0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
DEV-13956

DEV-13956

  • 厂商:

    SPARKFUNELECTRONICS

  • 封装:

    -

  • 描述:

    WEATHERSHIELD

  • 数据手册
  • 价格&库存
DEV-13956 数据手册
Page 1 of 26   Arduino Weather Shield Hookup Guide V12 Weather Shield Overview The Arduino Weather Shield from SparkFun is an easy-to-use Arduino shield that grants you access to barometric pressure, relative humidity, luminosity, and temperature. There are also connections to optional sensors such as wind speed/direction, rain gauge, and GPS for location and super accurate timing. SparkFun Weather Shield  DEV-1395 6 Things you should know about this shield: • Uses the Si7021 sensor, MPL3115A2 barometric pressure sensor, and ALS-PT19 light sensor. • Has connector for the GP-735 compact GPS module • Has optional RJ11 connector footprints to connect the SparkFun weather meters • Weather shield can operate from 3V to 10V and has built in voltage regulators and signal translators • Typical humidity accuracy of ±2% • Typical pressure accuracy of ±50Pa • Typical temperature accuracy of ±0.3C Suggested Reading • I2C Protocol Page 2 of 26 • • • • • Installing an Arduino library What is an Arduino Shield What are pull-up resistors? Si7021 Temperature and Humidity Sensor Hookup Guide MPL3115A2 Barometric Sensor Hookup Guide Hooking It Up To get up and running with the Weather Shield you’ll need the following parts: • • • • • Arduino, RedBoard, or other compatible board Arduino Stackable Headers Optional: GP-735 GPS Module and 1.75" mating cable Optional: Two RJ11 6-pin Connectors Optional: Weather Meters Shield on a RedBoard with optional weather meter (‘W'ind and 'R'ain cables) and GPS attached Assembly Solder the stackable headers onto the shield, and insert the shield into your Arduino. You are welcome to solder in the RJ11 connectors to the top of the board as well. If you have the GP-735 GPS module, don’t worry about attaching it at this time, we’ll get to GPS later. Example Firmware - Basic Before uploading code to your Arduino with the Weather Shield attached, make sure the GPS UART switch is in the SW-UART position. Having the switch in the opposite position connects the GPS lines to the USB lines and may cause errors while uploading. Using the Weather Shield example in the Arduino IDE relies on the Si7021 and MPL3115A2 libraries. As of Arduino v1.6.x you can download the libraries through the Arduino Library Manager. Search for and install “SparkFun MPL3115” and “SparkFun Si7021”. For more information, see our tutorial on using the Arduino library manager. For all the latest Arduino Weather Shield code, check out the Github Repository: WE A THE R SHI EL D GI THU B RE PO https://github.com/sparkfun/Weather_Shield Page 3 of 26 Open the Weather_Shield_Basic.ino sketch. Or copy and paste the code below into the Arduino IDE: Page 4 of 26 /*   Weather Shield Example   By: Nathan Seidle   SparkFun Electronics   Date: June 10th, 2016   License: This code is public domain but you buy me a beer if  you use this and we meet someday (Beerware license).   This example prints the current humidity, air pressure, tempe rature and light levels.   The weather shield is capable of a lot. Be sure to checkout t he other more advanced examples for creating   your own weather station.   Updated by Joel Bartlett   03/02/2017   Removed HTU21D code and replaced with Si7021   */ #include  //I2C needed for sensors #include "SparkFunMPL3115A2.h" //Pressure sensor ­ Search "Spa rkFun MPL3115" and install from Library Manager #include "SparkFun_Si7021_Breakout_Library.h" //Humidity senso r ­ Search "SparkFun Si7021" and install from Library Manager MPL3115A2 myPressure; //Create an instance of the pressure sen sor Weather myHumidity;//Create an instance of the humidity sensor //Hardware pin definitions //­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­= const byte STAT_BLUE = 7; const byte STAT_GREEN = 8; const byte REFERENCE_3V3 = A3; const byte LIGHT = A1; const byte BATT = A2; //Global Variables //­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­= long lastSecond; //The millis counter to see when a second rol ls by void setup() {    Serial.begin(9600);   Serial.println("Weather Shield Example"); pinMode(STAT_BLUE, OUTPUT); //Status LED Blue pinMode(STAT_GREEN, OUTPUT); //Status LED Green pinMode(REFERENCE_3V3, INPUT); pinMode(LIGHT, INPUT); //Configure the pressure sensor   myPressure.begin(); // Get sensor online   myPressure.setModeBarometer(); // Measure pressure in Pascal s from 20 to 110 kPa   myPressure.setOversampleRate(7); // Set Oversample to the re commended 128   myPressure.enableEventFlags(); // Enable all three pressure  and temp event flags Page 5 of 26 //Configure the humidity sensor   myHumidity.begin();   lastSecond = millis();   Serial.println("Weather Shield online!"); }  void loop() {  //Print readings every second if (millis() ­ lastSecond >= 1000)   {  digitalWrite(STAT_BLUE, HIGH); //Blink stat LED     lastSecond += 1000; //Check Humidity Sensor float humidity = myHumidity.getRH(); if (humidity == 998) //Humidty sensor failed to respond     {        Serial.println("I2C communication to sensors is not work ing. Check solder connections."); //Try re­initializing the I2C comm and the sensors       myPressure.begin();        myPressure.setModeBarometer();       myPressure.setOversampleRate(7);       myPressure.enableEventFlags();       myHumidity.begin();     }  else     {        Serial.print("Humidity = ");       Serial.print(humidity);       Serial.print("%,"); float temp_h = myHumidity.getTempF();       Serial.print(" temp_h = ");       Serial.print(temp_h, 2);       Serial.print("F,"); //Check Pressure Sensor float pressure = myPressure.readPressure();       Serial.print(" Pressure = ");       Serial.print(pressure);       Serial.print("Pa,"); //Check tempf from pressure sensor float tempf = myPressure.readTempF();       Serial.print(" temp_p = ");       Serial.print(tempf, 2);       Serial.print("F,"); //Check light sensor float light_lvl = get_light_level();       Serial.print(" light_lvl = ");       Serial.print(light_lvl);       Serial.print("V,"); //Check batt level float batt_lvl = get_battery_level();       Serial.print(" VinPin = ");       Serial.print(batt_lvl);       Serial.print("V"); Page 6 of 26 Serial.println(); } digitalWrite(STAT_BLUE, LOW); //Turn off stat LED } delay(100); } //Returns the voltage of the light sensor based on the 3.3V ra il //This allows us to ignore what VCC might be (an Arduino plugg ed into USB has VCC of 4.5 to 5.2V) float get_light_level() { float operatingVoltage = analogRead(REFERENCE_3V3); float lightSensor = analogRead(LIGHT); operatingVoltage = 3.3 / operatingVoltage; //The reference v oltage is 3.3V lightSensor = operatingVoltage * lightSensor; return (lightSensor); } //Returns the voltage of the raw pin based on the 3.3V rail //This allows us to ignore what VCC might be (an Arduino plugg ed into USB has VCC of 4.5 to 5.2V) //Battery level is connected to the RAW pin on Arduino and is fed through two 5% resistors: //3.9K on the high side (R1), and 1K on the low side (R2) float get_battery_level() { float operatingVoltage = analogRead(REFERENCE_3V3); float rawVoltage = analogRead(BATT); operatingVoltage = 3.30 / operatingVoltage; //The reference voltage is 3.3V rawVoltage = operatingVoltage * rawVoltage; //Convert the 0 to 1023 int to actual voltage on BATT pin rawVoltage *= 4.90; //(3.9k+1k)/1k ­ multiple BATT voltage b y the voltage divider to get actual system voltage return (rawVoltage); } Open the Serial Monitor. You should see the following output: Put your hand over the small clear device labeled ‘Light’, and watch the light level change to 0. Blow lightly on the humidity sensor, and watch the humidity change. Page 7 of 26 Troubleshooting If there is an error you will see: I2C communication to sensors is not working. Check solder conn ections. This message appears when the board is unable to get a response from the I2C sensors. This could be because of a faulty solder connection, or if there are other devices on the A5/A4 lines (which are also called SDA/SCL). Example Firmware - Weather Station For the more adventurous, we have the Weather Station example. This code demonstrates all the bells and whistles of the shield. You will need a weather station hooked up to see the wind speed, wind direction and rain values change. Page 8 of 26 /* Weather Shield Example By: Nathan Seidle SparkFun Electronics Date: November 16th, 2013 License: This code is public domain but you buy me a beer if you use this and we meet someday (Beerware license). Much of this is based on Mike Grusin's USB Weather Board cod e: https://www.sparkfun.com/products/10586 This is a more advanced example of how to utilize every aspec t of the weather shield. See the basic example if you're just getting started. This code reads all the various sensors (wind speed, directio n, rain gauge, humidity, pressure, light, batt_lvl) and reports it over the serial comm port. This can be easily routed to a datalogger (such as OpenLog) or a wireless transmitter (such as Electric Imp). Measurements are reported once a second but windspeed and rai n gauge are tied to interrupts that are calculated at each report. This example code assumes the GPS module is not used. Updated by Joel Bartlett 03/02/2017 Removed HTU21D code and replaced with Si7021 */ #include //I2C needed for sensors #include "SparkFunMPL3115A2.h" //Pressure sensor ­ Search "Spa rkFun MPL3115" and install from Library Manager #include "SparkFun_Si7021_Breakout_Library.h" //Humidity senso r ­ Search "SparkFun Si7021" and install from Library Manager MPL3115A2 myPressure; //Create an instance of the pressure sen sor Weather myHumidity;//Create an instance of the humidity sensor //Hardware pin definitions //­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­= // digital I/O pins const byte WSPEED = 3; const byte RAIN = 2; const byte STAT1 = 7; const byte STAT2 = 8; // analog I/O pins const byte REFERENCE_3V3 = A3; const byte LIGHT = A1; const byte BATT = A2; const byte WDIR = A0; //­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­= //Global Variables //­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­= long lastSecond; //The millis counter to see when a second rol ls by Page 9 of 26 byte seconds; //When it hits 60, increase the current minute byte seconds_2m; //Keeps track of the "wind speed/dir avg" ove r last 2 minutes array of data byte minutes; //Keeps track of where we are in various arrays of data byte minutes_10m; //Keeps track of where we are in wind gust/d ir over last 10 minutes array of data long lastWindCheck = 0; volatile long lastWindIRQ = 0; volatile byte windClicks = 0; //We need to keep track of the following variables: //Wind speed/dir each update (no storage) //Wind gust/dir over the day (no storage) //Wind speed/dir, avg over 2 minutes (store 1 per second) //Wind gust/dir over last 10 minutes (store 1 per minute) //Rain over the past hour (store 1 per minute) //Total rain over date (store one per day) byte windspdavg[120]; //120 bytes to keep track of 2 minute av erage #define WIND_DIR_AVG_SIZE 120 int winddiravg[WIND_DIR_AVG_SIZE]; //120 ints to keep track o f 2 minute average float windgust_10m[10]; //10 floats to keep track of 10 minut e max int windgustdirection_10m[10]; //10 ints to keep track of 10 m inute max volatile float rainHour[60]; //60 floating numbers to keep tra ck of 60 minutes of rain //These are all the weather values that wunderground expects: int winddir = 0; // [0­360 instantaneous wind direction] float windspeedmph = 0; // [mph instantaneous wind speed] float windgustmph = 0; // [mph current wind gust, using softwa re specific time period] int windgustdir = 0; // [0­360 using software specific time pe riod] float windspdmph_avg2m = 0; // [mph 2 minute average wind spee d mph] int winddir_avg2m = 0; // [0­360 2 minute average wind directi on] float windgustmph_10m = 0; // [mph past 10 minutes wind gust m ph ] int windgustdir_10m = 0; // [0­360 past 10 minutes wind gust d irection] float humidity = 0; // [%] float tempf = 0; // [temperature F] float rainin = 0; // [rain inches over the past hour)] ­­ the accumulated rainfall in the past 60 min volatile float dailyrainin = 0; // [rain inches so far today i n local time] //float baromin = 30.03;// [barom in] ­ It's hard to calculat e baromin locally, do this in the agent float pressure = 0; //float dewptf; // [dewpoint F] ­ It's hard to calculate dewpo int locally, do this in the agent float batt_lvl = 11.8; //[analog value from 0 to 1023] float light_lvl = 455; //[analog value from 0 to 1023] // volatiles are subject to modification by IRQs volatile unsigned long raintime, rainlast, raininterval, rain; Page 10 of 26 //­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­= //Interrupt routines (these are called by the hardware interru pts, not by the main code) //­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­= void rainIRQ() // Count rain gauge bucket tips as they occur // Activated by the magnet and reed switch in the rain gauge, attached to input D2 { raintime = millis(); // grab current time raininterval = raintime ­ rainlast; // calculate interval between this and last event if (raininterval > 10) // ignore switch­bounce glitches le ss than 10mS after initial edge { dailyrainin += 0.011; //Each dump is 0.011" of water rainHour[minutes] += 0.011; //Increase this minute's a mount of rain rainlast = raintime; // set up for next event } } void wspeedIRQ() // Activated by the magnet in the anemometer (2 ticks per rota tion), attached to input D3 { if (millis() ­ lastWindIRQ > 10) // Ignore switch­bounce g litches less than 10ms (142MPH max reading) after the reed swi tch closes { lastWindIRQ = millis(); //Grab the current time windClicks++; //There is 1.492MPH for each click per s econd. } } void setup() { Serial.begin(9600); Serial.println("Weather Shield Example"); pinMode(STAT1, OUTPUT); //Status LED Blue pinMode(STAT2, OUTPUT); //Status LED Green pinMode(WSPEED, INPUT_PULLUP); // input from wind meters w indspeed sensor pinMode(RAIN, INPUT_PULLUP); // input from wind meters rai n gauge sensor pinMode(REFERENCE_3V3, INPUT); pinMode(LIGHT, INPUT); //Configure the pressure sensor myPressure.begin(); // Get sensor online myPressure.setModeBarometer(); // Measure pressure in Pasc als from 20 to 110 kPa myPressure.setOversampleRate(7); // Set Oversample to the recommended 128 myPressure.enableEventFlags(); // Enable all three pressur e and temp event flags Page 11 of 26 //Configure the humidity sensor     myHumidity.begin();     seconds = 0;     lastSecond = millis(); // attach external interrupt pins to IRQ functions attachInterrupt(0, rainIRQ, FALLING); attachInterrupt(1, wspeedIRQ, FALLING); // turn on interrupts interrupts();     Serial.println("Weather Shield online!"); }  void loop() {  //Keep track of which minute it is if(millis() ­ lastSecond >= 1000)     {  digitalWrite(STAT1, HIGH); //Blink stat LED     lastSecond += 1000; //Take a speed and direction reading every second for  2 minute average if(++seconds_2m > 119) seconds_2m = 0; //Calc the wind speed and direction every second for 1 20 second to get 2 minute average float currentSpeed = get_wind_speed(); //float currentSpeed = random(5); //For testing int currentDirection = get_wind_direction();         windspdavg[seconds_2m] = (int)currentSpeed;         winddiravg[seconds_2m] = currentDirection; //if(seconds_2m % 10 == 0) displayArrays(); //For test ing //Check to see if this is a gust for the minute if(currentSpeed > windgust_10m[minutes_10m])         {              windgust_10m[minutes_10m] = currentSpeed;             windgustdirection_10m[minutes_10m] = currentDirect ion;          }  //Check to see if this is a gust for the day if(currentSpeed > windgustmph)         {              windgustmph = currentSpeed;             windgustdir = currentDirection;         }  if(++seconds > 59)         {              seconds = 0; if(++minutes > 59) minutes = 0; if(++minutes_10m > 9) minutes_10m = 0;             rainHour[minutes] = 0; //Zero out this minute's ra infall amount Page 12 of 26             windgust_10m[minutes_10m] = 0; //Zero out this min ute's gust         }  //Report all readings every second printWeather(); digitalWrite(STAT1, LOW); //Turn off stat LED     }  delay(100); }  //Calculates each of the variables that wunderground is expect ing void calcWeather() {  //Calc winddir     winddir = get_wind_direction(); //Calc windspeed //windspeedmph = get_wind_speed(); //This is calculated i n the main loop //Calc windgustmph //Calc windgustdir //These are calculated in the main loop //Calc windspdmph_avg2m float temp = 0; for(int i = 0 ; i < 120 ; i++)         temp += windspdavg[i];     temp /= 120.0;     windspdmph_avg2m = temp; //Calc winddir_avg2m, Wind Direction //You can't just take the average. Google "mean of circula r quantities" for more info //We will use the Mitsuta method because it doesn't requir e trig functions //And because it sounds cool. //Based on: http://abelian.org/vlf/bearings.html //Based on: http://stackoverflow.com/questions/1813483/ave raging­angles­again long sum = winddiravg[0]; int D = winddiravg[0]; for(int i = 1 ; i < WIND_DIR_AVG_SIZE ; i++)     {  int delta = winddiravg[i] ­ D; if(delta < ­180)             D += delta + 360; else if(delta > 180)             D += delta ­ 360; else             D += delta;         sum += D;     }      winddir_avg2m = sum / WIND_DIR_AVG_SIZE; if(winddir_avg2m >= 360) winddir_avg2m ­= 360; if(winddir_avg2m < 0) winddir_avg2m += 360; //Calc windgustmph_10m //Calc windgustdir_10m Page 13 of 26 //Find the largest windgust in the last 10 minutes     windgustmph_10m = 0;     windgustdir_10m = 0; //Step through the 10 minutes for(int i = 0; i < 10 ; i++)     {  if(windgust_10m[i] > windgustmph_10m)         {              windgustmph_10m = windgust_10m[i];             windgustdir_10m = windgustdirection_10m[i];         }      }  //Calc humidity     humidity = myHumidity.getRH(); //float temp_h = myHumidity.readTemperature(); //Serial.print(" TempH:"); //Serial.print(temp_h, 2); //Calc tempf from pressure sensor     tempf = myPressure.readTempF(); //Serial.print(" TempP:"); //Serial.print(tempf, 2); //Total rainfall for the day is calculated within the inte rrupt //Calculate amount of rainfall for the last 60 minutes     rainin = 0; for(int i = 0 ; i < 60 ; i++)         rainin += rainHour[i]; //Calc pressure     pressure = myPressure.readPressure(); //Calc dewptf //Calc light level     light_lvl = get_light_level(); //Calc battery level     batt_lvl = get_battery_level(); }  //Returns the voltage of the light sensor based on the 3.3V ra il //This allows us to ignore what VCC might be (an Arduino plugg ed into USB has VCC of 4.5 to 5.2V) float get_light_level() {  float operatingVoltage = analogRead(REFERENCE_3V3); float lightSensor = analogRead(LIGHT);     operatingVoltage = 3.3 / operatingVoltage; //The referenc e voltage is 3.3V     lightSensor = operatingVoltage * lightSensor; return(lightSensor); }  //Returns the voltage of the raw pin based on the 3.3V rail //This allows us to ignore what VCC might be (an Arduino plugg ed into USB has VCC of 4.5 to 5.2V) //Battery level is connected to the RAW pin on Arduino and is  Page 14 of 26 fed through two 5% resistors: //3.9K on the high side (R1), and 1K on the low side (R2) float get_battery_level() {  float operatingVoltage = analogRead(REFERENCE_3V3); float rawVoltage = analogRead(BATT);     operatingVoltage = 3.30 / operatingVoltage; //The referenc e voltage is 3.3V     rawVoltage = operatingVoltage * rawVoltage; //Convert the  0 to 1023 int to actual voltage on BATT pin     rawVoltage *= 4.90; //(3.9k+1k)/1k ­ multiple BATT voltag e by the voltage divider to get actual system voltage return(rawVoltage); }  //Returns the instataneous wind speed float get_wind_speed() {  float deltaTime = millis() ­ lastWindCheck; //750ms     deltaTime /= 1000.0; //Covert to seconds float windSpeed = (float)windClicks / deltaTime; //3 / 0.7 50s = 4     windClicks = 0; //Reset and start watching for new wind     lastWindCheck = millis();     windSpeed *= 1.492; //4 * 1.492 = 5.968MPH /* Serial.println();      Serial.print("Windspeed:");       Serial.println(windSpeed);*/ return(windSpeed); }  //Read the wind direction sensor, return heading in degrees int get_wind_direction() {  unsigned int adc;     adc = analogRead(WDIR); // get the current reading from th e sensor // The following table is ADC readings for the wind direct ion sensor output, sorted from low to high. // Each threshold is the midpoint between adjacent heading s. The output is degrees for that ADC reading. // Note that these are not in compass degree order! See We ather Meters datasheet for more information. if if if if if if if if (adc < (adc < (adc < (adc < (adc < (adc < (adc < (adc < 380) return 393) return 414) return 456) return 508) return 551) return 615) return 680) return (113); (68); (90); (158); (135); (203); (180); (23); Page 15 of 26 if (adc < 746) return (45); if (adc < 801) return (248); if (adc < 833) return (225); if (adc < 878) return (338); if (adc < 913) return (0); if (adc < 940) return (293); if (adc < 967) return (315); if (adc < 990) return (270); return (­1); // error, disconnected? }  //Prints the various variables directly to the port //I don't like the way this function is written but Arduino do esn't support floats under sprintf void printWeather() {  calcWeather(); //Go calc all the various sensors     Serial.println();     Serial.print("$,winddir=");     Serial.print(winddir);     Serial.print(",windspeedmph=");     Serial.print(windspeedmph, 1);     Serial.print(",windgustmph=");     Serial.print(windgustmph, 1);     Serial.print(",windgustdir=");     Serial.print(windgustdir);     Serial.print(",windspdmph_avg2m=");     Serial.print(windspdmph_avg2m, 1);     Serial.print(",winddir_avg2m=");     Serial.print(winddir_avg2m);     Serial.print(",windgustmph_10m=");     Serial.print(windgustmph_10m, 1);     Serial.print(",windgustdir_10m=");     Serial.print(windgustdir_10m);     Serial.print(",humidity=");     Serial.print(humidity, 1);     Serial.print(",tempf=");     Serial.print(tempf, 1);     Serial.print(",rainin=");     Serial.print(rainin, 2);     Serial.print(",dailyrainin=");     Serial.print(dailyrainin, 2);     Serial.print(",pressure=");     Serial.print(pressure, 2);     Serial.print(",batt_lvl=");     Serial.print(batt_lvl, 2);     Serial.print(",light_lvl=");     Serial.print(light_lvl, 2);     Serial.print(",");     Serial.println("#"); }  Load it onto your Arduino, and open the serial monitor at 9600. You should see output similar to the following: Page 16 of 26 Example with GPS Shield on a RedBoard with optional weather meter connectors and GPS attached Attach the GP-735 GPS module using the short cable. To secure the module, there is space on the shield to attach the module using doublestick tape. Serial pins are connected to digital pins 4 and 5 when Serial is set to soft and are attached to the internal UART when set to hard. There is a switch labeled Serial on the shield. This is to select which pins on the Arduino to connect the GPS to. In almost all cases the switch should be set to ‘Soft’. This will attach the GPS serial pins to digital pins 5 (TX from the GPS) and 4 (RX into the GPS). Grab the GPS example sketch from the GitHub repo that demonstrates using the GP-735 with all the other sensors. Load it onto your Arduino, and open the serial monitor at 9600. You can also copy the code below: Page 17 of 26 /*    Weather Shield Example   By: Nathan Seidle   SparkFun Electronics   Date: November 16th, 2013   License: This code is public domain but you buy me a beer if  you use this and we meet someday (Beerware license).   Much of this is based on Mike Grusin's USB Weather Board cod e: https://www.sparkfun.com/products/10586   This code reads all the various sensors (wind speed, directio n, rain gauge, humidty, pressure, light, batt_lvl)   and reports it over the serial comm port. This can be easily  routed to an datalogger (such as OpenLog) or   a wireless transmitter (such as Electric Imp).   Measurements are reported once a second but windspeed and rai n gauge are tied to interrupts that are   calcualted at each report.   This example code assumes the GP­735 GPS module is attached.   Updated by Joel Bartlett   03/02/2017   Removed HTU21D code and replaced with Si7021   */ #include  //I2C needed for sensors #include "SparkFunMPL3115A2.h" //Pressure sensor ­ Search "Spa rkFun MPL3115" and install from Library Manager #include "SparkFun_Si7021_Breakout_Library.h" //Humidity senso r ­ Search "SparkFun Si7021" and install from Library Manager #include  //Needed for GPS #include  //GPS parsing ­ Available through the L ibrary Manager. TinyGPSPlus gps;  static const int RXPin = 5, TXPin = 4; //GPS is attached to pi n 4(TX from GPS) and pin 5(RX into GPS) SoftwareSerial ss(RXPin, TXPin);  MPL3115A2 myPressure; //Create an instance of the pressure sen sor Weather myHumidity;//Create an instance of the humidity sensor //Hardware pin definitions //­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­= // digital I/O pins const byte WSPEED = 3; const byte RAIN = 2; const byte STAT1 = 7; const byte STAT2 = 8; const byte GPS_PWRCTL = 6; //Pulling this pin low puts GPS to  sleep but maintains RTC and RAM // analog I/O pins const byte REFERENCE_3V3 = A3; const byte LIGHT = A1; const byte BATT = A2; const byte WDIR = A0; //­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­= Page 18 of 26 //Global Variables //­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­= long lastSecond; //The millis counter to see when a second rol ls by byte seconds; //When it hits 60, increase the current minute byte seconds_2m; //Keeps track of the "wind speed/dir avg" ove r last 2 minutes array of data byte minutes; //Keeps track of where we are in various arrays  of data byte minutes_10m; //Keeps track of where we are in wind gust/d ir over last 10 minutes array of data long lastWindCheck = 0; volatile long lastWindIRQ = 0; volatile byte windClicks = 0; //We need to keep track of the following variables: //Wind speed/dir each update (no storage) //Wind gust/dir over the day (no storage) //Wind speed/dir, avg over 2 minutes (store 1 per second) //Wind gust/dir over last 10 minutes (store 1 per minute) //Rain over the past hour (store 1 per minute) //Total rain over date (store one per day) byte windspdavg[120]; //120 bytes to keep track of 2 minute av erage int winddiravg[120]; //120 ints to keep track of 2 minute aver age float windgust_10m[10]; //10 floats to keep track of 10 minut e max int windgustdirection_10m[10]; //10 ints to keep track of 10 m inute max volatile float rainHour[60]; //60 floating numbers to keep tra ck of 60 minutes of rain //These are all the weather values that wunderground expects: int winddir = 0; // [0­360 instantaneous wind direction] float windspeedmph = 0; // [mph instantaneous wind speed] float windgustmph = 0; // [mph current wind gust, using softwa re specific time period] int windgustdir = 0; // [0­360 using software specific time pe riod] float windspdmph_avg2m = 0; // [mph 2 minute average wind spee d mph] int winddir_avg2m = 0; // [0­360 2 minute average wind directi on] float windgustmph_10m = 0; // [mph past 10 minutes wind gust m ph ] int windgustdir_10m = 0; // [0­360 past 10 minutes wind gust d irection] float humidity = 0; // [%] float tempf = 0; // [temperature F] float rainin = 0; // [rain inches over the past hour)] ­­ the  accumulated rainfall in the past 60 min volatile float dailyrainin = 0; // [rain inches so far today i n local time] //float baromin = 30.03;// [barom in] ­ It's hard to calculat e baromin locally, do this in the agent float pressure = 0; //float dewptf; // [dewpoint F] ­ It's hard to calculate dewpo int locally, do this in the agent float batt_lvl = 11.8; //[analog value from 0 to 1023] float light_lvl = 455; //[analog value from 0 to 1023] Page 19 of 26 //Variables used for GPS //float flat, flon; // 39.015024 ­102.283608686 //unsigned long age; //int year; //byte month, day, hour, minute, second, hundredths; // volatiles are subject to modification by IRQs volatile unsigned long raintime, rainlast, raininterval, rain; //­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­= //Interrupt routines (these are called by the hardware interru pts, not by the main code) //­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­=­= void rainIRQ() // Count rain gauge bucket tips as they occur // Activated by the magnet and reed switch in the rain gauge,  attached to input D2 {    raintime = millis(); // grab current time   raininterval = raintime ­ rainlast; // calculate interval be tween this and last event if (raininterval > 10) // ignore switch­bounce glitches le ss than 10mS after initial edge   {      dailyrainin += 0.011; //Each dump is 0.011" of water     rainHour[minutes] += 0.011; //Increase this minute's amoun t of rain     rainlast = raintime; // set up for next event   }  }  void wspeedIRQ() // Activated by the magnet in the anemometer (2 ticks per rota tion), attached to input D3 {  if (millis() ­ lastWindIRQ > 10) // Ignore switch­bounce gli tches less than 10ms (142MPH max reading) after the reed switc h closes   {      lastWindIRQ = millis(); //Grab the current time     windClicks++; //There is 1.492MPH for each click per secon d.   }  }  void setup() {    Serial.begin(9600);   Serial.println("Weather Shield Example");   ss.begin(9600); //Begin listening to GPS over software seria l at 9600. This should be the default baud of the module. pinMode(STAT1, OUTPUT); //Status LED Blue pinMode(STAT2, OUTPUT); //Status LED Green pinMode(GPS_PWRCTL, OUTPUT); digitalWrite(GPS_PWRCTL, HIGH); //Pulling this pin low puts  GPS to sleep but maintains RTC and RAM pinMode(WSPEED, INPUT_PULLUP); // input from wind meters win Page 20 of 26 dspeed sensor pinMode(RAIN, INPUT_PULLUP); // input from wind meters rain  gauge sensor pinMode(REFERENCE_3V3, INPUT); pinMode(LIGHT, INPUT); //Configure the pressure sensor   myPressure.begin(); // Get sensor online   myPressure.setModeBarometer(); // Measure pressure in Pascal s from 20 to 110 kPa   myPressure.setOversampleRate(7); // Set Oversample to the re commended 128   myPressure.enableEventFlags(); // Enable all three pressure  and temp event flags  //Configure the humidity sensor   myHumidity.begin();   seconds = 0;   lastSecond = millis(); // attach external interrupt pins to IRQ functions attachInterrupt(0, rainIRQ, FALLING); attachInterrupt(1, wspeedIRQ, FALLING); // turn on interrupts interrupts();   Serial.println("Weather Shield online!"); }  void loop() {  //Keep track of which minute it is if(millis() ­ lastSecond >= 1000)   {  digitalWrite(STAT1, HIGH); //Blink stat LED     lastSecond += 1000; //Take a speed and direction reading every second for 2 mi nute average if(++seconds_2m > 119) seconds_2m = 0; //Calc the wind speed and direction every second for 120 s econd to get 2 minute average float currentSpeed = get_wind_speed(); //float currentSpeed = random(5); //For testing int currentDirection = get_wind_direction();     windspdavg[seconds_2m] = (int)currentSpeed;     winddiravg[seconds_2m] = currentDirection; //if(seconds_2m % 10 == 0) displayArrays(); //For testing //Check to see if this is a gust for the minute if(currentSpeed > windgust_10m[minutes_10m])     {        windgust_10m[minutes_10m] = currentSpeed;       windgustdirection_10m[minutes_10m] = currentDirection;     }  //Check to see if this is a gust for the day if(currentSpeed > windgustmph)     {  Page 21 of 26       windgustmph = currentSpeed;       windgustdir = currentDirection;     }  if(++seconds > 59)     {        seconds = 0; if(++minutes > 59) minutes = 0; if(++minutes_10m > 9) minutes_10m = 0;       rainHour[minutes] = 0; //Zero out this minute's rainfal l amount       windgust_10m[minutes_10m] = 0; //Zero out this minute's  gust     }  //Report all readings every second printWeather(); digitalWrite(STAT1, LOW); //Turn off stat LED   }  //smartdelay(800); //Wait 1 second, and gather GPS data }  //While we delay for a given amount of time, gather GPS data static void smartdelay(unsigned long ms) {  unsigned long start = millis(); do   {  while (ss.available())       gps.encode(ss.read());   } while (millis() ­ start < ms); }  //Calculates each of the variables that wunderground is expect ing void calcWeather() {  //Calc winddir   winddir = get_wind_direction(); //Calc windspeed //windspeedmph = get_wind_speed(); //This is calculated in t he main loop //Calc windgustmph //Calc windgustdir //Report the largest windgust today //windgustmph = 0; //windgustdir = 0; //Calc windspdmph_avg2m float temp = 0; for(int i = 0 ; i < 120 ; i++)     temp += windspdavg[i];   temp /= 120.0;   windspdmph_avg2m = temp; //Calc winddir_avg2m   temp = 0; //Can't use winddir_avg2m because it's an int for(int i = 0 ; i < 120 ; i++) Page 22 of 26     temp += winddiravg[i];   temp /= 120;   winddir_avg2m = temp; //Calc windgustmph_10m //Calc windgustdir_10m //Find the largest windgust in the last 10 minutes   windgustmph_10m = 0;   windgustdir_10m = 0; //Step through the 10 minutes   for(int i = 0; i < 10 ; i++)   {  if(windgust_10m[i] > windgustmph_10m)     {        windgustmph_10m = windgust_10m[i];       windgustdir_10m = windgustdirection_10m[i];     }    }  //Calc humidity   humidity = myHumidity.getRH(); //float temp_h = myHumidity.readTemperature(); //Serial.print(" TempH:"); //Serial.print(temp_h, 2); //Calc tempf from pressure sensor   tempf = myPressure.readTempF(); //Serial.print(" TempP:"); //Serial.print(tempf, 2); //Total rainfall for the day is calculated within the interr upt //Calculate amount of rainfall for the last 60 minutes   rainin = 0;   for(int i = 0 ; i < 60 ; i++)     rainin += rainHour[i]; //Calc pressure   pressure = myPressure.readPressure(); //Calc dewptf //Calc light level   light_lvl = get_light_level(); //Calc battery level   batt_lvl = get_battery_level(); }  //Returns the voltage of the light sensor based on the 3.3V ra il //This allows us to ignore what VCC might be (an Arduino plugg ed into USB has VCC of 4.5 to 5.2V) float get_light_level() {  float operatingVoltage = analogRead(REFERENCE_3V3); float lightSensor = analogRead(LIGHT);   operatingVoltage = 3.3 / operatingVoltage; //The reference v oltage is 3.3V   lightSensor = operatingVoltage * lightSensor; Page 23 of 26 return(lightSensor); }  //Returns the voltage of the raw pin based on the 3.3V rail //This allows us to ignore what VCC might be (an Arduino plugg ed into USB has VCC of 4.5 to 5.2V) //Battery level is connected to the RAW pin on Arduino and is  fed through two 5% resistors: //3.9K on the high side (R1), and 1K on the low side (R2) float get_battery_level() {  float operatingVoltage = analogRead(REFERENCE_3V3); float rawVoltage = analogRead(BATT);   operatingVoltage = 3.30 / operatingVoltage; //The reference  voltage is 3.3V   rawVoltage = operatingVoltage * rawVoltage; //Convert the 0  to 1023 int to actual voltage on BATT pin   rawVoltage *= 4.90; //(3.9k+1k)/1k ­ multiple BATT voltage b y the voltage divider to get actual system voltage return(rawVoltage); }  //Returns the instataneous wind speed float get_wind_speed() {  float deltaTime = millis() ­ lastWindCheck; //750ms   deltaTime /= 1000.0; //Covert to seconds float windSpeed = (float)windClicks / deltaTime; //3 / 0.750 s = 4   windClicks = 0; //Reset and start watching for new wind   lastWindCheck = millis();   windSpeed *= 1.492; //4 * 1.492 = 5.968MPH /* Serial.println();    Serial.print("Windspeed:");     Serial.println(windSpeed);*/ return(windSpeed); }  //Read the wind direction sensor, return heading in degrees int get_wind_direction()  {  unsigned int adc;   adc = analogRead(WDIR); // get the current reading from the  sensor // The following table is ADC readings for the wind directio n sensor output, sorted from low to high. // Each threshold is the midpoint between adjacent heading s. The output is degrees for that ADC reading. // Note that these are not in compass degree order! See Weat her Meters datasheet for more information. if (adc < 380) return (113); Page 24 of 26 if (adc < 393) return (68); if (adc < 414) return (90); if (adc < 456) return (158); if (adc < 508) return (135); if (adc < 551) return (203); if (adc < 615) return (180); if (adc < 680) return (23); if (adc < 746) return (45); if (adc < 801) return (248); if (adc < 833) return (225); if (adc < 878) return (338); if (adc < 913) return (0); if (adc < 940) return (293); if (adc < 967) return (315); if (adc < 990) return (270); return (­1); // error, disconnected? }  //Prints the various variables directly to the port //I don't like the way this function is written but Arduino do esn't support floats under sprintf void printWeather() {  calcWeather(); //Go calc all the various sensors   Serial.println();   Serial.print("$,winddir=");   Serial.print(winddir);   Serial.print(",windspeedmph=");   Serial.print(windspeedmph, 1); /*Serial.print(",windgustmph=");   Serial.print(windgustmph, 1);    Serial.print(",windgustdir=");    Serial.print(windgustdir);    Serial.print(",windspdmph_avg2m=");    Serial.print(windspdmph_avg2m, 1);    Serial.print(",winddir_avg2m=");    Serial.print(winddir_avg2m);    Serial.print(",windgustmph_10m=");    Serial.print(windgustmph_10m, 1);    Serial.print(",windgustdir_10m=");    Serial.print(windgustdir_10m);*/   Serial.print(",humidity=");   Serial.print(humidity, 1);   Serial.print(",tempf=");   Serial.print(tempf, 1);   Serial.print(",rainin=");   Serial.print(rainin, 2);   Serial.print(",dailyrainin=");   Serial.print(dailyrainin, 2);   Serial.print(",pressure=");   Serial.print(pressure, 2);   Serial.print(",batt_lvl=");   Serial.print(batt_lvl, 2);   Serial.print(",light_lvl=");   Serial.print(light_lvl, 2);   Serial.print(",lat=");   Serial.print(gps.location.lat(), 6);   Serial.print(",lat=");   Serial.print(gps.location.lng(), 6);   Serial.print(",altitude=");   Serial.print(gps.altitude.meters());   Serial.print(",sats="); Page 25 of 26   Serial.print(gps.satellites.value()); char sz[32];   Serial.print(",date="); sprintf(sz, "%02d/%02d/%02d", gps.date.month(), gps.date.day (), gps.date.year());   Serial.print(sz);   Serial.print(",time="); sprintf(sz, "%02d:%02d:%02d", gps.time.hour(), gps.time.minu te(), gps.time.second());   Serial.print(sz);   Serial.print(",");   Serial.println("#"); }  You should see output similar to the following: Note: The batt_lvl is indicating 4.08V. This is correct and is the actual voltage read from the Arduino powered over USB. The GPS module will add 50-80mA to the overall power consumption. If you are using a long or thin USB cable you may see significant voltage drop similar to this example. There is absolutely no harm in this! The Weather Shield runs at 3.3V and the Arduino will continue to run just fine down to about 3V. The reading is very helpful for monitoring your power source (USB, battery, solar, etc). This example demonstrates how you can get location, altitude, and time from the GPS module. This would be helpful with weather stations that are moving such as balloon satellites, AVL, package tracking, and even static stations where you need to know precise altitude or timestamps. Resources and Going Further The Weather Shield example firmware outputs regular barometric pressure. This is very different from the pressure that weather stations report. For more information, see the definition of “altimeter setting pressure”. For an example of how to calculate altimeter setting type barometric pressure see the MPL3115A2 hook-up guide. Also check out the MPL3115A2 library, specifically the BarometricHgInch example. Datasheets There’s a lot of technology on this shield. Here’s the datasheets in case you need to reference them: • • • • • Si7021 Temperature and Humidity MPL3115A2 Pressure ALS-PT19 Light GP-735 GPS Weather Meters Additional resources and projects to check out: • Si7021 Repo and Library Page 26 of 26 • MPL3115A2 Pressure Repo and Library • If you’re interested in using GPS with Arduino definitely check out Mikal Hart’s TinyGPS++ library • Consider adding an OpenLog for datalogging the weather readings over time. • The Photon from Particle is a good way to add WiFi to get a truly wireless weather station. We also sell an Arduino-shaped version of the Photon, the SparkFun Photon RedBoard. This Weather Shield is compatible with that board as well. The Arduino Weather Shield attached to a Photon RedBoard. For more Internet-connected weather fun, check out our Photon Weather Shield Hookup Guide. Photon Weather Shield Hookup Guide V11 M ARCH 2, 20 17 Create Internet-connected weather projects with the SparkFun Weather Shield for the Photon. https://learn.sparkfun.com/tutorials/arduino-weather-shield-hookup-guide-v12?_ga=1.26723... 3/6/2017
DEV-13956 价格&库存

很抱歉,暂时无法提供与“DEV-13956”相匹配的价格&库存,您可以联系我们找货

免费人工找货