block Erase (BE32K). Any address of the block is a valid address for Block Erase (BE32K) instruction. The CS# must go high exactly at the byte boundary (the least significant bit of address byte has been latched-in); otherwise, the instruction will be rejected and not executed. The sequence of issuing BE32K instruction is: CS# goes low → sending BE32K instruction code → 3-byte address on SI → CS# goes high. The SIO[2:1] are don't care. The self-timed Block Erase Cycle time (tBE32K) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress (WIP) bit still can be checked while the Block Erase cycle is in progress. The WIP sets during the tBE32K timing, and clears when Block Erase Cycle is completed, and the Write Enable Latch (WEL) bit is cleared. If the block is protected by BP4, BP3, BP2, BP1,BP0 bits, the array data will be protected (no change) and the WELbit still be reset. 34 ZD25WD40B Figure 5-15 Block Erase 32K(BE32K) Sequence (Command 52 ) CS # 0 1 2 4 3 5 6 7 8 29 30 31 9 SCLK Command SI 24- bit address 52H 23 22 2 1 0 MSB 5.16. Block Erase (BE) The Block Erase (BE) instruction is for erasing the data of the chosen block to be "1". The instruction is used for 64K-byte block erase operation. A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL) bit before sending the Block Erase (BE). Any address of the block is a valid address for Block Erase (BE) instruction. The CS# must go high exactly at the byte boundary (the latest eighth of address byte been latched-in); otherwise, the instruction will be rejected and not executed. The sequence of issuing BE instruction is: CS# goes low→ sending BE instruction code→ 3-byte address on SI→CS# goes high. The SIO[2:1] are "don't care". The self-timed Block Erase Cycle time (tBE) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress (WIP) bit still can be checked during the Block Erase cycle is in progress. The WIP sets 1 during the tBE timing, and sets 0 when Block Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the block is protected by BP4, BP3, BP2, BP1, BP0 bits, the Block Erase (BE) instruction will not be executed on the block. Figure 5-16 Block Erase (BE) Sequence (Command D8) CS # SCLK 0 1 2 3 4 5 6 7 8 9 Command SI D8H 29 30 31 24- bit address 23 22 2 1 0 MSB 5.17. Chip Erase (CE) The Chip Erase (CE) instruction is for erasing the data of the whole chip to be "1". A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL) bit before sending the Chip Erase (CE). The CS# must go high exactly at the byte boundary (the latest eighth of address byte been latched-in); otherwise, the instruction will be rejected and not executed. The sequence of issuing CE instruction is: CS# goes low→ sending CE instruction code→ CS# goes high. The SIO[2:1] are "don't care". The self-timed Chip Erase Cycle time (tCE) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress (WIP) bit still can be checked during the Chip Erase cycle is in progress. The WIP sets 1 during the tCE timing, and sets 0 when Chip Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If 35 ZD25WD40B the chip is protected by BP4,BP3, BP2, BP1, BP0 bits, the Chip Erase (CE) instruction will not be executed. It will be only executed when all Block Protect(BP4, BP3, BP2, BP1, BP0) are set to “None protected”. Figure 5-17 Chip Erase (CE) Sequence (Command 60 or C7) CS# SCLK 0 1 2 3 4 5 6 7 Command SI 60H or C7H 5.18. Page Program (PP) The Page Program (PP) instruction is for programming the memory to be "0". A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL) bit before sending the Page Program (PP). The device programs only the last 256 data bytes sent to the device. If the entire 256 data bytes are going to be programmed, A7-A0 (The eight least significant address bits) should be set to 0. If the eight least significant address bits (A7-A0) are not all 0, all transmitted data going beyond the end of the current page are programmed from the start address of the same page (from the address A7-A0 are all 0). If more than 256 bytes are sent to the device, the data of the last 256-byte is programmed at the request page and previous data will be disregarded. If less than 256 bytes are sent to the device, the data is programmed at the requested address of the page without effect on other address of the same page. The sequence of issuing PP instruction is: CS# goes low→ sending PP instruction code→ 3-byte address on SI→ at least 1-byte on data on SI→ CS# goes high. The CS# must be kept low during the whole Page Program cycle; The CS# must go high exactly at the byte boundary (the latest eighth bit of data being latched in), otherwise the instruction will be rejected and will not be executed. The self-timed Page Program Cycle time (tPP) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress (WIP) bit still can be checked during the Page Program cycle is in progress. The WIP sets 1 during the tPP timing, and sets 0 when Page Program Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the page is protected by BP4, BP3, BP2, BP1, BP0 bits, the Page Program (PP) instruction will not be executed. The SIO[2:1] are "don't care". 36 ZD25WD40B Figure 5-18 Page Program (PP) Sequence (Command 02) CS# 0 1 3 4 2 5 6 7 8 9 10 28 29 30 31 32 33 34 35 36 37 38 39 SCLK Command Bit address 02H SI(IO0) 3 23 22 21 2 7 0 2072 2073 2074 2075 2076 2077 2078 2079 CS# 1 0 Byte1 6 5 4 3 2 1 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 SCLK Byte2 SI(IO0) 7 6 5 4 3 2 1 Byte3 6 5 4 3 2 1 0 7 Byte256 7 0 6 5 4 3 2 1 0 5.19. Dual Input Page Program (DPP) The Dual Input Page Program (DPP) instruction is similar to the standard Page Program command and can be used to program anywhere from a single byte of data up to 256 bytes of data into previously erased memory locations. The Dual-Input Page Program command allows two bits of data to be clocked into the device on every clock cycle rather than justone. A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL) bit before sending the Dual Input Page Program (DPP). The Dual Input Page Programming takes two pins: SIO0, SIO1 as data input, which can improve programmer performance and the effectiveness of application. The other function descriptions are as same as standard page program. The sequence of issuing DPP instruction is: CS# goes low→ sending DPP instruction code→ 3-byte address on SI→at least 1-byte on data on SIO[1:0]→ CS# goes high. Figure 5-19 Page Program (DPP) Sequence (Command A2) CS# 0 1 SCLK 2 3 4 5 6 7 28 29 30 31 32 33 34 35 36 37 38 39 9 10 24-bitaddress Command A2H SI(IO0) 8 3 2 1 23 22 21 Byte1 0 Byte2 6 4 2 0 6 4 2 0 7 5 3 1 7 5 3 1 MSB SO(IO1) 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 SCLK Byte3 1048 1049 1050 1051 1052 1053 1054 1055 CS# Byte4 SI(IO0) Byte5 Byte6 6 4 2 0 6 4 2 0 6 4 2 0 6 4 2 0 6 4 2 SO(IO1) 7 7 5 3 1 5 3 1 7 5 3 1 7 5 3 1 7 5 3 1 Byte255 Byte256 0 6 7 4 2 0 5 3 1 37 ZD25WD40B 5.20. Erase Security Registers (ERSCUR) The product provides three512-byte Security Registers which can be erased and programmed individually. These registers may be used by the system manufacturers to store security and other important information separately from the main memory array. The Erase Security Registers command is similar to Sector/Block Erase command, the instruction is used for 512-byte erase operation. A Write Enable (WREN) command must previously have been executed to set the Write Enable Latch (WEL) bit. The Erase Security Registers command sequence: CS# goes low → sending ERSCUR instruction → sending 24 bit address → CS# goes high. CS# must be driven high after the eighth bit of the command code has been latched in; otherwise the Erase Security Registers command is not executed. As soon as CS# is driven high, the self-timed Erase Security Registers cycle (whose duration is tSE) is initiated. While the Erase Security Registers cycle is in progress, the Status Register may be read to check the value of the Write in Progress (WIP) bit. The Write in Progress (WIP) bit is 1 during the self-timed Erase Security Registers cycle, and is 0 when it is completed. The Security Registers Lock Bit (LB3-1) in the Status Register can be used to OTP protect the security registers. Once the LB bit is set to 1, the Security Registers will be permanently locked; the Erase Security Registers command will Address A23-16 A15-12 A11-9 A8-0 Security Register #1 00H 0001 000 Don’t care Security Register #2 00H 0010 000 Don’t care Security Register #3 00H 0011 000 Don’t care Figure 5-20 Erase Security Registers (ERSCUR) Sequence (Command 44) CS# SCLK 0 1 2 3 4 5 6 7 8 9 Command SI 44H 29 30 31 24 bit address 23 22 2 1 0 38 ZD25WD40B 5.21. Program Security Registers (PRSCUR) The Program Security Registers command is similar to the Page Program command. It allows from 1 to 512bytes Security Registers data to be programmed. A Write Enable (WREN) command must previously have been executed to set the Write Enable Latch (WEL) bit before sending the Program Security Registers command. The Program Security Registers command sequence: CS# goes low → sending PRSCUR instruction → sending 24 bit address → sending at least one byte data → CS# goes high. As soon as CS# is driven high, the self-timed Program Security Registers cycle (whose duration is tPP) is initiated. While the Program Security Registers cycle is in progress, the Status Register may be read to check the value of the Write in Progress (WIP) bit. The Write in Progress (WIP) bit is 1 during the self-timed Program Security Registers cycle, and is 0 when it is completed. If the Security Registers Lock Bit (LB3-1) is set to 1, the Security Registers will be permanently locked. Program Security Registers command will be ignored. Address A23-16 A15-12 A5-9 A8-0 Security Register #1 00H 0001 000 Byte Address Security Register #2 00H 0010 000 Byte Address Security Register #3 00H 0011 000 Byte Address Figure 5-21 Program Security Registers (PRSCUR) Sequence (Command 42) CS# 0 1 2 3 4 5 6 7 8 9 10 28 29 30 31 32 33 34 35 36 37 38 39 SCLK Bit address 23 22 21 3 2 42H SI(IO0) CS# 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 1 0 Byte1 6 5 4 3 2 1 7 0 2072 2073 2074 2075 2076 2077 2078 2079 Command SCLK SI(IO0) 7 6 5 Byte2 4 3 2 1 0 7 6 Byte3 5 4 3 2 1 Byte512 0 7 6 5 4 3 2 1 0 39 ZD25WD40B 5.22. Read Security Registers (RDSCUR) The Read Security Registers command is similar to Fast Read command. The command is followed by a 3-byte address (A23-A0) and a dummy byte, each bit being latched-in during the rising edge of SCLK. Then the memory content, at that address, is shifted out on SO, each bit being shifted out, at a Max frequency fC, during the falling edge of SCLK. The first byte addressed can be at any location. The address is automatically incremented to the next higher address after each byte of data is shifted out. Once the A8-A0 address reaches the last byte of the register (Byte 1FFH), it will reset to 000H, the command is completed by driving CS# high. The sequence of issuing RDSCUR instruction is : CS# goes low → sending RDSCUR instruction → sending 24 bit address → 8 bit dummy byte → Security Register data out on SO → CS# goes high. Address A23-16 A15-12 A11-9 A8-0 Security Register #1 00H 0001 000 Byte Address Security Register #2 00H 0010 000 Byte Address Security Register #3 00H 0011 000 Byte Address Figure 5-22 Read Security Registers (RDSCUR) Sequence (Command 48) CS# 0 SCLK 1 2 3 4 5 6 7 8 9 10 24 bit address Command SI 28 29 30 31 23 22 21 48H 3 2 1 0 High -Z SO CS# SCLK 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 Dummy Byte SI SO 7 6 5 4 3 2 1 0 Data Out2 Data Out1 7 MSB 6 5 4 3 2 1 0 7 6 5 MSB 40 ZD25WD40B 5.23. Deep Power-down (DP) The Deep Power-down (DP) instruction is for setting the device on the minimizing the power consumption (to entering the Deep Power-down mode), the standby current is reduced from ISB1 to ISB2). The Deep Power-down mode requires the Deep Power-down (DP) instruction to enter, during the Deep Power-down mode, the device is not active and all Write/Program/Erase instruction are ignored. When CS# goes high, it's only in standby mode not deep power-down mode. It's different from Standby mode. The sequence of issuing DP instruction is: CS# goes low→ sending DP instruction code→ CS# goes high. Once the DP instruction is set, all instruction will be ignored except the Release from Deep Power-down mode (RDP) and Read Electronic Signature (RES) instruction. (RES instruction to allow the ID been read out). When Power- down, the deep power-down mode automatically stops, and when power-up, the device automatically is in standby mode. For RDP instruction the CS# musOnce the DP instruction is set, all instruction will be ignored except the Release from Deep Power-down mode (RDP) and Read Electronic Signature (RES) instruction. (RES instruction to allow the ID been read out). t go high exactly at the byte boundary (the latest eighth bit of instruction code been latched-in); otherwise, the instruction will not be executed. As soon as Chip Select (CS#) goes high, a delay of tDP is required before entering the Deep Power-down mode and reducing the current to ISB2. Figure 5-23 Deep Power-down (DP) Sequence (Command B9) CS # tDP SCLK Command SI Standby mode Deep power-down mode B9H 41 ZD25WD40B 5.24. Release form Deep Power-Down (RDP), Read Electronic Signature (RES) The Release from Deep Power-down (RDP) instruction is terminated by driving Chip Select (CS#) High. When Chip Select (CS#) is driven high, the device is put in the Stand-by Power mode. If the device was not previously in the Deep Power-down mode, the transition to the Stand-by Power mode is immediate. If the device was previously in the Deep Power-down mode, though, the transition to the Stand-by Power mode is delayed by tRES2, and Chip Select (CS#) must remain High for at least tRES2(max). Once in the Stand-by Power mode, the device waits to be selected, so that it can receive, decode and execute instructions. RES instruction is for reading out the old style of 8-bit Electronic Signature, whose values are shown as table of ID Definitions. This is not the same as RDID instruction. It is not recommended to use for new design. For new design, please use RDID instruction.Even in Deep power-down mode, the RDP and RES are also allowed to be executed, only except the device is in progress of program/erase/write cycle; there's no effect on the current program/erase/ write cycle in progress. The RES instruction is ended by CS# goes high after the ID been read out at least once. The ID outputs repeatedly if continuously send the additional clock cycles on SCLK while CS# is at low. If the device was not previously in Deep Power-down mode, the device transition to standby mode is immediate. If the device was previously in Deep Power-down mode, there's a delay of tRES2 to transit to standby mode, and CS# must remain to high at least tRES2 (max). Once in the standby mode, the device waits to be selected, so it can be receive, decode, and execute instruction. The RDP instruction is for releasing from Deep Power-Down Mode. Figure 5-24a Read Electronic Signature (RES) Sequence (Command AB) CS# SCLK 0 1 2 4 5 6 7 8 29 30 31 32 33 34 35 36 37 38 9 tRES2 3 Dummy Bytes Command SI SO 3 ABH 23 22 2 1 0 MSB High-Z 7 MSB Electronic Signatur eOut 6 5 4 3 2 1 0 Deep Power- down mode Standby Mode Figure 5-24b Release from Deep Power-down (RDP) Sequence (Command AB) CS# SCLK 0 1 2 3 4 5 6 7 tRES1 Command SI ABH Deep Power - down mode Stand-by mode 42 ZD25WD40B 5.25. Read Electronic Manufacturer ID & Device ID (REMS) The REMS instruction returns both the JEDEC assigned manufacturer ID and the device ID. The Device ID values are listed in "Table ID Definitions". The REMS instruction is initiated by driving the CS# pin low and sending the instruction code "90h" followed by two dummy bytes and one address byte (A7~A0). After which the manufacturer ID for Zetta and the device ID are shifted out on the falling edge of SCLK with the most significant bit (MSB) first. If the least significant bit (LSB) of the address byte is 0b, the manufacturer ID will be output first, followed by the device ID. If the least significant bit (LSB) of the address byte is 1b, then the device ID will be output first, followed by the manufacturer ID. While CS# is low, the manufacturer and device IDs can be read continuously, alternating from one to the other. The instruction is completed by driving CS# high. Figure 5-25 Read Electronic Manufacturer & Device ID (REMS) Sequence (Command 90) CS# 0 1 2 3 4 5 6 7 8 9 10 28 29 30 31 SCLK 2dummy byte and 1 address byte 3 2 23 22 21 Command SI 90H SO 1 0 High-Z CS# SCLK SI SO Device ID Manufacture ID 7 6 MSB 5 4 3 2 1 0 7 6 5 4 3 2 1 0 MSB 43 ZD25WD40B 5.26. Dual I/O Read Electronic Manufacturer ID & Device ID (DREMS) The DREMS instruction is similar to the REMS command and returns the JEDEC assigned manufacturer ID which takes two pins: SIO0, SIO1 as address input and ID output I/O The instruction is initiated by driving the CS# pin low and shift the instruction code "92h" followed by two dummy bytes and one bytes address (A7~A0). After which, the Manufacturer ID for Zetta and the Device ID are shifted out on the falling edge of SCLK with most significant bit (MSB) first. If the least significant bit (LSB) of the one-byte address is initially set to 1b, then the device ID will be read first and then followed by the Manufacturer ID. The Manufacturer and Device IDs can be read continuously, alternating from one to the other. The instruction is completed by driving CS# high. Figure 5-26 DUAL I/O Read Electronic Manufacturer & Device ID (DREMS) Sequence (Command 92) 44 ZD25WD40B 5.27. Read Identification (RDID) The RDID instruction is for reading the manufacturer ID of 1-byte and followed by Device ID of 2-byte. The Zetta Manufacturer ID and Device ID are list as “as "Table . ID Definitions”. The sequence of issuing RDID instruction is: CS# goes low→ sending RDID instruction code →24-bits ID data out on SO→ to end RDID operation can use CS# to high at any time during data out. While Program/Erase operation is in progress, it will not decode the RDID instruction, so there's no effect on the cycle of program/erase operation which is currently in progress. When CS# goes high, the device is at standby stage. Figure 5-27 Read Identification(RDID) Sequence (Command 9F) CS# 0 SCLK 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 9FH SI SO 7 MSB CS# 6 Manufacturer ID 5 4 3 2 1 0 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 SCLK SI MemoryType ID 7 6 5 4 3 2 1 MSB SO Table ID Definitions ZD25WD40B RDID manufacturer ID command BA 0 7 6 MSB Capacity ID 5 4 3 2 1 memory type 60 RES electronic ID command 12 0 memory density 13 REMS manufacturer ID device ID command BA 12 5.28. Program/Erase Suspend/Resume The Suspend instruction interrupts a Page Program, Sector Erase, or Block Erase operation to allow access to the memory array. After the program or erase operation has entered the suspended state, the memory array can be read except for the page being programmed or the sector or block being erased. Readable Area of Memory While a Program or Erase Operation is Suspended Suspended Operation Readable Region of Memory Array Page Program All but the Page being programmed Page Erase All but the Page being erased Sector Erase(4KB) All but the 4KB Sector being erased Block Erase(32KB) Block Erase(64KB) All but the 32KB Block being erased All but the 64KB Block being erased 45 ZD25WD40B When the Serial NOR Flash receives the Suspend instruction, there is a latency of tPSL or tESL before the Write Enable Latch (WEL) bit clears to “0” and the SUS2 or SUS1 sets to “1”, after which the device is ready to accept one of the commands listed in "Table Acceptable Commands During Program/Erase Suspend after tPSL/tESL" (e.g. FAST READ). Refer to " AC Characteristics" for tPSL and tESL timings. "Table Acceptable Commands During Suspend (tPSL/tESL not required)" lists the commands for which the tPSL and tESL latencies do not apply. For example, RDSR, RDSCUR, RSTEN, and RST can be issued at any time after the Suspend instruction. Status Register bit 15 (SUS2) and bit 10 (SUS1) can be read to check the suspend status. The SUS2 (Program Suspend Bit) sets to “1” when a program operation is suspended. The SUS1 (Erase Suspend Bit) sets to “1” when an erase operation is suspended. The SUS2 or SUS1 clears to “0” when the program or erase operation is resumed. Acceptable Commands During Program/Erase Suspend after tPSL/tESL Command name Command Code Suspend Type Program Suspend Erase Suspend READ 03H • • FAST READ 0BH • • DREAD 3BH • • 2READ BBH • • RDSFDP 5AH • • RDID 9FH • • REMS 90H • • DREMS 92H • • RDSCUR 48H • • SBL 77H • • WREN 06H • RESUME 7AH OR 30H • • PP 02H • DPP A2H • Acceptable Commands During Suspend(tPSL/tESL not required) Command name WRDI RDSR RDSR2 ASI RES RSTEN RST NOP Command Code 04H 05H 35H 25H ABH 66H 99H 00H Suspend Type Program Suspend Erase Suspend • • • • • • • • • • • • • • • • 46 ZD25WD40B Figure 5-28 Resume to Suspend Latency tPRS / tERS Resume Command Suspend Command CS# tPRS: Program Resume to another Suspend tERS: Erase Resume to another Suspend 5.29. Erase Suspend to Program The “Erase Suspend to Program” feature allows Page Programming while an erase operation is suspended. Page Programming is permitted in any unprotected memory except within the sector of a suspended Sector Erase operation or within the block of a suspended Block Erase operation. The Write Enable (WREN) instruction must be issued before any Page Program instruction. A Page Program operation initiated within a suspended erase cannot itself be suspended and must be allowed to finish before the suspended erase can be resumed. The Status Register can be polled to determine the status of the Page Program operation. The WEL and WIP bits of the Status Register will remain “1” while the Page Program operation is in progress and will both clear to “0” when the Page Program operation completes. Figure 5-29 Suspend to Read/Program Latency Resume Command tPSL / tESL Read/Program command CS# tPSL: Program latency tESL: Erase latency Notes: 1. Please note that Program only available after the Erase-Suspend operation 2. To check suspend ready information, please read status register bit15 (SUS2) and bit10(SUS1) 5.30. Program Resume and Erase Resume The Resume instruction resumes a suspended Page Program, Sector Erase, or Block Erase operation. Before issuing the Resume instruction to restart a suspended erase operation, make sure that there is no Page Program operation in progress. Immediately after the Serial NOR Flash receives the Resume instruction, the WEL and WIP bits are set to “1” and the SUS2 or SUS1 is cleared to “0”. The program or erase operation will continue until finished ("Resume to Read Latency") or until another Suspend instruction is received. A resume-to-suspend latency of tPRS or tERS must be observed before issuing another Suspend instruction ("Resume to Suspend Latency"). Figure 5-30 Resume to Read Latency Resume Command tSE /tBE / tPP Read Command CS# 47 ZD25WD40B 5.31. No Operation (NOP) The "No Operation" command is only able to terminate the Reset Enable (RSTEN) command and will not affect any other command. The SIO[2:1] are don't care. 5.32. Software Reset (RSTEN/RST) The Software Reset operation combines two instructions: Reset-Enable (RSTEN) command and Reset (RST) command. It returns the device to a standby mode. All the volatile bits and settings will be cleared then, which makes the device return to the default status as power on. To execute Reset command (RST), the Reset-Enable (RSTEN) command must be executed first to perform the Reset operation. If there is any other command to interrupt after the Reset-Enable command, the Reset-Enable will be invalid. The SIO[2:1] are "don't care". If the Reset command is executed during program or erase operation, the operation will be disabled, the data under processing could be damaged or lost. Figure 5-32a Software Reset Recovery CS# 99H 66H tReady Mode Stand-by Mode Figure 5-32b Reset Sequence CS# 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 SCLK Command SI 66H Command 99H SO 48 ZD25WD40B 5.33. Read Unique ID (RUID) The Read Unique ID command accesses a factory-set read-only 128bit number that is unique to each ZD25Dxx device. The Unique ID can be used in conjunction with user software methods to help prevent copying or cloning of a system. The Read Unique ID command sequence: CS# goes low → sending Read Unique ID command →Dummy Byte1 →Dummy Byte2 →Dummy Byte3 → Dummy Byte4 → 128bit Unique ID Out → CS# goes high. The command sequence is show below. Figure 5-33 Read Unique ID (RUID) Sequence (Command 4B) CS# 0 1 2 3 4 5 6 7 8 9 10 28 29 30 31 SCLK 3 bytes dummy Command SI SO 4BH High-Z CS# 32 33 34 35 36 37 38 39 40 41 42 43 164 165 166 SCLK Dummy Byte SI 128 bit unique serial number SO 127 126 125 124 MSB 3 2 1 0 49 ZD25WD40B 5.34. Read SFDP Mode (RDSFDP) The Serial Flash Discoverable Parameter (SFDP) standard provides a consistent method of describing the functional and feature capabilities of serial flash devices in a standard set of internal parameter tables. These parameter tables can be interrogated by host system software to enable adjustments needed to accommodate divergent features from multiple vendors. The concept is similar to the one found in the Introduction of JEDEC Standard, JESD68 on CFI. The sequence of issuing RDSFDP instruction is same as FAST_READ: CS# goes low→ send RDSFDP instruction (5Ah)→send 3 address bytes on SI pin→ send 1 dummy byte on SI pin→ read SFDP code on SO→ to end RDSFDP operation can use CS# to high at any time during data out. The lower byte (A7~A0) of the address is the valid address which is corresponded to the Add in the Figure 5-42. SFDP is a JEDEC Standard, JESD216B. Figure 5-34 Read Serial Flash Discoverable Parameter(RDSFDP) Sequence CS# 0 1 2 3 4 5 6 7 8 9 10 28 29 30 31 SCLK Command SI 5AH SO 3 2 1 0 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 SCLK SI 23 22 21 High-Z SO CS# 24-bit address Command 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 50 ZD25WD40B Figure 5-35 Serial Flash Discoverable Parameter (SFDP) Table Table Signature and Parameter Identification Data Values Description Data Data 07:00 53H 53H 01H 15:08 46H 46H 02H 23:16 44H 44H 03H 31:24 50H 50H Start from 00H 04H 07:00 06H 06H SFDP Major Revision Number Start from 01H 05H 15:08 01H 01H Number of Parameters Headers Start from 00H 06H 23:16 01H 01H 07H 31:24 FFH FFH 08H 07:00 00H 00H Start from 0x00H 09H 15:08 06H 06H Start from 0x01H 0AH 23:16 01H 01H 0BH 31:24 09H 09H 0CH 07:00 30H 30H 0DH 15:08 00H 00H 0EH 23:16 00H 00H 0FH 31:24 FFH FFH 10H 07:00 BAH BAH Start from 0x00H 11H 15:08 00H 00H Start from 0x01H 12H 23:16 01H 01H 13H 31:24 03H 03H SFDP Signature SFDP Minor Revision Number Unused Comment Fixed:50444653H Contains 0xFFH and can never be Add(H) DW Add (Byte) (Bit) 00H changed ID number (JEDEC) 00H: It indicates a JEDEC specified header Parameter Table Minor Revision Number Parameter Table Major Revision Number Parameter Table Length (in double word) Parameter Table Pointer (PTP) How many DWORDs in the Parameter table First address of JEDEC Flash Parameter table Unused Contains 0xFFH and can never be changed ID Number It is indicates Zetta (ZettaDevice Manufacturer ID) manufacturer ID Parameter Table Minor Revision Number Parameter Table Major Revision Number Parameter Table Length How many DWORDs in the (in double word) Parameter table Parameter Table Pointer (PTP) First address of Zetta Flash 14H 07:00 90H 90H Parameter table 15H 15:08 00H 00H 16H 23:16 00H 00H 17H 31:24 FFH FFH Unused Contains 0xFFH and can never be changed 51 ZD25WD40B Table Parameter Table (0): JEDEC Flash Parameter Tables Description Comment Add(H) (Byte) DW Add (Bit ) Data 01:00 01b 02 1b 03 0b Data 00: Reserved; 01: 4KB erase; Block/Sector Erase Size 10: Reserved; 11: not support 4KB erase Write Granularity Write Enable Instruction Requested for Writing to Volatile Status Registers 0: 1Byte, 1: 64Byte or larger 0: Nonvolatile status bit 1: Volatile status bit (BP status register bit) 0: Use 50H Opcode, Write Enable Opcode Select for Writing to Volatile Status Registers 30H E5H 1: Use 06H Opcode, Note: If target flash status register is 04 0b 07:05 111b 15:08 20H 16 1b 18:17 00b 19 0b Nonvolatile, then bits3 and 4 must be set to 00b. Contains 111b and can never be Unused changed 4KB Erase Opcode (1-1- 2) Fast Read 31H 0=Not support, 1=Support Address Bytes Number used in 00: 3Byte only, 01: 3 or 4Byte, addressing flash array 10: 4Byte only, 11: Reserved Double Transfer Rate (DTR) clocking 0=Not support, 1=Support 32H (1-2- 2) FastRead 0=Not support, 1=Support 20 1b (1-4- 4) Fast Read 0=Not support, 1=Support 21 0b (1-1- 4) Fast Read 0=Not support, 1=Support 22 0b 23 1b 33H 31:24 FFH 37H:34H 31:00 Unused Unused Flash Memory Density (1-4- 4) Fast Read Number of Wait states (1-4- Clocks) not support 4) Fast Read Number of Mode Bits (1-4(1-1- 4) Fast Read Number of Wait Mode Bits (1-1- 0 0000b: Wait states (Dummy 4) Fast Read Opcode 3BH FFH 00000b 00H 07:05 000b 15:08 FFH 20:16 00000b FFH 00H 3AH 000b:Mode Bits not support 91H 001FFFFFH 38H 39H Clocks) not support 4) Fast Read Number of 04:00 000b:Mode Bits not support 4) Fast Read Opcode states (1-1- 0 0000b: Wait states (Dummy 20H 23:21 000b 31:24 FFH FFH 52 ZD25WD40B Description (1-1- 2) Fast Read Number of Wait states (1-1- 2) Fast Read Number of Mode Bits Comment (1-2- 2) Fast Read Number of Mode Bits Clocks) not support (Bit) 04:00 000b: Mode Bits not support 3DH 0 0000b: Wait states (Dummy Clocks) not support 000b: Mode Bits not support 3FH 0=not support 0=not support Data 1=support 1=support 40H Unused Data 01000b 08H 07:05 000b 15:08 3BH 20:16 00000b 3EH Unused (4-4- 4) Fast Read (Byte) 3CH (1-2- 2) Fast Read Opcode (2-2- 2) Fast Read DW Add 0 0000b: Wait states (Dummy (1-1- 2) Fast Read Opcode (1-2- 2) Fast Read Number of Wait states Add(H) 3BH 80H 23:21 100b 31:24 BBH 00 0b 03:01 111b 04 0b 07:05 111b BBH EEH Unused 43H:41H 31:08 0xFFH 0xFFH Unused 45H:44H 15:00 0xFFH 0xFFH 20:16 00000b (2-2- 2) Fast Read Number of Wait states (2-2- 2) Fast Read Number of Mode Bits 0 0000b: Wait states (Dummy Clocks) not support 000b: Mode Bits not support (2-2- 2) Fast Read Opcode Unused (4-4- 4) Fast Read Number of Wait states (4-4- 4) Fast Read Number of Mode Bits Clocks) not support this sector type don’t exist Sector Type 1 erase Opcode Sector Type 2 Size Sector/block size=2^N bytes 0x00b: this sector type don’t exist Sector Type 2 erase Opcode Sector Type 3 Size Sector/block size=2^N bytes 0x00b: this sector type don’t exist Sector Type 3 erase Opcode Sector Type 4 Size Sector Type 4 erase Opcode 000b 47H 31:24 FFH FFH 49H:48H 15:00 0xFFH 0xFFH 20:16 00000b Sector/block size=2^N bytes 0x00b: this sector type don’t exist 00H 4AH 000b: Mode Bits not support Sector/block size=2^N bytes 0x00b: 00H 23:21 0 0000b: Wait states (Dummy (4-4- 4) Fast Read Opcode Sector Type 1 Size 46H 23:21 000b 4BH 31:24 FFH FFH 4CH 07:00 0CH 0CH 4DH 15:08 20H 20H 4EH 23:16 0FH 0FH 4FH 31:24 52H 52H 50H 07:00 10H 10H 51H 15:08 D8H D8H 52H 23:16 00H 00H 53H 31:24 FFH FFH 53 ZD25WD40B Table Parameter Table (1): Zetta Flash Parameter Tables Description Comment Add(H) DW Add (Byte) (Bit) 91H:90H 93H:92H Data Data 15:00 3600H 3600H 31:16 1650H 1650H 2000H=2.000V Vcc Supply Maximum Voltage 2700H=2.700V 3600H=3.600V 1650H=1.650V Vcc Supply Minimum Voltage 2250H=2.250V 2350H=2.350V 2700H=2.700V HW Reset# pin 0=not support 1=support 00 0b HW Hold# pin 0=not support 1=support 01 0b 0=not support 1=support 02 1b 0=not support 1=support 03 1b Deep Power Down Mode SW Reset SW Reset Opcode Should be issue Reset Enable(66H) before Reset cmd. 95H:94H 11:04 1001 1001b (99H) 799CH Program Suspend/Resume 0=not support 1=support 12 1b Erase Suspend/Resume 0=not support 1=support 13 1b 14 1b 15 0b 96H 23:16 FFH FFH 97H 31:24 00H 00H 00 0b 01 0b 09:02 FFH 10 0b 1=support 11 1b 1=support 12 0b 13 0b Unused 15:14 11b Unused 31:16 FFFFH Unused Wrap Around Read mode 0=not support 1=support Wrap - Around Read mode Opcode 08H:support 8B wra-paround read Wrap - Around Read data length 16H:8B&16B 32H:8B&16B&32B 64H:8B&16B&32B&64B Individualblock lock Individual block lock bit (Volatile/Nonvolatile) 0=not support 1=support 0=Volatile 1=Nonvolatile Individual block lock Opcode Individual blocklock Volatile protect bit default protect status 0=protect Secured OTP 0=not support Read Lock 0=not support Permanent Lock 0=not support 1=unprotect 1=support 9BH:98H CBFCH FFFFH 54 ZD25WD40B 6. Ordering Information ZD 25XX XX X X X X X Packaging Type T:Tube R:Tape & Reel Y:Tray Green Code G: Low-halogen, Lead(Pb)-free P: Lead (Pb) - free Temperature Range I: Industrial(-40℃~85℃) E: Extended (-25℃~85℃) J:Industrial Plus (-40℃~105℃) Package Type S: 208mil SOP8 T: 150mil SOP8 U:USON8(3*2mm) E:USON8(3*3mm,0.65mm) N:USON8(3*3mm,0.5mm) O:173mil TSSOP8 Version A: A Version B: B Version C: C Version Device Density 20: 2Mbit 40: 4Mbit 80: 8Mbit 16: 16Mbit Base Part Number 1.8V Serial 4Kbyte Uniform-sector Flash Zetta Memory Figure 1, Ordering Information ZD25WD40B 7. Package Information 7.1-Lead SOP(150mil) θ 8 5 E1 E L 1 L1 h 4 C D A3 A2 A A1 SEATING PLANE 0.10 b e Dimensions Symbol A A1 A2 A3 b C D E E1 Min - 0.10 1.30 0.6 0.39 0.20 4.80 5.80 3.80 Nom - - 1.40 0.65 - - 4.90 5.90 3.90 Max 1.75 0.225 1.50 0.7 0.47 0.24 5.00 6.20 4.00 Min - Nom - Unit mm Inch Max 0.004 0.051 0.024 0.015 0.008 0.189 - 0.055 0.026 - - 0.193 0.069 0.009 0.059 0.028 0.019 0.009 0.197 0.228 0.150 e 1.27 BSC 0.050 0.236 0.154 BSC 0.244 0.158 h θ 0.25 0 - - 0.80 0.50 8 0.020 0.010 0 - - 0.020 8 L L1 0.50 - 0.031 1.05 0.041 56 ZD25WD40B TITLE 8-Lead SOP(150mil) DRAWING NO. REV A REF JEDEC MS-012 57 ZD25WD40B 7.2-Lead SOP(208mil) θ 8 5 E1 E L1 L 1 4 C D A3 A2 A A1 SEATING PLANE 0.10 b e Dimensions Symbol A A1 A2 A3 b Min 1.75 0.05 1.70 0.55 0.38 Nom 1.9 0.1 1.80 0.60 0.43 Unit mm Inch Max 2.05 0.15 1.90 0.65 0.48 Min 0.069 0.002 0.067 0.022 0.015 Nom 0.075 0.004 0.071 0.024 0.017 Max 0.081 0.006 0.075 0.026 0.019 TITLE 8-Lead SOP(208mil) DRAWING NO. C 0.203 REF 0.008 REF D E E1 5.13 7.70 5.18 5.23 7.90 5.28 5.33 8.10 5.38 0.202 0.303 0.204 0.206 0.311 0.208 0.210 0.319 0.212 REV A e 1.27 REF 0.050 REF L L1 θ 0.50 1.21 0 0.65 1.31 - 0.80 1.41 8 0.020 0.048 0 0.026 0.052 - 0.031 0.056 8 REF 58 ZD25WD40B 7.3-Lead TSSOP(173mil) 8 5 E1 E “A” 1 4 C D b A3 e A2 A 0.25 GAUGE PLANE L A1 θ L1 SEATING PLANE DETAIL “A” 0.10 Dimensions Symbol A A1 A2 A3 b C D E E1 Min - 0.05 0.90 0.39 0.20 0.13 2.90 6.20 4.30 Nom - - 1.00 0.44 - - 3.00 6.40 4.40 Max 1.20 0.15 1.05 0.49 0.28 0.17 3.10 6.60 4.50 Min - 0.002 0.035 0.015 0.008 0.005 0.114 0.244 0.169 Nom - - 0.039 0.017 - - 0.118 0.252 0.173 Max 0.047 0.006 0.041 0.019 0.011 0.007 0.122 0.260 0.177 Unit mm Inch TITLE 8-lead TSSOP DRAWING NO. REV A e 0.65 BSC 0.026 BSC L 0.45 0.75 0.018 0.030 L1 1.00 REF 0.039 REF θ 0 8 0 8 REF JEDEC MO-153 59 ZD25WD40B 7.4-Land USON(3x2mm,thickness 0.55mm) D b e L L1 D1 E1 E PIN1 I.D. L3 1 TOP VIEW BOTTOM VIEW A2 A A3 A1 SEATING PLANE SIDE VIEW 0.05 Dimensions Symbol A A1 A2 A3 Min 0.50 0.00 - - 0.20 1.90 1.55 2.90 0.15 Nom 0.55 0.02 0.40 0.15 0.25 2.00 1.60 3.00 0.20 Max 0.60 0.05 - - 0.30 2.10 1.65 3.10 Min 0.015 0.00 - - 0.007 0.074 0.061 Nom 0.018 --- 0.012 0.005 0.010 0.079 Max 0.019 0.001 - - 0.012 0.082 Unit mm Inch TITLE DFN8L(0203X0.55-0.5) b DRAWING NO. D D1 E L1 L3 0.30 - 0.40 0.35 0.10 0.45 0.25 0.40 - 0.50 0.114 0.005 0.011 - 0.012 0.063 0.118 0.008 0.064 0.122 0.009 REV A E1 e 0.50 0.02 L 0.013 0.004 0.016 0.015 0.020 - REF JEDEC MO-252 60 ZD25WD40B 7.5-Land USON(2x3mm, thickness 0.50mm) 61 ZD25WD40B 7.6. Package USON8 (1.5x1.5mm) 62 ZD25WD40B 8. Revision History Rev. Date Description V1.0 2020-12-01 Preliminary datasheet V1.1 2021-08-01 Package information update 62
ZD25WD40BUIGR 价格&库存

很抱歉,暂时无法提供与“ZD25WD40BUIGR”相匹配的价格&库存,您可以联系我们找货

免费人工找货