0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
P1600-DK02

P1600-DK02

  • 厂商:

    ADAPTEVA

  • 封装:

    -

  • 描述:

    E16G301, XC7Z010 Parallella Parallella-16 MPU ARM® Cortex®-A9, Epiphany III Embedded Evaluation Boar...

  • 数据手册
  • 价格&库存
P1600-DK02 数据手册
Parallella-1.x Reference Manual REV 14.09.09 1 Revision History Version Comments 0.13.2.13 Initial release 1.13.6.24 Updated PEC_POWER Pin outs Part Numbers Added + Document Links Changed flash to 128Mb Replaced 5V DC/USB power mux with pin header Changed power sub-system Epiphany now uses 1.8V IO voltage Added UART 2-pin header Changed license to creative common 1.13.7.27 Added UART interface back to PEC_POWER Added test points for SYS_5V and 1P0V Added 2-pin header for 5V mounting hole 14.04.15 Removed second USB port “PC connection” as supported feature No longer supporting the USB-OTG (only host mode) 14.09.09 Removed reference to reset button Remove reference to 2nd USB port Added numerous tables, design details REV 14.09.09 2 Related Documents Epiphany Architecture Reference Manual: http://www.adapteva.com/docs/epiphany_arch_ref.pdf Epiphany SDK Reference Manual: http://www.adapteva.com/docs/epiphany_sdk_ref.pdf Epiphany-III Datasheet: http://www.adapteva.com/docs/e16g301_datasheet.pdf Epiphany-IV Datasheet: http://www.adapteva.com/docs/e64g401_datasheet.pdf Software Repositories: Parallella Hardware and Software Repository https://github.com/parallella Epiphany SDK Software Repository https://github.com/adapteva SD Card Images: ftp://ftp.parallella.org REV 14.09.09 3 Table of Contents Contents 1 Overview ..................................................................................................................................... 9 Table 1: Parallella Feature Summary ............................................................................................................ 9 Figure 1: The Parallella Board (top view) .................................................................................................... 10 Figure 2: The Parallella Board (bottom view) ............................................................................................. 10 Figure 3: Zynq Connectivity Diagram .......................................................................................................... 11 Figure 4: Parallella High Level Architecture ................................................................................................ 12 2 Quick Start Guide ...................................................................................................................... 13 Step1: Ensure that you have the required accessories ......................................................................... 13 Step 2: Create a bootable micro-SD card .............................................................................................. 13 Step 3: Familiarize yourself with known issues .................................................................................... 13 Step 4. Connect peripherals, fit the heat-sink and apply power .......................................................... 14 Step 5: Build and run a program ............................................................................................................ 14 3 Feature Descriptions................................................................................................................. 15 3.1 Introduction ................................................................................................................................ 15 3.2 CPU .............................................................................................................................................. 15 3.3 Epiphany Coprocessor................................................................................................................. 17 3.4 SDRAM ........................................................................................................................................ 17 3.5 Flash ............................................................................................................................................ 17 3.6 Gigabit Ethernet .......................................................................................................................... 18 3.7 USB 2.0 Host Port ........................................................................................................................ 18 3.8 Micro SD ...................................................................................................................................... 18 3.9 HDMI Port ................................................................................................................................... 18 3.10 LED Indicators ............................................................................................................................. 18 3.11 Serial Port .................................................................................................................................... 18 3.12 I2C ............................................................................................................................................... 18 3.13 Audio ........................................................................................................................................... 18 3.14 Analog Input ................................................................................................................................ 18 REV 14.09.09 4 3.15 JTAG Debugging .......................................................................................................................... 18 3.16 Powering the board .................................................................................................................... 18 3.17 Parallella On-Board Power Management ................................................................................... 19 3.18 Parallella Supply Outputs ............................................................................................................ 20 3.19 Parallella Expansion Connectors ................................................................................................. 20 3.20 Mounting Holes........................................................................................................................... 22 4 Parallella System Architecture .................................................................................................. 23 4.1 Zynq Memory Map...................................................................................................................... 23 4.2 Epiphany Memory Map .............................................................................................................. 24 4.3 Epiphany Specific FPGA Resources ............................................................................................. 25 5 Board Configuration ................................................................................................................. 27 5.1 FPGA Pin Assignment .................................................................................................................. 27 6 Booting the Parallella................................................................................................................ 32 7 Parallella Expansion Connector Details .................................................................................... 33 7.1 PEC_POWER ................................................................................................................................ 33 7.2 PEC_FPGA.................................................................................................................................... 36 7.3 PEC_NORTH/PEC_SOUTH ........................................................................................................... 38 8 Electrical and Performance Specifications ............................................................................... 43 8.1 Dimensions and Weight .............................................................................................................. 43 8.2 Power Consumption ................................................................................................................... 43 8.3 Performance Metrics .................................................................................................................. 43 8.4 IC Metrics Summary .................................................................................................................... 44 9 About the Parallella Board........................................................................................................ 45 9.1 Design Information ..................................................................................................................... 45 9.2 Build Options............................................................................................................................... 45 9.3 Contributors ................................................................................................................................ 46 9.4 Attributions ................................................................................................................................. 47 9.5 Licensing...................................................................................................................................... 47 9.6 Disclaimers .................................................................................................................................. 48 9.7 Warranty ..................................................................................................................................... 50 REV 14.09.09 5 REV 14.09.09 6 List of Figures Figure 1: The Parallella Board (top view) .................................................................................................... 10 Figure 2: The Parallella Board (bottom view) ............................................................................................. 10 Figure 3: Zynq Connectivity Diagram .......................................................................................................... 11 Figure 4: Parallella High Level Architecture ................................................................................................ 12 Figure 5: Power Management .................................................................................................................... 19 Figure 6: PEC Placement Diagram ............................................................................................................... 21 Figure 7: Parallella Expansion Connectors (PEC) ........................................................................................ 21 Figure 8: Daughter Card Configurations ..................................................................................................... 22 Figure 9: Zynq Memory Map....................................................................................................................... 23 Figure 10: Epiphany Memory Map ............................................................................................................. 24 List of Table Table 1: Parallella Feature Summary ............................................................................................................ 9 Table 2: Parallella IC summary .................................................................................................................... 15 Table 3: Zynq Feature Summary ................................................................................................................. 16 Table 4: Epiphany System Registers ........................................................................................................... 26 Table 5: Zynq Bank32 Pin Assignments....................................................................................................... 28 Table 6: Zynq Bank 34 Pin Assignments...................................................................................................... 30 Table 7: Zynq Bank 13 Pin Assignments...................................................................................................... 31 Table 8: PEC_POWER Signal Summary ....................................................................................................... 34 Table 9: PEC_POWER Pin Mapping ............................................................................................................. 35 Table 10: PEC_FPGA Signal Summary ......................................................................................................... 36 Table 11: PEC_FPGA Pin Mapping............................................................................................................... 37 Table 12: PEC_NORTH/SOUTH Signal Summary ......................................................................................... 38 Table 13: PEC_NORTH Pin Mapping for Parallella-16 ................................................................................. 39 Table 14: PEC_NORTH Pin Mapping for Parallella-64 ................................................................................. 40 Table 16: PEC_SOUTH Pin Mapping for Parallella-16 ................................................................................. 41 Table 17: PEC_SOUTH Pin Mapping for Parallella-64 ................................................................................. 42 REV 14.09.09 7 Table 18: Dimensions and Weight .............................................................................................................. 43 Table 19: Power Consumption .................................................................................................................... 43 Table 20: Paralllella Performance Summary ............................................................................................... 44 Table 21: IC Metrics .................................................................................................................................... 44 REV 14.09.09 8 1 Overview The Parallella board is a high performance computing platform based on a dual-core ARM-A9 Zynq System-On-Chip and Adapteva’s Epiphany multicore coprocessor. Current commercially available models: Model P1600 P1601 P1602 Mnemonic “Microserver” “Desktop” “Embedded” Host Processor Xilinx Zynq Dual-core ARM A9 Xilinx Zynq Dual-core ARM A9 XC7Z010 XC7Z020 Epiphany 16-core CPU Coprocessor E16G301 Memory 1 GB DDR3 Ethernet Gigabit Ethernet Boot Flash 128Mb QSPI Flash Power 5V DC Storage Micro-SD USB No USB 2.0 Host Port HDMI No Micro HDMI GPIO Pins 0 24 48 eLink Connectors 0 2 2 FPGA 28K Logic Cells 28K Logic Cells 80K Logic Cells Logic 80 DSP Slices 80 DSP Slices 220 DSP slices Weight 1.3 oz (36 grams) Size 1.4 oz (38 grams) 3.5″ x 2.1″ x 0.625″ (90mmx55mmx18mm) SKU P1600-DKxx P1601-DKxx P1602-DKxx HTS Code (Schedule B) 8471.41.0150 8471.41.0150 8471.41.0150 Table 1: Parallella Feature Summary REV 14.09.09 9 Figure 1: The Parallella Board (top view) Figure 2: The Parallella Board (bottom view) REV 14.09.09 10 Figure 3: Zynq Connectivity Diagram REV 14.09.09 11 Figure 4: Parallella High Level Architecture REV 14.09.09 12 2 Quick Start Guide This section is a summary of the quick start guide is found at www.parallella.org/quick-start Step1: Ensure that you have the required accessories • • • • • A high quality 2000mA rated 5V DC power supply with 5.5mm OD / 2.1mm ID center positive polarity plug. An ethernet cable A fan (required for boards sold before July 10th, 2014, recommended for all others) A micro HDMI to HDMI cable (not needed for headless option) A USB male Micro-B to female Standard-A cable (not needed for headless option) Step 2: Create a bootable micro-SD card Burn a fresh Micro-SD card using the latest distribution. • Instructions for creating an SD card Note: Burn a fresh SD card even if you were shipped a pre-programmed micro-SD card! Step 3: Familiarize yourself with known issues • • • • • The board does get hot so you have to take precautions to cool the board properly. Before letting the board run for hours, you must ensure that the board doesn’t overheat. (preferably by using the ‘xtemp’ utility.) Boards used without a fan must be placed vertically. The Parallella is sensitive to static discharge and must be handled appropriately. If you were shipped a board before March 1st, 2014, then you must use a conforming powered USB hub. If you were shipped a board before July 10th, 2014 then you must use a fan with the board. (we do still recommend a fan for all customers, especially if you are going to push the performance of the board) REV 14.09.09 13 Step 4. Connect peripherals, fit the heat-sink and apply power • • • • Connect the cables as indicated by #1-4 in the picture above Attach a heatsink to the Zynq device (#5 in right hand picture) OR install the new large heatsink onto the Parallella board Make sure a fan is directed at the board if required. A fan is required when using the small heatsink (right hand picture above). With the large heatsink (left hand picture above) the board will function in normal conditions without requiring a fan, depending on your usage. Monitor the temperature using a utility such as xtemp, and keep the chip temp below 70 degrees Celsius. Apply power (#6 in picture) Step 5: Build and run a program The system will boot and a login screen will appear. Login with the username linaro and password linaro. REV 14.09.09 14 3 Feature Descriptions 3.1 Introduction The Parallella-1.x board uses the components listed in the table below. Device Part Number (and datasheet link) CPU Zynq™-7000 AP SoC Epiphany E16G301 and E64G401 Eth PHY 88E1318 USB PHY USB3320C-EZK-TR HDMI PHY ADV7513BSWZ SDRAM MT41K256M32SLD Flash N25Q128A13EF840E PMIC #1 ISL9307 PMIC #2 ISL9305 Table 2: Parallella IC summary 3.2 CPU The central processor on the Parallella board is the Zynq™-7000 AP SoC. The Zynq represents a new class of processor product which combines an industry-standard ARM® dual-core Cortex™-A9 MPCore™ processing system with Xilinx 28nm programmable logic. The Zynq SoC includes the following set of features: Dual-core ARM® Cortex™-A9 CPU: • • • • • • • • • • Coherent multiprocessor support ARMv7-A architecture 32 KB Level 1 4-way set-associative instruction/data caches (independent for each CPU) 512 KB 8-way set-associative Level 2 cache shared between CPUs TrustZone® security Jazelle® RCT execution Environment Architecture NEON™ media-processing engine Single and double precision Vector Floating Point Unit (VFPU) CoreSight™ and Program Trace Macrocell (PTM) Three watchdog timers, one global timer, two triple-timer counters REV 14.09.09 15 I/O Peripherals and Interfaces: • • • • • • • • • • • 10/100/1000 tri-speed Ethernet MAC peripherals GMII, RGMII, and SGMII interfaces Two USB 2.0 OTG peripherals Two full CAN 2.0B compliant CAN bus interfaces Two SD/SDIO 2.0/MMC3.31 compliant controllers Two full-duplex SPI ports with three peripheral chip selects Two high-speed UARTs (up to 1 Mb/s) Two master and slave I2C interfaces 8-Channel DMA Controller with scatter/gather capability JTAG port for ARM debugging and FPGA programming 12 bit ADC input On-chip voltage and temperature sensing Programmable Logic: • • • • • • LVCMOS, LVDS, and SSTL signaling with 1.2V to 3.3V IO Easily accessible from ARM cores through AXI bus(master or slave) Up to 125 programmable IO pins (Z-7020) Up to 85K programmable logics cells (Z-7020) Up to 560 KB distributed RAM (Z-7020) Up to 220 DSP slice and (Z-7020) The Parallella board can be built with two different pin compatible Zynq devices: Zynq Z-7010 or the Zynq Z-7020. The major differences between the Z-7010 and Z-7020 are summarized in Table 4: Z-7010 Z-7020 28K 85K Look-Up Tables 17,600 53,200 Flip-flops 35,200 106,400 Extensible Block RAM 240KB 560KB Programmable DSP Slices 80 220 Bank-13 IO Pins No Yes Programmable Logic Cells Table 3: Zynq Feature Summary REV 14.09.09 16 3.3 Epiphany Coprocessor The Parallella-16 includes the E16G301 device with 16 CPU cores and the Parallella-64 includes the E64G401 device with 64 CPU cores. Both devices have the following basic features: Epiphany Core (eCore): • • • • • • • • • 32-bit dual-issue superscalar RISC architecture Quad-bank 32KB local single cycle access memory Floating point instruction set (IEEE754) 64-entry register file Dual channel DMA engine Two 32-bit timers Nested interrupt controller Memory protection unit Debug unit Network-On-Chip (eMesh): • • • • • Three separate networks: o rMesh for read transactions o xMesh for off-chip write transactions o cMesh for on-chip write transactions “API-less” network that processes regular load/store transactions All transactions are complete and atomic 104 bit transactions (32 bit address, 64 bit data, and 8 control bits) Round robin arbitration at every mesh node Mesh network extends off chip enabling glue-less multi-chip design Chip-To-Chip Links (eLink): • • • • • North, east, west, south links for connecting to other Epiphany chips, FPGAs, or ASICs Source synchronous LVDS links with transmit clock aligned in the middle of the data eye Dual data rate communication (positive and negative edge transfers) Max transfer of 2 bytes transferred in and out simultaneously per link per clock cycle Automatic bursting for sequential 64-bit write transactions 3.4 SDRAM 3.5 Flash 1GB 32-bit wide DDR3L SDRAM 128Mb QSPI Flash Memory for boot code REV 14.09.09 17 3.6 Gigabit Ethernet 3.7 USB 2.0 Host Port 3.8 Micro SD 3.9 HDMI Port 10/100/1000 Ethernet, RJ45 connector with magnetics. Connects to peripheral devices such as mice, keyboard, camera, etc. Primary boot source and main Parallella board storage medium. A high quality connection to modern DVI/HDMI monitors and TVs through a micro-HDMI connector. 3.10 LED Indicators • • • A green LED controlled by the Zynq GPIO pin. A red LED controlled by the Epiphany flag pin Two LEDs on the RJ45. The left LED indicates link speed. (amber=1Gb, green=100Mb, off=10Mb). The right indicates that there is activity on the port. 3.11 Serial Port A three-pin header for 3.3V UART output from the Zynq. 3.12 I2C A 5V I2C interface is available through the PEC_POWER connector. 3.13 Audio Audio is available through the HDMI connector and through the SPDIF pin on the PEC_POWER connector. 3.14 Analog Input A differential analog input is available on the PEC_POWER connector that is sampled by the Zynq built in Analog to Digital Converter. 3.15 JTAG Debugging FPGA programming and debugging of programs running on the Zynq is possible through the JTAG pins on the PEC_POWER connector. 3.16 Powering the board The Parallella should be powered through a stable 5V/2A power supply. The following methods are available for connecting a 5V supply. Current consumption for the Parallella board can be as low as 0.3A but can reach 1.5A when fully loaded. REV 14.09.09 18 Recommended Methods (choose one only): • • J12: 5.5mm OD / 2.1mm ID center positive barrel connector (place jumper on J14 in 1-2 position) J7: micro-USB connector (place jumper on J14 in 2-3 position) Experimental (at your own risk): • • PTH1: Mounting hole. Need to install/solder and short J15 J13: Pins 1 and 2 of the PEC_POWER connector 3.17 Parallella On-Board Power Management The on-board power rails are regulated by the Intersil PMICs ISL9307 and ISL9305 as shown in the following Figure. SW1 PEC_POWER:PIN5 ENDCD1 PEC_POWER:PIN6 ENDCD2 SW2 U29 1P0V 1P8V TO: ZYNQ & ETHERNET-PHY TO: ZYNQ & EPIPHANY-IO & USB-PHY(S) & HDMI-PHY & ETHERNET-PHY ISL9307IRTAANFZ-T PEC_POWER:PIN7 ENLDO1 VOLDO1 PEC_POWER:PIN8 ENLDO2 VOLDO2 SW1 SW2 3P3V 2P5V VDD_DSP (1.2V) 1P35V TO: ZYNQ-BANK500 & SD-CARD & FLASH TO: ZYNQ-BANK35 TO: Epiphany Core Supply TO: Zynq-Bank502 & DRAM U30 ISL9305IRTHWBNLZ-T FROM ZYNQ PL SCL FROM ZYNQ PL SDA VOL DO1 VOL DO2 VDD_ADJ (3.3V) VDD_GPIO (2.9V) TO: PEC_POWER TO: Zynq-Bank34 & Zynq-Bank13 Figure 5: Power Management REV 14.09.09 19 All four voltage rail outputs on the ISL9305 can be set by programming the appropriate registers within the chip using the I2C interface. The Parallella on-board flash contains the appropriate programming sequence to set the VDD_DSP rail to 1.0V and the VDD_GPIO rail to 2.5V automatically at boot time. 3.18 Parallella Supply Outputs The Parallella can power expansion/daughter cards directly using the PEC_POWER connector. The following voltages are available at the PEC_POWER connector: • • • • • • • • • 5V 3.3V 2.5V VADJ VAD_GPIO 1.8V 1.35V 1.0V (Zynq) 1.0V (Epiphany) The two on-board PMICs can deliver 1.5A on each step-down converter output and 300MA on each general purpose LDO output. The amount of current drawn by the Parallella board will depend on the level of activity on the board and the amount of current left over for the expansion card is yet to be characterized. NOTE: At this time, the PEC_POWER feature should be considered experimental. The safest power solution for expansion cards is to: 1.) Have a completely independent power sub system or 2.) To use the 5V PEC_POWER rail. Each one of the Parallella rails can also be powered directly from the PEC_POWER connector instead of from the on board power management ICs. Each rail to be driven from an external connector would first need to be powered down appropriately to avoid damaging the circuitry. To disable one of the ISL7307 outputs, pull down the corresponding REG_EN* signal available on the PEC_POWER connector. To disable one of the ISL9305 outputs, program the appropriate registers using the I2C interface. NOTE: There WILL be permanent damage to the board the power rails are driven incorrectly. Please exercise extreme caution! 3.19 Parallella Expansion Connectors The Parallella board has four expansions connectors placed on the opposite edges of the bottom side of the board shown in Figure 2. For exact connector and placement information, please refer to the Parallella mechanical drawings. The following figure shows the expansion connector placements as seen from the bottom side of the board. REV 14.09.09 20 4 PEC CONNECTORS (BACK) : • 0.045" from long edge • 0.43" from short edge 3.275" 0.045" PEC_NORTH PEC_GPIO 0.045" TOP SIDE 0.43" 0.045" 0.840" 0.43" 0.43" PEC_SOUTH 2.150" 0.840" 0.43" PEC_POWER 4 MOUNTING HOLES: • 0.125" from edge to hole center in X and Y direction • 0.125" hole diameter Center Line Figure 6: PEC Placement Diagram The Parallella Expansion Connectors uses the 60 pin BSH-030-01-FDA high speed connector from Samtec. The corresponding mating connector to be placed on the expansion card is BTH-030-01-FDA. The complete data sheets can be found at: https://www.samtec.com/technical-specifications/Default.aspx?SeriesMaster=BSH A complete characterization report for the Samtec connectors can be found at: http://www.samtec.com/Documents/WebFiles/TestRpt/172630_report_rev_2_qua.pdf Connector Functions PEC_POWER Power and control signal expansion connector PEC_FPGA Zynq programmable logic expansion connector PEC_NORTH Epiphany north link expansion connector PEC_SOUTH Epiphany south link expansion connector Figure 7: Parallella Expansion Connectors (PEC) The four symmetrically placed connectors allow for robust mating of expansion cards and the Parallella board using matching BTH-030-01-FDA connectors. As shown in Figure 5, it is possible to connect a single full length credit card sized expansion cards or two half-length expansion cards. The left side shows two half-length expansion boards (pink/green transparent) connected to the backside of the Parallella board REV 14.09.09 21 and the right side shows a full length (blue transparent) expansion board connected to the backside of the Parallella board. Figure 8: Daughter Card Configurations 3.20 Mounting Holes The board has four symmetrically placed mounting holes, one in each corner. The mounting holes have a diameter of 0.125”. Three of the mounting holes are connected to ground while the fourth mounting hole is floating by default. This floating mounting hole can be connected to the 5V supply as a build or solder option, allowing power to be easily applied to a stack of Parallella boards without the need for extensive 5V DC cabling. REV 14.09.09 22 4 4.1 Parallella System Architecture Zynq Memory Map The following Table shows the hard-coded memory architecture of the Zynq architecture most relevant to the Parallella architecture. For a complete description of the Zynq of the memory architecture, please refer to the Architecture Reference manual for the Zynq. Address Start Address Size Function Note End 0x0010_0000 0x3FFF_FFFF 1GB DRAM Accessible to all interconnect masters 0x4000_0000 0x7FFF_FFFF 1GB PL Custom logic address range 0x8000_0000 0xBFFF_FFFF 1GB PL Epiphany address range 0xFC00_0000 0xFCFF_FFFF 16MB FLASH Quad-SPI linear address for linear mode 0xFFFC_0000 0xFFFF_FFFF 252KB OCM OCM upper address range Figure 9: Zynq Memory Map The ARM communicates with programmable logic, GPIO connected to the programmable logic, and the Epiphany by accessing the memory ranges shown in the table. The Epiphany 32-bit memory space is mapped into the Zynq memory space allowing for easy sharing of data and resources between the ARM and the Epiphany. The Epiphany address range is a matter of convention and depends on the appropriate AXI master and slave interfaces being implemented within the programmable logic on the Zynq. REV 14.09.09 23 4.2 Epiphany Memory Map The Epiphany chip is situated within a 1GB section within the Zynq host processor memory map. The offset within the 1GB space occupied by an Epiphany coprocessor is set by the ROWID and COLID pins on the Epiphany chip. The ROWID and COLID can be individually set on boards through the PEC_POWER connector enabling direct board to board connection through the PEC_NORTH and PEC_SOUTH connectors. By default the address locations of the Epiphany cores on Parallella-16 are as shown in the Table below. Core Number Start Address End Address Size (32,8) 80800000 80807FFF 32KB (32,9) 80900000 80907FFF 32KB (32,10) 80A00000 80A07FFF 32KB (32,11) 80B00000 80B07FFF 32KB (33,8) 84800000 84807FFF 32KB (33,9) 84900000 84907FFF 32KB (33,10) 84A00000 84A07FFF 32KB (33,11) 84B00000 84B07FFF 32KB (34,8) 88800000 88807FFF 32KB (34,9) 88900000 88907FFF 32KB (34,10) 88A00000 88A07FFF 32KB (34,11) 88B00000 88B07FFF 32KB (35,8) 8C800000 8C807FFF 32KB (35,9) 8C900000 8C907FFF 32KB (35,10) 8CA00000 8CA07FFF 32KB (35,11) 8CB00000 9CB07FFF 32KB Figure 10: Epiphany Memory Map REV 14.09.09 24 4.3 Epiphany Specific FPGA Resources Developers that want leverage the Epiphany co-processors should use the Parallella programmable logic reference design with minimal changes for best results. The following registers must be accessible by the Epiphany drivers from the ARM for correct operation. Register Address Bits Details ESYSCONFIG 0x808f0f00 [0] Enable transaction timeout on read from Zynq [2:1] 00: Filter disable 01: Inclusive range. Block transactions inside REG_FILTERL and REG_FILTERH range) 10: Exclusive range. Block transactions outside REG_FILTERL and REG_FILTERH range) 11: Reserved [3] Epiphany eLink enable 0: 1.) Forces RESET_N to zero, 2.) turns off the epiphany input clock cclk 3.) and turns off the elink TX/RX in the FPGA 1: 1.) Turns on epiphany clock, 2.) forces RESET_N to one (“out of reset”) 3.) Turns on elink RX/TX in the FPGA ESYSRESET 0x808f0f04 [27:4] Reserved [31:28] Epiphany transaction control mode A write transaction to this register asserts a reset signal to Epiphany and the eLink logic within the Zynq. REV 14.09.09 25 ESYSINFO 0x808f0f08 [7:0] Platform #: 0=undefined 1=parallella-1.x,e16,7z020,gpio 2=parallella-1.x,e16,7z020,no-gpio 3=parallella-1.x,e16,7z010,gpio 4=parallella-1.x,e16,7z010,no-gpio 5=parallella-1.x,e64,7x020,gpio [15:8] FPGA load type #: 0=undefined 1=hdmi enabled, gpio unused 2=headless, gpio unused [23:16] Revision #: 0=undefined 1=first version 2=second version 3=etc.. ESYSFILTERL 0x808f0f0c [31:0] 32-bit Transaction Filter (Low), [1:0] are ignored ESYSFILTERH 0x808f0f10 [31:0] 32-bit Transaction Filter (High), [1:0] are ignored ESYSFILTERC 0x808f0f14 [31:2] Captured address of a filter violation [1:0] Filter capture status 00 - not a valid value 01 - First violating transaction 10 - Second violating transaction 11 - There are more than 3 violating transactions A write to this register clears value to zero Table 4: Epiphany System Registers The Epiphany coprocessor is connected to the Zynq SOC via the 48-pin eLink interface. An Epiphany eLink protocol is implemented in the programmable logic portion of the Zynq SOC. In addition to the eLink interface, the programmable logic within the Parallella board includes an AXI master interface, an AXI slave interface, and an optional HDMI controller interface. REV 14.09.09 26 5 Board Configuration 5.1 FPGA Pin Assignment The following table shows the pin assignment of the programmable logic within the Zynq FPGA. A text version of this table “UCF file”, can be found at: Net Name Zynq Pin Direction IOSTANDARD HDMI_D8 Y18 output LVCMOS25 HDMI_D9 W18 output LVCMOS25 HDMI_D10 V18 output LVCMOS25 HDMI_D11 V15 output LVCMOS25 HDMI_D12 R18 output LVCMOS25 HDMI_D13 P18 output LVCMOS25 HDMI_D14 Y19 output LVCMOS25 HDMI_D15 W19 output LVCMOS25 HDMI_D16 W15 output LVCMOS25 HDMI_D17 T19 output LVCMOS25 HDMI_D18 R19 output LVCMOS25 HDMI_D19 P19 output LVCMOS25 HDMI_D20 W20 output LVCMOS25 HDMI_D21 V20 output LVCMOS25 HDMI_D22 U20 output LVCMOS25 HDMI_D23 T20 output LVCMOS25 HDMI_CLK R17 output LVCMOS25 HDMI_VSYNC V17 output LVCMOS25 HDMI_HSYNC T17 output LVCMOS25 HDMI_DE Y17 output LVCMOS25 SPDIF Y16 output LVCMOS25 HDMI_INT P20 input LVCMOS25 PS_I2C_SCL N18 inout LVCMOS25 REV 14.09.09 27 PS_I2C_SDA N17 inout LVCMOS25 PROG_IO N20 inout LVCMOS25 TURBO_MODE R16 input LVCMOS25 GPIO0_P T16 inout LVDS_25 GPIO0_N U17 inout LVDS_25 GPIO1_P V16 inout LVDS_25 GPIO1_N W16 inout LVDS_25 GPIO2_P P15 inout LVDS_25 GPIO2_N P16 inout LVDS_25 GPIO3_P U18 inout LVDS_25 GPIO3_N U19 inout LVDS_25 GPIO4_P P14 inout LVDS_25 GPIO4_N R14 inout LVDS_25 GPIO5_P T14 inout LVDS_25 GPIO5_N T15 inout LVDS_25 GPIO6_P U14 inout LVDS_25 GPIO6_N U15 inout LVDS_25 GPIO7_P W14 inout LVDS_25 GPIO7_N Y14 inout LVDS_25 GPIO8_P U13 inout LVDS_25 GPIO8_N V13 inout LVDS_25 GPIO9_P V12 inout LVDS_25 GPIO9_N W13 inout LVDS_25 GPIO10_P T12 inout LVDS_25 GPIO10_N U12 inout LVDS_25 GPIO11_P T11 inout LVDS_25 GPIO11_N T10 inout LVDS_25 Table 5: Zynq Bank32 Pin Assignments REV 14.09.09 28 Net Name Zynq Pin Direction IOSTANDARD RXI_CCLK_P H16 output LVDS_25 RXI_CCLK_N H17 output LVDS_25 DSP_RESET_N G14 output LVCMOS25 RXI_LCLK_P F16 output LVDS_25 RXI_LCLK_N F17 output LVDS_25 RXI_DATA0_P B19 output LVDS_25 RXI_DATA0_N A20 output LVDS_25 RXI_DATA1_P C20 output LVDS_25 RXI_DATA1_N B20 output LVDS_25 RXI_DATA2_P D19 output LVDS_25 RXI_DATA2_N D20 output LVDS_25 RXI_DATA3_P E18 output LVDS_25 RXI_DATA3_N E19 output LVDS_25 RXI_DATA4_P E17 output LVDS_25 RXI_DATA4_N D18 output LVDS_25 RXI_DATA5_P F19 output LVDS_25 RXI_DATA5_N F20 output LVDS_25 RXI_DATA6_P G17 output LVDS_25 RXI_DATA6_N G18 output LVDS_25 RXI_DATA7_P G19 output LVDS_25 RXI_DATA7_N G20 output LVDS_25 RXI_FRAME_P H15 output LVDS_25 RXI_FRAME_N G15 output LVDS_25 RXO_RD_WAIT J15 input LVCMOS25 RXO_RD_WAIT_P J18 input LVCMOS25 RXO_WR_WAIT_N H18 input LVDS_25 TXO_LCLK_P K17 input LVDS_25 TXO_LCLK_N K18 input LVDS_25 REV 14.09.09 29 TXO_DATA0_P K19 input LVDS_25 TXO_DATA0_N J19 input LVDS_25 TXO_DATA1_P L14 input LVDS_25 TXO_DATA1_N L15 input LVDS_25 TXO_DATA2_P L16 input LVDS_25 TXO_DATA2_N L17 input LVDS_25 TXO_DATA3_P M14 input LVDS_25 TXO_DATA3_N M15 input LVDS_25 TXO_DATA4_P L19 input LVDS_25 TXO_DATA4_N L20 input LVDS_25 TXO_DATA5_P M19 input LVDS_25 TXO_DATA5_N M20 input LVDS_25 TXO_DATA6_P M17 input LVDS_25 TXO_DATA6_N M18 input LVDS_25 TXO_DATA7_P N15 input LVDS_25 TXO_DATA7_N N16 input LVDS_25 TXO_FRAME_P J20 input LVDS_25 TXO_FRAME_N H20 input LVDS_25 TXI_RD_WAIT_N K14 output LVDS_25 TXI_RD_WAIT_N J14 output LVDS_25 TXI_WR_WAIT_P K16 output LVDS_25 TXI_WR_WAIT_N J16 output LVDS_25 Table 6: Zynq Bank 34 Pin Assignments REV 14.09.09 30 Net Name Zynq Pin Direction IOSTANDARD GPIO12_P Y12 inout LVDS_25 GPIO12_N Y13 inout LVDS_25 GPIO13_P W11 inout LVDS_25 GPIO13_N Y11 inout LVDS_25 GPIO14_P V11 inout LVDS_25 GPIO14_N V10 inout LVDS_25 GPIO15_P T9 inout LVDS_25 GPIO15_N U10 inout LVDS_25 GPIO16_P W10 inout LVDS_25 GPIO16_N W9 inout LVDS_25 GPIO17_P U9 inout LVDS_25 GPIO17_N U8 inout LVDS_25 GPIO18_P W8 inout LVDS_25 GPIO18_N Y9 inout LVDS_25 GPIO19_P Y8 inout LVDS_25 GPIO19_N Y7 inout LVDS_25 GPIO20_P Y6 inout LVDS_25 GPIO20_N U7 inout LVDS_25 GPIO21_P V7 inout LVDS_25 GPIO21_N V6 inout LVDS_25 GPIO22_P W6 inout LVDS_25 GPIO22_N T5 inout LVDS_25 GPIO23_P U5 inout LVDS_25 Table 7: Zynq Bank 13 Pin Assignments REV 14.09.09 31 6 Booting the Parallella REV 14.09.09 32 7 Parallella Expansion Connector Details 7.1 PEC_POWER The PEC_POWER provides convenient access to various key Parallella board signals and can provide power to expansion boards with modest current requirements. Expansion boards with substantial current requirements should draw power from the SYS_5P0V connection or generate supply rails from a completely independent DC supply. Signal Direction Max Notes SYS_5P0V Inout 5.0V Parallella expansion board supply. Driven by output of power selector 3-pin header that selects between DC power and USB power. 1P0V Inout 1.0V Core voltage for Zynq and Ethernet PHY. Driven by 1.5A switching regulator output of PMIC. VDD_DSP Inout 1.0V Core voltage for Epiphany coprocessor. Driven by 1.5A switching regulator output of PMIC. 1P35V Inout 1.35V Supply shared by Zynq and DDR3L SDRAM. Driven by 1.5A switching regulator output of PMIC. 1P8V Inout 1.8V General purpose voltage shared by USB PHY, Ethernet PHY, Epiphany, Zynq, and HDMI. Driven by 1.5A switching regulator output of PMIC. 2P5V Inout 2.5V IO voltage for Zynq LVDS interface that communicates with the Epiphany coprocessor. Driven by 300mA LDO output of PMIC. 3.3V Inout 3.3V IO voltage for Zynq, HDMI, and flash chip. Driven by 300mA LDO output of PMIC. VDD_GPIO Inout 3.3V IO voltage for Zynq, HDMI, and flash chip. Driven by 300mA LDO output of PMIC. VDD_ADJ Inout 3.3V Independent supply output for expansion cards. Driven by 300mA LDO output on PMIC. GND Inout 0.0V System Ground I2C_SDA Inout 5.0V I2C bidirectional open-drain Serial Data Line I2C_SCL Inout 5.0V I2C bidirectional open-drain Serial Clock Line UART_TX Output 3.3V UART transmit signal UART_RX Input 3.3V UART receive signal REV 14.09.09 33 SPDIF Output 2.5V Single bit SPDIF audio interface output RESET_N Output 3.3V Active low Parallella board reset signal USER_LED Output 3.3V On board LED signal driven by Zynq DSP_XID[3:0] Input 1.8V Sets the relative chip column ID of the Epiphany chip on the Parallella board, overriding the default board settings. These signals must be driven correctly in systems that utilize the PEC_NORTH/PEC_SOUTH to connect multiple Parallella boards. DSP_YID[3:0] Input 1.8V Sets the relative chip row ID of the Epiphany chip on the Parallella board, overriding the default board settings. These signals must be driven correctly in systems that utilize the PEC_NORTH/PEC_SOUTH to connect multiple Parallella boards. DSP_FLAG Output 1.8V Flag signal driven by the Epiphany. TURBO_MODE Output 3.3V Not supported JTAG_BOOT Input 3.3V Pull down to zero for JTAG boot JTAG_TCK Input 3.3V JTAG Clock JTAG_TMS Input 3.3V JTAG Test Mode JTAG_TDI Input 3.3V JTAG Data Input JTAG_TDO Output 3.3V JTAG Data Output REG_EN1 Input 5V Drive low to disable on-board 1V regulator output REG_EN2 Input 5V Drive low to disable on-board 1.8V regulator output REG_EN3 Input 5V Drive low to disable on-board 3.3V regulator output REG_EN4 Input 5V Drive low to disable on-board 2.5V regulator output Table 8: PEC_POWER Signal Summary REV 14.09.09 34 Signal Pin Pin Signal SYS_5P0V 1 2 SYS_5P0V I2C_SCL 3 4 I2C_SDA REG_EN1 5 6 REG_EN2 REG_EN3 7 8 REG_EN3 PROG_IO 9 10 NC GND 11 12 GND DSP_XID[0] 13 14 DSP_YID[0] DSP_XID[1] 15 16 DSP_YID[1] DSP_XID[2] 17 18 DSP_YID[2] DSP_XID[3] 19 20 DSP_YID[3] GND 21 22 GND DSP_FLAG 23 24 UART_RX TURBO_MODE 25 26 UART_TX SPDIF 27 28 USER_LED JTAG_BOOT_EN 29 30 RESET_N GND 31 32 GND VADC_N 33 34 VADC_P GND 35 36 GND JTAG_TMS 37 38 JTAG_TDI TAG_TCK 39 40 JTAG_TDO GND 41 42 GND 1P0V 43 44 1P0V VDD_DSP 45 46 VDD_DSP 1P35V 47 48 1P35V 1P8V 49 50 1P8V GND 51 52 GND VDD_ADJ 53 54 VDD_ADJ VDD_GPIO 55 56 VDD_GPIO 2P5V 57 58 2P5V 3P3V 59 60 3P3V Table 9: PEC_POWER Pin Mapping REV 14.09.09 35 7.2 PEC_FPGA The PEC_FPGA can be used to connect the Zynq programmable logic to expansion cards or other PEC_FPGA interfaces on another Parallella boards. The PEC_FPGA includes 48 bidirectional signals that can be configured within the Zynq device to support a number of different signal standards, including LVCMOS and LVDS. Signal Direction Notes VDD_GPIO Output Supply driven by power management IC on the Parallella board. Nominal voltage is 2.5V. The PMIC output voltage can be reprogrammed in software through I2C from the Zynq. GND Inout System Ground GPIOx_{N,P} Inout A differential pair or two single ended signals that connect between an expansion card and the Zynq device on the Parallella board. Table 10: PEC_FPGA Signal Summary REV 14.09.09 36 Signal Pin Pin Signal VDD_GPIO 1 2 VDD_GPIO GPIO0_N 3 4 GPIO1_N GPIO0_P 5 6 GPIO1_P GPIO2_N 7 8 GPIO3_N GPIO2_P 9 10 GPIO3_P GND 11 12 GND GPIO4_N 13 14 GPIO5_N GPIO4_P 15 16 GPIO5_P GPIO6_N 17 18 GPIO7_N GPIO6_P 19 20 GPIO7_P GND 21 22 GND GPIO8_N 23 24 GPIO9_N GPIO8_P 25 26 GPIO9_P GPIO10_N 27 28 GPIO11_N GPIO10_P 29 30 GPIO11_P GND 31 32 GND GPIO12_N 33 34 GPIO13_N GPIO12_P 35 36 GPIO13_P GPIO14_N 37 38 GPIO15_N GPIO14_P 39 40 GPIO15_P GND 41 42 GND GPIO16_N 43 44 GPIO17_N GPIO16_P 45 46 GPIO17_P GPIO18_N 47 48 GPIO19_N GPIO18_P 49 50 GPIO19_P GND 51 52 GND GPIO20 N 53 54 GPIO21 N GPIO20_P 55 56 GPIO21_P GPIO22_N 57 58 GPIO23_N GPIO22_P 59 60 GPIO23_P Table 11: PEC_FPGA Pin Mapping REV 14.09.09 37 7.3 PEC_NORTH/PEC_SOUTH The PEC_NORTH and PEC_SOUTH are connected to the north and south link of the Epiphany chip on the Parallella board. These expansion connectors can be used to connect multiple Parallella boards in a bidirectional line or ring configuration or they can be connected to an FPGA device that has Epiphany eLink interface instantiated inside. Signal Name Direction Signal Description 1P8V Output 1.8V supply driven by power management IC on the Parallella board. GND Inout System ground RXI_{NO,SO}_DATA_{P,N}[7:0] Input Receiver data RXI_{NO,SO}_FRAME_{P,N} Input Receiver packet framing signal RXI_{NO,SO}_LCLK_{P,N} Input Receiver clock RXO_{NO,SO}_WR_WAIT_{P,N} Output Push-back for transmitter indicating that device must hold off on sending another write packet. RXO_{NO,SO}_RD_WAIT_{P,N} Output Push-back for transmitter indicating that device must hold off on sending another read packet. TXO_{NO,SO}_DATA_{P,N}[7:0] Output Transmitter data TXO_{NO,SO}_FRAME_{P,N} Output Transmitter packet framing signal TXO_{NO,SO}_LCLK_{P,N} Output Transmitter clock TXI_{NO,SO}_WR_WAIT_{P,N} Input Push-back from receiver indicating that transmitter must hold off on sending another write packet. TXI_{NO,SO}_RD_WAIT_{P,N} Input Push-back from transmitter indicating that transmitter must hold off on sending another read packet. Table 12: PEC_NORTH/SOUTH Signal Summary REV 14.09.09 38 Signal Pin Pin Signal 1P8V 1 2 1P8V RXI_NO_DATA_N[0] 3 4 RXI_NO_DATA_N[1] RXI_NO_DATA_P[0] 5 6 RXI_NO_DATA_P[1] RXI_NO_DATA_N[2] 7 8 RXI_NO_DATA_N[3] RXI_NO_DATA_P[2] 9 10 RXI_NO_DATA_P[3] GND 11 12 GND RXI_NO_DATA_N[4] 13 14 RXI_NO_DATA_N[5] RXI_NO_DATA_P[4] 15 16 RXI_NO_DATA_P[5] RXI_NO_DATA_N[6] 17 18 RXI_NO_DATA_N[7] RXI_NO_DATA_P[6] 19 20 RXI_NO_DATA_P[7] GND 21 22 GND RXI_NO_LCLK_N 23 24 RXI_NO_FRAME_N RXI_NO_LCLK_P 25 26 RXI_NO_FRAME_P RXO_NO_RD_WAIT_N 27 28 RXO_SO_WR_WAIT_N RXO_NO_RD_WAIT_P 29 30 RXO_NO_WR_WAIT_P GND 31 32 GND TXO_NO_FRAME_N 33 34 TXI_NO_WR_WAIT_N TXO_NO_FRAME_P 35 36 TXI_NO_WR_WAIT_P TXO_NO_LCLK_N 37 38 TXI_NO_RD_WAIT_N TXO_NO_LCLK_P 39 40 TXI_NO_RD_WAIT_P GND 41 42 GND TXO_NO_DATA_N[0] 43 44 TXO_NO_DATA_N[1] TXO_NO_DATA_P[0] 45 46 TXO_NO_DATA_P[1] TXO_NO_DATA_N[2] 47 48 TXO_NO_DATA_N[3] TXO_NO_DATA_P[2] 49 50 TXO_NO_DATA_P[3] GND 51 52 GND TXO_NO_DATA_N[4] 53 54 TXO_NO_DATA_N[5] TXO_NO_DATA_P[4] 55 56 TXO_NO_DATA_P[5] TXO_NO_DATA_N[6] 57 58 TXO_NO_DATA_N[7] TXO_NO_DATA_P[6] 59 60 TXO_NO_DATA_P[7] Table 13: PEC_NORTH Pin Mapping for Parallella-16 REV 14.09.09 39 Signal Pin Pin Signal 1P8V 1 2 1P8V TXO_NO_DATA_P[7] 3 4 TXO_NO_DATA_P[6] TXO_NO_DATA_N[7] 5 6 TXO_NO_DATA_N[6] TXO_NO_DATA_P[5] 7 8 TXO_NO_DATA_P[4] TXO_NO_DATA_N[5] 9 10 TXO_NO_DATA_N[4] GND 11 12 GND TXO_NO_DATA_P[3] 13 14 TXO_NO_DATA_P[2] TXO_NO_DATA_N[3] 15 16 TXO_NO_DATA_N[2] TXO_NO_DATA_P[1] 17 18 TXO_NO_DATA_P[0] TXO_NO_DATA_N[1] 19 20 TXO_NO_DATA_N[0] GND 21 22 GND TXO_NO_LCLK_P 23 24 TXI_NO_RD_WAIT_P TXO_NO_LCLK_N 25 26 TXI_NO_RD_WAIT_N RXO_NO_WR_WAIT_P 27 28 RXO_NO_RD_WAIT_P RXO_NO_WR_WAIT_N 29 30 RXO_NO_RD_WAIT_N GND 31 32 GND TXO_NO_FRAME_P 33 34 TXI_NO_WR_WAIT_N TXO_NO_FRAME_N 35 36 TXI_NO_WR_WAIT_P RXI_NO_LCLK_P 37 38 RXI_NO_FRAME_P RXI_NO_LCLK_N 39 40 RXI_NO_FRAME_N GND 41 42 GND RXI_NO_DATA_P[7] 43 44 RXI_NO_DATA_P[6] RXI_NO_DATA_N[7] 45 46 RXI_NO_DATA_N[6] RXI_NO_DATA_P[5] 47 48 RXI_NO_DATA_P[4] RXI_NO_DATA_N[5] 49 50 RXI_NO_DATA_N[4] GND 51 52 GND RXI_NO_DATA_P[3] 53 54 RXI_NO_DATA_P[2] RXI_NO_DATA_N[3] 55 56 RXI_NO_DATA_N[2] RXI_NO_DATA_P[1] 57 58 RXI_NO_DATA_P[0] RXI_NO_DATA_N[1] 59 60 RXI_NO_DATA_N[0] Table 14: PEC_NORTH Pin Mapping for Parallella-64 REV 14.09.09 40 Signal Pin Pin Signal 1P8V 1 2 1P8V RXI_SO_DATA_N[0] 3 4 RXI_SO_DATA_N[1] RXI_SO_DATA_P[0] 5 6 RXI_SO_DATA_P[1] RXI_SO_DATA_N[2] 7 8 RXI_SO_DATA_N[3] RXI_SO_DATA_P[2] 9 10 RXI_SO_DATA_P[3] GND 11 12 GND RXI_SO_DATA_N[4] 13 14 RXI_SO_DATA_N[5] RXI_SO_DATA_P[4] 15 16 RXI_SO_DATA_P[5] RXI_SO_DATA_N[6] 17 18 RXI_SO_DATA_N[7] RXI_SO_DATA_P[6] 19 20 RXI_SO_DATA_P[7] GND 21 22 GND RXI_SO_LCLK_N 23 24 RXI_SO_FRAME_N RXI_SO_LCLK_P 25 26 RXI_SO_FRAME_P RXO_SO_RD_WAIT_N 27 28 RXO_SO_WR_WAIT_N RXO_SO_RD_WAIT_P 29 30 RXO_SO_WR_WAIT_P GND 31 32 GND TXO_SO_FRAME_N 33 34 TXI_SO_WR_WAIT_N TXO_SO_FRAME_P 35 36 TXI_SO_WR_WAIT_P TXO_SO_LCLK_N 37 38 TXI_SO_RD_WAIT_N TXO_SO_LCLK_P 39 40 TXI_SO_RD_WAIT_P GND 41 42 GND TXO_SO_DATA_N[0] 43 44 TXO_SO_DATA_N[1] TXO_SO_DATA_P[0] 45 46 TXO_SO_DATA_P[1] TXO_SO_DATA_N[2] 47 48 TXO_SO_DATA_N[3] TXO_SO_DATA_P[2] 49 50 TXO_SO_DATA_P[3] GND 51 52 GND TXO_SO_DATA_N[4] 53 54 TXO_SO_DATA_N[5] TXO_SO_DATA_P[4] 55 56 TXO_SO_DATA_P[5] TXO_SO_DATA_N[6] 57 58 TXO_SO_DATA_N[7] TXO_SO_DATA_P[6] 59 60 TXO_SO_DATA_P[7] Table 15: PEC_SOUTH Pin Mapping for Parallella-16 REV 14.09.09 41 Signal Pin Pin Signal 1P8V 1 2 1P8V RXI SO DATA N[7] 3 4 RXI SO DATA N[6] RXI SO DATA P[7] 5 6 RXI SO DATA P[6] RXI SO DATA N[5] 7 8 RXI SO DATA N[4] RXI SO DATA P[5] 9 10 RXI SO DATA P[4] GND 11 12 GND RXI SO DATA N[3] 13 14 RXI SO DATA N[2] RXI SO DATA P[3] 15 16 RXI SO DATA P[2] RXI SO DATA N[1] 17 18 RXI SO DATA N[0] RXI SO DATA P[1] 19 20 RXI SO DATA P[0] GND 21 22 GND RXI SO LCLK N 23 24 RXO SO RD WAIT N RXI SO LCLK P 25 26 RXO SO RD WAIT P TXI SO WR WAIT N 27 28 TXI SO RD WAIT N TXI SO WR WAIT P 29 30 TXI SO RD WAIT P GND 31 32 GND RXI SO FRAME N 33 34 RXO SO WR WAIT N RXI SO FRAME P 35 36 RXO SO WR WAIT P TXO SO LCLK N 37 38 TXO SO FRAME N TXO SO LCLK P 39 40 TXO SO FRAME P GND 41 42 GND TXO SO DATA N[7] 43 44 TXO SO DATA N[6] TXO SO DATA P[7] 45 46 TXO SO DATA P[6] TXO SO DATA N[5] 47 48 TXO SO DATA N[4] TXO SO DATA P[5] 49 50 TXO SO DATA P[3] GND 51 52 GND TXO SO DATA N[3] 53 54 TXO SO DATA N[2] TXO SO DATA P[3] 55 56 TXO SO DATA P[2] TXO SO DATA N[1] 57 58 TXO SO DATA N[0] TXO SO DATA P[1] 59 60 TXO SO DATA P[0] Table 16: PEC_SOUTH Pin Mapping for Parallella-64 REV 14.09.09 42 8 Electrical and Performance Specifications 8.1 Dimensions and Weight Feature Size 3.4’’ x 2.15’’ Height (with RJ45 and PECs) 1.25” Height (without RJ45, PECs, 5V DC) 0.75” PCB Layers 12 PCB Thickness 0.62’’ Weight 36 grams Table 17: Dimensions and Weight 8.2 Power Consumption The following table will contain the power consumption for typical Parallella use cases. 5V_IN 1P0V 1P8V 3P3V 2P5V VDD_DSP 1P35 VDD_ADJ VDD_GPIO Idle TBD TBD TBD TBD TBD TBD TBD TBD TBD Boot TBD TBD TBD TBD TBD TBD TBD TBD TBD Nominal TBD TBD TBD TBD TBD TBD TBD TBD TBD Max TBD TBD TBD TBD TBD TBD TBD TBD TBD Table 18: Power Consumption 8.3 Performance Metrics The following table shows the performance specifications of the Parallella board at the time of publication of this reference manual. Give more time for optimization and testing most of these metrics should improve. Performance Goal Value Peak Zynq Frequency 667MHz Peak Epiphany Instruction Issue Rate 19.2 GIPS (Parallella-16) 76 GIPS (Parallella-64) Peak Epiphany Frequency 600 MHz (Parallella-16) 600 MHz (Parallella-64) Peak Floating Point Performance 25 GFLOPS (Parallella-16) REV 14.09.09 43 85 GFLOPS (Parallella-64) Peak Bandwidth between Zynq and Epiphany 1.3GB/s PEC_FPGA Peak Bandwidth 2.85GB/s (22.8 Gbps) PEC_NORTH/PEC_SOUTH Peak Bandwidth 2.6GB/s (25.6 Gbps) Table 19: Paralllella Performance Summary 8.4 IC Metrics Summary Device Part Number Power (W) Temp (C) ΘJA (0 m/s) ESD PbFree CPU Zynq™-7000 AP SoC 0.5 – 3 0 – 85° 19.0 1kV HBM Yes Epiphany DSP E16G301 0.4 - 2 0 – 85° 22.6 n/a Yes Eth PHY 88E1318 (n/a) 0.5 0 – 125° 37.5 n/a Yes USB PHY USB3320C-EZK-TR 0.1 0 – 85° n/a 8kV HBM Yes HDMI PHY ADV7513BSWZ 0.3 0 – 85° 43 n/a Yes SDRAM MT41K256M32SLD 0.9 0 – 95° (case) n/a n/a Yes Flash N25Q128A13EF840E 0.06 0 – 85° (amb) n/a 2kV HBM Yes PMIC #1 ISL9307 0.2 - 1.5 0 – 125° 40.2 3.5kV HBM Yes PMIC #2 ISL9305 0.2 - 1.5 0 – 125° 40.2 3.5kV HBM Yes Logic Buffer NC7WZ16 0.3* 0 – 125° 425 4kV HBM ??? Logic Buffer NC7SZ125M5X 0.15* 0 – 125° 425 n/a ??? Supply Monitor STM6904TWEDS6F ~0 0 – 85° 146 n/a Yes LVDS Receiver SN65LVDS4R 0.04 0 – 85° (amb) 171 2kV HBM Yes Clock Driver SI51219-A14BFT ~0 0 – 125° 181 4K HBM Yes HDMI Protection TPD12S016PWR ~0 0 – 85° (amb) n/a 2K HBM Yes Table 20: IC Metrics REV 14.09.09 44 9 About the Parallella Board 9.1 Design Information The board is open source hardware and the Parallella project provides all the files required to study, modify and manufacture the design. The design resources provided include: • • • • • • Complete reference manual Schematic sources in OrCAD format PCB layout sources in Allegro format PCB manufacturing files in Gerber format Assembled board 3D CAD model(s) Bill of material Design files for this board will be available at: http://github.com/parallella/parallella-hw 9.2 Build Options The following Parallella assembly options will be supported in manufacturing: • • • • Zynq Device: Z-7010 or Z-7020 Epiphany Device: E16G301 or E64G401 IO: With our without Samtec expansion connectors Display/USB: With or without HDMI and USB port REV 14.09.09 45 9.3 • • • Contributors Adapteva: (http://www.adapteva.com) o Parallella architecture and board design (Andreas Olofsson) o Reference manuals (Andreas Olofsson) o FPGA design (Roman Trogan, Fred Huettig) o Linux distribution (Roman Trogan, Andreas Olofsson) o Board bringup (Roman Trogan, Andreas Olofsson) Boston Design Solutions: (http://www.bostondesignsolutions.com/) o Schematic and board layout (Mike Bakhtiari and Mike Damiano) o Board bringup/debugging (Joe Galibois) Ant Micro: (http://www.antmicro.com/) o HDMI bringup/debugging (Karol Gugala and Peter Gielda) o Linux distribution (Karol Gugala) • Community Review and Feedback: o Andrew Back o Flemming Christensen o Gunnar Hillerström o o o o o @trioflex @tschaboo @hamster @psupine @tnt REV 14.09.09 46 9.4 9.5  Attributions Warranty notice and Disclaimers based on those found in the Beaglebone Black System Reference Manual Rev A5.2, authored by Gerald Coley of Texas Instruments and published under the Creative Commons Attribution Share-Alike 3.0 Unported License. • The Parallella project benefited greatly from being able to study the design of the following open source hardware projects: o Arduino o Beaglebone • The Parallella project also drew inspiration from the following projects: o Zedboard o Raspberry Pi Licensing This work is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/bysa/3.0/ or Send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA. All derivative works are to be attributed to Adapteva. Send all comments and errors concerning this document to andreas@adapteva.com REV 14.09.09 47 9.6 Disclaimers These design materials referred to in this document are *NOT SUPPORTED* and DO NOT constitute a reference design. Only “community” support is allowed via resources at http://forums.parallella.org THERE IS NO WARRANTY FOR THE DESIGN MATERIALS DESCRIBED IN THIS REFERENCE MANUAL, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE DESIGN MATERIALS “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE DESIGN MATERIALS IS WITH YOU. SHOULD THE DESIGN MATERIALS PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION This Parallella board was designed as an evaluation and development tool. It was not designed with any other application in mind. As such, these design materials may or may not be suitable for any other purposes. If used, the design material becomes your responsibility as to whether or not it meets your specific needs or your specific applications and may require changes to meet your requirements. For Feasibility Evaluation Only, in Laboratory/Development Environments: The Parallella Board is not a complete product. It is intended solely for use for preliminary feasibility evaluation in laboratory/development environments by technically qualified electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems and subsystems. It should not be used as all or part of a finished end product. Your Sole Responsibility and Risk you acknowledge, represent, and agree that: 1. You have unique knowledge concerning Federal, State and local regulatory requirements (including but not limited to Food and Drug Administration regulations, if applicable) which relate to your products and which relate to your use (and/or that of your employees, affiliates, contractors or designees) of the Parallella for evaluation, testing and other purposes. 2. You have full and exclusive responsibility to assure the safety and compliance of your products with all such laws and other applicable regulatory requirements, and also to assure the safety of any activities to be conducted by you and/or your employees, affiliates, contractors or designees, using the Parallella. Further, you are responsible to assure that any interfaces (electronic and/or mechanical) between the\Parallella and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard. 3. Since the Parallella is not a completed product, it may not meet all applicable regulatory and safety compliance standards which may normally be associated with similar items. You assume full responsibility to determine and/or assure compliance with any such standards and related certifications as may be applicable. You will employ reasonable safeguards to ensure that your use of the Parallella will not result in any property damage, injury or death, even if the Parallella should fail to perform as described or expected. REV 14.09.09 48 Certain Instructions: It is important to operate the Parallella within Supplier’s recommended specifications and environmental considerations per the user guidelines. Exceeding the specified Parallella ratings (including but not limited to input and output voltage, current, power, and environmental ranges) may cause property damage, personal injury or death. If there are questions concerning these ratings please contact the Supplier representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may result in unintended and/or inaccurate operation and/or possible permanent damage to the Parallella and/or interface electronics. Please consult the System Reference Manual prior to connecting any load to the Parallella output. If there is uncertainty as to the load specification, please contact the Supplier representative. During normal operation, some circuit components may have case temperatures greater than 60 C as long as the input and output are maintained at a normal ambient operating temperature. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors which can be identified using the Parallella schematic located at the link in the Parallella System Reference Manual. When placing measurement probes near these devices during normal operation, please be aware that these devices may be very warm to the touch. As with all electronic evaluation tools, only qualified personnel knowledgeable in electronic measurement and diagnostics normally found in development environments should use the Parallella. Agreement to Defend, Indemnify and Hold Harmless: You agree to defend, indemnify and hold the Suppliers, its licensors and their representatives harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, "Claims") arising out of or in connection with any use of the Parallella that is not in accordance with the terms of the agreement. This obligation shall apply whether Claims arise under law of tort or contract or any other legal theory, and even if the Parallella fails to perform as described or expected. Safety-Critical or Life-Critical Applications: If you intend to evaluate the components for possible use in safety critical applications (such as life support) where a failure of the Supplier’s product would reasonably be expected to cause severe personal injury or death, such as devices which are classified as FDA Class III or similar classification, then you must specifically notify Suppliers of such intent and enter into a separate Assurance and Indemnity Agreement. REV 14.09.09 49 9.7 Warranty Parallella.org and Adapteva, Inc (Supplier) provide the Parallella board under the following conditions: • • The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies Supplier from all claims arising from the handling or use of the goods. Should the Parallella not meet the specifications indicated in the Parallella Reference Manual, the Parallella may be returned within 90 days from the date of delivery to the distributor of purchase for a full refund. THE FOREGOING LIMITED WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES. For up to date board information, please refer to: http://github.com/parallella/parallella-hw All support for this board is provided via community support at http://forums.parallella.org Before returning the board, please request an RMA at: www.parallella.org/support/rma Please DO NOT return the board without approval from the Parallella RMA team first. All boards received without RMA approval will not be worked on. REV 14.09.09 50
P1600-DK02 价格&库存

很抱歉,暂时无法提供与“P1600-DK02”相匹配的价格&库存,您可以联系我们找货

免费人工找货