2Pai Semi
Enhanced ESD, 3.0 kV rms/6.0 kV rms
10Mbps Quad-Channel Digital Isolators
Data Sheet
FEATURES
Ultra low power consumption (1Mbps):
0.58mA/Channel
High data rate: π14xAxx: 600Mbps
π14xExx: 200Mbps
π14xMxx: 10Mbps
π14xUxx: 150kbps
High common-mode transient immunity: 75 kV/µs typical
High robustness to radiated and conducted noise
Low propagation delay:
8 ns typical for 5 V operation
9 ns typical for 3.3 V operation
Isolation voltages:
π14xx3x: AC 3000Vrms
π14xx6x: AC 6000Vrms
High ESD rating:
ESDA/JEDEC JS-001-2017
Human body model (HBM) ±8kV, all pins
Safety and regulatory approvals (Pending):
UL certificate number: E494497
3000Vrms/6000Vrms for 1 minute per UL 1577
CSA Component Acceptance Notice 5A
VDE certificate number: 40047929
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12
VIORM = 707V peak/1200V peak
CQC certification per GB4943.1-2011
3 V to 5.5 V level translation
AEC-Q100 qualification
Wide temperature range: -40°C to 125°C
16-lead, RoHS-compliant, SOIC_N, SOIC_W and SSOP package
APPLICATIONS
General-purpose multichannel isolation
Industrial field bus isolation
π140M/π141M/π142M
The π1xxxxx isolator data channels are independent and are
available in a variety of configurations with a withstand voltage
rating of 1.5 kV rms to 6.0 kV rms and the data rate from DC up
to 600Mbps (see the Ordering Guide). The devices operate with
the supply voltage on either side ranging from 3.0 V to 5.5 V,
providing compatibility with lower voltage systems as well as
enabling voltage translation functionality across the isolation
barrier. The fail-safe state is available in which the outputs
transition to a preset state when the input power supply is not
applied.
FUNCTIONAL BLOCK DIAGRAMS
π140X3X
1
16
VDD2
2
15
GND 2
VOA
VIA
3
14
VOA
VOB
VIB
4
13
VOB
12
VOC
VIC
5
12
VOC
11
VOD
VID
6
11
VOD
10
NC
NC 7
10
EN2
9
GND2
GND1
8
9
GND 2
1
16
VDD2
2
15
GND2
VIA
3
14
VIB
4
13
VIC
5
VID
6
NC
7
GND1
8
π141X3X
π140X6X
VDD1
GND1
VDD1
GND1
π141X6X
VDD 1
1
GND1
2
15
GND 2
VOA
VIA
3
14
VOA
VDD1
1
16
VDD2
GND1
2
15
GND2
VIA
3
14
16
VDD2
VIB
4
13
VOB
VIB
4
13
VOB
V IC
5
12
VOC
VIC
5
12
VOC
VOD
6
11
VID
VOD
6
11
V ID
NC
7
10
NC
EN1
7
10
EN2
GND1
8
9
GND2
GND1
8
9
GND2
π142X3X
VDD1
1
16
VDD2
GND1
2
15
GND2
VIA
3
14
VIB
4
13
π142X6X
VDD1
1
16
VDD2
GND 1
2
15
GND 2
VOA
VIA
3
14
VOA
VOB
VIB
4
13
VOB
VOC
5
12
V IC
VOC
5
12
VIC
VOD
6
11
V ID
VOD
6
11
VID
NC
7
10
NC
EN1 7
10
EN2
GND1
8
9
GND2
9
GND2
GND1
8
Figure1. π140xxx/π141xxx/π142xxx functional Block Diagram
VDD1
VDD2
GENERAL DESCRIPTION
The π1xxxxx is a 2PaiSemi digital isolators product family that
includes over hundreds of digital isolator products. By using
maturated standard semiconductor CMOS technology and
2PaiSEMI iDivider technology, these isolation components
provide outstanding performance characteristics and reliability
superior to alternatives such as optocoupler devices and other
integrated isolators.
Intelligent voltage divider technology (iDivider technology) is a
new generation digital isolator technology invented by 2PaiSEMI.
It uses the principle of capacitor voltage divider to transmit
voltage signal directly cross the isolator capacitor without signal
modulation and demodulation.
COUT
CIN
0.1uF
0.1uF
1
2
3
4
5
6
7
8
VIN_A
VIN_B
VIN_C
VIN_D
GND1
VDD1
GND1
VIA
VIB
VIC
VID
NC
GND1
VDD2
GND2
VOA
VOB
VOC
VOD
NC
GND2
16
15
14
13
12
11
10
9
VOUT_A
VOUT_B
VOUT_C
VOUT_D
GND2
Figure2. π140x3x Typical Application Circuit
Rev.1
Information furnished by 2Pai semi is believed to be accurate and reliable. However, no
responsibility is assumed by 2Pai semi for its use, nor for any infringements of patents or
other rights of third parties that may result from its use. Specifications subject to change
without notice. No license is granted by implication or otherwise under any patent or
patent rights of 2Pai semi.
Trademarks and registered trademarks are the property of their respective owners.
Room 308-309, No.22, Boxia Road, Pudong New District, Shanghai, 201203, China
021-50850681
2Pai Semiconductor Co., Limited. All rights reserved.
http://www.rpsemi.com/
π140M/π141M/π142M
Data Sheet
PIN CONFIGURATIONS AND FUNCTIONS
π140Mxx Pin Function Descriptions
Pin No.
Name
Description
1
VDD1
Supply Voltage for Isolator Side 1.
2
GND1
Ground 1. This pin is the ground reference for Isolator Side 1.
3
VIA
Logic Input A.
4
VIB
Logic Input B.
5
VIC
6
7
DD1
DD2
1
2
IA
OA
IB
OB
Logic Input C.
IC
OC
VID
Logic Input D.
ID
OD
NC
No connect.
8
GND1
Ground 1. This pin is the ground reference for Isolator Side 1.
9
GND2
Ground 2. This pin is the ground reference for Isolator Side 2.
10
NC /EN2
11
VOD
No connect for π140M3X.
Output enable for π140M6X. Output pins on side 2 are
enabled when EN2 is high or open and in high-impedance
state when EN2 is low.
Logic Output D.
12
VOC
Logic Output C.
13
VOB
Logic Output B.
14
VOA
Logic Output A.
15
GND2
Ground 2. This pin is the ground reference for Isolator Side 2.
16
VDD2
Supply Voltage for Isolator Side 2.
/EN2
1
2
Figure3 π140Mxx Pin Configuration
π141Mxx Pin Function Descriptions
Pin No.
Name
Description
1
VDD1
Supply Voltage for Isolator Side 1.
2
GND1
Ground 1. This pin is the ground reference for Isolator Side 1.
3
VIA
Logic Input A.
IA
OA
4
VIB
Logic Input B.
IB
OB
5
VIC
Logic Input C.
IC
OC
6
VOD
Logic Output D.
7
NC/EN1
OD
ID
DD1
8
GND1
No connect for π141M3X.
Output enable 1 for π141M6X. Output pins on side 1 are
enabled when EN1 is high or open and in high-impedance
state when EN1 is low.
Ground 1. This pin is the ground reference for Isolator Side 1.
9
GND2
Ground 2. This pin is the ground reference for Isolator Side 2.
10
NC/EN2
11
VID
No connect for π141M3X.
Output enable 2 for π141M6X. Output pins on side 2 are
enabled when EN2 is high or open and in high-impedance
state when EN2 is low.
Logic Input D.
12
VOC
Logic Output C.
13
VOB
Logic Output B.
14
VOA
Logic Output A.
15
GND2
Ground 2. This pin is the ground reference for Isolator Side 2.
16
VDD2
Supply Voltage for Isolator Side 2.
Rev. 1 | Page 2 of 17
DD2
1
2
/EN1
/EN2
1
2
Figure4. π141Mxx Pin Configuration
π140M/π141M/π142M
Data Sheet
π142Mxx Pin Function Descriptions
Pin No.
Name
Description
1
VDD1
Supply Voltage for Isolator Side 1.
2
GND1
Ground 1. This pin is the ground reference for Isolator Side 1.
3
VIA
Logic Input A.
IA
OA
4
VIB
Logic Input B.
IB
OB
5
VOC
Logic Output C.
OC
IC
6
VOD
Logic Output D.
OD
ID
7
NC/EN1
DD1
8
GND1
No connect for π142M3X.
Output enable 1 for π142M6X. Output pins on side 1 are
enabled when EN1 is high or open and in high-impedance
state when EN1 is low.
Ground 1. This pin is the ground reference for Isolator Side 1.
9
GND2
Ground 2. This pin is the ground reference for Isolator Side 2.
10
NC/EN2
11
VID
No connect for π142M3X.
Output enable 2 for π142M6X. Output pins on side 2 are
enabled when EN2 is high or open and in high-impedance
state when EN2 is low.
Logic Input D.
12
VIC
Logic Input C.
13
VOB
Logic Output B.
14
VOA
Logic Output A.
15
GND2
Ground 2. This pin is the ground reference for Isolator Side 2.
16
VDD2
Supply Voltage for Isolator Side 2.
DD2
2
1
/EN1
/EN2
1
2
Figure5. π142Mxx Pin Configuration
ABSOLUTE MAXIMUM RATINGS
TA = 25°C, unless otherwise noted.
Table 1. Absolute Maximum Ratings4
Parameter
Rating
Supply Voltages (VDD1-GND1, VDD2-GND2)
−0.5 V to +7.0 V
Input Voltages (VIA, VIB)1
−0.5 V to VDDx + 0.5 V
Output Voltages (VOA, VOB
)1
−0.5 V to VDDx + 0.5 V
Average Output Current per
Pin2
Side 1 Output Current (IO1)
−10 mA to +10 mA
Average Output Current per
Pin2
Side 2 Output Current (IO2)
−10 mA to +10 mA
Common-Mode Transients Immunity 3
−150 kV/µs to +150 kV/µs
Storage Temperature (TST) Range
−65°C to +150°C
Ambient Operating Temperature (TA) Range
−40°C to +125°C
Notes:
1 VDDx is the side voltage power supply VDD, where x = 1 or 2.
2 See Figure 6 for the maximum rated current values for various temperatures.
3 See Figure 19 for Common-mode transient immunity (CMTI) measurement.
4 Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress rating only; functional operation of the
device at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating
conditions for extended periods may affect product reliability.
Rev. 1 | Page 3 of 17
π140M/π141M/π142M
Data Sheet
RECOMMENDED OPERATING CONDITIONS
Table 2. Recommended Operating Conditions
Parameter
Supply Voltage
Symbol
VDDx
Min
1
Typ
Max
Unit
5.5
V
3
High Level Input Signal Voltage
VIH
0.7*VDDx
Low Level Input Signal Voltage
VIL
0
High Level Output Current
IOH
-6
Low Level Output Current
IOL
Maximum Data Rate
1
VDDx
1
0.3*VDDx1
V
V
mA
6
mA
0
10
Mbps
Junction Temperature
TJ
-40
150
°C
Ambient Operating Temperature
TA
-40
125
°C
Notes:
1 VDDx is the side voltage power supply VDD, where x = 1 or 2.
Truth Tables
Table 3. π140M3x/π141M3x/π142M3x Truth Table
Default Low
Default High
VOx Output1
VOx Output1
Test Conditions
/Comments
Powered2
Low
Low
Normal operation
Powered2
High
High
Normal operation
Powered2
Powered2
Low
High
Default output
Unpowered3
Powered2
Low
High
Default output5
Powered2
Unpowered3
High Impedance
High Impedance
VIx Input1
VDDI State1
VDDO State1
Low
Powered2
High
Powered2
Open
Don’t
Care4
Don’t Care4
Notes:
1 VIx/VOx are the input/output signals of a given channel (A or B). VDDI/VDDO are the supply voltages on the input/output signal sides of this given channel.
2 Powered means VDDx≥ 2.9 V
3 Unpowered means VDDx < 2.3V
4 Input signal (VIx) must be in a low state to avoid powering the given VDDI1 through its ESD protection circuitry.
5 If the VDDI goes into unpowered status, the channel outputs the default logic signal after around 1us. If the VDDI goes into powered status, the channel outputs the input
status logic signal after around 1us.
Table 4. π140M6x/π141M6x/π142M6x Truth Table
Default Low
Default High
VOx Output1
VOx Output1
Test Conditions
/Comments
Powered2
Low
Low
Normal operation
Powered2
High
High
Normal operation
Powered2
Powered2
High Impedance
High Impedance
Disabled
High or NC
Powered2
Powered2
Low
High
Default output5
High or NC
Unpowered3
Powered2
Low
High
Default output5
L
Unpowered3
Powered2
High Impedance
High Impedance
Powered2
Unpowered3
High Impedance
High Impedance
VIx Input1
EN1/2 State
VDDI State1
VDDO State1
Low
High or NC
Powered2
High
High or NC
Powered2
Don’t Care4
L
Open
Don’t
Care4
Don’t Care4
Don’t
Care4
Don’t
Care4
Notes:
1VIx/VOx are the input/output signals of a given channel (A or B). VDDI/VDDO are the supply voltages on the input/output signal sides of this given channel.
2Powered means V
DDx≥ 2.9 V
3Unpowered means V
DDx < 2.3V
4Input signal (VIx) must be in a low state to avoid powering the given VDDI1 through its ESD protection circuitry.
5If the V
DDI goes into unpowered status, the channel outputs the default logic signal after around 1us. If the VDDI goes into powered status, the channel outputs the input
status logic signal after around 1us.
Rev. 1 | Page 4 of 17
π140M/π141M/π142M
Data Sheet
SPECIFICATIONS
ELECTRICAL CHARACTERISTICS
Table 5. Switching Specifications
VDD1 - VGND1 = VDD2 - VGND2 = 3.3VDC±10% or 5VDC±10%, TA=25°C, unless otherwise noted.
Parameter
Minimum Pulse Width
Symbol
Pulse Width Distortion4
Part to Part Propagation Delay
Skew4
Channel to Channel Propagation
Delay Skew4
Typ
Max
PW
Maximum Data Rate
Propagation Delay Time1,4
Min
100
10
tpHL, tpLH
PWD
Unit
Test Conditions/Comments
ns
Within pulse width distortion (PWD) limit
Mbps
Within PWD limit
5.5
8
12.5
ns
The different time between 50% input signal to
50% output signal 50% @ 5VDC supply
6.5
9
13.5
ns
@ 3.3VDC supply
0
0.3
0.8
ns
The max different time between tpHL and tpLH@
5VDC supply. And The value is | tpHL - tpLH |
0
0.3
0.8
ns
@ 3.3VDC supply
1
ns
The max different propagation delay time
between any two devices at the same
temperature, load and voltage @ 5VDC supply
1
ns
0
1
ns
0
0.8
ns
tPSK
tCSK
@ 3.3VDC supply
The max amount propagation delay time
differs between any two output channels in
the single device @ 5VDC supply.
@ 3.3VDC supply
Output Signal Rise/Fall Time4
tr/tf
1.5
Dynamic Input Supply Current per
Channel
IDDI (D)
9
µA
/Mbps
10% to 90% signal terminated 50,See
figure15.
Inputs switching, 50% duty cycle square wave,
CL = 0 pF @ 5VDC Supply
Dynamic Output Supply Current
per Channel
IDDO (D)
38
µA
/Mbps
Inputs switching, 50% duty cycle square wave,
CL = 0 pF @ 5VDC Supply
Dynamic Input Supply Current per
Channel
IDDI (D)
5
µA
/Mbps
Inputs switching, 50% duty cycle square wave,
CL = 0 pF @ 3.3VDC Supply
Dynamic Output Supply Current
per Channel
IDDO (D)
23
µA
/Mbps
Inputs switching, 50% duty cycle square wave,
CL = 0 pF @ 3.3VDC Supply
Common-Mode Transient
Immunity3
CMTI
75
kV/µs
VIN = VDDx2 or 0V, VCM = 1000 V
120
ps p-p
See the Jitter Measurement section
20
ps rms
See the Jitter Measurement section
±8
kV
All pins
Jitter
ESD(HBM - Human body
model)
ESD
ns
Notes:
1 tpLH = low-to-high propagation delay time, tpHL = high-to-low propagation delay time. See figure 16.
2V
DDx is the side voltage power supply VDD, where x = 1 or 2.
3 See Figure19 for Common-mode transient immunity (CMTI) measurement.
4 Output Signal Terminated 50
Table 6. DC Specifications
VDD1 - VGND1 = VDD2 - VGND2 = 3.3VDC±10% or 5VDC±10%, TA=25°C, unless otherwise noted.
Symbol
Rising Input Signal Voltage
Threshold
VIT+
Min
Typ
Max
0.6*VDDx1
0.7*VDDx1
Rev. 1 | Page 5 of 17
Unit
V
Test Conditions/Comments
π140M/π141M/π142M
Data Sheet
Falling Input Signal Voltage
Threshold
High Level Output Voltage
Low Level Output Voltage
Input Current per Signal
Channel
VDDx1 Undervoltage Rising
Threshold
VDDx1 Undervoltage Falling
Threshold
VDDx1 Hysteresis
VIT-
0.3* VDDX1
0.4* VDDX1
V
VOH 1
VDDx − 0.1
VDDx
V
−20 µA output current
VDDx − 0.2
VDDx − 0.1
V
−2 mA output current
VOL
0
0.1
V
20 µA output current
0.1
0.2
V
2 mA output current
0 V ≤ Signal voltage ≤ VDDX1
IIN
−10
0.5
10
µA
VDDxUV+
2.45
2.65
2.9
V
VDDxUV−
2.3
2.5
2.75
V
VDDxUVH
0.15
V
Notes:
1 VDDx is the side voltage power supply VDD, where x = 1 or 2.
Table 7. Quiescent Supply Current
VDD1 - VGND1 = VDD2 - VGND2 = 3.3VDC±10% or 5VDC±10%, TA=25°C, CL = 0 pF, unless otherwise noted.
Parameter
π140Mxx Quiescent Supply Current @ 5VDC Supply
@ 3.3VDC Supply
π141Mxx Quiescent Supply Current @ 5VDC Supply
@ 3.3VDC Supply
π142Mxx Quiescent Supply Current @ 5VDC Supply
@ 3.3VDC Supply
Symbol
Min
Typ
Max
Unit
Test Conditions
IDD1 (Q)
128
160
208
µA
0V Input signal
IDD2 (Q)
1562
1952
2538
µA
0V Input signal
IDD1 (Q)
315
394
512
µA
5V Input signal
IDD2 (Q)
1477
1846
2400
µA
5V Input signal
IDD1 (Q)
126
158
205
µA
0V Input signal
IDD2 (Q)
1544
1930
2509
µA
0V Input signal
IDD1 (Q)
232
290
377
µA
3.3V Input signal
IDD2 (Q)
1418
1772
2304
µA
3.3V Input signal
IDD1 (Q)
483
604
785
µA
0V Input signal
IDD2 (Q)
1200
1500
1950
µA
0V Input signal
IDD1 (Q)
594
742
965
µA
5V Input signal
IDD2 (Q)
1174
1468
1908
µA
5V Input signal
IDD1 (Q)
478
597
776
µA
0V Input signal
IDD2 (Q)
1186
1483
1928
µA
0V Input signal
IDD1 (Q)
524
655
852
µA
3.3V Input signal
IDD2 (Q)
1117
1396
1815
µA
3.3V Input signal
IDD1 (Q)
838
1048
1362
µA
0V Input signal
IDD2 (Q)
838
1048
1362
µA
0V Input signal
IDD1 (Q)
IDD2 (Q)
872
872
1090
1090
1417
1417
µA
µA
5V Input signal
5V Input signal
IDD1 (Q)
829
1036
1347
µA
0V Input signal
IDD2 (Q)
829
1036
1347
µA
0V Input signal
IDD1 (Q)
816
1020
1326
µA
3.3V Input signal
IDD2 (Q)
816
1020
1326
µA
3.3V Input signal
Table 8. Total Supply Current vs. Data Throughput (CL = 0 pF)
VDD1 - VGND1 = VDD2 - VGND2 = 3.3VDC±10% or 5VDC±10%, TA=25°C, CL = 0 pF, unless otherwise noted.
Rev. 1 | Page 6 of 17
π140M/π141M/π142M
Data Sheet
Parameter
Symbol
π140Mxx Supply Current @5VDC
@ 3.3VDC
π141Mxx Supply Current @5VDC
@ 3.3VDC
π142Mxx Supply Current @5VDC
@ 3.3VDC
150 Kbps
Min
1 Mbps
Typ
Max
IDD1
0.28
IDD2
Min
10 Mbps
Typ
Max
0.42
0.30
1.90
2.85
IDD1
0.22
IDD2
Min
Typ
Max
Unit
0.45
0.48
0.72
mA
2.04
3.06
3.52
5.28
mA
0.33
0.24
0.36
0.36
0.54
mA
1.86
2.79
1.94
2.91
2.86
4.29
mA
IDD1
0.68
1.02
0.73
1.10
1.21
1.82
mA
IDD2
1.49
2.24
1.60
2.40
2.73
4.10
mA
IDD1
0.63
0.95
0.66
0.99
0.95
1.43
mA
IDD2
1.45
2.18
1.51
2.27
2.20
3.30
mA
IDD1
1.08
1.62
1.16
1.74
1.94
2.91
mA
IDD2
1.08
1.62
1.16
1.74
1.94
2.91
mA
IDD1
1.04
1.56
1.08
1.62
1.54
2.31
mA
IDD2
1.04
1.56
1.08
1.62
1.54
2.31
mA
INSULATION AND SAFETY RELATED SPECIFICATIONS
Table 9. Insulation Specifications
Parameter
Symbol
Rated Dielectric Insulation Voltage
Minimum External Air Gap
(Clearance)
Minimum External Tracking
(Creepage)
Minimum Internal Gap (Internal
Clearance)
Tracking Resistance (Comparative
Tracking Index)
Value
Unit
Test Conditions/Comments
π14xM3x
π14xM6x
3000
6000
L (CLR)
4
8
mm min
L (CRP)
4
8
mm min
11
21
µm min
Insulation distance through insulation
>400
>400
V
DIN IEC 112/VDE 0303 Part 1
II
II
CTI
Material Group
V rms
1-minute duration
Measured from input terminals to output terminals,
shortest distance through air
Measured from input terminals to output terminals,
shortest distance path along body
Material Group (DIN VDE 0110, 1/89, Table 1)
PACKAGE CHARACTERISTICS
Table 10. Package Characteristics
Parameter
Resistance (Input to Output)1
Capacitance (Input to
Output)1
Symbol
Typical Value
Unit
π14xM3x
π14xM6x
RI-O
10 11
10 11
Ω
Test Conditions/Comments
CI-O
0.6
0.6
pF
@1MHz
Input Capacitance2
CI
3
3
pF
@1MHz
IC Junction to Ambient Thermal
Resistance
θJA
100
45
°C/W
Thermocouple located at center
of package underside
Notes:
1The device is considered a 2-terminal device; SOIC-16 Pin 1 - Pin 8(WSOIC-16 Pin 1-Pin8 and SSOP16 Pin 1-Pin8) are shorted together as the one terminal, and SOIC-16 Pin
9- Pin 16(WSOIC-16 Pin 9-Pin16 and SSOP16 Pin 9-Pin16) are shorted together as the other terminal.
2Testing from the input signal pin to ground.
REGULATORY INFORMATION
See Table 11 and the Insulation Lifetime section for details regarding recommended maximum working voltages for specific cross
isolation waveforms and insulation levels.
Rev. 1 | Page 7 of 17
π140M/π141M/π142M
Data Sheet
Table11. Regulatory
π14xM3x
Regulatory
UL
π14xM6x
Recognized under UL 1577
Component Recognition
Recognized under UL 1577
Program1
Component Recognition Program1
Single Protection, 3000 V rms Isolation Voltage
CSA
Single Protection, 6000 V rms Isolation Voltage
File (E494497)
File (pending)
Approved under CSA Component Acceptance Notice 5A
Approved under CSA Component Acceptance Notice 5A
CSA 60950-1-07+A1+A2 and
CSA 60950-1-07+A1+A2 and
IEC 60950-1, second edition, +A1+A2:
IEC 60950-1, second edition, +A1+A2:
Basic insulation at 500Vrms (707Vpeak)
Basic insulation at 845Vrms (1200Vpeak)
Reinforced insulation at 250 V rms
Reinforced insulation at422V rms
(353 V peak)
(600V peak)
File (pending)
VDE
DIN V VDE V 0884-10 (VDE V
File (pending)
0884-10):2006-122
DIN V VDE V 0884-10 (VDE V 0884-10):2006-122
Basic insulation, VIORM = 707 V peak, VIOSM = 4615 V peak
Basic insulation, VIORM = 1200Vpeak, VIOSM = 7000V peak
Reinforced insulation, VIORM =600V peak
CQC
File (40047929)
File (pending)
Certified under
Certified under
CQC11-471543-2012
CQC11-471543-2012
GB4943.1-2011
Basic insulation at 500 V rms (707 V peak) working
voltage
Reinforced insulation at
GB4943.1-2011
250 V rms (353 V peak)
422V rms (600V peak)
File (pending)
File (pending)
Basic insulation at 845V rms (1200V peak) working voltage
Reinforced insulation at
Notes:
1 In accordance with UL 1577, each π140M3x/π141M3x/π142M3x is proof tested by applying an insulation test voltage ≥ 3600 V rms for 1 sec; each
π140M6x/π141M6x/π142M6x is proof tested by applying an isulation test voltage ≥ 7200 V rms for 1 sec
2 In accordance with DIN V VDE V 0884-10, each π140M3x/π141M3x/π142M3x is proof tested by applying an insulation test voltage ≥ 1326 V peak for 1 sec (partial
discharge detection limit = 5 pC); each π140M6x/π141M6x/π142M6x is proof tested by ≥ 2250V peak for 1 sec. The marking branded on the component designates DIN V
VDE V 0884-10 approval.
DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS
These isolators are suitable for reinforced electrical isolation only within the safety limit data. Protective circuits ensure the maintenance
of the safety data. The marking on packages denotes DIN V VDE V 0884-10 approval.
Table 12. VDE Insulation Characteristics
Description
Test Conditions/Comments
Symbol
Characteristic
π14xM3x
π14xM6x
I to IV
I to IV
I to III
I to III
Unit
Installation Classification per DIN VDE 0110
For Rated Mains Voltage ≤ 150 V rms
For Rated Mains Voltage ≤ 300 V rms
For Rated Mains Voltage ≤ 400 V rms
Climatic Classification
Pollution Degree per DIN VDE 0110, Table 1
Maximum Working Insulation Voltage
VIORM
Rev. 1 | Page 8 of 17
I to III
I to III
40/105/21
40/105/21
2
2
707
1200
V peak
π140M/π141M/π142M
Data Sheet
Input to Output Test Voltage, Method B1
VIORM × 1.875 = Vpd (m), 100% production
test, tini = tm = 1 sec, partial discharge <
5 pC
Vpd (m)
1326
2250
V peak
VIORM × 1.5 = Vpd (m), tini = 60 sec, tm = 10
sec, partial discharge < 5 pC
Vpd (m)
1061
1800
V peak
849
1440
V peak
Input to Output Test Voltage, Method A
After Environmental Tests Subgroup 1
After Input and/or Safety Test Subgroup 2
and Subgroup 3
Highest Allowable Overvoltage
VIORM × 1.2 = Vpd (m), tini = 60 sec, tm = 10
sec, partial discharge < 5 pC
VIOTM
4200
8500
V peak
Surge Isolation Voltage Basic
Basic insulation, 1.2 µs rise time, 50 µs,
50% fall time
VIOSM
4615
7000
V peak
Surge Isolation Voltage Reinforced
Reinforced insulation, 1.2 µs rise time,
50 µs, 50% fall time
VIOSM
Safety Limiting Values
Maximum value allowed in the event of
a failure (see Figure 6)
V peak
Maximum Junction Temperature
TS
150
150
°C
Total Power Dissipation at 25°C
PS
1.56
2.78
W
RS
>109
>109
Ω
Insulation Resistance at TS
VIO = 800 V
π14xM3x
π14xM6x
3
12.0
2.9
Propagation Delay Time(nS)
Power Supply Undervoltage Threshold
Figure6. Thermal Derating Curve, Dependence of Safety Limiting Values with Ambient Temperature per VDE
2.8
2.7
2.6
2.5
VDDxUV+(V)
VDDxUV−(V)
2.4
2.3
2.2
10.0
8.0
6.0
tpHL(ns)@3.3V
tpLH(ns)@3.3V
tpHL(ns)@5.0V
tpLH(ns)@5.0V
4.0
2.0
0.0
0
50
100
150
0
Free-Air Temperature ( °C)
Figure7. UVLO vs. Free-Air Temperature
50
100
Free-Air Temperature ( °C)
Figure8. Propagation Delay Time vs. Free-Air Temperature
Rev. 1 | Page 9 of 17
150
π140M/π141M/π142M
1.6
1.4
1.2
1.0
IDD1@ 0V Input
IDD2@ 0V Input
IDD1@ 3.3V Input
IDD2@ 3.3V Input
0.8
0.6
0.4
0.2
0.0
0
50
100
150
π140Mxx Quiescent Supply Current (mA)
π140Mxx Quiescent Supply Current (mA)
Data Sheet
1.6
1.4
1.2
1.0
IDD1@ 0V Input
IDD2@ 0V Input
IDD1@ 5V Input
IDD2@ 5V Input
0.8
0.6
0.4
0.2
0.0
0
Free-Air Temperature ( °C)
0.8
0.6
IDD1@ 0V Input
IDD2@ 0V Input
IDD1@ 3.3V Input
IDD2@ 3.3V Input
0
50
100
150
Free-Air Temperature ( °C)
π142Mxx Quiescent Supply Current (mA)
IDD1@ 0V Input
IDD2@ 0V Input
IDD1@ 3.3V Input
IDD2@ 3.3V Input
0
50
100
1.4
1.2
1.0
0.8
0.6
IDD1@ 0V Input
IDD2@ 0V Input
IDD1@ 5V Input
IDD2@ 5V Input
0.4
0.2
0.0
0
50
100
150
Free-Air Temperature ( °C)
Figure 11 π141Mxx Quiescent Supply Current with 3.3V Supply
vs.Free-Air Temperature
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
π141Mxx Quiescent Supply Current (mA)
1.0
0.0
150
Figure10 π140Mxx Quiescent Supply Current with 5V Supply vs.
Free-Air Temperature
150
Free-Air Temperature ( °C)
Figure 13 π142Mxx Quiescent Supply Current with 3.3V Supply
vs.Free-Air Temperature
Figure 12 π141Mxx Quiescent Supply Current with 5V Supply vs.
Free-Air Temperature
π142Mxx Quiescent Supply Current (mA)
π141Mxx Quiescent Supply Current (mA)
1.2
0.2
100
Free-Air Temperature ( °C)
Figure9 π140Mxx Quiescent Supply Current with 3.3V Supply
vs.Free-Air Temperature
0.4
50
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
IDD1@ 0V Input
IDD2@ 0V Input
IDD1@ 5V Input
IDD2@ 5V Input
0
50
100
150
Free-Air Temperature ( °C)
Figure 14 π142Mxx Quiescent Supply Current with 5V Supply vs.
Free-Air Temperature
Rev. 1 | Page 10 of 17
π140M/π141M/π142M
Data Sheet
VDDX
Figure15. Transition time waveform measurement
Figure16. Propagation delay time waveform measurement
Rev. 1 | Page 11 of 17
π140M/π141M/π142M
Data Sheet
APPLICATIONS INFORMATION
the user may also include resistors (50–300 Ω) in series with the
inputs and outputs if the system is excessively noisy.
OVERVIEW
The π1xxxxx are 2PaiSemi digital isolators product family based
on 2PaiSEMI unique iDivider technology. Intelligent voltage
Divider technology (iDivider technology) is a new generation
digital isolator technology invented by 2PaiSEMI. It uses the
principle of capacitor voltage divider to transmit signal directly
cross the isolator capacitor without signal modulation and
demodulation. Compare to the traditional Opto-couple
technology, icoupler technology, OOK technology, iDivider is a
more essential and concise isolation signal transmit technology
which leads to greatly simplification on circuit design and
therefore significantly improves device performance, such as
lower power consumption, faster speed, enhanced antiinterference ability, lower noise.
By using maturated standard semiconductor CMOS technology
and the innovative iDivider design, these isolation components
provide outstanding performance characteristics and reliability
superior to alternatives such as optocoupler devices and other
integrated isolators. The π1xxxxx isolator data channels are
independent and are available in a variety of configurations with
a withstand voltage rating of 1.5 kV rms to 6.0 kV rms and the
data rate from DC up to 600Mbps (see the Ordering Guide).
The π140Mxx/π141Mxx/π142Mxx are the outstanding 10Mbps
quad-channel digital isolators with the enhanced ESD capability.
the devices transmit data across an isolation barrier by layers of
silicon dioxide isolation.
The devices operate with the supply voltage on either side
ranging from 3.0 V to 5.5 V, offering voltage translation of 3.3 V,
and 5 V logic.
The π140Mxx/π141Mxx/π142Mxx have very low propagation
delay and high speed. The input/output design techniques allow
logic and supply voltages over a wide range from 3.0 V to 5.5 V,
offering voltage translation of 3.3 V and 5 V logic. The
architecture is designed for high common-mode transient
immunity and high immunity to electrical noise and magnetic
interference.
See the Ordering Guide for the model numbers that have the failsafe output state of low or high.
PCB LAYOUT
The low-ESR ceramic bypass capacitors must be connected
between VDD1 and GND1 and between VDD2 and GND2. The
bypass capacitors are placed on the PCB as close to the isolator
device as possible. The recommended bypass capacitor value is
between 0.1 μF and 10 μF. To enhance the robustness of a design,
VDD1
VDD2
GND1
GND2
VIA
VIB
VIC/VOC
VID/VOD
Avoid reducing the isolation capability, Keep the space
underneath the isolator device free from metal such as planes,
pads, traces and vias.
To minimize the impedance of the signal return loop, keep the
solid ground plane directly underneath the high-speed signal path,
the closer the better. The return path will couple between the
nearest ground plane to the signal path. Keep suitable trace width
for controlled impedance transmission lines interconnect.
To reduce the rise time degradation, keep the length of
input/output signal traces as short as possible, and route low
inductance loop for the signal path and It’s return path.
JITTER MEASUREMENT
The eye diagram shown in the figure18 provides the jitter
measurement result for the π140Mxx/π141Mxx/π142Mxx. The
Keysight 81160A pulse function arbitrary generator works as
the data source for the π140Mxx/π141Mxx/π142Mxx, which
generates 100Mbps pseudo random bit sequence (PRBS). The
Keysight DSOS104A digital storage oscilloscope captures the
π140Mxx/π141Mxx/π142Mxx output waveform and recoveries
the eye diagram with the SDA tools and eye diagram analysis
tools. The result shows a typical measurement 120ps p-p jitter.
Figure18. π140Mxx/π141Mxx/π142Mxx Eye Diagram
CMTI MEASUREMENT
To measure the Common-Mode Transient Immunity (CMTI) of
π1xxxxx isolator under specified common-mode pulse magnitude
(VCM) and specified slew rate of the common-mode pulse
(dVCM/dt) and other specified test or ambient conditions, The
common-mode pulse generator (G1) will be capable of providing
VOA
VOB
VOC/VIC
VOD/VID
NC
GND1
NC
Figure19. Common-mode transient immunity (CMTI) measurement
GND2
Figure17.Recommended Printed Circuit Board Layout
Rev. 1 | Page 12 of 17
π140M/π141M/π142M
Data Sheet
fast rising and falling pulses of specified magnitude and duration
of the common-mode pulse (VCM) and the maximum commonmode slew rates (dVCM/dt) can be applied to π1xxxxx isolator
coupler under measurement. The common-mode pulse is applied
between one side ground GND1 and the other side ground GND2
of π1xxxxx isolator and shall be capable of providing positive
transients as well as negative transients.
OUTLINE DIMENSIONS
Figure20. 16-Lead Standard Small Outline Package [16-Lead SOIC_N]
Figure21. 16-Lead Wide Body Outline Package [16-Lead SOIC_W]
Rev. 1 | Page 13 of 17
π140M/π141M/π142M
Data Sheet
Figure22. 16-Lead SSOP Outline Package [SSOP16]
REEL INFORMATION
16-Lead SOIC_N
Rev. 1 | Page 14 of 17
π140M/π141M/π142M
Data Sheet
16-Lead SOIC_W
16-Lead SSOP
Rev. 1 | Page 15 of 17
π140M/π141M/π142M
Data Sheet
ORDERING GUIDE
π140M31
Pai140M31
−40°C to +125°C
No. of
Input
s,
VDD1
Side
4
0
3
High
16-Lead SOIC_N
S-16-N
2500 per reel
π140M30
Pai140M30
−40°C to +125°C
4
0
3
Low
16-Lead SOIC_N
S-16-N
2500 per reel
π141M31
Pai141M31
−40°C to +125°C
3
1
3
High
16-Lead SOIC_N
S-16-N
2500 per reel
π141M30
Pai141M30
−40°C to +125°C
3
1
3
Low
16-Lead SOIC_N
S-16-N
2500 per reel
π142M31
Pai142M31
−40°C to +125°C
2
2
3
High
16-Lead SOIC_N
S-16-N
2500 per reel
π142M30
Pai142M30
−40°C to +125°C
2
2
3
Low
16-Lead SOIC_N
S-16-N
2500 per reel
π140M61
Pai140M61
−40°C to +125°C
4
0
6
High
16-Lead SOIC_W
S-16-W
1500 per reel
π140M60
Pai140M60
−40°C to +125°C
4
0
6
Low
16-Lead SOIC_W
S-16-W
1500 per reel
π141M61
Pai141M61
−40°C to +125°C
3
1
6
High
16-Lead SOIC_W
S-16-W
1500 per reel
π141M60
Pai141M60
−40°C to +125°C
3
1
6
Low
16-Lead SOIC_W
S-16-W
1500 per reel
π142M61
Pai142M61
−40°C to +125°C
2
2
6
High
16-Lead SOIC_W
S-16-W
1500 per reel
π142M60
Pai142M60
−40°C to +125°C
2
2
6
Low
16-Lead SOIC_W
S-16-W
1500 per reel
π140M31S
Pai140M31S
−40°C to +125°C
4
0
3
High
16-Lead SSOP
SSOP16
4000 per reel
π140M30S
Pai140M30S
−40°C to +125°C
4
0
3
Low
16-Lead SSOP
SSOP16
4000 per reel
π141M31S
Pai141M31S
−40°C to +125°C
3
1
3
High
16-Lead SSOP
SSOP16
4000 per reel
π141M30S
Pai141M30S
−40°C to +125°C
3
1
3
Low
16-Lead SSOP
SSOP16
4000 per reel
π142M31S
Pai142M31S
−40°C to +125°C
2
2
3
High
16-Lead SSOP
SSOP16
4000 per reel
π142M30S
Pai142M30S
−40°C to +125°C
2
2
3
Low
16-Lead SSOP
SSOP16
4000 per reel
Model Name
Temperature
Range
No. of
Inputs
, VDD2
Side
Withstan
d Voltage
Rating (kV
rms)
FailSafe
Outpu
t State
Package
Description
Package
Option
Notes:
1 π14xxxxQ special for Auto, qualified for AEC-Q100
PART NUMBER NAMED RULE
π(1)(2)(0)(A)(3)(0)(S)
SeriesNumber:
1,2,3...
Total Channel Am ount:
N=N Channels N=1,2,3,4,5,6...
Reverse Channel Amount:
N=N Channels N=0,1,2,3...
Data Rate:A=600Mbps
E=200Mbps
M=10Mbps
U=150Kbps
Isolation Voltag es:
N=1
1.5KVrms AC
N=3
3KVrms AC
N=6
6KVrms AC
Fail-Safe Output Stat e:
0=Logic Low
1=Logic High
Optional:
S=SSOP Package
Q=AEC-Q100 Qualified
Notes:
Pai14xxxx is equals to π14xxxx in the customer BOM
Rev. 1 | Page 16 of 17
Quantity
π140M/π141M/π142M
Data Sheet
REVISION HISTORY
Revision
Updated
Date
Page
Change Record
1
Victory
2018/09/20
All
2
Victory
2018/11/28
P1,P11
3
Devin
2019/09/08
P1,P7,P11
,P13,P14,
P15
Initial version
Changed CIN,COUT in Figure2 from 0.1uF to 1uF.
Changed the recommended bypass capacitor value from between 0.1 μF and 1 μF to
between 0.1 μF and 10 μF.
P1: Changed the address from ‘Room 19307, Building 8, No.498, GuoShouJing Road’ to
‘Room 308-309, No.22, Boxia Road’; Changed ‘(W)SOIC package’ to ‘SOIC_N, SOIC_W
and SSOP package’; Add iDivider technology description in General Description.
Changed propagation delay for 5V from 7.5ns to 8ns.
Changed CMTI from 50KV/us to 75KV/us.
Changed CIN,COUT in Figure2 from 1uF to 0.1uF.
P7: Add ‘and SSOP16 Pin 1-Pin8’ and ‘and SSOP16 Pin 9-Pin16’ in note 1.
P11: Add iDivider technology description in overview.
P13: Add Figure22. 16-Lead SSOP Outline Package drawing
P14: Add 16-Lead SSOP Reel drawing; Updated 16-Lead SOIC_W reel drawing.
P15: Add character ‘S’ and ‘Q’ in part number named rule; Changed the SOIC_W
quantity from ‘1000 per reel’ to ‘1500 per reel’; Add ‘π140M31S、π140M30S、
π141M31S、π141M30S、π142M31S、π142M30S’ in ordering guide
Rev. 1 | Page 17 of 17