74HC4053/
74HCT4053
Triple 2-channel analog multiplexer/demultiplexer
1. General description
The 74HC4053; 74HCT4053 is a high-speed Si-gate CMOS device and is pin compatible
with the HEF4053B. It is specified in compliance with JEDEC standard no. 7A.
The 74HC4053; 74HCT4053 is triple 2-channel analog multiplexer/demultiplexer with a
common enable input (E). Each multiplexer/demultiplexer has two independent
inputs/outputs (nY0 and nY1), a common input/output (nZ) and three digital select
inputs (Sn). With E LOW, one of the two switches is selected (low-impedance ON-state)
by S1 to S3. With E HIGH, all switches are in the high-impedance OFF-state, independent
of S1 to S3.
VCC and GND are the supply voltage pins for the digital control inputs (S0 to S2, and E).
The VCC to GND ranges are 2.0 V to 10.0 V for 74HC4053 and 4.5 V to 5.5 V for
74HCT4053. The analog inputs/outputs (nY0 to nY1, and nZ) can swing between VCC as
a positive limit and VEE as a negative limit. VCC VEE may not exceed 10.0 V.
For operation as a digital multiplexer/demultiplexer, VEE is connected to GND (typically
ground).
2. Features and benefits
Wide analog input voltage range from 5 V to +5 V
Low ON resistance:
80 (typical) at VCC VEE = 4.5 V
70 (typical) at VCC VEE = 6.0 V
60 (typical) at VCC VEE = 9.0 V
Logic level translation: to enable 5 V logic to communicate with 5 V analog signals
Typical ‘break before make’ built-in
ESD protection:
HBM JESD22-A114F exceeds 2000 V
MM JESD22-A115-A exceeds 200 V
Multiple package options
Specified from 40 C to +85 C and 40 C to +125 C
3. Applications
Analog multiplexing and demultiplexing
Digital multiplexing and demultiplexing
Signal gating
http://www.hgsemi.com.cn
1
2018 AUG
74HC4053/
74HCT4053
4. Functional diagram
E
6
VCC
16
13 1Y1
S1 11
LOGIC
LEVEL
CONVERSION
12 1Y0
DECODER
14 1Z
1 2Y1
S2 10
LOGIC
LEVEL
CONVERSION
2 2Y0
15 2Z
3 3Y1
S3 9
LOGIC
LEVEL
CONVERSION
5 3Y0
4 3Z
8
GND
Fig 1.
7
VEE
001aak341
Functional diagram
6
11
S1
1Y0
12
10
S2
1Y1
13
9
S3
1Z
14
11
2Y0
2
14
2Y1
1
2Z
6
E
10
15
EN
#
MUX/DMUX
0
0
1
×
0/1
1
#
5
3Y1
3
9
3Z
4
4
13
2
1
15
3Y0
12
5
#
3
001aae125
001aae126
Fig 2.
Logic symbol
http://www.hgsemi.com.cn
Fig 3.
2
IEC logic symbol
2018 AUG
74HC4053/
74HCT4053
Y
VCC
VEE
VCC
VCC
VCC
VEE
VEE
from
logic
Z
001aad544
Fig 4.
Schematic diagram (one switch)
5. Pinning information
5.1 Pinning
74HC4053
74HCT4053
14 1Z
3Z
4
13 1Y1
3Y0
5
12 1Y0
E
6
11 S1
VEE
7
GND
8
10 S2
9
S3
001aae127
16 VCC
15 2Z
3
2Y0
2
15 2Z
3Y1
3
14 1Z
3Z
4
13 1Y1
3Y0
5
E
6
VEE
7
12 1Y0
VCC(1)
11 S1
10 S2
9
2
3Y1
S3
2Y0
terminal 1
index area
1
16 VCC
8
1
GND
2Y1
2Y1
74HC4053
74HCT4053
001aae128
Transparent top view
(1) This is not a supply pin. The substrate is attached to this
pad using conductive die attach material. There is no
electrical or mechanical requirement to solder this pad.
However, if it is soldered, the solder land should remain
floating or be connected to VCC.
Fig 5.
Pin configuration DIP16, SO16, and (T)SSOP16
http://www.hgsemi.com.cn
Fig 6.
3
Pin configuration DHVQFN16
2018 AUG
74HC4053/
74HCT4053
5.2 Pin description
Table 2.
Pin description
Symbol
Pin
Description
E
6
enable input (active LOW)
VEE
7
supply voltage
GND
8
ground supply voltage
S1, S2, S3
11, 10, 9
select input
1Y0, 2Y0, 3Y0
12, 2, 5
independent input or output
1Y1, 2Y1, 3Y1
13, 1, 3
independent input or output
1Z, 2Z, 3Z
14, 15, 4
common output or input
VCC
16
supply voltage
6. Functional description
Table 3.
Function table [1]
Inputs
Channel on
E
Sn
L
L
nY0 to nZ
L
H
nY1 to nZ
H
X
switches off
[1]
H = HIGH voltage level; L = LOW voltage level; X = don’t care.
7. Limiting values
Table 4.
Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to VSS = 0 V (ground).
Symbol
Parameter
VCC
supply voltage
Conditions
[1]
Min
Max
Unit
0.5
+11.0
V
IIK
input clamping current
VI < 0.5 V or VI > VCC + 0.5 V
-
20
mA
ISK
switch clamping current
VSW < 0.5 V or VSW > VCC + 0.5 V
-
20
mA
ISW
switch current
0.5 V < VSW < VCC + 0.5 V
-
25
mA
IEE
supply current
-
20
mA
ICC
supply current
-
50
mA
IGND
ground current
-
50
mA
Tstg
storage temperature
Ptot
P
total power dissipation
power dissipation
65
+150
C
DIP16 package
[2]
-
750
mW
SO16, (T)SSOP16, and
DHVQFN16 package
[3]
-
500
mW
-
100
mW
per switch
[1]
To avoid drawing VCC current out of terminal nZ, when switch current flows into terminals nYn, the voltage drop across the bidirectional
switch must not exceed 0.4 V. If the switch current flows into terminal nZ, no VCC current will flow out of terminals nYn, and in this case
there is no limit for the voltage drop across the switch, but the voltages at nYn and nZ may not exceed VCC or VEE.
[2]
For DIP16 packages: above 70 C the value of Ptot derates linearly with 12 mW/K.
http://www.hgsemi.com.cn
4
2018 AUG
74HC4053/
74HCT4053
For SO16 packages: above 70 C the value of Ptot derates linearly with 8 mW/K.
[3]
For SSOP16 and TSSOP16 packages: above 60 C the value of Ptot derates linearly with 5.5 mW/K.
For DHVQFN16 packages: above 60 C the value of Ptot derates linearly with 4.5 mW/K.
8. Recommended operating conditions
Table 5.
Recommended operating conditions
Symbol
Parameter
Conditions
supply voltage
VCC
74HC4053
74HCT4053
Unit
Min
Typ
Max
Min
Typ
Max
VCC GND
2.0
5.0
10.0
4.5
5.0
5.5
V
VCC VEE
2.0
5.0
10.0
2.0
5.0
10.0
V
see Figure 7
and Figure 8
VI
input voltage
GND
-
VCC
GND
-
VCC
V
VSW
switch voltage
VEE
-
VCC
VEE
-
VCC
V
Tamb
ambient temperature
t/V
input transition rise and fall
rate
40
+25
+125
40
+25
+125
VCC = 2.0 V
-
-
625
-
-
-
ns/V
VCC = 4.5 V
-
1.67
139
-
1.67
139
ns/V
VCC = 6.0 V
-
-
83
-
-
-
ns/V
VCC = 10.0 V
-
-
31
-
-
-
ns/V
001aad545
10
001aad546
10
VCC − GND
(V)
C
VCC − GND
(V)
8
8
6
6
operating area
operating area
4
4
2
2
0
0
0
Fig 7.
2
4
6
8
10
VCC − VEE (V)
0
Guaranteed operating area as a function of the
supply voltages for 74HC4053
http://www.hgsemi.com.cn
Fig 8.
5
2
4
6
8
10
VCC − VEE (V)
Guaranteed operating area as a function of the
supply voltages for 74HCT4053
2018 AUG
74HC4053/
74HCT4053
9. Static characteristics
Table 6.
RON resistance per switch for 74HC4053 and 74HCT4053
VI = VIH or VIL; for test circuit see Figure 9.
Vis is the input voltage at a nYn or nZ terminal, whichever is assigned as an input.
Vos is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.
For 74HC4053: VCC GND or VCC VEE = 2.0 V, 4.5 V, 6.0 V and 9.0 V.
For 74HCT4053: VCC GND = 4.5 V and 5.5 V, VCC VEE = 2.0 V, 4.5 V, 6.0 V and 9.0 V.
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
-
-
-
VCC = 4.5 V; VEE = 0 V; ISW = 1000 A
-
100
180
VCC = 6.0 V; VEE = 0 V; ISW = 1000 A
-
90
160
VCC = 4.5 V; VEE = 4.5 V; ISW = 1000 A
-
70
130
-
150
-
VCC = 4.5 V; VEE = 0 V; ISW = 1000 A
-
80
140
VCC = 6.0 V; VEE = 0 V; ISW = 1000 A
-
70
120
VCC = 4.5 V; VEE = 4.5 V; ISW = 1000 A
-
60
105
-
150
-
VCC = 4.5 V; VEE = 0 V; ISW = 1000 A
-
90
160
VCC = 6.0 V; VEE = 0 V; ISW = 1000 A
-
80
140
VCC = 4.5 V; VEE = 4.5 V; ISW = 1000 A
-
65
120
Tamb = 25 C
RON(peak) ON resistance (peak)
Vis = VCC to VEE
VCC = 2.0 V; VEE = 0 V; ISW = 100 A
RON(rail)
ON resistance (rail)
[1]
Vis = VEE
VCC = 2.0 V; VEE = 0 V; ISW = 100 A
[1]
Vis = VCC
VCC = 2.0 V; VEE = 0 V; ISW = 100 A
RON
ON resistance mismatch
between channels
[1]
Vis = VCC to VEE
-
-
-
VCC = 4.5 V; VEE = 0 V
-
9
-
VCC = 6.0 V; VEE = 0 V
-
8
-
VCC = 4.5 V; VEE = 4.5 V
-
6
-
-
-
-
VCC = 4.5 V; VEE = 0 V; ISW = 1000 A
-
-
225
VCC = 6.0 V; VEE = 0 V; ISW = 1000 A
-
-
200
VCC = 4.5 V; VEE = 4.5 V; ISW = 1000 A
-
-
165
VCC = 2.0 V; VEE = 0 V
[1]
Tamb = 40 C to +85 C
RON(peak) ON resistance (peak)
Vis = VCC to VEE
VCC = 2.0 V; VEE = 0 V; ISW = 100 A
http://www.hgsemi.com.cn
6
[1]
2018 AUG
74HC4053/
74HCT4053
Table 6.
RON resistance per switch for 74HC4053 and 74HCT4053 …continued
VI = VIH or VIL; for test circuit see Figure 9.
Vis is the input voltage at a nYn or nZ terminal, whichever is assigned as an input.
Vos is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.
For 74HC4053: VCC GND or VCC VEE = 2.0 V, 4.5 V, 6.0 V and 9.0 V.
For 74HCT4053: VCC GND = 4.5 V and 5.5 V, VCC VEE = 2.0 V, 4.5 V, 6.0 V and 9.0 V.
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
RON(rail)
ON resistance (rail)
Vis = VEE
-
-
-
VCC = 4.5 V; VEE = 0 V; ISW = 1000 A
-
-
175
VCC = 6.0 V; VEE = 0 V; ISW = 1000 A
-
-
150
VCC = 4.5 V; VEE = 4.5 V; ISW = 1000 A
-
-
130
VCC = 2.0 V; VEE = 0 V; ISW = 100 A
[1]
Vis = VCC
VCC = 2.0 V; VEE = 0 V; ISW = 100 A
-
-
-
VCC = 4.5 V; VEE = 0 V; ISW = 1000 A
-
-
200
VCC = 6.0 V; VEE = 0 V; ISW = 1000 A
-
-
175
VCC = 4.5 V; VEE = 4.5 V; ISW = 1000 A
-
-
150
-
-
-
VCC = 4.5 V; VEE = 0 V; ISW = 1000 A
-
-
270
VCC = 6.0 V; VEE = 0 V; ISW = 1000 A
-
-
240
VCC = 4.5 V; VEE = 4.5 V; ISW = 1000 A
-
-
195
-
-
-
VCC = 4.5 V; VEE = 0 V; ISW = 1000 A
-
-
210
VCC = 6.0 V; VEE = 0 V; ISW = 1000 A
-
-
180
VCC = 4.5 V; VEE = 4.5 V; ISW = 1000 A
-
-
160
[1]
Tamb = 40 C to +125 C
RON(peak) ON resistance (peak)
Vis = VCC to VEE
VCC = 2.0 V; VEE = 0 V; ISW = 100 A
RON(rail)
ON resistance (rail)
[1]
Vis = VEE
VCC = 2.0 V; VEE = 0 V; ISW = 100 A
[1]
Vis = VCC
VCC = 2.0 V; VEE = 0 V; ISW = 100 A
[1]
-
-
-
VCC = 4.5 V; VEE = 0 V; ISW = 1000 A
-
-
240
VCC = 6.0 V; VEE = 0 V; ISW = 1000 A
-
-
210
VCC = 4.5 V; VEE = 4.5 V; ISW = 1000 A
-
-
180
[1]
When supply voltages (VCC VEE) near 2.0 V the analog switch ON resistance becomes extremely non-linear. When using a supply of
2 V, it is recommended to use these devices only for transmitting digital signals.
http://www.hgsemi.com.cn
7
2018 AUG
74HC4053/
74HCT4053
mnb047
110
(1)
RON
(Ω)
90
70
(2)
Vsw
V
(3)
50
VCC
from select
input
Sn
Vis
30
nZ
nYn
GND
VEE
Isw
10
0
1.8
3.6
5.4
7.2
9.0
Vis (V)
001aah826
Vis = 0 V to (VCC VEE).
Vis = 0 V to (VCC VEE).
(1) VCC = 4.5 V
V sw
R ON = -------I sw
(2) VCC = 6 V
(3) VCC = 9 V
Fig 9.
Test circuit for measuring RON
Fig 10. Typical RON as a function of input voltage Vis
Table 7.
Static characteristics for 74HC4053
Voltages are referenced to GND (ground = 0 V).
Vis is the input voltage at pins nYn or nZ, whichever is assigned as an input.
Vos is the output voltage at pins nZ or nYn, whichever is assigned as an output.
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
VCC = 2.0 V
1.5
1.2
-
V
VCC = 4.5 V
3.15
2.4
-
V
Tamb = 25 C
VIH
VIL
II
IS(OFF)
IS(ON)
HIGH-level input
voltage
LOW-level input
voltage
input leakage current
OFF-state leakage
current
ON-state leakage
current
http://www.hgsemi.com.cn
VCC = 6.0 V
4.2
3.2
-
V
VCC = 9.0 V
6.3
4.7
-
V
VCC = 2.0 V
-
0.8
0.5
V
VCC = 4.5 V
-
2.1
1.35
V
VCC = 6.0 V
-
2.8
1.8
V
VCC = 9.0 V
-
4.3
2.7
V
VCC = 6.0 V
-
-
0.1
A
VCC = 10.0 V
-
-
0.2
A
per channel
-
-
0.1
A
all channels
-
-
0.1
A
-
-
0.1
A
VEE = 0 V; VI = VCC or GND
VCC = 10.0 V; VEE = 0 V; VI = VIH or VIL;
VSW = VCC VEE; see Figure 11
VI = VIH or VIL; VSW = VCC VEE;
VCC = 10.0 V; VEE = 0 V; see Figure 12
8
2018 AUG
74HC4053/
74HCT4053
Table 7.
Static characteristics for 74HC4053 …continued
Voltages are referenced to GND (ground = 0 V).
Vis is the input voltage at pins nYn or nZ, whichever is assigned as an input.
Vos is the output voltage at pins nZ or nYn, whichever is assigned as an output.
Symbol
Parameter
Conditions
ICC
supply current
VEE = 0 V; VI = VCC or GND; Vis = VEE or VCC;
Vos = VCC or VEE
CI
input capacitance
Csw
switch capacitance
Min
Typ
Max
Unit
VCC = 6.0 V
-
-
8.0
A
VCC = 10.0 V
-
-
16.0
A
-
3.5
-
pF
independent pins nYn
-
5
-
pF
common pins nZ
-
8
-
pF
Tamb = 40 C to +85 C
VIH
VIL
II
IS(OFF)
HIGH-level input
voltage
LOW-level input
voltage
input leakage current
OFF-state leakage
current
VCC = 2.0 V
1.5
-
-
V
VCC = 4.5 V
3.15
-
-
V
VCC = 6.0 V
4.2
-
-
V
VCC = 9.0 V
6.3
-
-
V
VCC = 2.0 V
-
-
0.5
V
VCC = 4.5 V
-
-
1.35
V
VCC = 6.0 V
-
-
1.8
V
VCC = 9.0 V
-
-
2.7
V
VCC = 6.0 V
-
-
1.0
A
VCC = 10.0 V
-
-
2.0
A
per channel
-
-
1.0
A
all channels
-
-
1.0
A
-
-
1.0
A
VCC = 6.0 V
-
-
80.0
A
VCC = 10.0 V
-
-
160.0
A
VCC = 2.0 V
1.5
-
-
V
VCC = 4.5 V
3.15
-
-
V
VCC = 6.0 V
4.2
-
-
V
VCC = 9.0 V
6.3
-
-
V
VCC = 2.0 V
-
-
0.5
V
VCC = 4.5 V
-
-
1.35
V
VCC = 6.0 V
-
-
1.8
V
VCC = 9.0 V
-
-
2.7
V
VEE = 0 V; VI = VCC or GND
VCC = 10.0 V; VEE = 0 V; VI = VIH or VIL;
VSW = VCC VEE; see Figure 11
IS(ON)
ON-state leakage
current
VI = VIH or VIL; VSW = VCC VEE;
VCC = 10.0 V; VEE = 0 V; see Figure 12
ICC
supply current
VEE = 0 V; VI = VCC or GND; Vis = VEE or VCC;
Vos = VCC or VEE
Tamb = 40 C to +125 C
VIH
VIL
HIGH-level input
voltage
LOW-level input
voltage
http://www.hgsemi.com.cn
9
2018 AUG
74HC4053/
74HCT4053
Table 7.
Static characteristics for 74HC4053 …continued
Voltages are referenced to GND (ground = 0 V).
Vis is the input voltage at pins nYn or nZ, whichever is assigned as an input.
Vos is the output voltage at pins nZ or nYn, whichever is assigned as an output.
Symbol
Parameter
Conditions
II
input leakage current
VEE = 0 V; VI = VCC or GND
IS(OFF)
OFF-state leakage
current
Min
Typ
Max
Unit
VCC = 6.0 V
-
-
1.0
A
VCC = 10.0 V
-
-
2.0
A
per channel
-
-
1.0
A
all channels
-
-
1.0
A
-
-
1.0
A
VCC = 6.0 V
-
-
160.0
A
VCC = 10.0 V
-
-
320.0
A
Conditions
Min
Typ
Max
Unit
VCC = 10.0 V; VEE = 0 V; VI = VIH or VIL;
VSW = VCC VEE; see Figure 11
IS(ON)
ON-state leakage
current
VI = VIH or VIL; VSW = VCC VEE;
VCC = 10.0 V; VEE = 0 V; see Figure 12
ICC
supply current
VEE = 0 V; VI = VCC or GND; Vis = VEE or VCC;
Vos = VCC or VEE
Table 8.
Static characteristics for 74HCT4053
Voltages are referenced to GND (ground = 0 V).
Vis is the input voltage at pins nYn or nZ, whichever is assigned as an input.
Vos is the output voltage at pins nZ or nYn, whichever is assigned as an output.
Symbol
Parameter
Tamb = 25 C
VIH
HIGH-level input
voltage
VCC = 4.5 V to 5.5 V
2.0
1.6
-
V
VIL
LOW-level input
voltage
VCC = 4.5 V to 5.5 V
-
1.2
0.8
V
II
input leakage current
VI = VCC or GND; VCC = 5.5 V; VEE = 0 V
-
-
0.1
A
IS(OFF)
OFF-state leakage
current
VCC = 10.0 V; VEE = 0 V; VI = VIH or VIL;
VSW = VCC VEE; see Figure 11
per channel
-
-
0.1
A
all channels
-
-
0.1
A
-
-
0.1
A
IS(ON)
ON-state leakage
current
VCC = 10.0 V; VEE = 0 V; VI = VIH or VIL;
VSW = VCC VEE; see Figure 12
ICC
supply current
VI = VCC or GND; Vis = VEE or VCC;
Vos = VCC or VEE
ICC
additional supply
current
CI
input capacitance
Csw
switch capacitance
http://www.hgsemi.com.cn
VCC = 5.5 V; VEE = 0 V
-
-
8.0
A
VCC = 5.0 V; VEE = 5.0 V
-
-
16.0
A
-
50
180
A
per input; VI = VCC 2.1 V; other inputs at VCC
or GND; VCC = 4.5 V to 5.5 V; VEE = 0 V
-
3.5
-
pF
independent pins nYn
-
5
-
pF
common pins nZ
-
8
-
pF
10
2018 AUG
74HC4053/
74HCT4053
Table 8.
Static characteristics for 74HCT4053 …continued
Voltages are referenced to GND (ground = 0 V).
Vis is the input voltage at pins nYn or nZ, whichever is assigned as an input.
Vos is the output voltage at pins nZ or nYn, whichever is assigned as an output.
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
Tamb = 40 C to +85 C
VIH
HIGH-level input
voltage
VCC = 4.5 V to 5.5 V
2.0
-
-
V
VIL
LOW-level input
voltage
VCC = 4.5 V to 5.5 V
-
-
0.8
V
II
input leakage current
VI = VCC or GND; VCC = 5.5 V; VEE = 0 V
-
-
1.0
A
IS(OFF)
OFF-state leakage
current
VCC = 10.0 V; VEE = 0 V; VI = VIH or VIL;
VSW = VCC VEE; see Figure 11
per channel
-
-
1.0
A
all channels
-
-
1.0
A
-
-
1.0
A
VCC = 5.5 V; VEE = 0 V
-
-
80.0
A
VCC = 5.0 V; VEE = 5.0 V
-
-
160.0
A
per input; VI = VCC 2.1 V; other inputs at VCC
or GND; VCC = 4.5 V to 5.5 V; VEE = 0 V
-
-
225
A
IS(ON)
ON-state leakage
current
VCC = 10.0 V; VEE = 0 V; VI = VIH or VIL;
VSW = VCC VEE; see Figure 12
ICC
supply current
VI = VCC or GND; Vis = VEE or VCC;
Vos = VCC or VEE
ICC
additional supply
current
Tamb = 40 C to +125 C
VIH
HIGH-level input
voltage
VCC = 4.5 V to 5.5 V
2.0
-
-
V
VIL
LOW-level input
voltage
VCC = 4.5 V to 5.5 V
-
-
0.8
V
II
input leakage current
VI = VCC or GND; VCC = 5.5 V; VEE = 0 V
-
-
1.0
A
IS(OFF)
OFF-state leakage
current
VCC = 10.0 V; VEE = 0 V; VI = VIH or VIL;
VSW = VCC VEE; see Figure 11
per channel
-
-
1.0
A
all channels
-
-
1.0
A
-
-
1.0
A
IS(ON)
ON-state leakage
current
VCC = 10.0 V; VEE = 0 V; VI = VIH or VIL;
VSW = VCC VEE; see Figure 12
ICC
supply current
VI = VCC or GND; Vis = VEE or VCC;
Vos = VCC or VEE
ICC
additional supply
current
http://www.hgsemi.com.cn
VCC = 5.5 V; VEE = 0 V
-
-
160.0
A
VCC = 5.0 V; VEE = 5.0 V
-
-
320.0
A
-
-
245
A
per input; VI = VCC 2.1 V; other inputs at VCC
or GND; VCC = 4.5 V to 5.5 V; VEE = 0 V
11
2018 AUG
74HC4053/
74HCT4053
VCC
from select
input
Sn
Isw
A
Isw
nZ
nYn
GND
Vis
A
VEE
Vos
001aah827
Vis = VCC and Vos = VEE.
Vis = VEE and Vos = VCC.
Fig 11. Test circuit for measuring OFF-state current
VCC
HIGH
from select
input
Sn
Isw
A
nZ
nYn
GND
Vis
Vos
VEE
001aah828
Vis = VCC and Vos = open-circuit.
Vis = VEE and Vos = open-circuit.
Fig 12. Test circuit for measuring ON-state current
10. Dynamic characteristics
Table 9.
Dynamic characteristics for 74HC4053
GND = 0 V; tr = tf = 6 ns; CL = 50 pF; for test circuit see Figure 15.
Vis is the input voltage at a nYn or nZ terminal, whichever is assigned as an input.
Vos is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
VCC = 2.0 V; VEE = 0 V
-
15
60
ns
VCC = 4.5 V; VEE = 0 V
-
5
12
ns
VCC = 6.0 V; VEE = 0 V
-
4
10
ns
VCC = 4.5 V; VEE = 4.5 V
-
4
8
ns
Tamb = 25 C
tpd
propagation delay Vis to Vos; RL = ; see Figure 13
http://www.hgsemi.com.cn
12
[1]
2018 AUG
74HC4053/
74HCT4053
Table 9.
Dynamic characteristics for 74HC4053 …continued
GND = 0 V; tr = tf = 6 ns; CL = 50 pF; for test circuit see Figure 15.
Vis is the input voltage at a nYn or nZ terminal, whichever is assigned as an input.
Vos is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.
Symbol
ton
Parameter
Conditions
Min
Typ
Max
Unit
turn-on time
E to Vos; RL = ; see Figure 14
VCC = 2.0 V; VEE = 0 V
-
60
220
ns
VCC = 4.5 V; VEE = 0 V
-
20
44
ns
VCC = 5.0 V; VEE = 0 V; CL = 15 pF
-
17
-
ns
[2]
VCC = 6.0 V; VEE = 0 V
-
16
37
ns
VCC = 4.5 V; VEE = 4.5 V
-
15
31
ns
VCC = 2.0 V; VEE = 0 V
-
75
220
ns
VCC = 4.5 V; VEE = 0 V
-
25
44
ns
VCC = 5.0 V; VEE = 0 V; CL = 15 pF
-
21
-
ns
VCC = 6.0 V; VEE = 0 V
-
20
37
ns
-
15
31
ns
VCC = 2.0 V; VEE = 0 V
-
63
210
ns
VCC = 4.5 V; VEE = 0 V
-
21
42
ns
VCC = 5.0 V; VEE = 0 V; CL = 15 pF
-
18
-
ns
Sn to Vos; RL = ; see Figure 14
[2]
VCC = 4.5 V; VEE = 4.5 V
toff
turn-off time
E to Vos; RL = 1 k; see Figure 14
[3]
VCC = 6.0 V; VEE = 0 V
-
17
36
ns
VCC = 4.5 V; VEE = 4.5 V
-
15
29
ns
VCC = 2.0 V; VEE = 0 V
-
60
210
ns
VCC = 4.5 V; VEE = 0 V
-
20
42
ns
VCC = 5.0 V; VEE = 0 V; CL = 15 pF
-
17
-
ns
VCC = 6.0 V; VEE = 0 V
-
16
36
ns
-
15
29
ns
-
36
-
pF
VCC = 2.0 V; VEE = 0 V
-
-
75
ns
VCC = 4.5 V; VEE = 0 V
-
-
15
ns
VCC = 6.0 V; VEE = 0 V
-
-
13
ns
VCC = 4.5 V; VEE = 4.5 V
-
-
10
ns
Sn to Vos; RL = 1 k; see Figure 14
[3]
VCC = 4.5 V; VEE = 4.5 V
CPD
[4]
power dissipation per switch; VI = GND to VCC
capacitance
Tamb = 40 C to +85 C
tpd
propagation delay Vis to Vos; RL = ; see Figure 13
http://www.hgsemi.com.cn
13
[1]
2018 AUG
74HC4053/
74HCT4053
Table 9.
Dynamic characteristics for 74HC4053 …continued
GND = 0 V; tr = tf = 6 ns; CL = 50 pF; for test circuit see Figure 15.
Vis is the input voltage at a nYn or nZ terminal, whichever is assigned as an input.
Vos is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.
Symbol
ton
Parameter
Conditions
Min
Typ
Max
Unit
turn-on time
E to Vos; RL = ; see Figure 14
VCC = 2.0 V; VEE = 0 V
-
-
275
ns
VCC = 4.5 V; VEE = 0 V
-
-
55
ns
VCC = 6.0 V; VEE = 0 V
-
-
47
ns
-
-
39
ns
VCC = 2.0 V; VEE = 0 V
-
-
275
ns
VCC = 4.5 V; VEE = 0 V
-
-
55
ns
VCC = 6.0 V; VEE = 0 V
-
-
47
ns
VCC = 4.5 V; VEE = 4.5 V
-
-
39
ns
VCC = 2.0 V; VEE = 0 V
-
-
265
ns
VCC = 4.5 V; VEE = 0 V
-
-
53
ns
VCC = 6.0 V; VEE = 0 V
-
-
45
ns
-
-
36
ns
VCC = 2.0 V; VEE = 0 V
-
-
265
ns
VCC = 4.5 V; VEE = 0 V
-
-
53
ns
VCC = 6.0 V; VEE = 0 V
-
-
45
ns
VCC = 4.5 V; VEE = 4.5 V
-
-
36
ns
VCC = 2.0 V; VEE = 0 V
-
-
90
ns
VCC = 4.5 V; VEE = 0 V
-
-
18
ns
VCC = 6.0 V; VEE = 0 V
-
-
15
ns
VCC = 4.5 V; VEE = 4.5 V
-
-
12
ns
VCC = 2.0 V; VEE = 0 V
-
-
330
ns
VCC = 4.5 V; VEE = 0 V
-
-
66
ns
VCC = 6.0 V; VEE = 0 V
-
-
56
ns
-
-
47
ns
VCC = 2.0 V; VEE = 0 V
-
-
330
ns
VCC = 4.5 V; VEE = 0 V
-
-
66
ns
VCC = 6.0 V; VEE = 0 V
-
-
56
ns
VCC = 4.5 V; VEE = 4.5 V
-
-
47
ns
[2]
VCC = 4.5 V; VEE = 4.5 V
Sn to Vos; RL = ; see Figure 14
toff
turn-off time
E to Vos; RL = 1 k; see Figure 14
[2]
[3]
VCC = 4.5 V; VEE = 4.5 V
Sn to Vos; RL = 1 k; see Figure 14
[3]
Tamb = 40 C to +125 C
tpd
ton
propagation delay Vis to Vos; RL = ; see Figure 13
turn-on time
E to Vos; RL = ; see Figure 14
[1]
[2]
VCC = 4.5 V; VEE = 4.5 V
Sn to Vos; RL = ; see Figure 14
http://www.hgsemi.com.cn
14
[2]
2018 AUG
74HC4053/
74HCT4053
Table 9.
Dynamic characteristics for 74HC4053 …continued
GND = 0 V; tr = tf = 6 ns; CL = 50 pF; for test circuit see Figure 15.
Vis is the input voltage at a nYn or nZ terminal, whichever is assigned as an input.
Vos is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.
Symbol
toff
Parameter
turn-off time
Conditions
Min
Typ
Max
Unit
VCC = 2.0 V; VEE = 0 V
-
-
315
ns
VCC = 4.5 V; VEE = 0 V
-
-
63
ns
VCC = 6.0 V; VEE = 0 V
-
-
54
ns
-
-
44
ns
VCC = 2.0 V; VEE = 0 V
-
-
315
ns
VCC = 4.5 V; VEE = 0 V
-
-
63
ns
VCC = 6.0 V; VEE = 0 V
-
-
54
ns
VCC = 4.5 V; VEE = 4.5 V
-
-
44
ns
Min
Typ
Max
Unit
-
5
12
ns
-
4
8
ns
VCC = 4.5 V; VEE = 0 V
-
27
48
ns
VCC = 5.0 V; VEE = 0 V; CL = 15 pF
-
23
-
ns
-
16
34
ns
VCC = 4.5 V; VEE = 0 V
-
25
48
ns
VCC = 5.0 V; VEE = 0 V; CL = 15 pF
-
21
-
ns
VCC = 4.5 V; VEE = 4.5 V
-
16
34
ns
E to Vos; RL = 1 k; see Figure 14
[3]
VCC = 4.5 V; VEE = 4.5 V
Sn to Vos; RL = 1 k; see Figure 14
[1]
tpd is the same as tPHL and tPLH.
[2]
ton is the same as tPZH and tPZL.
[3]
toff is the same as tPHZ and tPLZ.
[4]
[3]
CPD is used to determine the dynamic power dissipation (PD in W).
PD = CPD VCC2 fi N + {(CL + Csw) VCC2 fo} where:
fi = input frequency in MHz;
fo = output frequency in MHz;
N = number of inputs switching;
{(CL + Csw) VCC2 fo} = sum of outputs;
CL = output load capacitance in pF;
Csw = switch capacitance in pF;
VCC = supply voltage in V.
Table 10. Dynamic characteristics for 74HCT4053
GND = 0 V; tr = tf = 6 ns; CL = 50 pF; for test circuit see Figure 15.
Vis is the input voltage at a nYn or nZ terminal, whichever is assigned as an input.
Vos is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.
Symbol
Parameter
Conditions
Tamb = 25 C
tpd
propagation delay Vis to Vos; RL = ; see Figure 13
[1]
VCC = 4.5 V; VEE = 0 V
VCC = 4.5 V; VEE = 4.5 V
ton
turn-on time
E to Vos; RL = 1 k; see Figure 14
[2]
VCC = 4.5 V; VEE = 4.5 V
Sn to Vos; RL = 1 k; see Figure 14
http://www.hgsemi.com.cn
15
[2]
2018 AUG
74HC4053/
74HCT4053
Table 10. Dynamic characteristics for 74HCT4053 …continued
GND = 0 V; tr = tf = 6 ns; CL = 50 pF; for test circuit see Figure 15.
Vis is the input voltage at a nYn or nZ terminal, whichever is assigned as an input.
Vos is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.
Symbol
toff
Parameter
turn-off time
Conditions
Min
Typ
Max
Unit
VCC = 4.5 V; VEE = 0 V
-
24
44
ns
VCC = 5.0 V; VEE = 0 V; CL = 15 pF
-
20
-
ns
-
15
31
ns
VCC = 4.5 V; VEE = 0 V
-
22
44
ns
VCC = 5.0 V; VEE = 0 V; CL = 15 pF
-
19
-
ns
-
15
31
ns
-
36
-
pF
E to Vos; RL = 1 k; see Figure 14
[3]
VCC = 4.5 V; VEE = 4.5 V
Sn to Vos; RL = 1 k; see Figure 14
[3]
VCC = 4.5 V; VEE = 4.5 V
CPD
power dissipation per switch; VI = GND to VCC 1.5 V
capacitance
[4]
Tamb = 40 C to +85 C
tpd
ton
propagation delay Vis to Vos; RL = ; see Figure 13
turn-on time
[1]
VCC = 4.5 V; VEE = 0 V
-
-
15
ns
VCC = 4.5 V; VEE = 4.5 V
-
-
10
ns
-
-
60
ns
-
-
43
ns
-
-
60
ns
-
-
43
ns
-
-
55
ns
-
-
39
ns
E to Vos; RL = 1 k; see Figure 14
[2]
VCC = 4.5 V; VEE = 0 V
VCC = 4.5 V; VEE = 4.5 V
Sn to Vos; RL = 1 k; see Figure 14
[2]
VCC = 4.5 V; VEE = 0 V
VCC = 4.5 V; VEE = 4.5 V
toff
turn-off time
E to Vos; RL = 1 k; see Figure 14
[3]
VCC = 4.5 V; VEE = 0 V
VCC = 4.5 V; VEE = 4.5 V
Sn to Vos; RL = 1 k; see Figure 14
[3]
VCC = 4.5 V; VEE = 0 V
-
-
55
ns
VCC = 4.5 V; VEE = 4.5 V
-
-
39
ns
Tamb = 40 C to +125 C
tpd
ton
propagation delay Vis to Vos; RL = ; see Figure 13
turn-on time
[1]
VCC = 4.5 V; VEE = 0 V
-
-
18
ns
VCC = 4.5 V; VEE = 4.5 V
-
-
12
ns
-
-
72
ns
-
-
51
ns
VCC = 4.5 V; VEE = 0 V
-
-
72
ns
VCC = 4.5 V; VEE = 4.5 V
-
-
51
ns
E to Vos; RL = 1 k; see Figure 14
[2]
VCC = 4.5 V; VEE = 0 V
VCC = 4.5 V; VEE = 4.5 V
Sn to Vos; RL = 1 k; see Figure 14
http://www.hgsemi.com.cn
16
[2]
2018 AUG
74HC4053/
74HCT4053
Table 10. Dynamic characteristics for 74HCT4053 …continued
GND = 0 V; tr = tf = 6 ns; CL = 50 pF; for test circuit see Figure 15.
Vis is the input voltage at a nYn or nZ terminal, whichever is assigned as an input.
Vos is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.
Symbol
toff
Parameter
turn-off time
Conditions
E to Vos; RL = 1 k; see Figure 14
VCC = 4.5 V; VEE = 0 V
VCC = 4.5 V; VEE = 4.5 V
Sn to Vos; RL = 1 k; see Figure 14
[1]
tpd is the same as tPHL and tPLH.
[2]
ton is the same as tPZH and tPZL.
[3]
toff is the same as tPHZ and tPLZ.
[4]
Min
Typ
Max
Unit
-
-
66
ns
-
-
47
ns
[3]
[3]
VCC = 4.5 V; VEE = 0 V
-
-
66
ns
VCC = 4.5 V; VEE = 4.5 V
-
-
47
ns
CPD is used to determine the dynamic power dissipation (PD in W).
PD = CPD VCC2 fi N + {(CL + Csw) VCC2 fo} where:
fi = input frequency in MHz;
fo = output frequency in MHz;
N = number of inputs switching;
{(CL + Csw) VCC2 fo} = sum of outputs;
CL = output load capacitance in pF;
Csw = switch capacitance in pF;
VCC = supply voltage in V.
Vis input
50 %
tPLH
Vos output
tPHL
50 %
001aad555
Fig 13. Input (Vis) to output (Vos) propagation delays
http://www.hgsemi.com.cn
17
2018 AUG
74HC4053/
74HCT4053
VI
VM
E, Sn inputs
0V
tPLZ
tPZL
50 %
Vos output
10 %
tPHZ
tPZH
90 %
50 %
Vos output
switch ON
switch ON
switch OFF
001aad556
For 74HC4053: VM = 0.5 VCC.
For 74HCT4053: VM = 1.3 V.
Fig 14. Turn-on and turn-off times
VI
tW
90 %
negative
pulse
VM
0V
VI
tf
tr
tr
tf
90 %
positive
pulse
0V
VM
10 %
VM
VM
10 %
tW
VCC Vis
PULSE
GENERATOR
VI
VCC
Vos
RL
RT
S1
open
DUT
CL
GND
VEE
001aae382
Definitions for test circuit; see Table 11:
RT = termination resistance should be equal to the output impedance Zo of the pulse generator.
CL = load capacitance including jig and probe capacitance.
RL = load resistance.
S1 = Test selection switch.
Fig 15. Test circuit for measuring AC performance
http://www.hgsemi.com.cn
18
2018 AUG
74HC4053/
74HCT4053
Table 11.
Test data
Test
Input
VI
Load
Vis
t r , tf
S1 position
CL
RL
at fmax
other[1]
tPHL, tPLH
[2]
pulse
< 2 ns
6 ns
50 pF
1 k
open
tPZH, tPHZ
[2]
VCC
< 2 ns
6 ns
50 pF
1 k
VEE
tPZL, tPLZ
[2]
VEE
< 2 ns
6 ns
50 pF
1 k
VCC
[1]
[2]
tr = tf = 6 ns; when measuring fmax, there is no constraint to tr and tf with 50 % duty factor.
VI values:
a) For 74HC4053: VI = VCC
b) For 74HCT4053: VI = 3 V
10.1 Additional dynamic characteristics
Table 12. Additional dynamic characteristics
Recommended conditions and typical values; GND = 0 V; Tamb = 25 C; CL = 50 pF.
Vis is the input voltage at pins nYn or nZ, whichever is assigned as an input.
Vos is the output voltage at pins nYn or nZ, whichever is assigned as an output.
Symbol
Parameter
Conditions
dsin
sine-wave distortion
fi = 1 kHz; RL = 10 k; see Figure 16
Min
Typ
Max
Unit
Vis = 4.0 V (p-p); VCC = 2.25 V; VEE = 2.25 V
-
0.04
-
%
Vis = 8.0 V (p-p); VCC = 4.5 V; VEE = 4.5 V
-
0.02
-
%
Vis = 4.0 V (p-p); VCC = 2.25 V; VEE = 2.25 V
-
0.12
-
%
Vis = 8.0 V (p-p); VCC = 4.5 V; VEE = 4.5 V
-
0.06
-
%
fi = 10 kHz; RL = 10 k; see Figure 16
iso
isolation (OFF-state)
Xtalk
crosstalk
crosstalk voltage
Vct
f(3dB)
3 dB frequency response
RL = 600 ; fi = 1 MHz; see Figure 17
VCC = 2.25 V; VEE = 2.25 V
[1]
-
50
-
dB
VCC = 4.5 V; VEE = 4.5 V
[1]
-
50
-
dB
VCC = 2.25 V; VEE = 2.25 V
[1]
-
60
-
dB
VCC = 4.5 V; VEE = 4.5 V
[1]
-
60
-
dB
VCC = 4.5 V; VEE = 0 V
-
110
-
mV
VCC = 4.5 V; VEE = 4.5 V
-
220
-
mV
between two switches/multiplexers;
RL = 600 ; fi = 1 MHz; see Figure 18
peak-to-peak value; between control and any
switch; RL = 600 ; fi = 1 MHz; E or Sn square
wave between VCC and GND; tr = tf = 6 ns;
see Figure 19
RL = 50 ; see Figure 20
VCC = 2.25 V; VEE = 2.25 V
[2]
-
160
-
MHz
VCC = 4.5 V; VEE = 4.5 V
[2]
-
170
-
MHz
[1]
Adjust input voltage Vis to 0 dBm level (0 dBm = 1 mW into 600 ).
[2]
Adjust input voltage Vis to 0 dBm level at Vos for 1 MHz (0 dBm = 1 mW into 50 ).
http://www.hgsemi.com.cn
19
2018 AUG
74HC4053/
74HCT4053
VCC
Sn
10 μF
Vis
nYn/nZ
nZ/nYn
VEE
GND
RL
Vos
CL
dB
001aah829
Fig 16. Test circuit for measuring sine-wave distortion
VCC
Sn
0.1 μF
Vis
nYn/nZ
nZ/nYn
VEE
GND
RL
Vos
CL
dB
001aah871
VCC = 4.5 V; GND = 0 V; VEE = 4.5 V; RL = 600 ; RS = 1 k.
a. Test circuit
001aae332
0
αiso
(dB)
−20
−40
−60
−80
−100
10
102
103
104
105
106
fi (kHz)
b. Isolation (OFF-state) as a function of frequency
Fig 17. Test circuit for measuring isolation (OFF-state)
http://www.hgsemi.com.cn
20
2018 AUG
74HC4053/
74HCT4053
VCC
Sn
0.1 μF
Vis
RL
nYn/nZ
nZ/nYn
VEE
GND
RL
CL
VCC
Sn
nYn/nZ
nZ/nYn
VEE
RL
GND
RL
Vos
CL
dB
001aah873
Fig 18. Test circuits for measuring crosstalk between any two switches/multiplexers
2RL
2RL
VCC
Sn, E
Vct
nYn
G
2RL
nZ
VEE
GND
2RL
oscilloscope
001aah913
Fig 19. Test circuit for measuring crosstalk between control input and any switch
http://www.hgsemi.com.cn
21
2018 AUG
74HC4053/
74HCT4053
VCC
Sn
10 μF
Vis
nYn/nZ
nZ/nYn
VEE
GND
RL
Vos
CL
dB
001aah829
VCC = 4.5 V; GND = 0 V; VEE = 4.5 V; RL = 50 ; RS = 1 k.
a. Test circuit
001aad551
5
Vos
(dB)
3
1
−1
−3
−5
10
102
103
104
105
106
f (kHz)
b. Typical frequency response
Fig 20. Test circuit for frequency response
http://www.hgsemi.com.cn
22
2018 AUG