0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
QS10.121-A1

QS10.121-A1

  • 厂商:

    PULS

  • 封装:

    -

  • 描述:

    AC/DCCONVERTER12V180W

  • 数据手册
  • 价格&库存
QS10.121-A1 数据手册
QS10.121 12V, 15A, SINGLE PHASE INPUT Q-Series POWER SUPPLY             AC 100-240V Wide-range Input Width only 60mm Efficiency up to 91.8% 150% (270W) Peak Load Capability Easy Fuse Tripping due to High Overload Current Active Power Factor Correction (PFC) Negligible low Inrush Current Surge Short-term Operation down to 60Vac and up to 300Vac Full Power Between -25°C and +60°C DC-OK Relay Contact Quick-connect Spring-clamp Terminals 3 Year Warranty GENERAL DESCRIPTION SHORT-FORM DATA The most outstanding features of this Dimension QSeries DIN-rail power supply are the high efficiency and the small size, which are achieved by a synchronous rectification and further novel design details. The QSeries is part of the Dimension family, existing alongside the lower featured C-Series. Output voltage Adjustment range Output current With short-term peak power capability of 150% and built-in large sized output capacitors, these features help start motors, charge capacitors and absorb reverse energy and often allow a unit of a lower wattage class to be used. High immunity to transients and power surges as well as low electromagnetic emission makes usage in nearly every environment possible. The integrated output power manager, a wide range input voltage design and virtually no input inrush current make installation and usage simple. Diagnostics are easy due to the dry DC-ok contact, a green DC-ok LED and red overload LED. Unique quick-connect spring-clamp terminals allow a safe and fast installation and a large international approval package for a variety of applications makes this unit suitable for nearly every situation. ORDER NUMBERS DC 12V 12 – 15V 15 – 13.5A 22.5 – 18A Output power 180W 203W 270W Output ripple < 50mVpp Input voltage AC 100-240V Mains frequency 50-60Hz AC Input current 1.65 / 0.93A Power factor 0.98 / 0.92 AC Inrush current typ. 4 / 7A peak Efficiency 91.5 / 91.8% Losses 16.7 / 16.1W Temperature range -25°C to +70°C Derating 5W/°C Hold-up time typ. 32 / 32ms Dimensions 60x124x117mm continuous for typ. 4s continuous at 12V continuous at 15V for typ. 4s 20Hz to 20MHz ±15% ±6% at 120 / 230Vac at 120 / 230Vac at 120 / 230Vac at 120 / 230Vac at 120 / 230Vac operational +60 to +70°C at 120 / 230Vac WxHxD MARKINGS Power Supply QS10.121 12-15V Power supply Accessory ZM1.WALL ZM13.SIDE YR40.241 YR40.245 Wall mount bracket Side mount bracket Redundancy module Redundancy module UL 508 IEC 61010-2-201 Class I Div 2 Marine Nov. 2020 / Rev. 2.5 DS-QS10.121-EN All parameters are specified at 12V, 15A, 230Vac, 25°C ambient and after a 5 minutes run-in time unless otherwise noted. www.pulspower.com Phone +49 89 9278 0 Germany 1/28 QS10.121 12V, 15A, SINGLE PHASE INPUT Q-Series INDEX Page 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. Intended Use .......................................................3 Installation Requirements ...................................3 AC-Input...............................................................4 DC-Input...............................................................5 Input Inrush Current ...........................................5 Output .................................................................6 Hold-up Time .......................................................8 DC-OK Relay Contact ..........................................8 Efficiency and Power Losses................................9 Reliability ...........................................................10 Functional Diagram...........................................11 Terminals and Wiring ........................................11 Front Side and User Elements ...........................12 EMC ....................................................................13 Environment ......................................................14 Protection Features ...........................................15 Safety Features ..................................................15 Dielectric Strength ............................................16 Approvals and Fulfilled Standard .....................17 Regulatory Compliance .....................................18 Physical Dimensions and Weight ......................19 Page 22. Accessories ........................................................ 20 22.1. ZM1.WALL - Wall Mounting Bracket ....... 20 22.2. ZM13.SIDE - Side Mounting Bracket ........ 20 22.3. YR40.241 - Redundancy Module .............. 21 22.4. YR40.245 - Redundancy Module .............. 21 23. Application Notes ............................................. 22 23.1. Repetitive Pulse Loading .......................... 22 23.2. Peak Current Capability ........................... 23 23.3. Back-feeding Loads .................................. 23 23.4. External Input Protection ......................... 23 23.5. Charging of Batteries ............................... 24 23.6. Output Circuit Breakers............................ 24 23.7. Parallel Use to Increase Output Power .... 25 23.8. Parallel Use for Redundancy .................... 25 23.9. Daisy Chaining of Outputs ....................... 26 23.10. Series Operation ....................................... 26 23.11. Inductive and Capacitive Loads................ 26 23.12. Operation on Two Phases ........................ 27 23.13. Use in a Tightly Sealed Enclosure ............ 27 23.14. Mounting Orientations ............................ 28 The information presented in this document is believed to be accurate and reliable and may change without notice. No part of this document may be reproduced or utilized in any form without permission in writing from the publisher. TERMINOLOGY AND ABREVIATIONS PE and symbol PE is the abbreviation for Protective Earth and has the same meaning as the symbol . Earth, Ground This document uses the term “earth” which is the same as the U.S. term “ground”. T.b.d. To be defined, value or description will follow later. AC 230V A figure displayed with the AC or DC before the value represents a nominal voltage with standard tolerances (usually ±15%) included. E.g.: DC 12V describes a 12V battery disregarding whether it is full (13.7V) or flat (10V) 230Vac A figure with the unit (Vac) at the end is a momentary figure without any additional tolerances included. 50Hz vs. 60Hz As long as not otherwise stated, AC 230V parameters are valid at 50Hz mains frequency. may A key word indicating flexibility of choice with no implied preference. shall A key word indicating a mandatory requirement. should A key word indicating flexibility of choice with a strongly preferred implementation. Nov. 2020 / Rev. 2.5 DS-QS10.121-EN All parameters are specified at 12V, 15A, 230Vac, 25°C ambient and after a 5 minutes run-in time unless otherwise noted. www.pulspower.com Phone +49 89 9278 0 Germany 2/28 QS10.121 12V, 15A, SINGLE PHASE INPUT Q-Series 1. INTENDED USE This device is designed for installation in an enclosure and is intended for commercial use, such as in industrial control, process control, monitoring and measurement equipment or the like. Do not use this device in equipment where malfunction may cause severe personal injury or threaten human life. If this device is used in a manner outside of its specification, the protection provided by the device may be impaired. 2. INSTALLATION REQUIREMENTS Install device in an enclosure providing protection against electrical, mechanical and fire hazards. Install the device onto a DIN-rail according to EN 60715 with the input terminals on the bottom of the device. Other mounting orientations require a reduction in output current. Make sure that the wiring is correct by following all local and national codes. Use appropriate copper cables that are designed for a minimum operating temperature of 60°C for ambient temperatures up to +45°C, 75°C for ambient temperatures up to +60°C and 90°C for ambient temperatures up to +70°C. Ensure that all strands of a stranded wire enter the terminal connection. The device is designed for pollution degree 2 areas in controlled environments. No condensation or frost is allowed. The enclosure of the device provides a degree of protection of IP20. The enclosure does not provide protection against spilled liquids. The isolation of the device is designed to withstand impulse voltages of overvoltage category III according to IEC 60664-1. The device is designed as “Class of Protection” I equipment according to IEC 61140. Do not use without a proper PE (Protective Earth) connection. The device is suitable to be supplied from TN, TT or IT mains networks. The continuous voltage between the input terminal and the PE potential must not exceed 276Vac. The input can also be powered from batteries or similar DC sources. The continuous voltage between the supply voltage and the PE/ground potential must not exceed 375Vdc. A disconnecting means shall be provided for the input of the device. The device is designed for convection cooling and does not require an external fan. Do not obstruct airflow and do not cover ventilation grid! The device is designed for altitudes up to 5000m (16400ft). Above 2000m (6560ft) the overvoltage category is reduced to level II and a reduction in output current is required. Keep the following minimum installation clearances: 40mm on top, 20mm on the bottom, 5mm left and right side. Increase the 5mm to 15mm in case the adjacent device is a heat source. When the device is permanently loaded with less than 50%, the 5mm can be reduced to zero. The device is designed, tested and approved for branch circuits up to 20A without additional protection device. If an external fuse is utilized, do not use circuit breakers smaller than 6A B- or 4A C-Characteristic to avoid a nuisance tripping of the circuit breaker. The maximum surrounding air temperature is +70°C (+158°F). The operational temperature is the same as the ambient or surrounding air temperature and is defined 2cm below the device. The device is designed to operate in areas between 5% and 95% relative humidity WARNING Risk of electrical shock, fire, personal injury or death. - Do not use the power supply without proper grounding (Protective Earth). Use the terminal on the input block for earth connection and not one of the screws on the housing. - Turn power off before working on the device. Protect against inadvertent re-powering. - Make sure that the wiring is correct by following all local and national codes. - Do not modify or repair the unit. - Do not open the unit as high voltages are present inside. - Use caution to prevent any foreign objects from entering the housing. - Do not use in wet locations or in areas where moisture or condensation can be expected. - Do not touch during power-on, and immediately after power-off. Hot surfaces may cause burns. Notes for use in hazardous location areas: The device is suitable for use in Class I Division 2 Groups A, B, C, D locations. WARNING EXPLOSION HAZARDS! Substitution of components may impair suitability for this environment. Do not disconnect the device or operate the voltage adjustment unless power has been switched off or the area is known to be non-hazardous Nov. 2020 / Rev. 2.5 DS-QS10.121-EN All parameters are specified at 12V, 15A, 230Vac, 25°C ambient and after a 5 minutes run-in time unless otherwise noted. www.pulspower.com Phone +49 89 9278 0 Germany 3/28 QS10.121 12V, 15A, SINGLE PHASE INPUT Q-Series 3. AC-INPUT AC input AC input range nom. AC 100-240V suitable for TN-, TT- and IT mains networks 85-276Vac continuous operation 60-85Vac full power for 200ms, no damage between 0 and 85Vac 276-300Vac < 500ms max. 276Vac continuous, IEC 62103 nom. 50–60Hz ±6% typ. 81Vac steady-state value, see Fig. 3-1 typ. 63Vac steady-state value, see Fig. 3-1 typ. 55Vac dynamic value See recommendations in chapter 22.4. Allowed voltage L or N to earth Input frequency Turn-on voltage Shut-down voltage External input protection Input current Power factor *) Crest factor **) Start-up delay Rise time AC 100V 1.98A 0.99 1.65 800ms 8ms 15ms 100mV typ. typ. typ. typ. typ. typ. max. Turn-on overshoot AC 120V 1.65A 0.98 1.67 650ms 8ms 15ms 100mV AC 230V 0.93A 0.92 1.85 340ms 8ms 15ms 100mV at 12V, 15A, see Fig. 3-3 at 12V, 15A, see Fig. 3-4 at 12V, 15A see Fig. 3-2 0mF, 12V, 15A, see Fig. 3-2 15mF, 12V, 15A, see Fig. 3-2 see Fig. 3-2 *) The power factor is the ratio of the true (or real) power to the apparent power in an AC circuit. **) The crest factor is the mathematical ratio of the peak value to RMS value of the input current waveform. Rated input range Shut-down full power for 200ms 60V max. 500ms Turn-on POUT Fig. 3-2 Turn-on behavior, definitions Input Voltage - 5% Output Voltage VIN Start-up delay Overshoot Fig. 3-1 Input voltage range Rise Time 276V 300Vac 85V Fig. 3-3 Input current vs. output load at 12V Fig. 3-4 Power factor vs. output load Power Factor, typ. Input Current, typ. ac 0V c 0 1 Va 120 2.0A 1.5 100Vac 1.0 120Vac 0.95 230Vac 0.9 c 30Va 1.0 2 0.5 0.8 Output Current 0 0.85 1 3 5 7 9 11 13 15A Output Current 0.75 1 3 5 7 9 11 13 15A Nov. 2020 / Rev. 2.5 DS-QS10.121-EN All parameters are specified at 12V, 15A, 230Vac, 25°C ambient and after a 5 minutes run-in time unless otherwise noted. www.pulspower.com Phone +49 89 9278 0 Germany 4/28 QS10.121 12V, 15A, SINGLE PHASE INPUT Q-Series 4. DC-INPUT DC input DC input range DC input current Allowed Voltage L/N to Earth Turn-on voltage Shut-down voltage nom. typ. max. typ. typ. DC 110-150V 88-187Vdc 1.78A 375Vdc 80Vdc 55Vdc Instructions for DC use: a) Use a battery or similar DC source. For other sources contact PULS b) Connect +pole to L and –pole to N. c) Connect the PE terminal to a earth wire or to the machine ground. Fig. 4-1 Wiring for DC Input Battery + Power Supply AC L N PE - + - -20%/+25% continuous operation 110Vdc, at 12V, 15A continuous, IEC 62103 steady state value steady state value Load DC 5. INPUT INRUSH CURRENT An active inrush limitation circuit limits the input inrush current after turn-on of the input voltage and after short input voltage interruptions. The charging current into EMI suppression capacitors is disregarded in the first microseconds after switch-on. Inrush current Inrush energy Inrush delay (A) max. typ. max. typ. AC 100V 10Apeak 5Apeak 4A2s 650ms AC 120V 10Apeak 4Apeak 4A2s 520ms AC 230V 10Apeak 7Apeak 4A2s 250ms over entire temperature range over entire temperature range over entire temperature range see (A) in Fig. 5-1 Fig. 5-1 Input inrush current, typical behavior A…. Inrush delay Input: Output: Ambient: Upper curve: Middle curve: Lower curve: Time basis: 230Vac 12V, 15A 25°C Input current 2A / DIV Input voltage 500V / DIV Output voltage 10V / DIV 100ms / DIV Nov. 2020 / Rev. 2.5 DS-QS10.121-EN All parameters are specified at 12V, 15A, 230Vac, 25°C ambient and after a 5 minutes run-in time unless otherwise noted. www.pulspower.com Phone +49 89 9278 0 Germany 5/28 QS10.121 12V, 15A, SINGLE PHASE INPUT Q-Series 6. OUTPUT Output voltage Adjustment range Factory setting Line regulation Load regulation Ripple and noise voltage Output current Output power BonusPower® time BonusPower® recovery time Overload behaviour Short-circuit current Output capacitance *) **) ***) nom. max. typ. max. max. max. nom. nom. nom. 12V 12-15V 16.5V ***) 12.0V 10mV 100mV 50mVpp 15A 13.5A 22.5A *) nom. 18A *) nom. nom. typ. min. max. typ. 180W / 203W 270W*) 4s 3s 5s 7s cont. current 12A **) 18A **) 15A **) 35A **) 7 000µF min. max. min. max. typ. guaranteed at clockwise end position of potentiometer ±0.2%, at full load, cold unit 60-300Vac static value, 0A  15A 20Hz to 20MHz, 50Ohm continuously available at 12V, see Fig. 6-1 continuously available at 15V, see Fig. 6-1 short term available BonusPower® *), at 12V, for typical 4s, see Fig. 6-1 short term available BonusPower® *), at 15V, for typical 4s, see Fig. 6-1 continuously available at 12V / 15V short term available BonusPower® *) duration until the output voltage dips, see Fig. 6-2 overload free time to reset power manager, see Fig. 6-3 continuous, load impedance 75mOhm, see Fig. 6-1 continuous, load impedance 75mOhm, see Fig. 6-1 during BonusPower® *), load impedance 75mOhm during BonusPower® *), load impedance 75mOhm included inside the power supply BonusPower®, short term power capability (up to typ. 4s) The power supply is designed to support loads with a higher short-term power requirement without damage or shutdown. The shortterm duration is hardware controlled by an output power manager. This BonusPower® is repeatedly available. Detailed information can be found in chapter 22.1. If the power supply is loaded longer with the BonusPower® than shown in the Bonus-time diagram (see Fig. 6-2), the max. output power is automatically reduced to 180/203W. Discharge current of output capacitors is not included. This is the maximum output voltage which can occur at the clockwise end position of the potentiometer due to tolerances. It is not guaranteed value which can be achieved. The typical value is about 15.8V. Peak current capability (up to several milliseconds) The power supply can deliver a peak current which is higher than the specified short term current. This helps to start current demanding loads or to safely operate subsequent circuit breakers. The extra current is supplied by the output capacitors inside the power supply. During this event, the capacitors will be discharged and causes a voltage dip on the output. Detailed curves can be found in chapter 22.2. Peak current voltage dips typ. typ. typ. from 12V to 10V from 12V to 6.7V from 12V to 5.2V at 30A for 50ms, resistive load at 60A for 2ms, resistive load at 60A for 5ms, resistive load Nov. 2020 / Rev. 2.5 DS-QS10.121-EN All parameters are specified at 12V, 15A, 230Vac, 25°C ambient and after a 5 minutes run-in time unless otherwise noted. www.pulspower.com Phone +49 89 9278 0 Germany 6/28 QS10.121 12V, 15A, SINGLE PHASE INPUT Q-Series Fig. 6-1 Output voltage vs. output current, typ. Fig. 6-2 Bonus time vs. output power Adjustment Range Output Voltage Bonus Time m t er rtsho continuous 16V 14 12 10 8 6 4 2 0 Output Current 0 5 10 20 15 25 30 35A 10s 9 8 7 6 5 4 3 2 1 0 110 max typ min Output Power 120 130 140 150 160% Fig. 6-3 BonusPower® recovery time Limitation by Power Manager Power Demand 100% t Output Voltage Bonus Time Recovery Time Bonus Power disabled t The BonusPower® is available as soon as power comes on and immediately after the end of an output short circuit or output overload. Fig. 6-4 BonusPower® after input turn-on Fig. 6-5 BonusPower® after output short Short of Output Input Voltage Output Voltage Output Voltage 150% Output Power 100% Bonus Power Output Power 150% Bonus Power 100% Nov. 2020 / Rev. 2.5 DS-QS10.121-EN All parameters are specified at 12V, 15A, 230Vac, 25°C ambient and after a 5 minutes run-in time unless otherwise noted. www.pulspower.com Phone +49 89 9278 0 Germany 7/28 QS10.121 12V, 15A, SINGLE PHASE INPUT Q-Series 7. HOLD-UP TIME Hold-up Time AC 100V 72ms 31ms typ. typ. Fig. 7-1 Hold-up time vs. input voltage Hold-up Time AC 120V 72ms 32ms 12V, 7.5A, min. 60 at 12V, 7.5A, see Fig. 7-1 at 12V, 15A, see Fig. 7-1 Fig. 7-2 Shut-down behavior, definitions 12V, 7.5A, typ. 75ms AC 230V 73ms 32ms Zero Transition Input Voltage 45 12V, 15A, typ. 12V, 15A, min. 30 15 Input Voltage 0 85 120 155 190 - 5% Output Voltage Hold-up Time 230Vac 8. DC-OK RELAY CONTACT This feature monitors the output voltage, which is produced by the power supply itself. It is independent of a back-fed voltage from a unit connected in parallel to the power supply output. Contact closes Contact opens As soon as the output voltage reaches the adjusted output voltage level. As soon as the output voltage dips more than 10% below the adjusted output voltage. Short dips will be extended to a signal length of 250ms. Dips shorter than 1ms will be ignored. As soon as the output voltage exceeds 90% of the adjusted voltage. max 60Vdc 0.3A, 30Vdc 1A, 30Vac 0.5A resistive load min 1mA at 5Vdc min. permissible load See dielectric strength table in section 18. Contact re-closes Contact ratings Isolation voltage Fig. 8-1 DC-ok relay contact behavior VOUT = VADJ 10% < 1ms open closed > 1ms 0.9* VADJ 250ms open closed Note: The DC-ok feature requires that the output voltage reaches the nominal (=adjusted) level after turn-on in order to function according to specification. If this level cannot be achieved, the overload lamp will be on and the DC-ok contact will be open. The overload signal will only shut off as soon as the adjusted voltage is reached. This is an important condition to consider particularly, if the load is a battery, the power supply is used in parallel or the power supply is used for N+1 redundant systems. Nov. 2020 / Rev. 2.5 DS-QS10.121-EN All parameters are specified at 12V, 15A, 230Vac, 25°C ambient and after a 5 minutes run-in time unless otherwise noted. www.pulspower.com Phone +49 89 9278 0 Germany 8/28 QS10.121 12V, 15A, SINGLE PHASE INPUT Q-Series 9. EFFICIENCY AND POWER LOSSES Efficiency Average efficiency *) typ. typ. AC 100V 90.7% 91.0% AC 120V 91.5% 91.2% AC 230V 91.8% 90.6% Power losses typ. typ. 3.8W 18.5W 3.9W 16.7W 4.9W 16.1W *) at 12V, 15A 25% at 3.75A, 25% at 7.5A, 25% at 11.25A, 25% at 15A at 12V, 0A at 12V, 15A The average efficiency is an assumption for a typical application where the power supply is loaded with 25% of the nominal load for 25% of the time, 50% of the nominal load for another 25% of the time, 75% of the nominal load for another 25% of the time and with 100% of the nominal load for the rest of the time. Efficiency vs. output current at 12V, typ. Fig. 9-1 93% 92 91 90 89 88 87 86 85 230Vac 100Vac 120Vac Output Current Fig. 9-3 Losses vs. output current at 12V, typ. Power Losses Efficiency 3 Fig. 9-2 5 7 9 11 13 19W 17 15 13 11 9 7 5 3 230Vac Output Current 0 15A Efficiency vs. input voltage at 12V, 15A, typ. 100Vac 120Vac Fig. 9-4 3 9 12 15A Losses vs. input voltage at 12V, 15A, typ. Efficiency Power Losses 94% 24W 93 6 20 92 16 91 90 12 89 Input Voltage 88 85 120 155 190 225 260Vac Input Voltage 8 85 120 155 190 225 260Vac Nov. 2020 / Rev. 2.5 DS-QS10.121-EN All parameters are specified at 12V, 15A, 230Vac, 25°C ambient and after a 5 minutes run-in time unless otherwise noted. www.pulspower.com Phone +49 89 9278 0 Germany 9/28 QS10.121 12V, 15A, SINGLE PHASE INPUT Q-Series 10. RELIABILITY Lifetime expectancy *) MTBF **) SN 29500, IEC 61709 MTBF **) MIL HDBK 217F AC 100V 61 000h 111 000h 171 000h*) 577 000h 998 000h 361 000h AC 120V 65 000h 117 000h 184 000h*) 582 000h 1 006 000h 362 000h AC 230V 76 000h 112 000h 215 000h*) 631 000h 1 091 000h 370 000h 495 000h 496 000h 507 000h at 12V, 15A and 40°C at 12V, 7.5A and 40°C at 12V, 15A and 25°C at 12V, 15A and 40°C at 12V, 15A and 25°C at 12V, 15A and 40°C; Ground Benign GB40 at 12V, 15A and 25°C; Ground Benign GB25 The Lifetime expectancy shown in the table indicates the minimum operating hours (service life) and is determined by the lifetime expectancy of the built-in electrolytic capacitors. Lifetime expectancy is specified in operational hours and is calculated according to the capacitor’s manufacturer specification. The manufacturer of the electrolytic capacitors only guarantees a maximum life of up to 15 years (131 400h). Any number exceeding this value is a calculated theoretical lifetime which can be used to compare devices. **) MTBF stands for Mean Time Between Failure, which is calculated according to statistical device failures, and indicates reliability of a device. It is the statistical representation of the likelihood of a unit to fail and does not necessarily represent the life of a product. The MTBF figure is a statistical representation of the likelihood of a device to fail. A MTBF figure of e.g. 1 000 000h means that statistically one unit will fail every 100 hours if 10 000 units are installed in the field. However, it can not be determined if the failed unit has been running for 50 000h or only for 100h. *) Nov. 2020 / Rev. 2.5 DS-QS10.121-EN All parameters are specified at 12V, 15A, 230Vac, 25°C ambient and after a 5 minutes run-in time unless otherwise noted. www.pulspower.com Phone +49 89 9278 0 Germany 10/28 QS10.121 12V, 15A, SINGLE PHASE INPUT Q-Series 11. FUNCTIONAL DIAGRAM Fig. 11-1 Functional diagram Output Voltage Regulator L N Input Fuse Input Filter Input Rectifier Active Transient Filter & Inrush Current Limiter Temperature Shutdown PFC Converter Output Power Manager Output OverVoltage Protection Power Converter Output Voltage Monitor VOUT + + - Output Filter Overload LED DC-ok LED DC-ok Relay DC-ok contact 12. TERMINALS AND WIRING Bi-stable, quick-connect spring clamp terminals. IP20 Finger safe construction. Suitable for field- and factory installation. Shipped in open position. Type Solid wire Stranded wire American Wire Gauge Wire stripping length Screwdriver Recommended tightening torque Pull-out force Input Output DC-OK-Signal spring-clamp terminals spring-clamp terminals spring-clamp terminals 0.5-6mm2 0.5-6mm2 0.5-6mm2 0.5-4mm2 0.5-4mm2 0.5-4mm2 20-10 AWG 20-10 AWG 20-10 AWG 10mm / 0.4inch 10mm / 0.4inch 10mm / 0.4inch not applicable not applicable not applicable not applicable not applicable not applicable 10AWG:80N, 12AWG:60N, 14AWG:50N, 16AWG:40N (according to UL486E) Instructions: a) Use appropriate copper cables that are designed for minimum operating temperatures of: 60°C for ambient up to 45°C and 75°C for ambient up to 60°C minimum 90°C for ambient up to 70°C minimum. b) Follow national installation codes and installation regulations! c) Ensure that all strands of a stranded wire enter the terminal connection! d) Up to two stranded wires with the same cross section are permitted in one connection point (except PE wire). e) Do not use the unit without PE connection. f) Unused terminal compartments should be securely tightened. g) Ferrules are allowed. Fig. 12-1 Connecting a wire Nov. 2020 / Rev. 2.5 DS-QS10.121-EN All parameters are specified at 12V, 15A, 230Vac, 25°C ambient and after a 5 minutes run-in time unless otherwise noted. www.pulspower.com Phone +49 89 9278 0 Germany 11/28 QS10.121 12V, 15A, SINGLE PHASE INPUT Q-Series 13. FRONT SIDE AND USER ELEMENTS Fig. 13-1 Front side A Input Terminals (Quick-connect spring-clamp terminals) N, L Line input PE (Protective Earth) input B Output Terminals (Quick-connect spring-clamp terminals, two pins per pole) + Positive output – Negative (return) output C DC-OK Relay Contact (Quick-connect spring-clamp terminals) The DC-OK relay contact is synchronized with the DC-OK LED. See chapter 8 for details. D Output voltage potentiometer Multi turn potentiometer; Open the flap to adjust the output voltage. Factory set: 12.0V E DC-OK LED (green) On, when the output voltage is >90% of the adjusted output voltage F Overload LED (red) On, when the voltage on the output terminals is 2000m (6500ft), see Fig. 15-2 IEC 62103, EN 50178, altitudes up to 2000m altitudes from 2000m to 6000m IEC 62103, EN 50178, not conductive 12W/1000m or 5°C/1000m III II 2 Degree of pollution *) Operational temperature is the same as the ambient or surrounding temperature and is defined as the air temperature 2cm below the unit. **) Do not energize while condensation is present Fig. 15-1 Output current vs. ambient temp. Allowed Output Current at 12V Max. Output Current at 12V 22.5A for typ. 4s 15 continuous 7.5 0 -25 Fig. 15-2 Output current vs. altitude 22.5A for typ. 4s 15 continuous 7.5 Ambient Temperature 0 20 40 A... Tamb < 60°C B... Tamb < 50°C C... Tamb < 40°C 0 60 70°C A 0 2000 B C Altitude 4000 6000m Nov. 2020 / Rev. 2.5 DS-QS10.121-EN All parameters are specified at 12V, 15A, 230Vac, 25°C ambient and after a 5 minutes run-in time unless otherwise noted. www.pulspower.com Phone +49 89 9278 0 Germany 14/28 QS10.121 12V, 15A, SINGLE PHASE INPUT Q-Series 16. PROTECTION FEATURES Output protection Output over-voltage protection Degree of protection Penetration protection Over-temperature protection Input transient protection Internal input fuse *) Electronically protected against overload, no-load and short-circuits *) typ. 18Vdc In case of an internal power supply defect, a redundant max. 20Vdc circuit limits the maximum output voltage. The output shuts down and automatically attempts to restart. IP 20 EN/IEC 60529 > 3.5mm e.g. screws, small parts yes Output shut-down with automatic restart MOV (Metal Oxide Varistor) T6.3A H.B.C. not user replaceable In case of a protection event, audible noise may occur. 17. SAFETY FEATURES Input / output separation *) Class of protection Isolation resistance PE resistance Touch current (leakage current) *) SELV IEC/EN 60950-1 PELV IEC/EN 60204-1, EN 50178, IEC 62103, IEC 60364-4-41 double or reinforced insulation I PE (Protective Earth) connection required > 5MOhm input to output, 500Vdc < 0.1Ohm typ. 0.19mA / 0.44mA 100Vac, 50Hz, TN-,TT-mains / IT-mains typ. 0.29mA / 0.65mA 120Vac, 60Hz, TN-,TT-mains / IT-mains typ. 0.53mA / 1.04mA 230Vac, 50Hz, TN-,TT-mains / IT-mains < 0.25mA / 0.54mA 110Vac, 50Hz, TN-,TT-mains / IT-mains < 0.38mA / 0.79mA 132Vac, 60Hz, TN-,TT-mains / IT-mains < 0.74mA /1.29mA 264Vac, 50Hz, TN-,TT-mains / IT-mains double or reinforced insulation Nov. 2020 / Rev. 2.5 DS-QS10.121-EN All parameters are specified at 12V, 15A, 230Vac, 25°C ambient and after a 5 minutes run-in time unless otherwise noted. www.pulspower.com Phone +49 89 9278 0 Germany 15/28 QS10.121 12V, 15A, SINGLE PHASE INPUT Q-Series 18. DIELECTRIC STRENGTH The output voltage is floating and has no ohmic connection to the ground. Type and factory tests are conducted by the manufacturer. Field tests may be conducted in the field using the appropriate test equipment which applies the voltage with a slow ramp (2s up and 2s down). Connect all input-terminals together as well as all output poles before conducting the test. When testing, set the cut-off current settings to the value in the table below. Type test 60s A 2500Vac B 3000Vac C 500Vac D 500Vac Factory test 5s 2500Vac 2500Vac 500Vac 500Vac Field test 5s 2000Vac 2000Vac 500Vac 500Vac > 10mA > 10mA > 20mA > 1mA Fig. 18-1 Dielectric strength Input DC-ok B*) L N Cut-off current setting B A D Output Earth, PE C + - To fulfil the PELV requirements according to EN60204-1 § 6.4.1, we recommend that either the + pole, the – pole or any other part of the output circuit shall be connected to the protective earth system. This helps to avoid situations in which a load starts unexpectedly or cannot be switched off when unnoticed earth faults occur. B*) When testing input to DC-OK ensure that the max. voltage between DC-OK and the output is not exceeded (column D). We recommend connecting DC-OK pins and the output pins together when performing the test. Nov. 2020 / Rev. 2.5 DS-QS10.121-EN All parameters are specified at 12V, 15A, 230Vac, 25°C ambient and after a 5 minutes run-in time unless otherwise noted. www.pulspower.com Phone +49 89 9278 0 Germany 16/28 QS10.121 12V, 15A, SINGLE PHASE INPUT Q-Series 19. APPROVALS AND FULFILLED STANDARD UL 508 IEC 61010 IEC 60950-1 UL 60950-1 Class I Div 2 Marine (DNV GL) Marine (ABS) SEMI F47 IEC 60068-2-60 ISA-71.04-1985 VDMA 24364 UL Certificate Listed equipment for category NMTR - Industrial Control Equipment Applicable for US and Canada E-File: E198865 CB Scheme Certificate IEC 61010-2-201 Electrical Equipment for Measurement, Control and Laboratory Use - Particular requirements for control equipment CB Scheme Certificate General safety requirements for Information Technology Equipment (ITE) UL Certificate Recognized component for category QQGQ - Information Technology Equipment (ITE) Applicable for US and Canada E-File: E137006 CSA Certificate Power Supplies for Hazardous Location Applicable for Canada and US CSA Class: 5318-01 (Canada), 5318-81 (USA) Temperature Code: T4 Groups: A, B, C and D DNV-GL Certificate DNV-GL Type approved product Certificate: TAA00002JT Temperature: Class D Humidity: Class B Vibration: Class C EMC: Class A Enclosure: Class A ABS Design Assessment Certificate ABS (American Bureau of Shipment) assessed product Certificate: 17-HG1599236-PDA Test Report Voltage Sag Immunity for Semiconductor Processing Equipment Tested for AC 120V and 208V L-L or L-N mains voltages, nominal output voltage and nominal output load Manufacturer's Declaration (Online Document) Environmental Tests, Flowing Mixed Gas Corrosion Test Test Ke - Method 4 H2S: 10ppb NO2: 200ppb Cl2: 10ppb SO2: 200ppb Test Duration: 3 weeks, which simulates a service life of at least 10 years Manufacturer's Declaration (Online Document) Airborne Contaminants Corrosion Test Severity Level: G3 Harsh H2S: 100ppb NOx: 1250ppb Cl2: 20ppb SO2: 300ppb Test Duration: 3 weeks, which simulates a service life of at least 10 years. Paint Wetting Impairment Substances Test (or LABS-Test) Tested for Zone 2 and test class C1 according to VDMA 24364-C1-L/W for solvents and water-based paints Nov. 2020 / Rev. 2.5 DS-QS10.121-EN All parameters are specified at 12V, 15A, 230Vac, 25°C ambient and after a 5 minutes run-in time unless otherwise noted. www.pulspower.com Phone +49 89 9278 0 Germany 17/28 QS10.121 12V, 15A, SINGLE PHASE INPUT Q-Series 20. REGULATORY COMPLIANCE EU Declaration of Conformity REACH Directive EAC TR Registration The CE mark indicates conformance with the - EMC directive - Low-voltage directive (LVD) - RoHS directive Manufacturer's Statement EU-Directive regarding the Registration, Evaluation, Authorisation and Restriction of Chemicals Registration for the Eurasian Customs Union market (Russia, Kazakhstan, Belarus) Nov. 2020 / Rev. 2.5 DS-QS10.121-EN All parameters are specified at 12V, 15A, 230Vac, 25°C ambient and after a 5 minutes run-in time unless otherwise noted. www.pulspower.com Phone +49 89 9278 0 Germany 18/28 QS10.121 12V, 15A, SINGLE PHASE INPUT Q-Series 21. PHYSICAL DIMENSIONS AND WEIGHT Weight DIN-Rail Installation Clearances 900g / 1.98lb Use 35mm DIN-rails according to EN 60715 or EN 50022 with a height of 7.5 or 15mm. The DIN-rail height must be added to the unit depth (117mm) to calculate the total required installation depth. See chapter 2 Fig. 20-1 Front view Fig. 20-2 Side view Nov. 2020 / Rev. 2.5 DS-QS10.121-EN All parameters are specified at 12V, 15A, 230Vac, 25°C ambient and after a 5 minutes run-in time unless otherwise noted. www.pulspower.com Phone +49 89 9278 0 Germany 19/28 QS10.121 12V, 15A, SINGLE PHASE INPUT Q-Series 22. ACCESSORIES 22.1. ZM1.WALL - WALL MOUNTING BRACKET This bracket is used to mount the power supply onto a flat surface without utilizing a DIN-Rail. 22.2. ZM13.SIDE - SIDE MOUNTING BRACKET This bracket is used to mount Dimension units sideways with or without utilizing a DIN-Rail. The two aluminum brackets and the black plastic slider of the unit have to be detached, so that the steel brackets can be mounted. For sideway DIN-rail mounting, the removed aluminum brackets and the black plastic slider need to be mounted on the steel bracket. Side mounting with DIN-rail brackets Side mounting without DIN-rail brackets Nov. 2020 / Rev. 2.5 DS-QS10.121-EN All parameters are specified at 12V, 15A, 230Vac, 25°C ambient and after a 5 minutes run-in time unless otherwise noted. www.pulspower.com Phone +49 89 9278 0 Germany 20/28 QS10.121 12V, 15A, SINGLE PHASE INPUT Q-Series 22.3. YR40.241 - REDUNDANCY MODULE The YR40.241 is the preferred redundancy module for QS10.121 power supplies. It is equipped with two input channels (20A each), which are individually decoupled by utilizing mosfet technology. The output current can go as high as 40A. Using mosfets instead of diodes reduces the heat generation and the voltage drop between input and output. The YR40.241 does not require an additional auxiliary voltage and is self- powered even in case of a short circuit across the output. Due to the low power losses, the unit is very slender and only requires 36mm width on the DIN-rail. 22.4. YR40.245 - REDUNDANCY MODULE The YR40.245 is a 40A single channel redundancy module, which is equipped with a plug connector on the output. The plug connector allows replacing the power supply or the redundancy module while the system is running. The plug connector avoids that the output wires can touch and short the load circuit. The YR40.245 is very slender and only requires 46mm width on the DIN-rail. It also utilizes mosfet technology instead of diodes for low heat generation and a minimal voltage drop between input and output. It does not require an additional auxiliary voltage and is selfpowered even in case of a short circuit across the output. Fig. 21-1 Typical 1+1 Redundant configuration for 15A with a dual redundancy module Fig. 21-2 Typical N+1 or 1+1 Redundant configuration for 15A with multiple YR40.245 redundancy modules Failure Monitor ++ -- 12V,15A QS10.121 Power Supply L N PE + - + - Input Input 2 1 YR40.241 Redundancy Module Output + - ++ -- ++ 12V,15A L N PE -- QS10.121 Power Supply QS10.121 Power Supply L N PE L N PE Output ++ - + Output -- 12V,15A YR40.245 Redundancy Module Input + I I - + 12V,15A 12V 30A Load I 12V 30A Load Failure Monitor QS10.121 Power Supply - YR40.245 Redundancy Module L N PE Input + - I L N PE Nov. 2020 / Rev. 2.5 DS-QS10.121-EN All parameters are specified at 12V, 15A, 230Vac, 25°C ambient and after a 5 minutes run-in time unless otherwise noted. www.pulspower.com Phone +49 89 9278 0 Germany 21/28 QS10.121 12V, 15A, SINGLE PHASE INPUT Q-Series 23. APPLICATION NOTES 23.1. REPETITIVE PULSE LOADING Typically, a load current is not constant and varies over time. This power supply is designed to support loads with a higher short-term power demand (=BonusPower®). The short-term duration is hardware controlled by an output power manager and is available on a repeated basis. If the BonusPower® load lasts longer than the hardware controller allows it, the output voltage will dip and the next BonusPower® is available after the BonusPower® recovery time (see chapter 6) has elapsed. To avoid this, the following rules must be met: a) The power demand of the pulse must be below 150% of the nominal output power. b) The duration of the pulse power must be shorter than the allowed BonusPower® time. (see output section) c) The average (R.M.S.) output current must be below the specified continuous output current. If the R.M.S. current is higher, the unit will respond with a thermal shut-down after a period of time. Use the maximum duty cycle curve (Fig. 22-2) to check if the average output current is below the nominal current. Fig. 22-1 Repetitive pulse loads, definitions Fig. 22-2 Max. duty cycle curve 1.0 PPEAK TPEAK DutyCycle max. 150% 0.6 100% 0.4 P0 P0 = 100% 0.2 0 100 P0 PPEAK T0 TPEAK Example: P0 = 10% P0 = 50% P0 = 75% 0.8 T0 Base load (W) Pulse load (above 100%) Duration between pulses (s) Pulse duration (s) 110 DutyCycle = T0 = 120 130 PPEAK 140 150% Tpeak Tpeak + T0 Tpeak - (DutyCycle x Tpeak) DutyCycle A load is powered continuously with 90W (= 50% of the rated output load). From time to time a peak power of 270W (= 150% of the rated output load) is needed for 1 second. The question is: How often can this pulse be supplied without overloading the power supply? - Make a vertical line at PPEAK = 150% and a horizontal line where the vertical line crosses the P0 = 50% curve. Read the max. duty cycle from the duty cycle-axis (= 0.37) - Calculate the required pause (base load) length T0: - Result: The required pause length = 1.7s T0= - Max. repetition rate = pulse +pause length = 2.7s Tpeak - (DutyCycle x Tpeak) DutyCycle = 1s - (0.37 x 1s) 0.37 = 1.7s More examples for pulse load compatibility: PPEAK 270W 270W 225W P0 180W 0W 90W TPEAK 1s 1s 1s T0 >25s >1.3s > 0.75s PPEAK 270W 270W 270W P0 90W 90W 90W TPEAK 0.1s 1s 3s T0 >0.16s >1.6s >4.9s Nov. 2020 / Rev. 2.5 DS-QS10.121-EN All parameters are specified at 12V, 15A, 230Vac, 25°C ambient and after a 5 minutes run-in time unless otherwise noted. www.pulspower.com Phone +49 89 9278 0 Germany 22/28 QS10.121 12V, 15A, SINGLE PHASE INPUT Q-Series 23.2. PEAK CURRENT CAPABILITY Solenoids, contactors and pneumatic modules often have a steady state coil and a pick-up coil. The inrush current demand of the pick-up coil is several times higher than the steady-state current and usually exceeds the nominal output current (including the PowerBoost). The same situation applies when starting a capacitive load. Branch circuits are often protected with circuit breakers or fuses. In case of a short or an overload in the branch circuit, the fuse needs a certain amount of over-current to trip or to blow. The peak current capability ensures the safe operation of subsequent circuit breakers. Assuming the input voltage is turned on before such an event, the built-in large sized output capacitors inside the power supply can deliver extra current. Discharging this capacitor causes a voltage dip on the output. The following two examples show typical voltage dips: Fig. 22-3 Peak load with 2x the nominal current for 50ms, typ. Peak load 30A (resistive) for 50ms Output voltage dips from 12V to 10V. Fig. 22-4 Peak load with 4x the nominal current for 5ms, typ. Peak load 60A (resistive) for 5ms Output voltage dips from 12V to 5.2V. Please note: The DC-OK relay triggers when the voltage dips more than 10% for longer than 1ms. 23.3. BACK-FEEDING LOADS Loads such as decelerating motors and inductors can feed voltage back to the power supply. This feature is also called return voltage immunity or resistance against Back- E.M.F. (Electro Magnetic Force). This power supply is resistant and does not show malfunctioning when a load feeds back voltage to the power supply. It does not matter whether the power supply is on or off. The maximum allowed feed-back-voltage is 18Vdc. The absorbing energy can be calculated according to the built-in large sized output capacitor which is specified in chapter 6. 23.4. EXTERNAL INPUT PROTECTION The unit is tested and approved for branch circuits up to 20A. An external protection is only required if the supplying branch has an ampacity greater than this. Check also local codes and local requirements. In some countries local regulations might apply. If an external fuse is necessary or utilized, minimum requirements need to be considered to avoid nuisance tripping of the circuit breaker. A minimum value of 6A B- or 4A C-Characteristic breaker should be used Nov. 2020 / Rev. 2.5 DS-QS10.121-EN All parameters are specified at 12V, 15A, 230Vac, 25°C ambient and after a 5 minutes run-in time unless otherwise noted. www.pulspower.com Phone +49 89 9278 0 Germany 23/28 QS10.121 12V, 15A, SINGLE PHASE INPUT Q-Series 23.5. CHARGING OF BATTERIES The power supply can be used to charge lead-acid or maintenance free batteries. Instructions for charging batteries: a) Set output voltage (measured at no load and at the battery end of the cable) very precisely to the end-of-charge voltage. End-of-charge voltage 13.9V 13.75V 13.6V 13.4V Battery temperature 10°C 20°C 30°C 40°C b) Use a 20A circuit breaker (or blocking diode) between the power supply and the battery. c) Ensure that the output current of the power supply is below the allowed charging current of the battery. d) The return current to the power supply (battery discharge current) is typ. 5mA when the power supply is switched off (except in case a blocking diode is utilized). 23.6. OUTPUT CIRCUIT BREAKERS Standard miniature circuit breakers (MCB’s or UL1077 circuit breakers) are commonly used for AC-supply systems and may also be used on 12V branches. MCB’s are designed to protect wires and circuits. If the ampere value and the characteristics of the MCB are adapted to the wire size that is used, the wiring is considered as thermally safe regardless of whether the MCB opens or not. To avoid voltage dips and under-voltage situations in adjacent 12V branches which are supplied by the same source, a fast (magnetic) tripping of the MCB is desired. A quick shutdown within 10ms is necessary corresponding roughly to the ride-through time of PLC's. This requires power supplies with high current reserves and large output capacitors. Furthermore, the impedance of the faulty branch must be sufficiently small in order for the current to actually flow. The best current reserve in the power supply does not help if Ohm’s law does not permit current flow. The following table has typical test results showing which B- and C-Characteristic MCBs magnetically trip depending on the wire cross section and wire length. Fig. 22-5 Test circuit Power Supply AC MCB + + Wire length DC S1... Fault simulation switch *) Load S1 - Maximal wire length*) for a fast (magnetic) tripping: 0.75mm² 1.0mm² 1.5mm² 2.5mm² 11m 15m 22m 35m C-2A 10m 13m 19m 31m C-3A 5m 8m 11m 16m C-4A 1m 2m 3m 5m C-6A 6m 8m 12m 18m B-6A 2m 2m 3m 5m B-10A 1m 1m 2m 4m B-13A Don’t forget to consider twice the distance to the load (or cable length) when calculating the total wire length (+ and – wire). Nov. 2020 / Rev. 2.5 DS-QS10.121-EN All parameters are specified at 12V, 15A, 230Vac, 25°C ambient and after a 5 minutes run-in time unless otherwise noted. www.pulspower.com Phone +49 89 9278 0 Germany 24/28 QS10.121 12V, 15A, SINGLE PHASE INPUT Q-Series 23.7. PARALLEL USE TO INCREASE OUTPUT POWER Unit A AC Power supplies from the same series (Q-Series) can be paralleled to increase the output power. The output voltage shall be adjusted to the same value (±100mV) with the same load conditions on all units, or the units can be left with the factory settings. + - DC + Unit B If more than three units are connected in parallel, a fuse or circuit breaker with a rating of 20A or 25A is required on each output. Alternatively, a diode or redundancy module can also be utilized. Load AC + - - Keep an installation clearance of 15mm (left / right) between two power DC supplies and avoid installing the power supplies on top of each other. Do not use power supplies in parallel in mounting orientations other than the standard mounting orientation (input terminals on bottom and output terminals on the top of the unit) or in any other condition where a derating of the output current is required (e.g. altitude, above 60°C, …). Pay attention that leakage current, EMI, inrush current, harmonics will increase when using multiple power supplies. 23.8. PARALLEL USE FOR REDUNDANCY Power supplies can be paralleled for redundancy to gain higher system availability. Redundant systems require a certain amount of extra power to support the load in case one power supply unit fails. The simplest way is to put two power supplies in parallel. This is called a 1+1 redundancy. In case one power supply unit fails, the other one is automatically able to support the load current without any Failure Monitor interruption. Redundant systems for a higher power demand are usually built in a N+1 method. E.g. five power +- +++ - +- +++ - supplies, each rated for 15A are paralleled to build a 60A IN 1 IN 2 IN 1 IN 2 12V,15A Adj 12V,15A Adj redundant system. For N+1 redundancy the same DCok DCok restrictions apply as for increasing the output power, see Overload Overload QS10.121 QS10.121 also section 22.7. YR2.Diode YR2.Diode Please note: This simple way to build a redundant system does not cover failures such as an internal short circuit in the secondary side of the power supply. In such a case, the defective unit becomes a load for the other power supplies and the output voltage can not be maintained any more. This can be avoided by utilizing decoupling diodes which are included in the redundancy module YR2.DIODE. Recommendations for building redundant power systems: a) b) c) Power Supply L N PE Redundancy Module OUT + - Redundancy Module Power Supply OUT L N PE + - optional I I 12V,15A Load L N PE Use separate input fuses for each power supply. Monitor the individual power supply units. Therefore, use the DC-OK relay contact of the QS10 power supply. It is desirable to set the output voltages of all units to the same value (± 100mV) or leave it at the factory setting. Nov. 2020 / Rev. 2.5 DS-QS10.121-EN All parameters are specified at 12V, 15A, 230Vac, 25°C ambient and after a 5 minutes run-in time unless otherwise noted. www.pulspower.com Phone +49 89 9278 0 Germany 25/28 QS10.121 12V, 15A, SINGLE PHASE INPUT Q-Series 23.9. DAISY CHAINING OF OUTPUTS Daisy chaining (jumping from one power supply output to the next) is allowed as long as the average output current through one terminal pin does not exceed 25A. If the current is higher, use a separate distribution terminal block as shown in Fig. 22-7. Fig. 22-6 Daisy chaining of outputs Fig. 22-7 Using distribution terminals max 25A! Output + + - - Output + + - - + - Load Output + + - - Output + + - - Power Supply Power Supply Power Supply Power Supply Input Input Input Input 23.10. SERIES OPERATION - + Load Distribution Terminals Unit A AC Power supplies of the same type can be connected in series for higher output voltages. It is possible to connect as many units in series as needed, providing the sum of the output voltage does not exceed 150Vdc. Voltages with a potential above 60Vdc are not SELV any more and can be dangerous. Such voltages must be installed with a protection against touching. DC + + Unit B AC Earthing of the output is required when the sum of the output voltage is above 60Vdc. DC Avoid return voltage (e.g. from a decelerating motor or battery) which is applied to the output terminals. Load + - Earth (see notes) Keep an installation clearance of 15mm (left / right) between two power supplies and avoid installing the power supplies on top of each other. Do not use power supplies in series in mounting orientations other than the standard mounting orientation (input terminals on bottom and output terminals on the top of the unit). Pay attention that leakage current, EMI, inrush current, harmonics will increase when using multiple power supplies. 23.11. INDUCTIVE AND CAPACITIVE LOADS The unit is designed to supply any kind of loads, including unlimited capacitive and inductive loads. Nov. 2020 / Rev. 2.5 DS-QS10.121-EN All parameters are specified at 12V, 15A, 230Vac, 25°C ambient and after a 5 minutes run-in time unless otherwise noted. www.pulspower.com Phone +49 89 9278 0 Germany 26/28 QS10.121 12V, 15A, SINGLE PHASE INPUT Q-Series 23.12. OPERATION ON TWO PHASES Power Supply L1 240V +15% max. The power supply can also be used on two-phases of a three-phase-system. Such a phase-to-phase connection is allowed as long as the supplying voltage is below 240V+15%. Use a fuse or a circuit breaker to protect the N input. The N input is internally not protected and is in this case connected to a hot wire. Appropriate fuses or circuit breakers are specified in section 22.4 “External Input Protection”. L3 AC L Fuse L2 internal fuse N PE DC 23.13. USE IN A TIGHTLY SEALED ENCLOSURE When the power supply is installed in a tightly sealed enclosure, the temperature inside the enclosure will be higher than outside. In such situations, the inside temperature defines the ambient temperature for the power supply. The following measurement results can be used as a reference to estimate the temperature rise inside the enclosure. The power supply is placed in the middle of the box, no other heat producing items are inside the box Enclosure: Load: Input: Temperature inside enclosure: Temperature outside enclosure: Temperature rise: Rittal Typ IP66 Box PK 9519 100, plastic, 180x180x165mm 12V, 12A; (=80%) load is placed outside the box 230Vac 46°C (in the middle of the right side of the power supply with a distance of 2cm) 27°C 19K Nov. 2020 / Rev. 2.5 DS-QS10.121-EN All parameters are specified at 12V, 15A, 230Vac, 25°C ambient and after a 5 minutes run-in time unless otherwise noted. www.pulspower.com Phone +49 89 9278 0 Germany 27/28 QS10.121 12V, 15A, SINGLE PHASE INPUT Q-Series 23.14. MOUNTING ORIENTATIONS Mounting orientations other than input terminals on the bottom and output on the top require a reduction in continuous output power or a limitation in the maximum allowed ambient temperature. The amount of reduction influences the lifetime expectancy of the power supply. Therefore, two different derating curves for continuous operation can be found below: Curve A1 Curve A2 Recommended output current. Max allowed output current (results in approximately half the lifetime expectancy of A1). Fig. 22-8 Mounting Orientation A (Standard orientation) Output Current OUTPUT 15A 12 9 6 3 0 Power Supply INPUT A1 Ambient Temperature 10 Fig. 22-9 Mounting Orientation B (Upside down) INPUT 15A 12 9 6 3 0 Power Supply OUTPUT Fig. 22-10 Mounting Orientation C (Table-top mounting) 40 50 60°C A2 A1 Ambient Temperature 20 30 50 40 60°C Output Current 15A 12 9 6 3 0 A2 A1 Ambient Temperature 10 20 30 40 50 60°C Output Current OUTPUT Power Supply INPUT 15A 12 9 6 3 0 A2 A1 Ambient Temperature 10 20 30 50 40 60°C INPUT Power Supply Output Current OUTPUT Fig. 22-12 Mounting Orientation E (Horizontal ccw) 30 Output Current 10 Fig. 22-11 Mounting Orientation D (Horizontal cw) 20 15A 12 9 6 3 0 A2 A1 Ambient Temperature 10 20 30 40 50 60°C Nov. 2020 / Rev. 2.5 DS-QS10.121-EN All parameters are specified at 12V, 15A, 230Vac, 25°C ambient and after a 5 minutes run-in time unless otherwise noted. www.pulspower.com Phone +49 89 9278 0 Germany 28/28
QS10.121-A1 价格&库存

很抱歉,暂时无法提供与“QS10.121-A1”相匹配的价格&库存,您可以联系我们找货

免费人工找货