AW5005 产品手册
2016 年 4 月 V1.4
极低噪声系数,应用于全球导航卫星系统的低噪声放大器
特性
描述
采用专利的智能线性度增强技术(SLT)以
AW5005 是一款适用于 GPS,格洛纳斯,
减轻射频环境干扰;
伽利略和北斗等全球导航卫星系统(GNSS)
极低的噪声系数:0.53dB;
的低噪声放大器。其外围元器件简单,只需
高功率增益:18.0dB;
要一个外置输入匹配电感,节省占板面积,是
高线性度 IIP3oob:+6.5dBm;
一款经济高效的解决方案。
高输入 1dB 压缩点:-7.6dBm;
简单的 PCB 应用,只需一个外置的匹配电
AW5005 采用专利的智能线性度增强技
术(SLT),具有极低噪声系数,高线性度,
感;
高增益等特性,可支持低至 1.5V,高至 3.6V
输出内部匹配到 50 欧姆;
工作电压:1.5V~3.6V;
工作频率:1550~1615MHz;
纤小的 1.5mmX1.0mmX 0.55mm DFN 6L
的供电电压。所有这些特性使得 AW5005 成
为 GNSS 低噪声放大器的最佳选择,极低的
噪声系数大大地改善了灵敏度,高线性度使
得系统能更好地抵抗带外干扰,并且降低了
封装
前级的滤波要求,进而降低了 GNSS 接收机
3kV HBM 静电保护(包括 RFIN 和 RFOUT
的总成本。
引脚)
AW5005 采用纤小的 1.5mm x 1.0 mm
应用
x 0.55 mm DFN-6L 封装,额定的工作温度
范围为-40℃至 85℃。
手机、平板电脑、数码相机
个人导航设备、射频前端模组
完整的 GPS 芯片模组
防盗保护设备
引脚分布及标记图
顶视图
1
3
AXY
2
底视图
6
6
1
5
5
2
4
4
3
Pin No.
Pin Name
1
GND
2
GND
3
RFIN
4
VCC
5
EN
6
RFOUT
A---AW5005DNR;XY---生产跟踪码
图 1.
AW5005 引脚分布及标识图
版权所有© 2016 上海艾为电子技术有限公司
第 1 页 共 23 页
AW5005 datasheet
Apr 2016 V1.4
Ultra-Low Noise Amplifier for Global Navigation
Satellite Systems (GNSS)
FEATURES
INTRODUCTION
The AW5005 is a Low Noise Amplifier
designed for Global Navigation Satellite
Systems (GNSS) as GPS, GLONASS,
Galileo and Compass. The AW5005DNR
requires only one external input matching
inductor, reduces assembly complexity and
the PCB area, enabling a cost-effective
solution.
Reduce RF environment Interference
with patented Smart-Linearity-Technology (SLT);
Ultra low noise figure(NF)=0.53dB;
High power gain=18.0dB;
High linearity IIP3oob=+6.5dBm;
High input 1dB-compression point=
-7.6dBm;
Requires only one input matching
inductor;
RF output internally matched to 50 ohm;
Supply voltage: 1.5V to 3.6V;
Operating frequencies: 1550~1615MHz;
Slim DFN-6L package:1.5mmX1.0mmX
0.55mm
3kV HBM ESD protection (including
RFIN and RFOUT pin)
The AW5005 with patented Smart
Linearity Technology (SLT) achieves ultra
low noise figure, high linearity, high gain,
over a wide range of supply voltages from
1.5V up to 3.6V. All these features make
AW5005 an excellent choice for GNSS
LNA as it improves sensitivity with low
noise figure and high gain, provide better
immunity against out-of-band jammer signals with high linearity, reduces filtering
requirement of preceding stage and hence
reduces the overall cost of the GNSS receiver.
APPLICATIONS
Smart phones, feature phones,
Tablet PCs,
Personal Navigation Devices,
Digital Still Cameras, Digital Video
Cameras;
RF Front End modules;
Complete GPS chipset modules;
Theft protection(laptop, ATM);
The AW5005 is available in a small
lead-free, RoHS-Compliant, 1.5mm x
1.0mm x 0.55mm 6-pin DFN package。
PIN CONFIGURATION AND MARKING
Bottom View
Top View
1
3
AXY
2
6
6
1
5
5
2
4
4
3
Pin No.
Pin Name
1
GND
2
GND
3
RFIN
4
VCC
5
EN
6
RFOUT
A---AW5005DNR;XY---Manufactory trace No.
Figure 1.
AW5005 Pin Configuration and Marking
Copyright © 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD
Page 2 of 23
AW5005 datasheet
Apr 2016 V1.4
TYPICAL APPLICATION
AW5005
GND
GND
RF
INPUT
1
6
2
5
RFIN
RF
OUTPUT
RFOUT
EN
LOGIC
CONTROL
VCC
3
SUPPLY
VOLTAGE
4
BIAS
L1
C1
(optional)
L1=9.1nH
C1=1nF
Figure 2.
Application Schematic AW5005
For a list of components see Table 6 and Table 7.
ORDER INFORMATION
Table 1. Order Information
Part Number
Temperature
Package
RoHS
Mark
SPQ
AW5005DNR
-40℃~85℃
1.5mm x 1.0 mm x 0.55mm
DFN-6L
Yes
A
Tape and Reel
3000pcs/Reel
AW 5005
R : Tape& Reel
DN: DFN
Copyright © 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD
Page 3 of 23
AW5005 datasheet
Apr 2016 V1.4
ABSOLUTE MAXIMUM RATINGS
Table 2 .
1)
Limiting Values
Values
Parameter
Symbol
Unit
Min.
Typ.
Max.
VCC
-0.3
-
5.0
V
VEN
-0.3
-
5.0
V
ICC
-
-
30
mA
PIN
-
-
10
dBm
Package thermal resistance
θJA
-
148.2
Junction temperature
TJ
-
-
150
℃
Storage temperature range
TSTG
-65
-
150
℃
Ambient temperature range
Tamb
-40
-
85
℃
-
260
-
℃
Supply Voltage at pin VCC
Voltage at pin EN
2)
Current into pin VCC
RF input power
3)
Solder temperature(10s)
℃/W
ESD range
HBM
MM
4)
5)
±3000
V
±250
V
Latch-up
+IT: +400
mA
-IT: -400
mA
Note1: Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device.
These are stress ratings only and functional operation of the device at these or any other conditions beyond those
indicated under “recommended operating conditions” is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.
Standard:JEDEC STANDARD NO.78D NOVEMBER 2011
Note2: Warning: due to internal ESD diode protection, the applied DC voltage should not exceed 5.0V in order to
avoid excess current.
Note3: The RF input and RF output are AC coupled through internal DC blocking capacitor.
Note4: HBM standard: MIL-STD-883H Method 3015.8.
Note5: MM standard: JEDEC EIA/JESD22-A115.
Copyright © 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD
Page 4 of 23
AW5005 datasheet
Apr 2016 V1.4
ELECTRICAL CHARACTERISTICS
Table 3 .
(AW5005 EVB
1)
Electrical Characteristics
; VCC=1.5 to 3.6V, TA=-40~+85℃, f=1550MHz to 1615MHz; Typical values are at VCC=2.8V and
Tamb=+25℃, f=1575.42MHz, unless otherwise noted.)
PARAMETER
CONDITIONS
MIN
TYP
MAX
UNITS
1.5
-
3.6
V
1
μA
15.0
mA
DC ELECTRICAL CHARACTERISTICS
VCC
Supply Voltage
ISD
Shut-Down Current
EN=Low
ICC
Supply Current
EN=High
VEN
Digital Input-Logic High
VEN
Digital Input-Logic Low
6.9
0.80
V
0.45
V
AC ELECTRICAL CHARACTERISTICS
Gp
Power Gain
18.0
dB
RLin
Input Return Loss
9.5
dB
ISL
Reverse Isolation
28.5
dB
RLout
Output Return Loss
14.2
dB
NF
Noise Figure
Zs=50 ohm;
No jammer
0.53
dB
Kf
Stability factor
f=20MHz…10GHz
Pjam=-20dBm;
fjam=850MHz
0.72
dB
Pjam=-20dBm;
fjam= 1850MHz
1.14
dB
NFj
2)
Noise Figure with jammer
1.0
IP1dB
Inband input
1dB-compression point
f=1575.42MHz;
-7.6
dBm
IIP3oob
Out-of-band input
3rd-order intercept point
f1= 1712.7MHz;
f2=1850MHz;
Pin=-20dBm
+6.1
dBm
IIP3oob
Out-of-band input
3rd-order intercept point
f1= 1712.7MHz;
f2=1850MHz;
Pin=-30dBm
+6.5
dBm
IIP2oob
Out-of-band input
2nd-order intercept
point
f1= 824.6MHz;
f2=2400MHz;
Pin=-20dBm
-1.2
dBm
IIP2oob
Out-of-band input
2nd-order intercept
point
f1= 824.6MHz;
f2=2400MHz;
Pin=-30dBm
-1.2
dBm
H2-input
referred
LTE band-13 2nd Harmonic
f=787.76MHz;
Pin=-25dBm;
fH2=1575.52MHz
-74.4
dBm
ton
Turn-on time
2.2
µs
toff
Turn-off time
1.7
µs
3)
3)
Copyright © 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD
Page 5 of 23
AW5005 datasheet
Apr 2016 V1.4
Table 4 .
Electrical Characteristics
(AW5005 EVB1); VCC=1.5 to 3.6V, TA=-40~+85℃, f=1550MHz to 1615MHz; Typical values are at VCC=1.8V and
Tamb=+25℃, f=1575.42MHz, unless otherwise noted.)
PARAMETER
CONDITIONS
MIN
TYP
MAX
UNITS
1.5
-
3.6
V
1.0
μA
15.0
mA
DC ELECTRICAL CHARACTERISTICS
VCC
Supply Voltage
ISD
Shut-Down Current
EN=Low
ICC
Supply Current
EN=High
VEN
Digital Input-Logic High
VEN
Digital Input-Logic Low
6.2
0.80
V
0.45
V
AC ELECTRICAL CHARACTERISTICS
Gp
Power Gain
17.5
dB
RLin
Input Return Loss
9.0
dB
ISL
Reverse Isolation
28.0
dB
RLout
Output Return Loss
14.5
dB
NF
Noise Figure
Zs=50 ohm;
No jammer
0.54
dB
Kf
Stability factor
f=20MHz…10GHz
NFj
Noise Figure with jammer
Pjam=-20dBm;
fjam=850MHz
0.76
dB
Pjam=-20dBm;
fjam= 1850MHz
1.18
dB
2)
1.0
IP1dB
Inband input
1dB-compression point
f=1575.42MHz
-12.5
dBm
IIP3oob
Out-of-band input
3rd-order intercept point
f1= 1712.7MHz;
f2=1850MHz;
Pin=-20dBm;
0.7
dBm
IIP3oob
Out-of-band input
3rd-order intercept point
f1= 1712.7MHz;
f2=1850MHz;
Pin=-30dBm;
2.5
dBm
IIP2oob
Out-of-band input
2nd-order intercept
point
f1= 824.6MHz;
f2=2400MHz;
Pin=-20dBm;
-1.9
dBm
IIP2oob
Out-of-band input
2nd-order intercept
point
f1= 824.6MHz;
f2=2400MHz;
Pin=-30dBm;
-1.7
dBm
H2-input
referred
LTE band-13 2nd Harmonic
f=787.76MHz;
Pin=-25dBm;
fH2=1575.52MHz
-72.6
dBm
ton
Turn-on time
2.2
µs
toff
Turn-off time
1.7
µs
3)
3)
Note1: input matched to 50 ohm using a high quality-factor 9.1nH inductor.
Note2: 0.08dB PCB losses are subtracted.
Copyright © 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD
Page 6 of 23
AW5005 datasheet
Apr 2016 V1.4
Note3: Within 10% of the final gain.
Copyright © 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD
Page 7 of 23
AW5005 datasheet
Apr 2016 V1.4
TYPICAL OPERATING CHARACTERISTICS
(AW5005 EVB; Typical values are at VCC=2.8V and TA=+25℃, fRFIN=1575.42MHz, unless otherwise noted.)
Noise Figure
ICC
1
12
0.9
10
0.8
(3)
(3)
0.7
0.6
(2)
6
NF (dB)
ICC (mA)
8
(1)
(2)
0.5
(1)
0.4
4
0.3
0.2
2
0.1
0
0
1
1.5
2
2.5
1
3 VCC (V) 3.5
Pi=-45dBm.
(1) TA=-25℃
(2) TA=+25℃
(3) TA=+85℃
Figure 3. Supply current as a function of supply
voltage; typical values
2
2.5
3
3.5
VCC (V)
Figure 4. Noise Figure as a function of supply
voltage; typical values
Power Gain
Noise Figure
20
1.8
1.6
19
(1)
18
1.4
(2)
1.2
NF (dB)
PG (dB)
1.5
f1=1575.42MHz, no jammer.
(1) TA=-25℃
(2) TA=+25℃
(3) TA=+85℃
17
(3)
16
1
(3)
0.8
(2)
0.6
(1)
0.4
15
0.2
14
1
1.5
2
2.5
3
VCC (V)
3.5
Pi=-45dBm, f1=1575.42MHz, no jammer.
(1) TA=-25℃
(2) TA=+25℃
(3) TA=+85℃
Figure 5. Power Gain as a function of supply
voltage; typical values
0
1000
1200
1400
1600
1800
2000
f(MHz)
VCC=1.8V, no jammer.
(1) TA=-25℃
(2) TA=+25℃
(3) TA=+85℃
Figure 6. Noise Figure as a function of frequency; typical values
Copyright © 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD
Page 8 of 23
AW5005 datasheet
Apr 2016 V1.4
Power Gain
Noise Figure
1.6
20
1.4
18
1.2
16
1
14
(3)
0.8
(1)
0.4
1200
1400
12
8
1600
6
1000
1800
2000
f(MHz)
Figure 7. Noise Figure as a function of frequency; typical values
1200
1800
f(MHz)
2000
Power Gain
Power Gain
20
(1)
(2)
(3)
(3)
(1)
(2)
18
16
PG (dB)
16
PG (dB)
1600
Figure 8. Power Gain as a function of frequency;
typical values
20
14
14
12
12
10
10
8
1000
1400
VCC=1.8V, Pi=-45dBm,no jammer.
(1) TA=-25℃
(2) TA=+25℃
(3) TA=+85℃
VCC=2.8V, no jammer.
(1) TA=-25℃
(2) TA=+25℃
(3) TA=+85℃
18
(3)
(2)
10
(2)
0.6
0.2
1000
PG (dB)
NF (dB)
(1)
8
1200
1400
1600
1800
2000
f(MHz)
VCC=2.8V, Pi=-45dBm,no jammer.
(1) TA=-25℃
(2) TA=+25℃
(3) TA=+85℃
Figure 9. Power Gain as a function of frequency;
typical values
-35
-31
-27
-23
-20
-16
-12
-8
Pi(dBm)
-4
VCC=1.8V, f1=1575.42MHz.
(1) TA=-25℃
(2) TA=+25℃
(3) TA=+85℃
Figure 10. Power Gain as a function of input
power; typical values
Copyright © 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD
Page 9 of 23
AW5005 datasheet
Apr 2016 V1.4
Power Gain
Power Gain
20.0
19
(1)
18.5
(2)
18
(3)
17.5
(2)
(3)
(4)
16.0
PG (dB)
17
PG (dB)
(1)
18.0
16.5
14.0
(5)
12.0
16
10.0
15.5
15
8.0
14.5
6.0
14
-30
-35
-31
-27
-23
-20
-16
-12
-8
Pi(dBm)
-27
-24
-21
-18
-15
-12
-9
-4
Figure 11. Power Gain as a function of input
power; typical values
-3
0
Pi(dBm)
TA=+25℃, f1=1575.42MHz.
(1) VCC=3.6V
(2) VCC=3.1V
(3) VCC=2.8V
(4) VCC=1.8V
(5) VCC=1.5V
VCC=2.8V, f1=1575.42MHz.
(1) TA=-25℃
(2) TA=+25℃
(3) TA=+85℃
-6
Figure 12. Power Gain as a function of input
power; typical values
out-of-band IIP3
out-of-band IIP3
3
9
2
7
(2)
(3)
(1)
5
(2)
(3)
0
IIP3(dBm)
IIP3(dBm)
1
-1
1
-2
-1
-3
(1)
3
-3
-30
-28
-26
-24
-22
-20
-18
-16
-14 -12
Pi(dBm)
-10
VCC=1.8V, f1=1713MHz, f2=1851MHz.
(1) TA=-25℃
(2) TA=+25℃
(3) TA=+85℃
Figure 13. out-of-band input IP3 as a function of
input power; typical values
-30
-28
-26
-24
-22
-20
-18
-16
-14 -12
Pi(dBm)
-10
VCC=2.8V, f1=1713MHz, f2=1851MHz.
(1) TA=-25℃
(2) TA=+25℃
(3) TA=+85℃
Figure 14. out-of-band input IP3 as a function of
input power; typical values
Copyright © 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD
Page 10 of 23
AW5005 datasheet
Apr 2016 V1.4
out-of-band IIP2
out-of-band IIP2
3
2
(3)
1
1
0
0
-1
(2)
IIP2 (dBm)
IIP2 (dBm)
(3)
2
-2
-3
-4
-2
-3
(1)
-4
(1)
-5
(2)
-1
-5
-6
-6
-7
-7
-30
-28
-26
-24
-22
-20
-18
-16
-14 -12
Pi(dBm)
-30
-10
Input Return Loss
-2
-2
(3)
-10
-10
1400
1600
-18
-16
-14 -12
Pi(dBm)
-10
1800
2000
f(MHz)
(1)
(2)
-6
-8
1200
-20
-4
RLin (dB)
RLin (dB)
(1)
(2)
-8
-12
1000
-22
Input Return Loss
0
-6
-24
Figure 16. out-of-band input IP2 as a function of
input power; typical values;
0
-4
-26
VCC=2.8V, f1=824.6MHz, f2=2400MHz.
(1) TA=-25℃
(2) TA=+25℃
(3) TA=+85℃
VCC=1.8V, f1=824.6MHz, f2=2400MHz.
(1) TA=-25℃
(2) TA=+25℃
(3) TA=+85℃
Figure 15. out-of-band input IP2 as a function of
input power; typical values
-28
-12
1000
(3)
1200
1400
1600
1800
f(MHz)
2000
VCC=2.8V, Pi=-35dBm.
(1) TA=-25℃
(2) TA=+25℃
(3) TA=+85℃
VCC=1.8V, Pi=-35dBm.
(1) TA=-25℃
(2) TA=+25℃
(3) TA=+85℃
Figure 17. Input Return Loss as a function of
frequency; typical values
Figure 18. Input Return Loss as a function of
frequency; typical values
Copyright © 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD
Page 11 of 23
AW5005 datasheet
Apr 2016 V1.4
Ouput Return Loss, dB
Input Return Loss,dB
0
0
-2
-5
-4
(1)
-10
(2)
(3)
(2)
(3)
-6
S22(dB)
S11(dB)
(1)
(4)
(5)
-8
(4)
(5)
-15
-20
-10
-25
-12
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
-30
1000
1100
TA=+25℃; Pi=-35dBm.
(1) VCC=1.5V
(2) VCC=1.8V
(3) VCC=2.8V
(4) VCC=3.1V
(5) VCC=3.6V
1400
1500
1600
1700
1800
0
-2
-2
-4
(1)
(2)
(3)
-8
-10
-12
(1)
(2)
(3)
-6
RLout (dB)
-6
2000
f(MHz)
Output Return Loss
0
-4
1900
Figure 20. Output Return Loss as a function of
frequency; typical values
Output Return Loss
RLout (dB)
1300
TA=+25℃; Pi=-35dBm.
(1) VCC=1.5V
(2) VCC=1.8V
(3) VCC=2.8V
(4) VCC=3.1V
(5) VCC=3.6V
Figure 19. Input Return Loss as a function of
frequency; typical values
-8
-10
-12
-14
-14
-16
-16
-18
-18
1000
1200
f(MHz)
1200
1400
1600
1800
2000
f(MHz)
VCC=1.8V, Pi=-35dBm.
(1) TA=-25℃
(2) TA=+25℃
(3) TA=+85℃
-20
1000
1200
1400
1600
1800
2000
f(MHz)
VCC=2.8V, Pi=-35dBm.
(1) TA=-25℃
(2) TA=+25℃
(3) TA=+85℃
Figure 21. Output Return Loss as a function of
frequency; typical values
Figure 22. Output Return Loss as a function of
frequency; typical values
Copyright © 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD
Page 12 of 23
AW5005 datasheet
Apr 2016 V1.4
Reverse Isolation
Reverse Isolation
-20
-20
-25
-25
-30
ISL (dB)
-30
-35
-35
-40
-45
1000
(1)
(2)
(3)
ISL (dB)
(1)
(2)
(3)
-40
1200
1400
1600
1800
f(MHz)
-45
1000
2000
VCC=1.8V, Pi=-35dBm.
(1) TA=-25℃
(2) TA=+25℃
(3) TA=+85℃
1200
1800
f(MHz)
2000
Figure 24. Reverse Isolation as a function of
frequency; typical values;
Reverse Isolation
Stability factor
-20
100000
-25
10000
(1)
(2)
1000
(2)
(3)
K
ISL (dB)
1600
VCC=2.8V, Pi=-35dBm.
(1) TA=-25℃
(2) TA=+25℃
(3) TA=+85℃
Figure 23. Reverse Isolation as a function of
frequency; typical values;
-30
1400
(4)
(5)
(1)
100
-35
10
-40
1
-45
0
2500
5000
7500
10000
1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
TA=+25℃; Pi=-35dBm.
(1) VCC=1.5V
(2) VCC=1.8V
(3) VCC=2.8V
(4) VCC=3.1V
(5) VCC=3.6V
f(MHz)
f(MHz)
TA=+25℃;Pin=-35dBm
(1) VCC=1.8V
(2) VCC=2.8V
Figure 25. Reverse Isolation as a function of
frequency; typical values
Figure 26. Stability factor as a function of frequency; typical values
Copyright © 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD
Page 13 of 23
AW5005 datasheet
Apr 2016 V1.4
Stability factor
100000
10000
K
1000
(1)
(2)
(3)
100
10
1
0
2500
VCC=2.8V,Pin=-35dBm.
(1) TA=-25℃
(2) TA=+25℃
(3) TA=+85℃
5000
7500
10000
f(MHz)
Figure 27. Stability factor as a function of frequency; typical values
Copyright © 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD
Page 14 of 23
AW5005 datasheet
Apr 2016 V1.4
AW5005 APPLICATION BOARD
Figure 26.
Drawing of Application Board
Vias
Copper
35um
FR4
AW5005DNR_application_board_sideview
Figure 27.
Application Board Cross-Section
Copyright © 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD
Page 15 of 23
AW5005 datasheet
Apr 2016 V1.4
TEST CIRCUITS
1. DC Characteristics test: including power supply, pin voltage, supply current, standby current
AW5005
GND
GND
RF
INPUT
1
6
2
5
RFIN
RF
OUTPUT
RFOUT
EN
LOGIC
CONTROL
SUPPLY
VOLTAGE
VCC
3
BIAS
4
A
L1
C1
(optional)
V
L1=9.1nH
C1=1nF
Figure 28.
Circuit for DC test
2. S Parameter test: including input return loss, output return loss, reverse isolation, forward
gain, 1dB gain compression.
RF
INPUT AW5005 EVB
RF
OUTPUT
NetWork Analyzer
Figure 29.
Circuit for S Parameter test
3. Noise Figure test: including noise figure, power gain.
RF
INPUT AW5005 EVB
Noise
Source
Figure 30.
RF
OUTPUT
NF Analyzer
Circuit for Noise Figure test
Copyright © 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD
Page 16 of 23
AW5005 datasheet
Apr 2016 V1.4
4. Intermodulation distortion test: including third-order intercept point.
Signal
Generator
Power
Combiner
RF
AW5005 EVB
INPUT
RF
OUTPUT Signal Analyzer
Signal
Generator
Figure 31.
Circuit for intermodulation distortion test
Copyright © 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD
Page 17 of 23
AW5005 datasheet
Apr 2016 V1.4
APPLICATION INFORMATIONS
2. The output of AW5005 is internally
matched to 50 ohm and a DC
blocking capacitor is integrated
on-chip, thus no external component is required at the output.
1.1 EN control
The AW5005 includes an internal
switch to turn off the entire chip:
apply logic high to EN to turn on,
and a logic low to shut down.
1.2 List of components
1. The AW5005 requires only one external inductor for input matching. If
the device/phone manufacturers
implement very good power supply
filtering on their boards, the bypass
capacitor mentioned in this application circuit may be optional. With
the capacitor we can get better
performance like a little higher gain
etc. The value is optimized for the
best gain, noise figure, return loss
performance. Typical value of inductor is 9.1nH, capacitor is 1nF.
For schematics see Figure2.
3. The AW5005 should be placed
close to the GPS antenna with the
input-matching inductor. Use 50ohm microstrip lines to connect RF
INPUT and RF OUTPUT. Bypass
capacitor should be located close to
the device. For long Vcc lines, it
may be necessary to add more
decoupling
capacitors.
Proper
grounding of the GND pins is very
important.
Table6 lists the recommended inductor types and values; Table 7 lists the recommended
capacitor types and values.
Table6: list of inductor
Part Number
Inductance
Q(min)
Units
nH
LQW15A
9.1
25
SDWL1005C
9.1
HQ1005C
9.1
Q Test
Frequency
Supplier
Size
250
Murata
0402
24
250
Sunlord
0402
22
250
Sunlord
0402
MHz
Table7: list of capacitor
Part Number
Capacitance
Rated Voltage
Units
pF
V
GRM155
1000
50
Supplier
Size
Murata
0402
Copyright © 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD
Page 18 of 23
AW5005 datasheet
Apr 2016 V1.4
PACKAGE INFORMATION
A
D
aaa C
A
bbb C
E
A2
A1
B
SEATING
PLANE
LASER MARK FOR PIN 1
IDENTIFICATION IN THIS AREA
TOP VIEW
C
SIDE VIEW
0.10 M
e
*
CAB
SYMBOL
L
b
MILLIMETER
NOM
MAX
MIN
NOM
A
0.50
0.55
0.60
0. 02
0.022 0.024
A1
---
---
0.05
---
L2
b
0.15
Figure 32.
0.20
---
0.25
0.002
0.006 0.008
1. 50 bsc
0. 060 bsc
E
1. 00 bsc
0. 040 bsc
E2
1.000REF
D
MAX
0.006REF
0.152 REF
0.010
0.040REF
L
0.30
0.35
0.40
0.012 0.014
0.016
L2
0.35
0.40
0.45
0.014
0.018
0. 50 bsc
e
BOTTOM VIEW
INCH
MIN
A2
PIN1 ID
E2
CONTROLLING DIEMENSION
: MM
0.016
0. 020 bsc
TOLERANCES OF FORM AND POSITION
aaa
bbb
0.05
0.05
Package Outline
Copyright © 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD
Page 19 of 23
0.002
0.002
AW5005 datasheet
Apr 2016 V1.4
TAPE&REEL DESCRIPTION
2.0±0.05
Φ1.55±0.05
B'
4.0±0.1
Pin1
Marking
4.0±0.1
1.72±0.05
A'
A
REF 5°
1.12±0.05
B
Φ0.55±0.05
0.7±0.05
Section A-A'
Figure 33.
8.0±0.3
3.5±0.05
1.75±0.1
0.25±0.05
Tape and Reel
Copyright © 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD
Page 20 of 23
Section B-B'
AW5005 datasheet
Apr 2016 V1.4
REFLOW
Copyright © 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD
Page 21 of 23
AW5005 datasheet
Apr 2016 V1.4
FOOTPRINT INFORMATION
1.250mm
0.370mm
0.675mm
0.500mm
1.700mm
0.270mm
0.500mm
Solder resist
Solder paste
Occupied area
0.325mm
0.425mm
Figure 34.
Footprint
Copyright © 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD
Page 22 of 23
AW5005 datasheet
Apr 2016 V1.4
REVISION HISTORY
Table 8. Revision history
Document ID
Release
date
Change notice
Supersedes
AW5005_V1.4
2016-04
Added Pin1 Marking description on tape ,
added reflow notes
AW5005_V1.3
AW5005_V1.3
2016-01
Added Tape & Reel Description and corrected
the marking location of Pin1
AW5005_V1.2
AW5005_V1.2
2014-05
Product data sheet
Added temperature characteristics
Updated IIP2oob
Added footprint information
Added revision history
AW5005_V1.1
AW5005_V1.1
2014-04
Product data sheet
Updated SLT Feature
AW5005_V1.0
AW5005_V1.0
2014-12
Product data sheet
Added typical operating characteristics
AW5005_V0.7
AW5005_V0.7
2013-10
Preliminary data sheet
-
Notice:Shanghai Awinic Technology Co. ltd cannot assume responsibility for use of any
circuitry other than circuitry entirely embodied in an Awinic product. No circuit patent
licenses are implied. Awinic reserves the right to change the circuitry and specifications
without notice at any time.
Copyright © 2016 SHANGHAI AWINIC TECHNOLOGY CO., LTD
Page 23 of 23