1300 Henley Court
Pullman, WA 99163
509.334.6306
www.digilentinc.com
chipKIT™ Cmod™ Reference Manual
Revised April 15, 2016
This manual applies to the chipKIT Cmod rev. E
Overview
The chipKIT Cmod is a chipKIT/MPIDE compatible board from Digilent. It combines a Microchip®
PIC32MX150F128D microcontroller with a convenient 600-mil, 40-pin DIP package and two Digilent Pmod
connectors. Digilent’s Cmod boards are ideally suited for breadboards or other prototype circuit designs where the
use of small surface mount packages is impractical.
The chipKIT Cmod takes advantage of the powerful PIC32MX150F128D microcontroller. This microcontroller
features a 32-bit MIPS processor core running at 40MHz, 128K of flash memory, and 32K of SRAM data memory.
The chipKIT Cmod can be programmed using the Multi-Platform Integrated Development Environment, MPIDE, an
environment based on the open source Arduino® IDE modified to support the PIC32 microcontroller. The board
provides everything needed to start developing embedded applications using the MPIDE.
The chipKIT Cmod is also fully compatible with the advanced Microchip MPLAB® IDE. To develop embedded
applications using MPLAB®, a separate device programmer/debugger, such as the Digilent chipKIT PGM or the
Microchip PICkit™3 is required.
Features Include:
Microchip® PIC32MX150F128D microcontroller (40/50
Mhz 32-bit MIPS, 128K Flash, 32K SRAM)
Convenient 600-mil, 2x20-pin DIP package
5V – 12V recommended operating voltage
33 available I/O pins
Two user LEDs
PC connection uses a USB A to micro B cable (not
included)
13 analog inputs
3.3V operating voltage
Two Pmod ports for Digilent peripheral module boards
The chipKIT Cmod.
DOC#: 502-269
Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners.
Page 1 of 15
chipKIT™ Cmod™ Reference Manual
1
Functional Description
The PIC32MX150F128D microcontroller features a 32-bit MIPS processor core capable of running at up to 50 MHz.
When used with MPIDE, thechipKIT Cmod operates the microcontroller at 40Mhz by default. The microcontroller
features 128 KB of flash program memory and 32 KB of SRAM data memory. Programming the chipKIT Cmod can
be done using the Multi-Platform Integrated Development Environment (MPIDE) or with the advanced Microchip
MPLAB® IDE with the addition of a PICKit3 or chipKIT PGM in-system programmer/debugger.
The chipKIT Cmod provides 33 I/O pins located on the 40-pin DIP package. Some pins share functions with the
onboard circuits such as the on-board LEDs, the UART data lines used by the USB serial converter, or the Pmod
ports (see the schematic for details). If these peripherals are needed in the design, then the microcontroller can be
reconfigured to allow these pins to be used for other purposes. Thirteen of the digital I/O pins can also be used as
analog input pins.
The PIC32MX150F128D microcontroller supports peripheral functions such as UART, SPI, and I 2C, as well as pulsewidth-modulated outputs. To use the peripheral functions the PIC32MX1xx family of microcontrollers features a
mappable I/O system called peripheral pin select (PPS), which allows select peripheral functionality to be mapped
to multiple pins on the device. The default chipKIT Cmod board support files provide a specific mapping of
peripheral functions to microcontroller pins. This default pin mapping can be over-ridden by the user’s sketch if a
different mapping is desired.
1.1
ChipKIT Cmod Hardware Overview
Call Out
Component Description
Call Out
Component Description
1
J3 USB Connector for USB Serial Converter
6
Reset Button
2
JP2 Microchip ICSP Connector
7
PIC32 Microcontroller
3
J1-J2 Digilent Pmod ports
8
DIP Pin 1 External Power Connector
4
40 Pin DIP connector
9
DIP Pin3 USB 5.0V Power Connector
5
User LEDs
Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners.
Page 2 of 15
chipKIT™ Cmod™ Reference Manual
2
Programming Tools
The chipKIT Cmod can be used with either MPIDE or the Microchip MPLAB development environment. When used
with the MPLAB IDE, in-system programming and debugging of firmware running on the PIC32MX150
microcontroller is supported using an external programming/debugging circuit licensed from Microchip, such as
the chipKIT PGM or the PICkit 2/3.
The chipKIT Cmod is immediately usable with either the MPLAB IDE or MPIDE.
2.1
MPIDE and USB Serial Communications
The chipKIT Cmod board is designed to be used with the Multi-Platform IDE (MPIDE). The MPIDE development
platform was created by modifying the Arduino IDE. It is backwards-compatible with the Arduino IDE.
The MPIDE uses a serial communications port to communicate with a boot loader running on the chipKIT Cmod
board. The serial port on the board is implemented using an FTDI FT232R USB serial converter. Before attempting
to use the MPIDE to communicate with the board, the appropriate USB device driver must be installed.
The chipKIT Cmod uses a standard micro-USB connector for connection to a USB port on the PC. A USB-A to MicroB cable, not supplied, is used to connect the board to a USB port on the host computer.
When the MPIDE needs to communicate with the chipKit Cmod board, the board is reset and starts running the
boot loader. The MPIDE then establishes communications with the boot loader and downloads the program to the
board.
When the MPIDE opens the serial communications connection on the PC, the DTR pin on the FT232R chip is driven
low. This pin is coupled through a capacitor to the MCLR pin on the PIC32 microcontroller. Driving the MCLR line
low resets the microcontroller, restarting execution with the boot loader. See the net labeled P32_RST in the
schematic for further detail about this connection. The P32_RST net is also brought out to DIP pin 9.
Two red LEDs (LD1 and LD2) will blink when data is being sent or received between the chipKIT Cmod and the PC
over the serial connection.
2.2
Microchip Development Tool Compatibility
In addition to being used with the MPIDE, the chipKIT Cmod board can be used as a more traditional
microcontroller development board using Microchip's MPLAB development tool.
Unloaded connector JP2 on the right side of the reset button is used to connect to a Microchip development tool,
such as the chipKIT PGM or the PICkit 3. The holes for JP2 are staggered so that a standard 100-mil spcaed 6pin
header can press fit to the board without the need to solder it in place. Any Microchip development tool that
supports the PIC32 microcontroller family can be used.
Typically, an right-angle male connector is used in JP2 so that the programmer can be attached coplanar with the
chipKIT Cmod. The connector can be loaded from the top or the bottom. In either case, the programmer will be
upside-down while the chipKIT Cmod board is upright (button, LEDs, and Pmod port visible). Ensure that pin 1 on
the programmer is connected to the square solder pad on JP2. In some cases, because of mechanical clearance
limitations, it may be necessary to use a 6-wire cable to connect a programmer to the chipKIT Cmod board.
Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners.
Page 3 of 15
chipKIT™ Cmod™ Reference Manual
The Microchip MPLAB IDE or the MPLAB X IDE can be used to program and debug code running on the chipKIT
Cmod board. These programs can be downloaded from the Microchip website.
2.3
Reloading the Boot Loader
Using the Microchip development tools to program the board will cause the boot loader to be erased. To use the
board with the MPIDE again, it is necessary to program the boot loader back onto the board. The boot loader
compiled image can be found on the chipKIT Cmod product page on the Digilent website. The source code project
for the boot loader is available on the Git server at github.com.
To reprogram the boot loader using MPLAB X, perform the following steps.
1.
Open MPLAB X, click on "File", highlight "Import", then select "HEX/ELF...(Prebuilt) FIle"
2.
Under "Prebuilt Filename", click on the "Browse" button to locate the boot loader file that you
downloaded previously. The file name should be something like "chipKIT_Bootloader_Cmod.hex".
Select "32-bit MCUs (PIC32)" in the "Family:" dialog box, then select the device ID "PIC32MX150F128D" in
the "Device:" dialog box.
With your board connected to the programmer and the programmer connected via USB cable to your PC,
the programmer SN will load automatically under "Licensed Debugger" in the dialog box.
Click the "Next" button at the bottom.
3.
4.
5.
Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners.
Page 4 of 15
chipKIT™ Cmod™ Reference Manual
6.
7.
8.
Rename the project if you wish. The name of the .hex file is used by default.
Choose where to place your project. The file where your boot loader is located is used by default.
Click "Finish" to finalize the project file. The project will pop up in "Projects" tab on the left side of the
screen.
9.
Right-click the project name and select "Make and Program Device". The boot loader will now load to the
Cmod. (You may also click the button on the tool bar with the green arrow pointing down to load the
project if the project has been set as the main project.)
Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners.
Page 5 of 15
chipKIT™ Cmod™ Reference Manual
3
Power Supply
The chipKIT Cmod is designed to be powered via USB (J3) or from an external power supply connected to pin 1 of
the DIP package.
The chipKIT Cmod has a single voltage regulator which regulates either 5V from USB, or a maximum of 15V
external voltage. A series diode between the DIP pin 1 (VIN) and DIP pin 3 (USB5V0) prevents an external voltage
applied to pin 1 being fed back onto the USB 5V supply when powering the board via DIP pin 1. All power supply
options are regulated to 3.3 V to provide power to the VCC3V3 bus that powers the PIC32 microcontroller. The
output of the on-board 3.3V regulator is available at DIP pin 2 and can be used to power external circuitry.
The 3.3V regulator is a Microchip MCP1703. The regulator is rated for a maximum output current of 250mA. The
absolute maximum input voltage for the MCP1703 is 16V. This regulator has internal short circuit protection and
thermal protection. It will get noticeably warm when the current consumed by the VCC3V3 bus is close to the
250mA maximum.
4
5V Compatibility
The PIC32 microcontroller operates at 3.3V. There are two issues to consider when dealing with 5V compatibility
for 3.3V logic. The first is protection of 3.3V inputs from damage caused by 5V signals. The second is whether the
3.3V output is high enough to be recognized as a logic high value by a 5V input. When driving a high impedance
input (typical of CMOS logic), the output high voltage from the PIC32 microcontroller will be close to 3.3V. Some
5V devices will recognize this voltage as a logic high input, and some won’t. Many 5V logic devices will work
Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners.
Page 6 of 15
chipKIT™ Cmod™ Reference Manual
reliably with 3.3V inputs. Please check the datasheet for the 5V components you are using to ensure that 3.3V will
satisfy the logic high conditions for the components.
Some of the digital I/O pins on the PIC32 microcontroller are 5V tolerant. The analog capable I/O pins are not 5V
tolerant. The following pins are 5V tolerant: 4-11, 14-15, 27, 31, and 33-38. The other pins are not 5V tolerant and
5V signals should not be applied to those pins. All I/O pins have a 200 ohm resistor in series between the
microcontroller pin and the connector pins to provide short circuit protection. These resistors will limit the output
drive strength of the pins to approximately +/- 2mA.
5
Pmod Ports
The chipKIT Cmod has two ports for connecting Digilent Pmos. The Pmod ports, labeled J1 and J2, are 2×6, female
pin header connectors.
The Pmod ports on the chipKIT Cmod are both twelve-pin ports. The ports use standard pin headers with 100-mil
spaced pins. The twelve-pin ports have the pins in a 2×6 configuration.
The twelve-pin ports provide eight I/O signals, two 3.3V power pins, and two ground pins. The twelve-pin ports
have the signals arranged so that one twelve-pin port is equivalent to two of the six-pin ports. Pins 1–4 and 7–10
are the signal pins, pins 5 and 11 are the ground pins, and pins 6 and 12 are the power supply pins.
The pin numbering that Digilent uses on the twelve-pin Pmod ports is non-standard.
The upper row of pins are numbered 1–6, right to left (when viewed from the end of the port), and the lower row
of pins are numbered 7–12, right to left. This is in keeping with the convention that the upper and lower rows of
pins can be considered to be two six-pin ports stacked.
It is important to note that the Pmod ports on the chipKIT Cmod are rotated 180 degrees in relation to each other.
Pin 1 of each Pmod port is marked on the board. When viewing the top of the board, pin 1 of Pmod port J2 is the
upper right pin, and pin 7 is immediately below it. For Pmod port J1, pin 1 is in the lower left corner and pin 7 is
immediately above it. Connecting peripheral modules incorrectly could result in damaging the peripheral module
or the chipKIT Cmod.
Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners.
Page 7 of 15
chipKIT™ Cmod™ Reference Manual
See the attached pinout diagram and tables in the appendices for more information about connecting peripheral
modules and other devices to the chipKIT Cmod. These tables describe the mapping between pins on the
PIC32MX150F128D microcontroller and the pins on the connectors.
6
Input/Output Connections
The chipKIT Cmod board provides 33 of the I/O pins from the PIC32MX150F128D microcontroller to pins on the DIP
connector.
The chipKIT Cmod and the MPIDE system uses logical pin numbers to identify digital I/O pins. All digital I/O pins
share their numbering with their DIP connector pin. Valid pin numbers on the chipKIT Cmod are 4-8, 10-27, and 2938. Pin numbers 1-3 and 39-40 refer to pins connected to power buses on the board and are not available for use
as I/O. Pin 9 can be used to reset the PIC32 microcontroller and pin 28 is unconnected. In addition, several of these
I/O pins share functionality with other devices on the board. See the attached pinout tables for more information.
The DIP connector uses standard DIP package pin numbers. Pins 1- 20 count up from the square pad labeled ‘1’ on
the lower DIP connector. Pins 21-40 count up from the pin near the label ‘Q1’ to the pin labeled ‘GND’ on the other
DIP connector.
Pins 18 and 19 are normally the reference voltages for the microcontroller’s A/D converter, but can also be used as
digital I/O pins.
In addition to the connector pin, Pin 14 is also connected to the user LED LD3. Pin 12 also connects to the user LED
LD4.
In addition to digital I/O, there are analog inputs available on the board, called A0 through A12. These pins are
shared with digital pins 12, 13, and 16 through 26. Refer to the attached pinout tables for the correct mapping of
these signals.
7
Peripheral I/O Functions
The PIC32 microcontroller on the chipKIT board provides a number of peripheral functions. The following
peripherals are provided:
I2C: Synchronous serial interface. The I2C1 interface is available on pins 4 (SDA1) and 38 (SCL1). The I2C2 interface
is available on pins 22(SDA2) and 23(SCL2). Note that when using MPIDE, the only available I 2C interface is I2C1.
Note: The I2C bus uses open collector drivers to allow multiple devices to drive the bus signals. This means that
pull-up resistors must be provided to supply the logic high state for the signals. These pull-up resistors are not on
the chipKIT Cmod board and must be provided externally. The required resistance of the pull-up resistor to use
depends on the total number of devices on the bus, the length of wire, and the clock speed being used. It
essentially depends on distributed capacitance on the bus. The higher the distributed capacitance and the faster
the clock speed, the smaller the resistance should be. Values typically used are in the range of 2K to 10K ohms.
User LEDs: Pins 12 (LD4) and 14 (LD3). Both Pin 12 and Pin 14 are shared between a connector pin on the chipKIT
Cmod and an LED. Driving the pin high turns the LED on, driving it low turns it off.
External Interrupts: Only INT0 is hard-mapped on the microcontroller. It is connected to Pin 37 of the chipKIT
Cmod. The other external interrupts are accessible via PPS described below.
Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners.
Page 8 of 15
chipKIT™ Cmod™ Reference Manual
A/D Converter Reference: Pin 18 is used to provide an external voltage reference to determine the input voltage
range of the analog pins. The maximum voltage that can be applied to this pin is 3.3V. This pin can also be used as
digital pin 18.
Reset: The PIC32 microcontroller is reset by bringing its MCLR pin low. The MCLR pin is connected to the P32_RST
net on the circuit board. A reset button is located on the right side of the board. Pressing this button resets the
PIC32 microcontroller.
Reset of the PIC32 microcontroller can be initiated by the USB serial converter. The USB serial converter brings the
DTR pin low to rest the microcontroller. The P32_RST net is connected to Pin 9 of the DIP package. This allows
external circuitry to reset the microcontroller, or to ensure that the circuitry is reset at the same time as the
microcontroller.
8
Peripheral Pin Select
An advanced feature of the PIC32MX1xx/2xx families of microcontrollers is the ability to re-map the locations of
peripheral devices. This advanced feature is available only in MPLAB IDE or MPLAB X. For more detailed
information, refer to the PIC32MX1XX/2XX Data Sheet available from www.microchip.com.
The PPS Peripherals are pre-assigned to the following pins when programming the chipKIT Cmod with MPIDE.
These assignments are also included in the Notes sections of the attached pinout tables.
Output Compare: Pin 29 (OC1), Pin 38 (OC2), Pin 4 (OC3), Pin 22 (OC4), Pin 13 (OC5). Output compare allows for
the implementation of pulse width modulated (PWM) signals using the analogWrite() function.
Input Capture: Pin 36 (IC1), Pin 10 (IC2), Pin 31 (IC3), Pin 37 (IC4), Pin 25 (IC5). Input capture allows for the
synchronization of timers with captured signals, along with the execution of interrupts.
External Timer Input: Pin 30 (TCK1), Pin 18 (TCK2), Pin 27 (TCK3), Pin 32 (TCK4), Pin 26 (TCK5) allows for timers to
be clocked from external sources.
External Interrupt: Pin 33 (INT1), Pin 13 (INT2), Pin 7 (INT3), Pin 37 (INT4) allows for external interrupts to be
triggered in their own ISRs. Interrupts may be edge triggered or level triggered, though only one of rising, falling,
high, or low, may be chosen for trigger sensitivity.
Change Notice Pins: All change notice pins are matched with their chipKIT pin numbers (e.g. CN4 is associated with
Pin 4). There is a change notice pin for each I/O pin.
UART: Asynchronous serial port. Pin 23 (U1TX), Pin 5 (U1RX). These pins use UART1 on the PIC32 microcontroller
and are connected to the FT232RQ serial converter. It is possible to use these pins to connect to an external serial
device when not using the USB serial interface. Pin 20 (U2TX) and Pin 21 (U2RX) are used to implement UART2 on
the PIC32 microcontroller.
SPI: Synchronous serial port. Pin 24 (SS), Pin 35 (MISO), Pin 25 (MOSI), Pin 16 (SCK). This uses SPI1 on the PIC32
Microcontroller. SPI2 is implemented as Pin 33 (SS), Pin 36 (MOSI), Pin 32 (MISO), and Pin 17 (SCK).
When using the chipKIT Cmod with MPIDE, the SPI ports are accessed using either the standard chipKIT SPI library
or using the Digilent DSPI library. The standard SPI library supports access to a single SPI port, SPI1. This is accessed
using the SPI object.
Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners.
Page 9 of 15
chipKIT™ Cmod™ Reference Manual
The DSPI library supports access to both SPI ports. The DSPI0 object class is used to access the default SPI port,
SPI1. The DSPI1 object class is used to access SPI2.
Appendices
The following tables give the relationship between the chipKIT digital pin numbers, the connector pin numbers,
and the microcontroller pin numbers.
In the following tables, columns labeled chipKIT pin # refer to the digital pin number. This is the value that is
passed to the pinMode(), digitalRead(), digitalWrite(), and other functions to refer to the pin.
The signals mapped by using Peripheral Pin Select are included in the following tables. They are listed with the
default pins assigned to them when using MPIDE. If the locations of peripheral devices are re-mapped, these
signals may no longer be associated with the same pin as listed below.
Appendix A: Pinout Diagram
Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners.
Page 10 of 15
chipKIT™ Cmod™ Reference Manual
Appendix B: Pinout Table by DIP Connector/ChipKIT Pin Number
DIP
Pin #
chipKIT
Pin #
Connector
Pin #
PIC32
Pin #
1
-
-
-
N/A
VIN/External
Power
2
-
-
28/40
VDD
VCC3V3
3
-
-
-
N/A
USB5V0/External
5V Power for USB
4
4
-
1*
RPB9/SDA1/CTED4/PMD3/RB9
OC3
5
5
-
2*
RPC6/PMA1/RC6
U1RX
6
6
J1-08
3*
RPC7/PMA0/RC7
7
7
J1-07
4*
RPC8/PMA5/RC8
8
8
J1-10
5*
RPC9/CTED7/PMA6/RC9
9
-
-
18*
MCLR
RESET
10
10
-
8*
PGED2/RPB10/CTED11/PMD2/RB10
IC2
11
11
-
9*
PGEC2/RPB11/PMD1/RB11
12
12/A12
-
10
AN12/PMD0/RB12
LD4
13
13/A11
-
11
AN11/RPB13/CTPLS/PMRD/RB13
OC5/INT2
14
14
-
12*
PGED(4)/TMS/PMA10/RA10
LD3
15
15
-
13*
PGEC(4)/TCK/CTED8/PMA7/RA7
16
16/A10
J1-04
14
CVREF/AN10/C3INB/RPB14/SCK1/CTED5/PMWR/RB
14
17
17/A9
J2-10
15
AN9/C3INA/RPB15/SCK2/CTED6/PMCS1/RB15
18
18/A0
-
19
VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/RA0
19
19/A1
-
20
VREF-/CVREF-/AN1/RPA1/CTED2/RA1
20
20/A2
J2-02
21
PGED1/AN2/C1IND/C2INB/C3IND/RPB0/RB0
U2TX
21
21/A3
J2-03
22
PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/RB1
U2RX
22
22/A4
J2-01
23
AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2
OC4
23
23/A5
-
24
AN5/C1INA/C2INC/RTCC/RPB3/SCL2/RB3
U1TX
24
24/A6
J1-01
25
AN6/RPC0/RC0
SS1
25
25/A7
J1-02
26
AN7/RPC1/RC1
IC5/SDO1
26
26/A8
-
27
AN8/RPC2/PMA2/RC2
TCK5
27
27
-
32*
TDO/RPA8/PMA8/RA8
TCK3
28
-
-
-
-
Not connected
29
29
-
33
SOSCI/RPB4/RB4
OC1
30
30
J1-09
34
SOSCO/RPA4/T1CK/CTED9/RA4
TCK1
31
31
-
35*
TDI/RPA9/PMA9/RA9
IC3
32
32
J2-09
36
RPC3/RC3
TCK4/SDI2
PIC32 Signal
Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners.
Notes
INT3
TCK2
Page 11 of 15
chipKIT™ Cmod™ Reference Manual
33
33
J2-07
37*
RPC4/PMA4/RC4
INT1/SS2
34
34
J2-04
38*
RPC5/PMA3/RC5
35
35
J1-03
41*
PGED3/RPB5/PMD7/RB5
SDI1
36
36
J2-08
42*
PGEC3/RPB6/PMD6/RB6
IC1/SDO2
37
37
-
43*
RPB7/CTED3/PMD5/INT0/RB7
IC4/INT4
38
38
-
44*
RPB8/SCL1/CTED10/PMD4/RB8
OC2
39/40
-
-
6/16/
29/39
VSS/AVSS
GND
* Indicates 5V tolerant pin on the PIC32MX150F128D
Appendix C: Pinout Table by Pmod Port Pin Number
Connector
Pin #
DIP
Pin #
chipKIT
Pin #
PIC32
Pin #
J1-01
24
24/A6
25
AN6/RPC0/RC0
SS1
J1-02
25
25/A7
26
AN7/RPC1/RC1
IC5/SDO1
J1-03
35
35
41*
PGED3/RPB5/PMD7/RB5
SDI1
J1-04
16
16/A10
14
CVREF/AN10/C3INB/RPB14/SCK1/CTED5/PMWR/RB
14
J1-05
39/40
-
6/16/
29/39
VSS/AVSS
GND
J1-06
2
-
28/40
VDD
VCC3V3
J1-07
7
7
4*
RPC8/PMA5/RC8
INT3
J1-08
6
6
3*
RPC7/PMA0/RC7
J1-09
30
30
34
SOSCO/RPA4/T1CK/CTED9/RA4
J1-10
8
8
5*
RPC9/CTED7/PMA6/RC9
J1-11
39/40
-
6/16/
29/39
VSS/AVSS
GND
J1-12
2
-
28/40
VDD
VCC3V3
J2-01
22
22/A4
23
AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2
OC4
J2-02
20
20/A2
21
PGED1/AN2/C1IND/C2INB/C3IND/RPB0/RB0
U2TX
J2-03
21
21/A3
22
PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/RB1
U2RX
J2-04
34
34
38*
RPC5/PMA3/RC5
J2-05
39/40
-
6/16/
29/39
VSS/AVSS
GND
J2-06
2
-
28/40
VDD
VCC3V3
J2-07
33
33
37*
RPC4/PMA4/RC4
INT1/SS2
J2-08
36
36
42*
PGEC3/RPB6/PMD6/RB6
IC1/SDO2
J2-09
32
32
36
RPC3/RC3
TCK4/SDI2
J2-10
17
17/A9
15
AN9/C3INA/RPB15/SCK2/CTED6/PMCS1/RB15
J2-11
39/40
-
6/16/
29/39
PIC32 Signal
VSS/AVSS
Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners.
Notes
TCK1
GND
Page 12 of 15
chipKIT™ Cmod™ Reference Manual
J2-12
2
-
28/40
VDD
VCC3V3
-
1
-
-
N/A
VIN/External
Power
-
3
-
-
N/A
USB5V0/External
5V Power for USB
-
4
4
1*
RPB9/SDA1/CTED4/PMD3/RB9
OC3
-
5
5
2*
RPC6/PMA1/RC6
U1RX
-
9
18*
MCLR
Reset Button
-
10
10
8*
PGED2/RPB10/CTED11/PMD2/RB10
IC2
-
11
11
9*
PGEC2/RPB11/PMD1/RB11
-
12
12/A12
10
AN12/PMD0/RB12
LD4
-
13
13/A11
11
AN11/RPB13/CTPLS/PMRD/RB13
OC5/INT2
-
14
14
12*
PGED(4)/TMS/PMA10/RA10
LD3
-
15
15
13*
PGEC(4)/TCK/CTED8/PMA7/RA7
-
18
18/A0
19
VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/RA0
-
19
19/A1
20
VREF-/CVREF-/AN1/RPA1/CTED2/RA1
-
23
23/A5
24
AN5/C1INA/C2INC/RTCC/RPB3/SCL2/RB3
U1TX
-
26
26/A8
27
AN8/RPC2/PMA2/RC2
TCK5
-
27
27
32*
TDO/RPA8/PMA8/RA8
TCK3
-
28
-
-
-
Not connected
-
29
29
33
SOSCI/RPB4/RB4
OC1
-
31
31
35*
TDI/RPA9/PMA9/RA9
IC3
-
37
37
43*
RPB7/CTED3/PMD5/INT0/RB7
IC4/INT4
-
38
38
44*
RPB8/SCL1/CTED10/PMD4/RB8
OC2
TCK2
* Indicates 5V tolerant pin on the PIC32MX150F128D
Appendix D: Pinout Table by PIC32 Microcontroller Pin
PIC32
Pin#
DIP
Pin #
chipKIT
Pin #
Connector
Pin #
1*
4
4
-
RPB9/SDA1/CTED4/PMD3/RB9
OC3
2*
5
5
-
RPC6/PMA1/RC6
U1RX
3*
6
6
J1-08
RPC7/PMA0/RC7
4*
7
7
J1-07
RPC8/PMA5/RC8
5*
8
8
J1-10
RPC9/CTED7/PMA6/RC9
6
39/40
-
-
7
PIC32 Signal
VSS/AVSS
Notes
INT3
GND
VCAP
8*
10
10
-
PGED2/RPB10/CTED11/PMD2/RB10
9*
11
11
-
PGEC2/RPB11/PMD1/RB11
10
12
12/A12
-
AN12/PMD0/RB12
Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners.
IC2
LD4
Page 13 of 15
chipKIT™ Cmod™ Reference Manual
11
13
13/A11
-
AN11/RPB13/CTPLS/PMRD/RB13
OC5/INT2
12*
14
14
-
PGED(4)/TMS/PMA10/RA10
LD3
13*
15
15
-
PGEC(4)/TCK/CTED8/PMA7/RA7
14
16
16/A10
J1-04
CVREF/AN10/C3INB/RPB14/SCK1/CTED5/PMWR/RB1
4
15
17
17/A9
J2-10
AN9/C3INA/RPB15/SCK2/CTED6/PMCS1/RB15
16
39/40
-
-
17
VSS/AVSS
GND
AVDD
18*
9
-
-
MCLR
RESET
19
18
18/A0
-
VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/RA0
TCK2
20
19
19/A1
-
VREF-/CVREF-/AN1/RPA1/CTED2/RA1
21
20
20/A2
J2-02
PGED1/AN2/C1IND/C2INB/C3IND/RPB0/RB0
U2TX
22
21
21/A3
J2-03
PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/RB1
U2RX
23
22
22/A4
J2-01
AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2
OC4
24
23
23/A5
-
AN5/C1INA/C2INC/RTCC/RPB3/SCL2/RB3
U1TX
25
24
24/A6
J1-01
AN6/RPC0/RC0
SS1
26
25
25/A7
J1-02
AN7/RPC1/RC1
IC5/SDO1
27
26
26/A8
-
AN8/RPC2/PMA2/RC2
TCK5
28
2
-
-
VDD
VCC3V3
29
39/40
-
-
VSS/AVSS
GND
30
OSC1/CLKI/RPA2/RA2
X1, system clock
oscillator
31
OSC2/CLKO/RPA3/RA3
X1, system clock
oscillator
32*
27
27
-
TDO/RPA8/PMA8/RA8
TCK3
33
29
29
-
SOSCI/RPB4/RB4
OC1
34
30
30
J1-09
SOSCO/RPA4/T1CK/CTED9/RA4
TCK1
35*
31
31
-
TDI/RPA9/PMA9/RA9
IC3
36
32
32
J2-09
RPC3/RC3
TCK4/SDI2
37*
33
33
J2-07
RPC4/PMA4/RC4
INT1/SS2
38*
34
34
J2-04
RPC5/PMA3/RC5
39
39/40
-
-
VSS/AVSS
GND
40
2
-
-
VDD
VCC3V3
41*
35
35
J1-03
PGED3/RPB5/PMD7/RB5
SDI1
42*
36
36
J2-08
PGEC3/RPB6/PMD6/RB6
IC1/SDO2
43*
37
37
-
RPB7/CTED3/PMD5/INT0/RB7
IC4/INT4
44*
38
38
-
RPB8/SCL1/CTED10/PMD4/RB8
OC2
-
1
-
-
N/A
VIN/External
Power
-
3
-
-
N/A
USB5V0/External
5V Power for
USB
Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners.
Page 14 of 15
chipKIT™ Cmod™ Reference Manual
-
28
-
-
N/A
Not connected
* Indicates 5V tolerant pin on the PIC32MX150F128D
Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners.
Page 15 of 15