0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MAX202EIM/TR

MAX202EIM/TR

  • 厂商:

    HGSEMI(华冠)

  • 封装:

    SOP-16

  • 描述:

    MAX202EIM/TR

  • 数据手册
  • 价格&库存
MAX202EIM/TR 数据手册
MAX202         ±    D ESD Protection for RS-232 Bus Pins D D D D D D D, DW, N, OR PW PACKAGE (TOP VIEW) − ±15-kV − Human-Body Model Meets or Exceeds the Requirements of TIA/EIA-232-F and ITU v.28 Standards Operates at 5-V VCC Supply Operates Up To 120 kbit/s External Capacitors . . . 4 × 0.1 µF Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II Applications − Battery-Powered Systems, PDAs, Notebooks, Laptops, Palmtop PCs, and Hand-Held Equipment C1+ V+ C1− C2+ C2− V− DOUT2 RIN2 1 16 2 15 3 14 4 13 5 12 6 11 7 10 8 9 VCC GND DOUT1 RIN1 ROUT1 DIN1 DIN2 ROUT2 description/ordering information The MAX202 device consists of two line drivers, two line receivers, and a dual charge-pump circuit with ±15-kV ESD protection pin to pin (serial-port connection pins, including GND). The device meets the requirements of TIA/EIA-232-F and provides the electrical interface between an asynchronous communication controller and the serial-port connector. The charge pump and four small external capacitors allow operation from a single 5-V supply. The device operates at data signaling rates up to 120 kbit/s and a maximum of 30-V/µs driver output slew rate. http://www.hgsemi.com.cn 1 2014 APR MAX202 Function Tables EACH DRIVER INPUT DIN OUTPUT DOUT L H H L H = high level, L = low level EACH RECEIVER INPUT RIN OUTPUT ROUT L H H L Open H H = high level, L = low level, Open = input disconnected or connected driver off logic diagram (positive logic) 11 14 DIN1 DOUT1 10 7 DIN2 DOUT2 12 13 ROUT1 RIN1 9 8 ROUT2 http://www.hgsemi.com.cn RIN2 2 2014 APR MAX202 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage range, VCC (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 6 V Positive charge pump voltage range, V+ (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . VCC − 0.3 V to 14 V Negative charge pump voltage range, V− (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −14 V to 0.3 V Input voltage range, VI: Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to V+ + 0.3 V Receivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±30 V Output voltage range, VO: Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V− − 0.3 V to V+ + 0.3 V Receivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to VCC + 0.3 V Short-circuit duration: DOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Continuous Package thermal impedance, θJA (see Notes 2 and 3): D package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73°C/W DW package . . . . . . . . . . . . . . . . . . . . . . . . . . 57°C/W N package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67°C/W PW package . . . . . . . . . . . . . . . . . . . . . . . . . 108°C/W Operating virtual junction temperature, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltages are with respect to network GND. 2. Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) − TA)/θJA. Operating at the absolute maximum TJ of 150°C can affect reliability. 3. The package thermal impedance is calculated in accordance with JESD 51-7. recommended operating conditions (see Note 4 and Figure 4) Supply voltage VIH VIL Driver high-level input voltage DIN Driver low-level input voltage DIN Driver input voltage DIN VI Receiver input voltage TA Operating free-air temperature MAX202C MAX202I MIN NOM MAX 4.5 5 5.5 2 UNIT V V 0.8 0 5.5 −30 30 0 70 −40 85 V V °C NOTE 4: Test conditions are C1−C4 = 0.1 µF at VCC = 5 V ± 0.5 V. electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4 and Figure 4) PARAMETER TEST CONDITIONS ICC Supply current ‡ All typical values are at VCC = 5 V, and TA = 25°C. NOTE 4: Test conditions are C1−C4 = 0.1 µF at VCC = 5 V ± 0.5 V. http://www.hgsemi.com.cn 3 No load, VCC = 5 V MIN TYP‡ MAX 8 15 UNIT mA 2014 APR MAX202 DRIVER SECTION electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4 and Figure 4) PARAMETER TEST CONDITIONS MIN TYP† MAX UNIT VOH VOL High-level output voltage DOUT at RL = 3 kΩ to GND, DIN = GND 5 9 V Low-level output voltage DOUT at RL = 3 kΩ to GND, DIN = VCC −5 −9 V IIH IIL High-level input current Low-level input current VI = VCC VI at 0 V IOS‡ Short-circuit output current VCC = 5.5 V, VO = 0 V 15 200 µA −15 −200 µA ±10 ±60 mA ro Output resistance VCC, V+, and V− = 0 V, VO = ±2 V 300 W † All typical values are at VCC = 5 V, and TA = 25°C. ‡ Short-circuit durations should be controlled to prevent exceeding the device absolute power-dissipation ratings, and not more than one output should be shorted at a time. NOTE 4: Test conditions are C1−C4 = 0.1 µF at VCC = 5 V ± 0.5 V. switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4 and Figure 4) PARAMETER TEST CONDITIONS MIN TYP† MAX UNIT Maximum data rate CL = 50 to1000 pF, One DOUT switching, RL = 3 kΩ to 7 kΩ, See Figure 1 tPLH (D) Propagation delay time, low- to high-level output CL = 2500 pF, All drivers loaded, RL = 3 kΩ, See Figure 1 2 µs tPHL (D) Propagation delay time, high- to low-level output CL = 2500 pF, All drivers loaded, RL = 3 kΩ, See Figure 1 2 µs tsk(p) Pulse skew§ CL = 150 pF to 2500 pF, RL = 3 kΩ to 7 kΩ, See Figure 2 300 ns SR(tr) Slew rate, transition region (see Figure 1) CL = 50 pF to 1000 pF, VCC = 5 V RL = 3 kΩ to 7 kΩ, 120 3 kbit/s 6 30 V/µs TYP UNIT ±15 kV † All typical values are at VCC = 5 V, and TA = 25°C. § Pulse skew is defined as |tPLH − tPHL| of each channel of the same device. NOTE 4: Test conditions are C1−C4 = 0.1 µF at VCC = 5 V ± 0.5 V. ESD protection PIN DOUT, RIN TEST CONDITIONS Human-Body Model http://www.hgsemi.com.cn 4 2014 APR MAX202 RECEIVER SECTION electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4 and Figure 4) PARAMETER MIN TYP† 3.5V VCC−0.4 V TEST CONDITIONS VOH VOL High-level output voltage IOH = −1 mA IOL = 1.6 mA VIT+ VIT− Positive-going input threshold voltage Vhys ri Input hysteresis (VIT+ − VIT−) Low-level output voltage VCC = 5 V, VCC = 5 V, Negative-going input threshold voltage TA = 25°C TA = 25°C VI = ±3 V to ±25 V Input resistance MAX UNIT V 1.7 0.4 V 2.4 V 0.8 1.2 0.2 0.5 1 V V 3 5 7 kW † All typical values are at VCC = 5 V, and TA = 25°C. NOTE 4: Test conditions are C1−C4 = 0.1 µF at VCC = 5 V ± 0.5 V. switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4 and Figure 3) PARAMETER tPLH (R) tPHL (R) TEST CONDITIONS MIN TYP† MAX UNIT Propagation delay time, low- to high-level output CL= 150 pF 0.5 10 µs Propagation delay time, high- to low-level output CL= 150 pF 0.5 10 µs Pulse skew‡ tsk(p) † All typical values are at VCC = 5 V, and TA = 25°C. ‡ Pulse skew is defined as |tPLH − tPHL| of each channel of the same device. NOTE 4: Test conditions are C1−C4 = 0.1 µF, at VCC = 5 V ± 0.5 V. 300 ns PARAMETER MEASUREMENT INFORMATION 3V Input Generator (see Note B) 1.5 V RS-232 Output 50 Ω RL 1.5 V 0V tPHL (D) CL (see Note A) Output 3V −3 V TEST CIRCUIT SR(tr) + t PHL (D) 6V or t tPLH (D) 3V −3 V VOH VOL VOLTAGE WAVEFORMS PLH (D) NOTES: A. CL includes probe and jig capacitance. B. The pulse generator has the following characteristics: PRR = 120 kbit/s, ZO = 50 Ω, 50% duty cycle, tr ≤ 10 ns, tf ≤ 10 ns. Figure 1. Driver Slew Rate http://www.hgsemi.com.cn 5 2014 APR MAX202 PARAMETER MEASUREMENT INFORMATION 3V Generator (see Note B) RS-232 Output 50 Ω RL Input 1.5 V 1.5 V 0V CL (see Note A) tPHL (D) tPLH (D) VOH 50% 50% Output VOL TEST CIRCUIT VOLTAGE WAVEFORMS NOTES: A. CL includes probe and jig capacitance. B. The pulse generator has the following characteristics: PRR = 120 kbit/s, ZO = 50 Ω, 50% duty cycle, tr ≤ 10 ns, tf ≤ 10 ns. Figure 2. Driver Pulse Skew Input 3V 1.5 V 1.5 V −3 V Output Generator (see Note B) 50 Ω tPHL (R) CL (see Note A) tPLH (R) VOH 50% Output 50% VOL TEST CIRCUIT VOLTAGE WAVEFORMS NOTES: A. CL includes probe and jig capacitance. B. The pulse generator has the following characteristics: ZO = 50 Ω, 50% duty cycle, tr ≤ 10 ns, tf ≤ 10 ns. Figure 3. Receiver Propagation Delay Times http://www.hgsemi.com.cn 6 2014 APR MAX202 APPLICATION INFORMATION 1 C1 + C3† + 0.1 µF, − 0.1 µF, 6.3 V − 16 V VCC 16 C1+ + CBYPASS − = 0.1 µF 2 3 V+ GND 15 14 C1− DOUT1 13 4 C2 + 0.1 µF, 16 V − 5 kΩ 5 C2− 12 C4 − 0.1 µF, 16 V + DOUT2 RIN2 RIN1 C2+ 6 11 V− 7 10 8 9 ROUT1 DIN1 DIN2 ROUT2 5 kΩ † C3 can be connected to VCC or GND. NOTES: A. Resistor values shown are nominal. B. Nonpolarized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they should be connected as shown. Figure 4. Typical Operating Circuit and Capacitor Values http://www.hgsemi.com.cn 7 2014 APR MAX202 APPLICATION INFORMATION capacitor selection The capacitor type used for C1−C4 is not critical for proper operation. The MAX202 requires 0.1-µF capacitors, although capacitors up to 10 µF can be used without harm. Ceramic dielectrics are suggested for the 0.1-µF capacitors. When using the minimum recommended capacitor values, make sure the capacitance value does not degrade excessively as the operating temperature varies. If in doubt, use capacitors with a larger (e.g., 2×) nominal value. The capacitors’ effective series resistance (ESR), which usually rises at low temperatures, influences the amount of ripple on V+ and V−. Use larger capacitors (up to 10 µF) to reduce the output impedance at V+ and V−. Bypass VCC to ground with at least 0.1 µF. In applications sensitive to power-supply noise generated by the charge pumps, decouple VCC to ground with a capacitor the same size as (or larger than) the charge-pump capacitors (C1−C4). ESD protection MAX202 devices have standard ESD protection structures incorporated on the pins to protect against electrostatic discharges encountered during assembly and handling. In addition, the RS232 bus pins (driver outputs and receiver inputs) of these devices have an extra level of ESD protection. Advanced ESD structures were designed to successfully protect these bus pins against ESD discharge of ±15-kV when powered down. ESD test conditions Stringent ESD testing is performed by TI, based on various conditions and procedures. Please contact TI for a reliability report that documents test setup, methodology, and results. Human-Body Model (HBM) The HBM of ESD testing is shown in Figure 5. Figure 6 shows the current waveform that is generated during a discharge into a low impedance. The model consists of a 100-pF capacitor, charged to the ESD voltage of concern, and subsequently discharged into the device under test (DUT) through a 1.5-kΩ resistor. RD 1.5 kΩ VHBM + − CS DUT 100 pF Figure 5. HBM ESD Test Circuit http://www.hgsemi.com.cn 8 2014 APR MAX202 APPLICATION INFORMATION 1.5 VHBM = 2 kV DUT = 10-V, 1-Ω Zener Diode | IDUT – A 1.0 0.5 0.0 0 50 100 150 200 Time – ns Figure 6. Typical HBM Current Waveform Machine Model (MM) The MM ESD test applies to all pins using a 200-pF capacitor with no discharge resistance. The purpose of the MM test is to simulate possible ESD conditions that can occur during the handling and assembly processes of manufacturing. In this case, ESD protection is required for all pins, not just RS-232 pins. However, after PC board assembly, the MM test no longer is as pertinent to the RS-232 pins. http://www.hgsemi.com.cn 9 2014 APR MAX202 Important statement: Huaguan Semiconductor Co,Ltd. reserves the right to change the products and services provided without notice. Customers should obtain the latest relevant information before ordering, and verify the timeliness and accuracy of this information. Customers are responsible for complying with safety standards and taking safety measures when using our products for system design and machine manufacturing to avoid potential risks that may result in personal injury or property damage. Our products are not licensed for applications in life support, military, aerospace, etc., so we do not bear the consequences of the application of these products in these fields. Our documentation is only permitted to be copied without any tampering with the content, so we do not accept any responsibility or liability for the altered documents. http://www.hgsemi.com.cn 10 2014 APR
MAX202EIM/TR 价格&库存

很抱歉,暂时无法提供与“MAX202EIM/TR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
MAX202EIM/TR
    •  国内价格
    • 1+2.77200
    • 10+2.25230
    • 30+2.04440
    • 100+1.76720
    • 500+1.50150
    • 1000+1.42070

    库存:0