M0519
ARM® Cortex® -M0
32-bit Microcontroller
NuMicro® Family
M0519 Series
Datasheet
Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based
system design. Nuvoton assumes no responsibility for errors or omissions.
All data and specifications are subject to change without notice.
For additional information or questions, please contact: Nuvoton Technology Corporation.
www.nuvoton.com
Jul. 31, 2015
Page 1 of 69
Rev 1.01
M0519 DATASHEET
The information described in this document is the exclusive intellectual property of
Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.
M0519
Table of Contents
1
GENERAL DESCRIPTION ....................................................................... 6
2
FEATURES ......................................................................................... 7
3
ABBREVIATIONS ................................................................................ 10
4
PARTS INFORMATION LIST AND PIN CONFIGURATION .............................. 12
4.1
NuMicro® M0519 Selection Guide..................................................................12
4.2
Pin Configuration......................................................................................13
4.3
Pin Description ........................................................................................16
5
BLOCK DIAGRAM ............................................................................... 23
6
FUNCTIONAL DESCRIPTION ................................................................. 24
M0519 DATASHEET
6.1
ARM® Cortex® -M0 Core..............................................................................24
6.2
System Manager ......................................................................................26
6.3
Clock Controller .......................................................................................35
6.4
Flash Memory Controller (FMC) ....................................................................38
6.5
General Purpose I/O (GPIO) ........................................................................39
6.6
Timer Controller (TIMER) ............................................................................40
6.7
Basic PWM Generator and Capture Timer (BPWM) ............................................41
6.8
Enhanced PWM Generator (EPWM) ..............................................................42
6.9
Enhanced Input Capture Timer (ECAP) ...........................................................43
6.10
Watchdog Timer (WDT)..............................................................................44
6.11
Window Watchdog Timer (WWDT) ................................................................45
6.12
Universal Asynchronous Receiver Transmitter (UART) ........................................46
6.13
I2C Serial Interface Controller (I²C) ................................................................47
6.14
Serial Peripheral Interface (SPI) ....................................................................48
6.15
Hardware Divider (HDIV) ............................................................................49
6.16
Enhanced Analog-to-Digital Converter (EADC) ..................................................50
6.17
Analog Comparator (ACMP) ........................................................................51
6.18
OP Amplifier (OPA) ...................................................................................52
ELECTRICAL CHARACTERISTICS .......................................................... 53
7
7.1
Absolute Maximum Ratings .........................................................................53
7.2
DC Electrical Characteristics ........................................................................54
7.3
AC Electrical Characteristics ........................................................................58
7.4
Analog Characteristics ...............................................................................60
Jul. 31, 2015
Page 2 of 69
Rev 1.01
M0519
7.5
PACKAGE DIMENSIONS ...................................................................... 65
8
9
Flash DC Electrical Characteristics ................................................................64
8.1
LQFP 100V (14x14x1.4 mm footprint 2.0mm) ...................................................65
8.2
LQFP 64S (7x7x1.4 mm footprint 2.0 mm) .......................................................66
8.3
LQFP 48L (7x7x1.4mm footprint 2.0mm) .........................................................67
REVISION HISTORY ............................................................................ 68
M0519 DATASHEET
Jul. 31, 2015
Page 3 of 69
Rev 1.01
M0519
List of Figures
®
Figure 4-1 NuMicro M0519 Selection Code ................................................................................. 12
®
Figure 4-2 NuMicro M0519VxxAE Series LQFP-100 Pin Diagram .............................................. 13
®
Figure 4-3 NuMicro M0519SxxAE Series LQFP-64 Pin Diagram ................................................ 14
®
Figure 4-4 NuMicro M0519LxxAE Series LQFP-48 Pin Diagram ................................................ 15
®
Figure 5-1 NuMicro M0519 Series Block Diagram ....................................................................... 23
Figure 6-1 Functional Controller Diagram ...................................................................................... 24
®
Figure 6-2 NuMicro M0519 Series Power Distribution Diagram .................................................. 27
Figure 6-3 Clock Generator Block Diagram ................................................................................... 36
Figure 6-4 Clock Generator Global View Diagram ......................................................................... 37
Figure 7–1 Typical Crystal Application Circuit ............................................................................... 58
M0519 DATASHEET
Jul. 31, 2015
Page 4 of 69
Rev 1.01
M0519
List of Tables
Table 6-1 Address Space Assignments for On-Chip Controllers ................................................... 29
Table 6-2 Exception Model ............................................................................................................ 32
Table 6-3 System Interrupt Map Vector Table ............................................................................... 33
Table 6-4 Vector Table ................................................................................................................... 34
Table 6-5 Clock Stable Count Value Table .................................................................................... 35
M0519 DATASHEET
Jul. 31, 2015
Page 5 of 69
Rev 1.01
M0519
1
GENERAL DESCRIPTION
®
®
®
The NuMicro M0519 Series 32-bit microcontroller is embedded with the newest ARM Cortex M0 core at a cost equivalent to traditional 8-bit microcontroller for industrial control and
applications which need high performance.
®
®
The NuMicro M0519 Series embedded with the Cortex -M0 core runs up to 72 MHz and
supports a variety of industrial control and applications which need high CPU performance. The
®
NuMicro M0519 Series provides 128K/64K bytes embedded flash, 4 Kbytes data flash, 8 Kbytes
flash for the ISP, and 16K bytes embedded SRAM. This MCU includes advanced PWM function
and input capture timer which are specially designed for motor driving application. It is also
equipped with plenty of peripheral devices, such as Timers, Watchdog Timer, UART, SPI, I2C,
PWM Timer, GPIO, 12-bit ADC, Low Voltage Detector and Brown-out detector. These useful
®
functions make the NuMicro M0519 Series powerful for a wide range of applications.
®
In addition, the NuMicro M0519 Series is equipped with ISP (In-System Programming), ICP (InCircuit Programming) functions and IAP (In-Application Programming) which allow user to update
the program memory without removing the chip from the actual end product.
M0519 DATASHEET
Jul. 31, 2015
Page 6 of 69
Rev 1.01
M0519
2
FEATURES
Core
®
®
ARM Cortex -M0 core running up to 72 MHz
One 24-bit system timer
Supports Low Power Sleep mode by WFI instructions
Single-cycle 32-bit hardware multiplier
Supports programmable 4 level priorities of Nested Vectored Interrupt Controller
(NVIC)
– Supports Serial Wire Debug (SWD) support with two watchpoints and four breakpoints
Built-in LDO for wide operating voltage ranged from 2.5V to 5.5V
–
–
–
–
–
Memory
128K/64K bytes Flash for program memory (APROM)
4KB Flash for data memory (Data Flash)
8KB Flash for loader (LDROM)
Supports In-system program (ISP) and In-application program (IAP) application code
update
– Supports 2-wired ICP update through SWD/ICE interface
– Supports fast parallel programming mode by external programmer
– 16K bytes embedded SRAM
Clock Control
–
–
–
–
–
Built-in 22.1184 MHz internal high speed RC oscillator (HIRC) for system operation
(variation < 2% at -40˚C ~ +105˚C)
– Built-in 10 kHz internal low speed RC oscillator (LIRC) for Watchdog Timer and wakeup operation
– Built-in 4~24 MHz external high speed crystal oscillator (HXT) for precise timing
operation
– Supports one PLL up to 72 MHz for high performance system operation, sourced from
HIRC and HXT
– Supports clock output
Hardware divider
M0519 DATASHEET
– Supports signed 32-bit dividend, 16-bit divisor operation
GPIO port
– Four I/O modes:
– TTL/Schmitt trigger input selectable
– Bit control available
– I/O pin configured as interrupt source with edge/level trigger setting
– Supports high driver and high sink current I/O (up to 16 mA at 5V)
– INT0 and INT1 pins with individual interrupt vectors
– Supports up to 82/51/38 GPIOs for LQFP100/64/48 respectively
Timers
– Supports 4 sets of 32-bit timers with 24-bit up-timer and one 8-bit prescale counter
– Provides One-shot, Periodic, Toggle and Continuous Counting operation modes
– Supports event counting function to count the event from external pin
Watchdog Timer
– Supports multiple clock sources from LIRC(default selection) and HCLK/2048
– 8 selectable time-out period from 1.6ms ~ 26.0sec (depending on clock source)
– Able to wake up from Power-down or Idle mode
– Interrupt or reset selectable on watchdog time-out
– Time-out reset delay period time can be selected
Window Watchdog Timer
Jul. 31, 2015
Page 7 of 69
Rev 1.01
M0519
– Supports multiple clock sources from HCLK/2048 (default selection) and LIRC
– Window set by 6-bit counter with 11-bit prescale
– Able to wake up from Power-down or Idle mode
Basic PWM
– 1 unit of 16-bit basic PWM, up to 2ch output
– Alternative function as input capture timer
Enhanced PWM
2 units of 16-bit enhanced PWM, up to 6ch output with dead-zone control, brake and
polarity control for motor drive
– Default tri-state during any reset
Enhanced Input Capture
–
– Up to 2 units of 24-bit input capture
– Each unit has 3 inputs: ECAPx_IC0, ECAPx_IC1 and ECAPx_IC2
UART
M0519 DATASHEET
–
–
–
–
–
–
SPI
Up to two 16550 compatible UART devices
Programmable baud-rate generator
Buffered receiving and transmitting, each with 16 bytes FIFO
Supports flow control (TX, RX, CTS and RTS)
Supports IrDA(SIR) function
Supports RS-485
–
–
–
–
–
–
–
2
IC
Up to three sets of SPI device
Supports SPI master/slave mode
Full duplex synchronous serial data transfer
Variable length of transfer data from 8 to 32 bits
MSB or LSB first data transfer
Rx and Tx on both rising or falling edge of serial clock independently
Supports Byte Suspend mode in 32-bit transmission
–
–
–
–
–
–
ADC
Master/Slave up to 1 Mbit/s
Bi-directional data transfer between masters and slaves
Multi-master bus (no central master)
Arbitration between simultaneously transmitting masters
Programmable clocks allow versatile rate control
Multiple address recognition (four slave address with mask option)
–
–
–
–
–
Two A/D converters
Each ADC with up to 8 channel, 12-bit resolution with 10-bit accuracy
16 result registers
Sampling rate up to 800ksps
Two operating modes:
Single Sampling mode: Only one specified channel can be sampled at one time.
Simultaneous Sampling mode: Allowing two ADC channels to be sampled
simultaneously.
– Two converting result digital comparators
– Conversion start by software, external pins, or linked with Timer 0~3 or PWM module
Up to three Analog Comparators
Up to two OPA (operational amplifier)
Jul. 31, 2015
Page 8 of 69
Rev 1.01
M0519
Brown-out detector
– 4 levels: 4.4V/3.7V/2.7V/2.2V
– Optional brown-out interrupt or reset
Built-in LDO for Wide Operating Voltage Range: 2.5V to 5.5V
Low Voltage Reset
96-bit unique ID
Operating Temperature: -40℃~105℃
Develop tools: parallel writer or In-Circuit Programming (ICP) writer
Packages:
–
–
All Green package (RoHS)
LQFP 100/64/48-pin
M0519 DATASHEET
Jul. 31, 2015
Page 9 of 69
Rev 1.01
M0519
3
ABBREVIATIONS
M0519 DATASHEET
Acronym
Description
ACMP
Analog Comparator Controller
ADC
Analog-to-Digital Converter
AES
Advanced Encryption Standard
APB
Advanced Peripheral Bus
AHB
Advanced High-Performance Bus
BOD
Brown-out Detection
CAN
Controller Area Network
DAP
Debug Access Port
DES
Data Encryption Standard
EBI
External Bus Interface
EPWM
Enhanced Pulse Width Modulation
FIFO
First In, First Out
FMC
Flash Memory Controller
FPU
Floating-point Unit
GPIO
General-Purpose Input/Output
HCLK
The Clock of Advanced High-Performance Bus
HIRC
22.1184 MHz Internal High Speed RC Oscillator
HXT
4~24 MHz External High Speed Crystal Oscillator
IAP
In Application Programming
ICP
In Circuit Programming
ISP
In System Programming
LDO
Low Dropout Regulator
LIN
Local Interconnect Network
LIRC
10 kHz internal low speed RC oscillator (LIRC)
MPU
Memory Protection Unit
NVIC
Nested Vectored Interrupt Controller
PCLK
The Clock of Advanced Peripheral Bus
PDMA
Peripheral Direct Memory Access
PLL
Phase-Locked Loop
PWM
Pulse Width Modulation
QEI
Quadrature Encoder Interface
SDIO
Secure Digital Input/Output
SPI
Serial Peripheral Interface
Jul. 31, 2015
Page 10 of 69
Rev 1.01
M0519
SPS
Samples per Second
TDES
Triple Data Encryption Standard
TMR
Timer Controller
UART
Universal Asynchronous Receiver/Transmitter
UCID
Unique Customer ID
USB
Universal Serial Bus
WDT
Watchdog Timer
WWDT
Window Watchdog Timer
M0519 DATASHEET
Jul. 31, 2015
Page 11 of 69
Rev 1.01
M0519
4
PARTS INFORMATION LIST AND PIN CONFIGURATION
NuMicro® M0519 Selection Guide
4.1
4.1.1 NuMicro® M0519 Selection Guide
Part Number
APROM (KB)
RAM (KB)
Data Flash (KB)
LDROM (KB)
I/O
Timer (32-Bit)
UART
SPI
I2C
LIN
QEI
Capture
PWM
ADC (12-Bit)
OPA
Comp.
ISP/ICP/IAP
Package
Connectivity
M0519LD3AE
64
16
4
8
38
4
2
1
1
2
-
-
6
16
-
2
v
LQFP48
M0519LE3AE
128
16
Config.
8
38
4
2
1
1
2
-
-
6
16
-
2
v
LQFP48
M0519SD3AE
64
16
4
8
51
4
2
2
1
2
-
-
10
16
1
2
v
LQFP64
M0519SE3AE
128
16
Config.
8
51
4
2
2
1
2
-
-
10
16
1
2
v
LQFP64
M0519VE3AE
128
16
Config.
8
82
4
2
3
1
2
-
6
14
16
2
3
v
LQFP100
4.1.2
NuMicro® M0519 Naming Rule
M0519 - X X X X E
CPU core
ARM Cortex M0
Temperature
E: - 40 ℃ ~ +105℃
Package Type
Version
A: Version
M0519 DATASHEET
L: LQFP 48 (7x7)
S: LQFP 64 (7x7)
V: LQFP 100 (14x14)
Flash ROM
D: 64 KB Flash ROM
E: 128 KB Flash ROM
SRAM Size
3: 16KB SRAM
®
Figure 4-1 NuMicro M0519 Selection Code
Jul. 31, 2015
Page 12 of 69
Rev 1.01
M0519
VREF
AVDD
AVSS
P8.0/OP0_P
P8.1/OP0_N
P8.2/OP0_O
P6.0/ADC0_CH0
P6.1/ADC0_CH1
P6.2/ADC0_CH2
P6.3/ADC0_CH3
P6.4/ADC0_CH4/ACMP1_N
P6.5/ADC0_CH5/ACMP1_P
P6.6/ADC0_CH6
P6.7/ADC0_CH7
VDD
VSS
P8.6
P8.7/ACMP0_O
P0.0/EPWM0_CH0/ECAP1_IC0
P0.1/EPWM0_CH1/ECAP1_IC1
P0.2/EPWM0_CH2/ECAP1_IC2
P0.3/EPWM0_CH3/STADC
P5.5/CLKO
P5.4/SPI2_SS
P5.3/SPI2_CLK
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
LQFP 100-pin
ADC1_CH7/P7.7
76
50
P5.2/SPI2_MISO/ACMP1_O
ADC1_CH6/P7.6
77
49
P2.0/SPI2_MOSI/ACMP2_O
ACMP2_P/ADC1_CH5/P7.5
78
48
P2.1/ECAP0_IC2
ACMP2_N/ADC1_CH4/P7.4
79
47
P2.2/ECAP0_IC1
ADC1_CH3/P7.3
80
46
P2.3/ECAP0_IC0
ADC1_CH2/P7.2
81
45
P0.4/EPWM0_CH4
ADC1_CH1/P7.1
82
44
P0.5/EPWM0_CH5
ADC1_CH0/P7.0
83
43
P0.6/EPWM0_BRAKE1
ACMP0_P/P8.4
84
42
P0.7/STADC
ACMP0_N/P8.3
85
41
P2.4
OP1_O/P9.0
86
40
P2.5
OP1_N/P9.1
87
39
P2.6/SPI0_SS/UART1_nCTS
OP1_P/P9.2
88
38
P2.7/SPI0_CLK/UART1_nRTS
VDD
89
37
P5.1/SPI0_MISO/UART0_nCTS/I2C_SDA
VSS
90
36
P5.0/SPI0_MOSI/UART0_nRTS/I2C_SCL
P8.5
91
35
VSS
EPWM1_BRAKE1/P9.3
92
34
VDD
nRESET
93
33
P4.7/TM3
XT1_OUT
94
32
P3.1/UART0_TXD/ACMP0_O
XT1_IN
95
31
P3.0/UART0_RXD/CLKO
ICE_DAT
96
30
P1.0/EPWM1_CH0
ICE_CLK
97
29
P1.1/EPWM1_CH1
SPI1_CLK/P9.4
98
28
P4.6/TM2
SPI1_MISO/P9.5
99
27
P3.3/INT1
SPI1_MOSI/P9.6
100
26
P4.3
13
14
15
16
17
18
19
20
21
22
23
24
25
BPWM0_CH1/P5.7
BPWM0_CH0/P5.6
EPWM0_BRAKE0/P1.6
EPWM1_CH5/P1.5
EPWM1_CH4/P1.4
EPWM1_CH3/P1.3
EPWM1_CH2/P1.2
P4.4
P4.5
ECAP1_IC0/P4.0
ECAP1_IC1/P4.1
ECAP1_IC2/P4.2
9
LDO_CAP
I2C_SDA/UART1_TXD/PA.0
8
EPWM1_BRAKE0/P1.7
12
7
INT0/P3.2
I2C_SCL/UART1_RXD/PA.1
6
I2C_SDA/TM0/P3.4
11
5
I2C_SCL/TM1/P3.5
VSS
4
P3.6
10
3
P3.7
VDD
2
M0519 DATASHEET
1
M0519VxxAE
LQFP 100-pin
PVSS
4.2.1
Pin Configuration
SPI1_SS/P9.7
4.2
®
Figure 4-2 NuMicro M0519VxxAE Series LQFP-100 Pin Diagram
Jul. 31, 2015
Page 13 of 69
Rev 1.01
M0519
VREF
AVDD
AVSS
P8.0/OP0_P
P8.1/OP0_N
P8.2/OP0_O
P6.0/ADC0_CH0
P6.1/ADC0_CH1
P6.2/ADC0_CH2
P6.3/ADC0_CH3
P6.4/ADC0_CH4/ACMP1_N
P6.5/ADC0_CH5/ACMP1_P
P6.6/ADC0_CH6
P6.7/ADC0_CH7
P5.4/SPI2_SS
P5.3/SPI2_CLK
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
LQFP 64-pin
ADC1_CH7/P7.7
49
32
P5.2/SPI2_MISO/ACMP1_O
ADC1_CH6/P7.6
50
31
P2.0/SPI2_MOSI/ACMP2_O
ACMP2_P/ADC1_CH5/P7.5
51
30
P0.4/EPWM0_CH4
ACMP2_N/ADC1_CH4/P7.4
52
29
P0.5/EPWM0_CH5
ADC1_CH3/P7.3
53
28
P2.4
ADC1_CH2/P7.2
54
27
P2.5
ADC1_CH1/P7.1
55
26
P2.6/SPI0_SS/UART1_nCTS
ADC1_CH0/P7.0
56
25
P2.7/SPI0_CLK/UART1_nRTS
OP1_O/P9.0
57
24
P5.1/SPI0_MISO/UART0_nCTS/I2C_SDA
OP1_N/P9.1
58
23
P5.0/SPI0_MOSI/UART0_nRTS/I2C_SCL
OP1_P/P9.2
59
22
VSS
nRESET
60
21
VDD
XT1_OUT
61
20
P3.1/UART0_TXD
XT1_IN
62
19
P3.0/UART0_RXD/CLKO
ICE_DAT
63
18
P1.0/EPWM1_CH0
ICE_CLK
64
17
P1.1/EPWM1_CH1
13
14
15
16
EPWM1_CH5/P1.5
EPWM1_CH4/P1.4
EPWM1_CH3/P1.3
EPWM1_CH2/P1.2
9
I2C_SDA/UART1_TXD/PA.0
12
8
I2C_SCL/UART1_RXD/PA.1
EPWM0_BRAKE0/P1.6
7
VSS
11
6
VDD
BPWM0_CH0/P5.6
5
LDO_CAP
10
4
EPWM1_BRAKE0/P1.7
BPWM0_CH1/P5.7
3
2
INT0/P3.2
1
M0519 DATASHEET
I2C_SCL/T1/P3.5
M0519SxxAE
LQFP 64-pin
I2C_SDA/T0/P3.4
4.2.2
®
Figure 4-3 NuMicro M0519SxxAE Series LQFP-64 Pin Diagram
Jul. 31, 2015
Page 14 of 69
Rev 1.01
M0519
AVDD
AVSS
P8.0/OP0_P
P8.1/OP0_N
P8.2/OP0_O
P6.0/ADC0_CH0
P6.1/ADC0_CH1
P6.2/ADC0_CH2
P6.3/ADC0_CH3
P6.4/ADC0_CH4/ACMP1_N
P6.5/ADC0_CH5/ACMP1_P
P6.6/ADC0_CH6
36
35
34
33
32
31
30
29
28
27
26
25
LQFP 48-pin
ADC1_CH7/P7.7
37
24
P6.7/ADC0_CH7
ADC1_CH6/P7.6
38
23
P0.7/STADC
ACMP2_P/ADC1_CH5/P7.5
39
22
P2.6/SPI0_SS/UART1_nCTS
ACMP2_N/ADC1_CH4/P7.4
40
21
P2.7/SPI0_CLK/UART1_nRTS
ADC1_CH3/P7.3
41
20
P5.1/SPI0_MISO/UART0_nCTS/I2C_SDA
ADC1_CH2/P7.2
42
19
P5.0/SPI0_MOSI/UART0_nRTS/I2C_SCL
ADC1_CH1/P7.1
43
18
P3.1/UART0_TXD/ACMP0_O
ADC1_CH0/P7.0
44
17
P3.0/UART0_RXD/CLKO
OP1_O/P9.0
45
16
P1.5/EPWM1_CH5
OP1_N/P9.1
46
15
P1.4/EPWM1_CH4
OP1_P/P9.2
47
14
P1.3/EPWM1_CH3
nRESET
48
13
P1.2/EPWM1_CH2
1
2
3
4
5
6
7
8
9
10
11
12
XT1_IN
XT1_OUT
EPWM1_BRAKE0/P1.7
LDO_CAP
VDD
VSS
I2C_SCL/UART1_RXD/PA.1
I2C_SDA/UART1_TXD/PA.0
BPWM0_CH1/P5.7
BPWM0_CH0/P5.6
M0519 DATASHEET
ICE_CLK
M0519LxxAE
LQFP 48-pin
ICE_DAT
4.2.3
®
Figure 4-4 NuMicro M0519LxxAE Series LQFP-48 Pin Diagram
Jul. 31, 2015
Page 15 of 69
Rev 1.01
M0519
4.3
Pin Description
Pin Number
Pin Name
100- pin
64-pin
48-pin
Pin
Type[1]
Description
10
6
34
7
VDD
P
POWER SUPPLY: Supply voltage Digital VDD for operation.
8
VSS
P
GROUND: Digital Ground potential.
61
21
89
11
7
35
60
22
90
LDO: LDO output pin
9
5
6
LDO_CAP
P
1
-
-
PVSS
P
PLL GROUND: PLL Ground potential.
74
47
36
AVDD
AP
Power supply for internal analog circuit
73
46
35
AVSS
AP
Ground Pin for analog circuit
75
48
-
VREF
AP
RESET: nRESET pin is a Schmitt trigger input pin for hardware device
reset. A “Low” on this pin for 768 clock counter of Internal RC 22.1184
MHz while the system clock is running will reset the device. nRESET
(ST) pin has an internal pull-up resistor allowing power-on reset by simply
connecting an external capacitor to GND.
Note: It needs to be connected with a 1uF capacitor.
Voltage reference input for ADC
Note: It needs to be connected with a 1uF capacitor.
I
M0519 DATASHEET
93
60
48
nRESET
94
61
4
XT1_OUT
95
62
3
XT1_IN
96
63
2
ICE_DAT
I/O
Serial Wired Debugger Data pin
97
64
1
ICE_CLK
I
Serial Wired Debugger Clock pin
57
56
55
-
-
-
Jul. 31, 2015
-
-
O
CRYSTAL OUT: This is the output pin from the internal inverting
amplifier. It emits the inverted signal of XT1_IN.
CRYSTAL IN: This is the input pin to the internal inverting amplifier.
The system clock is from external crystal or resonator when FOSC[1:0]
(ST) (CONFIG3[1:0]) are both logic 1 by default.
I
P0.0
I/O
General purpose digital I/O pin
PWM0_CH0
O
PWM0 output of PWM Unit 0
ECAP1_IC0
I
Input 0 of Enhanced Input Capture Unit 1
P0.1
I/O
General purpose digital I/O pin
PWM0_CH1
O
PWM1 output of PWM Unit 0
ECAP1_IC1
I
Input 1 of Enhanced Input Capture Unit 1
P0.2
I/O
General purpose digital I/O pin
PWM0_CH2
O
PWM2 output of PWM Unit 0
-
Page 16 of 69
Rev 1.01
M0519
Pin Number
Pin Name
100- pin
64-pin
48-pin
ECAP1_IC2
54
45
44
43
-
30
29
-
-
General purpose digital I/O pin
PWM0_CH3
O
PWM3 output of PWM Unit 0
STADC
I
ADC external trigger input
P0.4
I/O
General purpose digital I/O pin
PWM0_CH4
O
PWM4 output of PWM Unit 0
P0.5
I/O
General purpose digital I/O pin
PWM0_CH5
O
PWM5 output of PWM Unit 0
P0.6
I/O
General purpose digital I/O pin
-
-
-
29
20
19
17
16
17
16
15
14
13
12
48
31
-
General purpose digital I/O pin
PWM1_CH0
O
PWM0 output of PWM Unit 1
P1.1
I/O
General purpose digital I/O pin
PWM1_CH1
O
PWM1 output of PWM Unit 1
P1.2
I/O
General purpose digital I/O pin
PWM1_CH2
O
PWM2 output of PWM Unit 1
P1.3
I/O
General purpose digital I/O pin
PWM1_CH3
O
PWM3 output of PWM Unit 1
P1.4
I/O
General purpose digital I/O pin
PWM1_CH4
O
PWM4 output of PWM Unit 1
P1.5
I/O
General purpose digital I/O pin
PWM1_CH5
O
PWM5 output of PWM Unit 1
P1.6
I/O
General purpose digital I/O pin
-
13
14
15
16
I
Brake input pin 0 of PWM Unit 0
I/O
General purpose digital I/O pin
I
Brake input pin0 of PWM Unit 1
P2.0
I/O
General purpose digital I/O pin
SPI2_MOSI
I/O
SPI2 MOSI (Master Out, Slave In) pin
ACMP2_O
AO
Analog comparator 2 output pin
P2.1
I/O
General purpose digital I/O pin
5
-
ECAP0_IC2
Jul. 31, 2015
ADC external trigger input
I/O
PWM1_BRAKE0
49
I
P1.0
P1.7
4
General purpose digital I/O pin
-
PWM0_BRAKE0
8
I/O
Brake input pin 1 of PWM Unit 0
M0519 DATASHEET
18
18
I
23
STADC
30
Input 2 of Enhanced Input Capture Unit 1
I/O
P0.7
-
I
Description
P0.3
PWM0_BRAKE1
42
Pin
Type[1]
I
Input 2 of Enhanced Input Capture Unit 0
Page 17 of 69
Rev 1.01
M0519
Pin Number
Pin Name
100- pin
64-pin
48-pin
47
-
-
P2.2
ECAP0_IC1
P2.3
46
-
Pin
Type[1]
I/O
I
I/O
Description
General purpose digital I/O pin
Input 1 of Enhanced Input Capture Unit 0
General purpose digital I/O pin
ECAP0_IC0
I
Input 0 of Enhanced Input Capture Unit 0
41
28
-
P2.4
I/O
General purpose digital I/O pin
40
27
-
P2.5
I/O
General purpose digital I/O pin
P2.6
I/O
General purpose digital I/O pin
SPI0_SS
I/O
SPI0 slave select pin
39
26
22
UART1_nCTS
38
31
25
19
21
7
M0519 DATASHEET
27
6
5
20
3
-
2
1
UART1 CTS pin
P2.7
I/O
General purpose digital I/O pin
SPI0_CLK
I/O
SPI0 serial clock pin
UART1_nRTS
O
UART1 RTS pin
P3.0
I/O
General purpose digital I/O pin
17
UART0_RXD
32
I
18
I
Data Receiver input pin for UART0
P3.1
I/O
General purpose digital I/O pin
UART0_TXD
O
Data transmitter output pin for UART0
ACMP0_O
AO
Analog comparator 0 output
P3.2
I/O
General purpose digital I/O pin
INT0
I
P3.3
I/O
INT1
I
P3.4
I/O
General purpose digital I/O pin
TM0
I/O
Timer0 external clock
I2C0_SDA
I/O
I2C0 data input/output pin
P3.5
I/O
General purpose digital I/O pin
TM1
I/O
Timer1 external clock
I2C0_SCL
I/O
I2C0 clock output pin
External Interrupt 0 input pin
General purpose digital I/O pin
-
-
-
External Interrupt 1 input pin
4
-
-
P3.6
I/O
General purpose digital I/O pin
3
-
-
P3.7
I/O
General purpose digital I/O pin
P4.0
I/O
General purpose digital I/O pin
23
-
ECAP1_IC0
P4.1
24
-
I/O
Input 0 of Enhanced Input Capture Unit 1
General purpose digital I/O pin
ECAP1_IC1
Jul. 31, 2015
I
I
Input 1 of Enhanced Input Capture Unit 1
Page 18 of 69
Rev 1.01
M0519
Pin Number
Pin Name
100- pin
64-pin
48-pin
25
-
-
P4.2
ECAP1_IC2
Pin
Type[1]
I/O
I
Description
General purpose digital I/O pin
Input 2 of Enhanced Input Capture Unit 1
26
-
-
P4.3
I/O
General purpose digital I/O pin
21
-
-
P4.4
I/O
General purpose digital I/O pin
22
-
-
P4.5
I/O
General purpose digital I/O pin
P4.6
I/O
General purpose digital I/O pin
28
-
TM2
I/O
Timer2 external clock
P4.7
I/O
General purpose digital I/O pin
TM3
I/O
Timer3 external clock
P5.0
I/O
General purpose digital I/O pin
SPI0_MOSI
I/O
SPI0 MOSI (Master Out, Slave In) pin
UART0_nRTS
O
UART0 RTS pin
P5.1
I/O
General purpose digital I/O pin
SPI0_MISO
I/O
SPI0 MISO (Master In, Slave Out) pin
33
36
37
-
23
24
-
19
20
UART0_nCTS
50
51
53
15
14
69
68
67
33
34
-
11
10
42
41
40
Jul. 31, 2015
-
UART0 CTS pin
P5.2
I/O
General purpose digital I/O pin
SPI2_MISO
I/O
SPI2 MISO (Master In, Slave Out) pin
ACMP1_O
AO
Analog comparator 1 output pin
P5.3
I/O
General purpose digital I/O pin
SPI2_CLK
I/O
SPI2 serial clock pin
P5.4
I/O
General purpose digital I/O pin
SPI2_SS
I/O
SPI2 slave select pin
P5.5
I/O
General purpose digital I/O pin
CLKO
O
Frequency Divider output pin
P5.6
I/O
General purpose digital I/O pin
PWM2_CH0
I/O
PWM0 output of PWM unit 2
P5.7
I/O
General purpose digital I/O pin
PWM2_CH1
I/O
PWM1 output of PWM unit 2
P6.0
I/O
General purpose digital I/O pin
ADC0_CH0
AI
ADC analog input 0 for sample-and-hold A
P6.1
I/O
General purpose digital I/O pin
ADC0_CH1
AI
ADC analog input 1 for sample-and-hold A
P6.2
I/O
General purpose digital I/O pin
-
M0519 DATASHEET
52
32
I
-
-
12
11
31
30
29
Page 19 of 69
Rev 1.01
M0519
Pin Number
Pin Name
100- pin
66
65
64
63
62
83
82
81
M0519 DATASHEET
80
79
78
77
76
72
64-pin
39
38
37
36
35
56
55
54
53
52
51
50
49
45
Jul. 31, 2015
48-pin
Pin
Type[1]
Description
ADC0_CH2
AI
ADC analog input 2 for sample-and-hold A
P6.3
I/O
General purpose digital I/O pin
ADC0_CH3
AI
ADC analog input 3 for sample-and-hold A
P6.4
I/O
General purpose digital I/O pin
ADC0_CH4
AI
ADC analog input 4 for sample-and-hold A
ACMP1_N
AI
Analog comparator 1 negative input
P6.5
I/O
General purpose digital I/O pin
ADC0_CH5
AI
ADC analog input 5 for sample-and-hold A
ACMP1_P
AI
Analog comparator 1 positive input
P6.6
I/O
General purpose digital I/O pin
ADC0_CH6
AI
ADC analog input 6 for sample-and-hold A
P6.7
I/O
General purpose digital I/O pin
ADC0_CH7
AI
ADC analog input 7 for sample-and-hold A
P7.0
I/O
General purpose digital I/O pin
ADC1_CH0
AI
ADC analog input 0 for sample-and-hold B
P7.1
I/O
General purpose digital I/O pin
ADC1_CH1
AI
ADC analog input 1 for sample-and-hold B
P7.2
I/O
General purpose digital I/O pin
ADC1_CH2
AI
ADC analog input 2 for sample-and-hold B
P7.3
I/O
General purpose digital I/O pin
ADC1_CH3
AI
ADC analog input 3 for sample-and-hold B
P7.4
I/O
General purpose digital I/O pin
ADC1_CH4
AI
ADC analog input 4 for sample-and-hold B
ACMP2_N
AI
Analog comparator 2 negative input
P7.5
I/O
General purpose digital I/O pin
ADC1_CH5
AI
ADC analog input 5 for sample-and-hold B
ACMP2_P
AI
Analog comparator 2 positive input
P7.6
I/O
General purpose digital I/O pin
ADC1_CH6
AI
ADC analog input 6 for sample-and-hold B
P7.7
I/O
General purpose digital I/O pin
ADC1_CH7
AI
ADC analog input 7 for sample-and-hold B
P8.0
I/O
General purpose digital I/O pin
OP0_P
AI
OP Amplifier 0 positive input
28
27
26
25
24
44
43
42
41
40
39
38
37
34
Page 20 of 69
Rev 1.01
M0519
Pin Number
Pin Name
100- pin
64-pin
48-pin
71
44
33
70
85
84
43
-
-
Pin
Type[1]
Description
P8.1
I/O
General purpose digital I/O pin
OP0_N
AI
OP Amplifier 0 negative input
P8.2
I/O
General purpose digital I/O pin
OP0_O
AO
OP Amplifier 0 output
P8.3
I/O
General purpose digital I/O pin
ACMP0_N
AI
Analog comparator negative input pin
P8.4
I/O
General purpose digital I/O pin
ACMP0_P
AI
Analog comparator positive input pin
32
-
-
91
-
-
P8.5
I/O
General purpose digital I/O pin
59
-
-
P8.6
I/O
General purpose digital I/O pin
P8.7
I/O
General purpose digital I/O pin
58
-
ACMP0_O
O
Analog comparator output pin
P9.0
I/O
General purpose digital I/O pin
OP1_O
AO
OP Amplifier 1 output
P9.1
I/O
General purpose digital I/O pin
OP1_N
AI
OP Amplifier 1 negative input
P9.2
I/O
General purpose digital I/O pin
OP1_P
AI
OP Amplifier 1 positive input
P9.3
I/O
General purpose digital I/O pin
86
87
88
92
57
58
59
-
45
46
47
PWM1_BRAKE1
99
100
2
13
12
-
-
-
-
9
8
P9.4
I/O
General purpose digital I/O pin
SPI1_CLK
I/O
SPI1 serial clock pin
P9.5
I/O
General purpose digital I/O pin
SPI1_MISO
I/O
SPI1 MISO (Master In, Slave Out) pin
P9.6
I/O
General purpose digital I/O pin
SPI1_MOSI
I/O
SPI1 MOSI (Master Out, Slave In) pin
P9.7
I/O
General purpose digital I/O pin
SPI1_SS
I/O
SPI1 slave select pin
PA.0
I/O
General purpose digital I/O pin
UART1_TXD
O
Data transmitter output pin for UART1
I2C0_SDA
I/O
I2C0 data input/output pin
PA.1
I/O
General purpose digital I/O pin
-
-
-
-
10
9
UART1_RXD
Jul. 31, 2015
Brake input pin 1 of PWM Unit 1
M0519 DATASHEET
98
I
I
Data Receiver input pin for UART1
Page 21 of 69
Rev 1.01
M0519
Pin Number
Pin Name
100- pin
64-pin
48-pin
I2C0_SCL
Pin
Type[1]
I/O
Description
I2C0 clock output pin
Note: Pin Type I = Digital Input, O = Digital Output; AI = Analog Input; P = Power Pin; AP = Analog Power
M0519 DATASHEET
Jul. 31, 2015
Page 22 of 69
Rev 1.01
M0519
5
BLOCK DIAGRAM
Timer / PWM
Memory
APROM 128/64 KB
ARM®
Cortex® -M0
72 MHz
Analog Interface
32-bit
Timer x 4
EPWM
Timer x 12
2 sets of 12-bit
ADC x 8
Watchdog
Timers
ICAP
Timer x 2
Operating Amp. x 2
LDROM 8 KB
Data Flash 4 KB
BPWM Timer x 2
SRAM 16 KB
Comparators x 3
Bridge
AHB Bus
Power Control
APB Bus
Clock Control
GPIO
Connectivity
PLL
General Purpose I/O
UART x 2
Reset Pin
SPI x 3
External Interrupt
I²C
LDO
Power-on Reset
HS Osc.
22.1184 MHz
HS Ext. Crystal
Osc. 4~24 MHz
LVR
Brown-out Detection
LS Osc.
10 kHz
®
Figure 5-1 NuMicro M0519 Series Block Diagram
M0519 DATASHEET
Jul. 31, 2015
Page 23 of 69
Rev 1.01
M0519
6
6.1
FUNCTIONAL DESCRIPTION
ARM® Cortex® -M0 Core
®
The Cortex -M0 processor is a configurable, multistage, 32-bit RISC processor, which has an
AMBA AHB-Lite interface and includes an NVIC component. It also has optional hardware debug
®
functionality. The processor can execute Thumb code and is compatible with other Cortex -M
profile processor. The profile supports two modes -Thread mode and Handler mode. Handler
mode is entered as a result of an exception. An exception return can only be issued in Handler
mode. Thread mode is entered on Reset, and can be entered as a result of an exception return.
Figure 6-1 shows the functional controller of processor.
CortexTM-M0 Components
CortexTM-M0 processor
Nested
Vectored
Interrupt
Controller
(NVIC)
Interrupts
Debug
CortexTM-M0
Processor
Core
Wakeup
Interrupt
Controller
(WIC)
Bus Matrix
Breakpoint
and
Watchpoint
Unit
Debugger
Interface
AHB-Lite
Interface
Debug
Access
Port
(DAP)
Serial Wire or
JTAG Debug Port
Figure 6-1 Functional Controller Diagram
M0519 DATASHEET
The implemented device provides the following components and features:
Jul. 31, 2015
A low gate count processor:
®
-
ARMv6-M Thumb instruction set
-
Thumb-2 technology
-
ARMv6-M compliant 24-bit SysTick timer
-
A 32-bit hardware multiplier
-
System interface supported with little-endian data accesses
-
Ability to have deterministic, fixed-latency, interrupt handling
-
Load/store-multiples and multicycle-multiplies that can be abandoned and
restarted to facilitate rapid interrupt handling
-
C Application Binary Interface compliant exception model. This is the ARMv6-M,
C Application Binary Interface (C-ABI) compliant exception model that enables
the use of pure C functions as interrupt handlers
-
Low Power Sleep mode entry using Wait For Interrupt (WFI), Wait For Event
(WFE) instructions, or the return from interrupt sleep-on-exit feature
NVIC:
Page 24 of 69
Rev 1.01
M0519
-
32 external interrupt inputs, each with four levels of priority
-
Dedicated Non-maskable Interrupt (NMI) input
-
Supports for both level-sensitive and pulse-sensitive interrupt lines
-
Supports Wake-up Interrupt Controller (WIC) and, providing Ultra-low Power
Sleep mode
Debug support
-
Four hardware breakpoints
-
Two watchpoints
-
Program Counter Sampling Register (PCSR) for non-intrusive code profiling
-
Single step and vector catch capabilities
Bus interfaces:
-
Single 32-bit AMBA-3 AHB-Lite system interface that provides simple integration
to all system peripherals and memory
-
Single 32-bit slave port that supports the DAP (Debug Access Port)
M0519 DATASHEET
Jul. 31, 2015
Page 25 of 69
Rev 1.01
M0519
6.2
System Manager
6.2.1
Overview
System management includes the following sections:
6.2.2
System Resets
System Power Distribution
System Memory Map
System management registers for Part Number ID, chip reset and on-chip controllers
reset , multi-functional pin control
System Timer (SysTick)
Nested Vectored Interrupt Controller (NVIC)
System Control registers
System Reset
The system reset can be issued by one of the following listed events. For these reset event flags
can be read by RSTSRC register.
Hardware Reset
Power-on Reset (POR)
Low level on the Reset pin (nRESET)
Watchdog Time-out Reset (WDT)
Low Voltage Reset (LVR)
Brown-out Detector Reset (BOD)
Software Reset
M0519 DATASHEET
SYS Reset - SYSRESETREQ (AIRCR[2])
Cortex -M0 Core One-shot Reset - CPU_RST (IPRSTC1[1])
Chip One-shot Reset - CHIP_RST (IPRSTC1[0])
®
Power-on Reset or CHIP_RST (IPRST1[0]) reset the whole chip including all peripherals,
external crystal circuit and BS (ISPCON[1]) bit.
SYSRESETREQ (AIRCR[2]) reset the whole chip including all peripherals, but does not reset
external crystal circuit and BS (ISPCON[1]) bit.
Jul. 31, 2015
Page 26 of 69
Rev 1.01
M0519
6.2.3
System Power Distribution
In this chip, the power distribution is divided into two segments.
Analog power from AVDD and AVSS provides the power for analog components
operation.
Digital power from VDD and VSS supplies the power to the I/O pins and internal
regulator which provides a fixed 1.8V power for digital operation.
The output of internal voltage regulators, LDO_CAP, requires an external capacitor which should
be located close to the corresponding pin. Analog power (AVDD) should be the same voltage level
of the digital power (VDD).
AVDD
AVSS
12-bit
SAR-ADC
Analog
Comparator
Temperature
Seneor
FLASH
Brownout
Detector
OPA
Low
Voltage
Reset
Internal
22.1184 MHz & 10 kHz
Oscillator
Digital Logic
LDO_CAP
1.8V
LDO
PLL
IO cell
GPIO
POR50
VSS
4~24MHz
Crystal
M0519 DATASHEET
PVDD
XT1_OUT
1uF
POR18
VDD
XT1_IN
®
Figure 6-2 NuMicro M0519 Series Power Distribution Diagram
Jul. 31, 2015
Page 27 of 69
Rev 1.01
M0519
6.2.4
System Memory Map
®
The NuMicro M0519 Series provides 4G-byte addressing space. The memory locations assigned
to each on-chip controllers are shown in Table 6-1. The detailed register definition, memory
space, and programming detailed will be described in the following sections for each on-chip
®
peripheral. The NuMicro M0519 Series only supports little-endian data format.
Address Space
Token
Controllers
0x0000_0000 – 0x0001_FFFF
FLASH_BA
FLASH Memory Space (128 KB)
0x2000_0000 – 0x2000_3FFF
SRAM_BA
SRAM Memory Space (16 KB)
Flash and SRAM Memory Space
AHB Controllers Space (0x5000_0000 – 0x501F_FFFF)
0x5000_0000 – 0x5000_01FF
GCR_BA
System Global Control Registers
0x5000_0200 – 0x5000_02FF
CLK_BA
Clock Control Registers
0x5000_0300 – 0x5000_03FF
INT_BA
Interrupt Multiplexer Control Registers
0x5000_4000 – 0x5000_7FFF
GPIO_BA
GPIO Control Registers
0x5000_C000 – 0x5000_FFFF
FMC_BA
Flash Memory Control Registers
0x5001_4000 – 0x5001_7FFF
HDIV_BA
Hardware Divider Register
APB1 Controllers Space (0x4000_0000 ~ 0x400F_FFFF)
M0519 DATASHEET
0x4000_4000 – 0x4000_7FFF
WDT_BA
Watchdog Timer Control Registers
0x4000_4100 – 0x4000_7FFF
WWDT_BA
Window Watchdog Timer Control Registers
0x4001_0000 – 0x4001_3FFF
TMR01_BA
Timer0/Timer1 Control Registers
0x4002_0000 – 0x4002_3FFF
I2C0_BA
I2C0 Interface Control Registers
0x4003_0000 – 0x4003_3FFF
SPI0_BA
SPI0 with master/slave function Control Registers
0x4003_4000 – 0x4003_7FFF
SPI1_BA
SPI1 with master/slave function Control Registers
0x4004_0000 – 0x4004_3FFF
BPWM0_BA
Basic PWM0 Control Registers
0x4005_0000 – 0x4005_3FFF
UART0_BA
UART0 Control Registers
0x400D_0000 – 0x400D_3FFF
ACMP_BA
Analog Comparator Control Registers
0x400E_0000 – 0x400E_3FFF
EADC_BA
Enhanced Analog-Digital-Converter (EADC) Control Registers
0x400F_0000 – 0x400F_3FFF
OPA_BA
Operation Amplifier Control Registers
APB2 Controllers Space (0x4010_0000 ~ 0x401F_FFFF)
0x4011_0000 – 0x4011_3FFF
TMR23_BA
Timer2/Timer3 Control Registers
0x4013_0000 – 0x4013_3FFF
SPI2_BA
SPI2 with master/slave function Control Registers
0x4015_0000 – 0x4015_3FFF
UART1_BA
UART1 Control Registers
Reserved
Reserved
Reserved
0x4019_0000 – 0x4019_3FFF
EPWM0_BA
Enhanced PWM0 Control Registers
0x4019_4000 – 0x4019_7FFF
EPWM1_BA
Enhanced PWM1 Control Registers
Jul. 31, 2015
Page 28 of 69
Rev 1.01
M0519
Address Space
Token
Controllers
0x401B_0000 – 0x401B_3FFF
ECAP0_BA
Enhanced Input Capture 0 Control Registers
0x401B_4000 – 0x401B_7FFF
ECAP1_BA
Enhanced Input Capture 1 Control Registers
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
System Controllers Space (0xE000_E000 ~ 0xE000_EFFF)
0xE000_E010 – 0xE000_E01F
SYST_BA
System Timer Control Registers
0xE000_E100 – 0xE000_E4EF
NVIC_BA
External Interrupt Controller Control Registers
0xE000_ED00 – 0xE000_ED3F
SCS_BA
System Control Registers
Table 6-1 Address Space Assignments for On-Chip Controllers
M0519 DATASHEET
Jul. 31, 2015
Page 29 of 69
Rev 1.01
M0519
6.2.5
System Timer (SysTick)
®
The Cortex -M0 includes an integrated system timer, SysTick, which provides a simple, 24-bit
clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The
counter can be used as a Real Time Operating System (RTOS) tick timer or as a simple counter.
When system timer is enabled, it will count down from the value in the SysTick Current Value
Register (SYST_CVR) to 0, and reload (wrap) to the value in the SysTick Reload Value Register
(SYST_RVR) on the next clock cycle, then decrement on subsequent clocks. When the counter
transitions to 0, the COUNTFLAG status bit is set. The COUNTFLAG bit clears on reads.
The SYST_CVR value is UNKNOWN on reset. Software should write to the register to clear it to 0
before enabling the feature. This ensures the timer will count from the SYST_RVR value rather
than an arbitrary value when it is enabled.
If the SYST_RVR is 0, the timer will be maintained with a current value of 0 after it is reloaded
with this value. This mechanism can be used to disable the feature independently from the timer
enable bit.
®
®
For more detailed information, please refer to the “ARM Cortex -M0 Technical Reference
®
Manual” and “ARM v6-M Architecture Reference Manual”.
M0519 DATASHEET
Jul. 31, 2015
Page 30 of 69
Rev 1.01
M0519
6.2.6
Nested Vectored Interrupt Controller (NVIC)
®
The Cortex -M0 provides an interrupt controller as an integral part of the exception mode, named
as “Nested Vectored Interrupt Controller (NVIC)”, which is closely coupled to the processor core
and provides following features:
Nested and Vectored interrupt support
Automatic processor state saving and restoration
Reduced and deterministic interrupt latency
The NVIC prioritizes and handles all supported exceptions. All exceptions are handled in “Handler
Mode”. This NVIC architecture supports 32 (IRQ[31:0]) discrete interrupts with 4 levels of priority.
All of the interrupts and most of the system exceptions can be configured to different priority
levels. When an interrupt occurs, the NVIC will compare the priority of the new interrupt to the
current running one’s priority. If the priority of the new interrupt is higher than the current one, the
new interrupt handler will override the current handler.
When an interrupt is accepted, the starting address of the interrupt service routine (ISR) is fetched
from a vector table in memory. There is no need to determine which interrupt is accepted and
branch to the starting address of the correlated ISR by software. While the starting address is
fetched, NVIC will also automatically save processor state including the registers “PC, PSR, LR,
R0~R3, R12” to the stack. At the end of the ISR, the NVIC will restore the mentioned registers
from stack and resume the normal execution. Thus it will take less and deterministic time to
process the interrupt request.
The NVIC supports “Tail Chaining” which handles back-to-back interrupts efficiently without the
overhead of states saving and restoration and therefore reduces delay time in switching to
pending ISR at the end of current ISR. The NVIC also supports “Late Arrival” which improves the
efficiency of concurrent ISRs. When a higher priority interrupt request occurs before the current
ISR starts to execute (at the stage of state saving and starting address fetching), the NVIC will
give priority to the higher one without delay penalty. Thus it advances the real-time capability.
Jul. 31, 2015
Page 31 of 69
®
®
Cortex -M0 Technical Reference
M0519 DATASHEET
For more detailed information, please refer to the “ARM
®
Manual” and “ARM v6-M Architecture Reference Manual”.
Rev 1.01
M0519
6.2.6.1
Exception Model and System Interrupt Map
®
Table 6-2 lists the exception model supported by the NuMicro M0519 Series. Software can set
four levels of priority on some of these exceptions as well as on all interrupts. The highest userconfigurable priority is denoted as “0” and the lowest priority is denoted as “3”. The default priority
of all the user-configurable interrupts is “0”. Note that priority “0” is treated as the fourth priority on
the system, after three system exceptions “Reset”, “NMI” and “Hard Fault”.
Exception Name
Vector Number
Priority
Reset
1
-3
NMI
2
-2
Hard Fault
3
-1
Reserved
4 ~ 10
Reserved
SVCall
11
Configurable
Reserved
12 ~ 13
Reserved
PendSV
14
Configurable
SysTick
15
Configurable
Interrupt (IRQ0 ~ IRQ31)
16 ~ 47
Configurable
Table 6-2 Exception Model
Exception
Number
Vector
Address
1 ~ 15
Interrupt Number
(Bit In Interrupt
Registers)
Interrupt
Name
Source
Module
-
-
-
Exception Description
System exceptions
Power
Down
Wake-Up
-
M0519 DATASHEET
Brown-out low voltage detected
interrupt
Yes
WDT
Watchdog Timer interrupt
Yes
EINT0_INT
P3.2
External signal interrupt from P3.2 pin
Yes
3
EINT1_INT
P3.3
External signal interrupt from P3.3 pin
Yes
0x50
4
GPG0_INT
21
0x54
5
GPG1_INT
22
0x58
6
23
0x5C
24
16
0x40
0
BOD_INT
Brown-out
17
0x44
1
WDT_INT
18
0x48
2
19
0x4C
20
P0~P4 except External interrupt from GPIO group 0
P3.2 and P3.3 (P0~P4) except P3.2 and P3.3
Yes
P5~PA
External interrupt from GPIO group 1
(P5~PA)
Yes
BPWM0_INT
BPWM0
Basic PWM0 interrupt
No
7
EADC0_INT
EADC0
EADC0 interrupt
No
0x60
8
TMR0_INT
TMR0
Timer 0 interrupt
No
25
0x64
9
TMR1_INT
TMR1
Timer 1 interrupt
No
26
0x68
10
TMR2_INT
TMR2
Timer 2 interrupt
No
27
0x6C
11
TMR3_INT
TMR3
Timer 3 interrupt
No
28
0x70
12
UART0_INT
UART0
UART0 interrupt
Yes
Jul. 31, 2015
Page 32 of 69
Rev 1.01
M0519
Exception
Number
Vector
Address
Interrupt Number
(Bit In Interrupt
Registers)
Interrupt
Name
Source
Module
29
0x74
13
UART1_INT
UART1
30
0x78
14
SPI0_INT
31
0x7C
15
32
0x80
33
Exception Description
Power
Down
Wake-Up
UART1 interrupt
Yes
SPI0
SPI0 interrupt
No
SPI1_INT
SPI1
SPI1 interrupt
No
16
SPI2_INT
SPI2
SPI2 interrupt
No
0x84
17
Reserved
Reserved
Reserved
-
33
0x84
17
Reserved
Reserved
Reserved
No
34
0x88
18
I2C0_INT
I2C0
I C0 interrupt
Yes
35
0x8C
19
CKD_INT
CKD
CKD interrupt
No
36
0x90
20
Reserved
Reserved
Reserved
-
36
0x90
20
Reserved
Reserved
Reserved
-
37
0x94
21
EPWM0_INT
EPWM0
Enhanced PWM0 interrupt
No
38
0x98
22
EPWM1_INT
EPWM1
Enhanced PWM1 interrupt
No
39
0x9C
23
ECAP0_INT
ECAP0
Enhanced input capture 0 interrupt
No
40
0xA0
24
ECAP1_INT
ECAP1
Enhanced input capture 1 interrupt
No
41
0xA4
25
ACMP_INT
ACMP
Analog Comparator 0 or 1, or OP
Amplifier digital output interrupt
42
0xA8
26
Reserved
Reserved
Reserved
-
43
0xAC
27
Reserved
Reserved
Reserved
-
42
0xA8
26
Reserved
Reserved
Reserved
-
43
0xAC
27
Reserved
Reserved
Reserved
-
44
0xB0
28
PWRWU_INT
CLKC
Clock controller interrupt for chip wake
up from power-down state
-
45
0xB4
29
EADC1_INT
EADC1
EADC1 interrupt
No
46
0xB8
30
EADC2_INT
EADC2
EADC2 interrupt
No
47
0xBC
31
EADC3_INT
EADC3
EADC3 interrupt
No
2
Yes (only
by analog
comparator)
Jul. 31, 2015
Page 33 of 69
Rev 1.01
M0519 DATASHEET
Table 6-3 System Interrupt Map Vector Table
M0519
6.2.6.2
Vector Table
When an interrupt is accepted, the processor will automatically fetch the starting address of the
interrupt service routine (ISR) from a vector table in memory. For ARMv6-M, the vector table base
address is fixed at 0x00000000. The vector table contains the initialization value for the stack
pointer on reset, and the entry point addresses for all exception handlers. The vector number on
previous page defines the order of entries in the vector table associated with exception handler
entry as illustrated in previous section.
Vector Table Word Offset (Bytes)
Description
0
SP_main – The Main stack pointer
Vector Number
Exception Entry Pointer using that Vector Number
Table 6-4 Vector Table
6.2.6.3
Operation Description
NVIC interrupts can be enabled and disabled by writing to their corresponding Interrupt SetEnable or Interrupt Clear-Enable register bit-field. The registers use a write-1-to-enable and write1-to-clear policy, both registers reading back the current enabled state of the corresponding
interrupts. When an interrupt is disabled, interrupt assertion will cause the interrupt to become
Pending, however, the interrupt will not be activated. If an interrupt is Active when it is disabled, it
remains in its Active state until cleared by reset or an exception return. Clearing the enable bit
prevents new activations of the associated interrupt.
NVIC interrupts can be pended/un-pended using a complementary pair of registers to those used
to enable/disable the interrupts, named the Set-Pending Register and Clear-Pending Register
respectively. The registers use a write-1-to-enable and write-1-to-clear policy, both registers
reading back the current pended state of the corresponding interrupts. The Clear-Pending
Register has no effect on the execution status of an Active interrupt.
NVIC interrupts are prioritized by updating an 8-bit field within a 32-bit register (each register
supporting four interrupts).
M0519 DATASHEET
The general registers associated with the NVIC are all accessible from a block of memory in the
System Control Space and will be described in next section.
Jul. 31, 2015
Page 34 of 69
Rev 1.01
M0519
6.3
Clock Controller
6.3.1
Overview
The clock controller generates the clocks for the whole chip, including system clocks and all
peripheral clocks. The clock controller also implements the power control function with the
individually clock ON/OFF control, clock source selection and clock divider. The chip enters
®
Power-down mode when Cortex -M0 core executes the WFI instruction only if the SLEEPDEEP
(SCR[2]) bit is set to 1. After that, chip enters Power-down mode and wait for wake-up interrupt
source triggered to leave Power-down mode. In the Power-down mode, the clock controller turns
off the 4~24 MHz external high speed crystal oscillator and 22.1184 MHz internal high speed RC
oscillator to reduce the overall system power consumption. Figure 6-3 shows the clock generator
and the overview of the clock source control.
The clock generator consists of 4 clock sources as listed below:
4~24 MHz external high speed crystal oscillator (HXT)
Programmable PLL output clock frequency (PLL_FOUT), PLL source can be selected
from 4~24 MHz external high speed crystal oscillator (HXT) or 22.1184 MHz internal
high speed RC oscillator (HIRC)
22.1184 MHz internal high speed RC oscillator (HIRC)
10 kHz internal low speed RC oscillator (LIRC)
Clock Source
Clock Stable Count Value
HXT
4096 HXT clock
PLL
6144 PLL source
(PLL source is HXT if PLL_SRC(PLLCON[19]) = 0, or HIRC if PLL_SRC(PLLCON[19]) = 1)
HIRC
256 HIRC clock
LIRC
1 LIRC
Table 6-5 Clock Stable Count Value Table
Jul. 31, 2015
Page 35 of 69
Rev 1.01
M0519 DATASHEET
Each of these clock sources has certain stable time to wait for clock operating at stable
frequency. When clock source is enabled, a stable counter start counting and correlated clock
stable
index
(OSC22M_STB(CLKSTATUS[4]),
OSC10K_STB(CLKSTATUS[3]),
PLL_STB(CLKSTATUS[2]) and XTL12M_STB(CLKSTATUS[0])) are set to 1 after stable counter
value reach a define value as Table 6-5. System and peripheral can use these clock as its
operating clock only when correlate clock stable index is set to 1. The clock stable index will auto
clear
when
user
disables
the
clock
source
(OSC10K_EN(PWRCON[3]),
OSC22M_EN(PWRCON[2]), XTL12M_EN(PWRCON[0]) and PD(PLLCON[16])). Besides, the
clock stable index of HXT, HIRC and PLL will auto clear when chip enter power-down and clock
stable counter will re-counting after chip wake-up if correlate clock is enabled.
M0519
XTL12M_EN (PWRCON[0])
XT1_OUT
HXT
4~24 MHz
HXT
PLL_SRC (PLLCON[19])
XT1_IN
0
OSC22M_EN (PWRCON[2])
PLL
PLL FOUT
1
22.1184 MHz
HIRC
HIRC
OSC10K_EN (PWRCON[3])
LIRC
10 kHz
LIRC
Legend:
HXT = 4~24 MHz external high speed crystal oscillator
HIRC = 22.1184 MHz internal high speed RC oscillator
LIRC = 10 kHz internal low speed RC oscillator
Figure 6-3 Clock Generator Block Diagram
M0519 DATASHEET
Jul. 31, 2015
Page 36 of 69
Rev 1.01
M0519
22.1184
MHz
22.1184 MHz
111
10 kHz
4~12
MHz
CPUCLK
CPU
011
PLLFOUT
010
Reserved
1/(HCLK_N+1)
ACMP
I2C
TMR0
TMR1
TMR2
TMR3
BPWM0
EPWM0
EPWM1
ECAP0
ECAP1
OPA
QEI0
QEI1
MDU
HCLK
001
10 kHz
4~24 MHz
PCLK
000
CLKSEL0[2:0]
22.1184 MHz
4~24 MHz
1
PLLFOUT
0
PLLCON[19]
22.1184 MHz
11
HCLK
10
FRQDIV
Reserved
01
4~24 MHz
22.1184 MHz
HCLK
4~24 MHz
1/2
111
1/2
011
1/2
010
00
CPUCLK
CLKSEL2[3:2]
1
SysTick
0
SYST_CSR[2]
Reserved
CLKSEL2[17:16]
001
4~24 MHz
10 kHz
000
11
WWDT
10
CLKSEL0[5:3]
10 kHz
HCLK
HCLK
HCLK
PLLFOUT
4~24 MHz
CLKSEL1[25:24]
11
01
00
HCLK
PLLFOUT
10
1/512
01
1/128
00
WDT
10 kHz
22.1184 MHz
CLKSEL1[1:0]
BOD
FMC
1
SPI0
SPI1
SPI2
0
CLKSEL1[4]
CLKSEL1[5]
CLKSEL1[6]
PCLK
1/(UART_N+1)
UART0-1
1/(EADC_N+1)
EADC
Note: Before clock switching, both the pre-selected and newly selected clock sources must
be turned on and stable.
Figure 6-4 Clock Generator Global View Diagram
Jul. 31, 2015
Page 37 of 69
Rev 1.01
M0519 DATASHEET
22.1184 MHz
11
1/2048
M0519
6.4
Flash Memory Controller (FMC)
6.4.1
Overview
®
The NuMicro M0519 Series is equipped with 128/64 KB on-chip embedded flash for application
program memory (APROM) and data flash, and with 8K bytes for ISP loader program memory
(LDROM) that could be programmed boot loader to update APROM and data flash through In
System Programming (ISP) procedure. ISP function enables user to update embedded flash
®
when chip is soldered on PCB. After chip is powered on, Cortex -M0 CPU fetches code from
®
APROM or LDROM decided by boot select CBS (Config0[7:6]). By the way, the NuMicro M0519
Series also provides data flash for user to store some application dependent data before chip
power off. For 128 KB APROM device, the data flash is shared with original 128 KB program
memory and its start address is configurable in Config1. For 64 KB APROM device, the data flash
is fixed at 4K bytes.
6.4.2
Features
Runs up to 72 MHz and optional up to 50 MHz with zero wait state for continuous address
read access
Supports 512 bytes page erase for all embedded flash
Supports 128/64 Kbytes application program ROM (APROM)
Supports 8 KB loader ROM (LDROM)
Supports 4KB data flash for 64 Kbytes APROM device
Supports configurable data flash size for 128KB APROM device
Supports 8 bytes User Configuration block to control system initiation
Support In-System-Programming (ISP) / In-Application-Programming (IAP) to update
embedded flash memory
M0519 DATASHEET
Jul. 31, 2015
Page 38 of 69
Rev 1.01
M0519
6.5
General Purpose I/O (GPIO)
6.5.1
Overview
®
The NuMicro M0519 Series has up to 82 General Purpose I/O pins to be shared with other
function pins depending on the chip configuration. These 82 pins are arranged in 10 ports named
as P0, P1, P2, P3, P4, P5, P6, P7, P8, P9 and PA. The P0/1/2/3/4/5/6/7/8/9 port has the
maximum of 8 pins and PA port has the maximum of 2 pins. Each of the 82 pins is independent
and has the corresponding register bits to control the pin mode function and data.
The I/O type of each of I/O pins can be configured by software individually as input, output, opendrain or Quasi-bidirectional mode. After reset, the I/O mode of all pins are stay at input mode. In
Quasi-bidirectional mode, I/O pin has a very weak individual pull-up resistor which is about
110~300 K for VDD is from 5.0 V to 2.5 V.
6.5.2
Features
Four I/O modes:
Quasi-bidirectional
Push-Pull output
Open-Drain output
Input only with high impendence
TTL/Schmitt trigger input selectable by Px_TYPE[7:0] in Px_MFP[23:16]
I/O pin configured as interrupt source with edge/level setting
I/O pin internal pull-up resistor enabled only in Quasi-bidirectional I/O mode
Enabling pin interrupt function will also enable the pin wake-up function
M0519 DATASHEET
Jul. 31, 2015
Page 39 of 69
Rev 1.01
M0519
6.6
Timer Controller (TIMER)
6.6.1
Overview
The Timer controller includes four 32-bit timers, Timer0 ~ Timer3, allowing user to easily
implement a timer control for applications. The timer can perform functions, such as frequency
measurement, delay timing, clock generation, and event counting by external input pins, and
interval measurement by external capture pins.
6.6.2
Features
Four sets of 32-bit timers with 24-bit up counter and one 8-bit prescale counter
Independent clock source for each timer
Provides one-shot, periodic, toggle-output and continuous counting operation modes
24-bit up counter value is readable through TDR (TDR[23:0])
Supports event counting function
Supports external capture pin event for interval measurement
Supports external capture pin event to reset 24-bit up counter
M0519 DATASHEET
Jul. 31, 2015
Page 40 of 69
Rev 1.01
M0519
6.7
Basic PWM Generator and Capture Timer (BPWM)
6.7.1
Overview
®
The NuMicro M0519 series has 1 set of BPWM group (BPWM0), supporting 1 set of BPWM
generators that can be configured as 2 independent BPWM outputs, BPWM0_CH0 and
BPWM0_CH1, or as 1 complementary BPWM pairs, (BPWM0_CH0, BPWM0_CH1) with
programmable dead-zone generator.
The BPWM generator has one 8-bit prescaler, one clock divider with 5 divided frequencies (1, 1/2,
1/4, 1/8, 1/16), two BPWM Timers including two clock selectors, two 16-bit BPWM down-counters
for BPWM period control, two 16-bit comparators for BPWM duty control and one dead-zone
generator. The BPWM generator provides two independent BPWM interrupt flags which are set
by hardware when the corresponding BPWM period down counter reaches zero.
Each BPWM interrupt source with its corresponding enable bit can cause CPU to request BPWM
interrupt. The BPWM generators can be configured as one-shot mode to produce only one
BPWM cycle signal or auto-reload mode to output BPWM waveform continuously. BPWM can be
used to trigger EADC when operation in center-aligned mode.
6.7.2
6.7.2.1
Features
BPWM Function:
Up to 1 BPWM group to support 2 BPWM channels or 1 BPWM paired channels.
Supports 8-bit prescaler from 1 to 255
Up to 16-bit resolution BPWM timer
PWM timer supports edge-aligned and center-aligned operation type
One-shot or Auto-reload mode BPWM
PWM Interrupt request synchronized with BPWM period or duty
Supports dead-zone generator with 8-bit resolution for BPWM paired channels
Supports trigger EADC
M0519 DATASHEET
6.7.2.2
Capture Function:
Supports 2 Capture input channels shared with 2 BPWM output channels
Supports rising or falling capture condition
Supports rising or falling capture interrupt
Jul. 31, 2015
Page 41 of 69
Rev 1.01
M0519
6.8
Enhanced PWM Generator (EPWM)
6.8.1
Overview
This device has two built-in PWM units with the same architecture whose function is specially
designed for driving motor control applications.
6.8.2
Features
Each unit supports the features below:
Three independent 16-bit PWM duty control units with maximum 6 port pins:
3 independent PWM output:
EPWM0_CH0, EPWM0_CH2 and EPWM0_CH4 for Unit 0
EPWM1_CH0, EPWM1_CH2 and EPWM1_CH4 for Unit 1
3 complementary PWM pairs, with each pin in a pair mutually complement to each
other and capable of programmable dead-time insertion:
(EPWMx_CH0, EPWMx_CH1), (PWMx_CH2, EPWMx_CH3) and (EPWMx_CH4,
EPWMx_CH5) where x=0~1.
3 synchronous PWM pairs, with each pin in a pair in-phase:
(EPWMx_CH0, EPWMx_CH1), (EPWMx_CH2, EPWMx_CH3) and (EPWMx_CH4,
EPWMx_CH5) where x=0~1
M0519 DATASHEET
Group control bits:
EPWMx_CH2 and EPWMx_CH4 are synchronized with EPWMx_CH0
Supports Edge aligned mode and Center aligned mode
Programmable dead-time insertion between complementary paired PWMs
Each pin of EPWMx_CH0 to EPWMx_CH5 has independent polarity setting control
Mask output control for Electrically Commutated Motor operation
Tri-state output at reset and brake state
Hardware brake protection
Two Interrupt Sources:
Interrupt is synchronously requested at PWM frequency when up/down counter
comparison matched (edge and center aligned modes) or underflow (center aligned
mode).
Interrupt is requested when external brake pins asserted
PWM signals before polarity control stage are defined in the view of positive logic. The PWM
ports is active high or active low are controlled by polarity control register.
High Source/Sink current.
Supports trigger EADC
Jul. 31, 2015
Page 42 of 69
Rev 1.01
M0519
6.9
Enhanced Input Capture Timer (ECAP)
6.9.1
Overview
This device provides up to two units of Input Capture Timer/Counter which capture function can detect
the digital edge changed signal at channel inputs. Each unit has three input capture channels. The
timer/counter is equipped with up counting, reload and compare-match capabilities.
6.9.2
Features
Up to two Input Capture Timer/Counter Units, Input Capture 0 and Input Capture 1.
Each unit has own interrupt vector
24-bit Input Capture up-counting timer/counter
With noise filter in front end of input ports
Edge detector with three options
Rising edge detection
Falling edge detection
Both edge detection
Each input channel is supported with one capture counter hold register
Captured event reset/reload capture counter option
Supports the compare-match function
M0519 DATASHEET
Jul. 31, 2015
Page 43 of 69
Rev 1.01
M0519
6.10 Watchdog Timer (WDT)
6.10.1 Overview
The purpose of Watchdog Timer (WDT) is to perform a system reset when system runs into an
unknown state. This prevents system from hanging for an infinite period of time. Besides, this
Watchdog Timer supports the function to wake-up system from Idle/Power-down mode.
6.10.2 Features
18-bit free running up counter for WDT time-out interval
Selectable time-out interval (2 ~ 2 ) and the time-out interval is 1.6 ms ~ 26.214 s if
WDT_CLK = 10 kHz
System kept in reset state for a period of (1 / WDT_CLK) * 63
Supports selectable WDT reset delay period, including 1026、130、18 or 3 WDT_CLK reset
delay period
Supports to force WDT enabled after chip powered on or reset by setting CWDTEN in
Config0 register
Supports WDT time-out wake-up function only if WDT clock source is selected as 10 kHz
4
18
M0519 DATASHEET
Jul. 31, 2015
Page 44 of 69
Rev 1.01
M0519
6.11 Window Watchdog Timer (WWDT)
6.11.1 Overview
The Window Watchdog Timer is used to perform a system reset within a specified window period to
prevent software from running to uncontrollable state by any unpredictable condition usually generated
by external interferences or unexpected logical conditions.
When the window function is used to trim the watchdog behavior to match the application perfectly,
software must refresh the counter before time-out.
6.11.2 Features
6-bit down counter value WWDTCVAL (WWDTCVR[5:0]) and 6-bit compare value WINCMP
(WWDTCR[21:16]) to make the WWDT time-out window period flexible
Supports 4-bit value PERIODSEL (WWDTCR[11:8]) to programmable maximum 11-bit
prescale counter period of WWDT counter
WWDT counter suspends in Idle/Power-down mode
M0519 DATASHEET
Jul. 31, 2015
Page 45 of 69
Rev 1.01
M0519
6.12 Universal Asynchronous Receiver Transmitter (UART)
6.12.1 Overview
®
The NuMicro M0519 series provides two channels of Universal Asynchronous
Receiver/Transmitters (UART). UART Controller performs Normal Speed UART and supports
flow control function. The UART Controller performs a serial-to-parallel conversion on data
received from the peripheral and a parallel-to-serial conversion on data transmitted from the CPU.
Each UART Controller channel supports seven types of interrupts. The UART controller also
supports IrDA SIR, RS-485 and LIN.
6.12.2 Features
Full duplex, asynchronous communications
Separates receive / transmit 16 bytes entry FIFO for data payloads
Supports hardware auto-flow control/flow control function (nCTS, nRTS) and programmable
nRTS flow control trigger level
Programmable receiver buffer trigger level
Supports programmable baud-rate generator for each channel individually
Supports nCTS wake-up function
Supports 8-bit receiver buffer time out detection function
Programmable transmitting data delay time between the last stop and the next start bit by
setting DLY (UA_TOR [15:8]) register
Supports break error, frame error, parity error and receive / transmit buffer overflow detect
function
Fully programmable serial-interface characteristics
M0519 DATASHEET
Programmable data bit length, 5-, 6-, 7-, 8-bit character
Programmable parity bit, even, odd, no parity or stick parity bit generation and
detection
Programmable stop bit length, 1, 1.5, or 2 stop bit generation
IrDA SIR function mode
Supports 3-/16-bit duration for normal mode
LIN function mode
Supports LIN master/slave mode
Supports programmable break generation function for transmitter
Supports break detect function for receiver
RS-485 function mode
Supports RS-485 9-bit mode
Supports hardware or software direct enable control provided by nRTS pin
Jul. 31, 2015
Page 46 of 69
Rev 1.01
M0519
6.13 I2C Serial Interface Controller (I²C)
6.13.1 Overview
I2C is a two-wire, bi-directional serial bus that provides a simple and efficient method of data
exchange between devices. The I2C standard is a true multi-master bus including collision
detection and arbitration that prevents data corruption if two or more masters attempt to control
2
the bus simultaneously. I C controller supports Power-down wake-up function.
6.13.2 Features
The I2C bus uses two wires (SDA and SCL) to transfer information between devices connected to
the bus. The main features of the bus are:
Master/Slave mode
Bidirectional data transfer between masters and slaves
Multi-master bus (no central master)
Arbitration between simultaneously transmitting masters without corruption of serial data on
the bus
Serial clock synchronization allows devices with different bit rates to communicate via one
serial bus
Serial clock synchronization can be used as a handshake mechanism to suspend and
resume serial transfer
A built-in a 14-bit time out counter requested the I2C interrupt if the I2C bus hangs up and
timer-out counter overflows.
External pull-up resistors are needed for high output
Programmable clocks allow versatile rate control
Supports 7-bit addressing mode
Supports multiple address recognition ( four slave address with mask option)
Jul. 31, 2015
Page 47 of 69
M0519 DATASHEET
Rev 1.01
M0519
6.14 Serial Peripheral Interface (SPI)
6.14.1 Overview
The Serial Peripheral Interface (SPI) is a synchronous serial data communication protocol that
operates in full duplex mode. Devices communicate in Master/Slave mode with the 4-wire bi®
direction interface. The NuMicro M0519 series contains up to three sets of SPI controllers
performing a serial-to-parallel conversion on data received from a peripheral device, and a
parallel-to-serial conversion on data transmitted to a peripheral device. Each set of SPI controller
can be configured as a master or a slave device.
6.14.2 Features
Up to three sets of SPI controllers
Supports Master or Slave mode operation
Configurable bit length of a transaction word from 8 to 32-bit
Provides separate 8-layer depth transmit and receive FIFO buffers
Supports MSB first or LSB first transfer sequence
Supports the Byte Reorder function
Supports 3-wire, no slave select signal, bi-direction interface
M0519 DATASHEET
Jul. 31, 2015
Page 48 of 69
Rev 1.01
M0519
6.15 Hardware Divider (HDIV)
6.15.1 Overview
The hardware divider is useful to the high performance application. The hardware divider is a
signed, integer divider with quotient and remainder outputs.
6.15.2 Features
Supports Signed (two’s complement) integer calculation.
Supports 32-bit dividend with 16-bit divisor calculation capacity.
Supports 32-bit quotient and 16-bit remainder outputs.
Supports divided by 0 warning flag.
7 HCLK clocks taken for one cycle calculation.
Software triggered with finish flag.
M0519 DATASHEET
Jul. 31, 2015
Page 49 of 69
Rev 1.01
M0519
6.16 Enhanced Analog-to-Digital Converter (EADC)
6.16.1 Overview
®
The NuMicro M0519 Series contains two 12-bit successive approximation analog-to-digital converters
(SAR A/D converter) with 16 input channels. The two A/D converters ADCA and ADCB can be
sampled with Simultaneous or Single Sampling mode. The A/D converters can be started by software,
PWM triggers, timer0~3 overflow pulse triggers, ADINT0, ADINT1 interrupt EOC pulse trigger and
external STADC pin input signal.
Note: The analog input port pins must be configured as input type before the EADC function is
enabled.
6.16.2 Features
Analog input voltage range: 0~VREF(Max to 5.0V).
12-bit resolution and 10-bit accuracy is guaranteed.
Up to 16 single-end analog input channels.
Two SAR ADC converters.
Four EADC interrupts with individual interrupt vector addresses.
Maximum EADC clock frequency: 16MHz.
Up to 1.6M SPS conversion rate, each of ADC converter conversion time less than 1.25μs.
Two operating modes
Single sampling mode: two ADC converters run at normal operation.
Simultaneous sampling mode: Allow two ADC converters can be sampled
simultaneously.
An A/D conversion can be started by:
M0519 DATASHEET
Writing 1 to ADST(ADSSTR[n]) bit ( n = 0~15) through software
External pin STADC
Timer0~3 overflow pulse triggers
ADINT0, ADINT1 interrupt EOC pulse triggers
PWM triggers
Conversion results are held in 16 data registers with valid and overrun indicators.
SAMPLEA0~7 ADC control logic modules, each of them is configurable for ADCA converter
channel AINA0~7 and trigger source.
SAMPLEB0~7 ADC control logic modules, each of them is configurable for ADCB converter
channel AINB0~7 and trigger source.
Channel AINA0 supports 2 input sources: external analog voltage and internal OP0 Amplifier
output voltage.
Channel AINB0 supports 2 input sources: external analog voltage and internal OP1 Amplifier
output voltage.
Channel AINA7 supports 4 input sources: external analog voltage, internal fixed band-gap
voltage, internal temperature sensor output, and analog ground.
Jul. 31, 2015
Page 50 of 69
Rev 1.01
M0519
6.17 Analog Comparator (ACMP)
6.17.1 Overview
®
The NuMicro M0519 Series contains three comparators. The comparator output is logic 1 when
positive input voltage is greater than negative input voltage; otherwise the output is logic 0. Each
comparator can be configured to cause an interrupt when the comparator output value changes.
The block diagram is shown in 錯誤! 找不到參照來源。.
6.17.2 Features
Analog input voltage range: 0~ AVDD
Supports hysteresis function
Supports wake-up function
Supports comparator output inverse function
Supports the comparator output can be the brake source for EPWM function
ACMP0 supports
2 positive sources: ACMP0_P and OP0_O
2 negative sources: ACMP0_N and Internal band-gap voltage (VBG)
ACMP1 supports
2 positive sources: ACMP1_P and OP1_O
2 negative sources: ACMP1_N and Internal band-gap voltage (VBG)
ACMP2 supports
1 positive sources: ACMP2_P
2 negative sources: ACMP2_N and Internal band-gap voltage (VBG)
Shares one ACMP interrupt vector for all comparators
M0519 DATASHEET
Jul. 31, 2015
Page 51 of 69
Rev 1.01
M0519
6.18 OP Amplifier (OPA)
6.18.1 Overview
This device integrated two operational amplifiers. It can be enabled through OP0_EN (OPACR[0]) and
OP1_EN (OPACR[1]) bit. User can measure the output of the OP amplifier through the integrated A/D
converter.
6.18.2 Features
Analog input voltage range: 0~AVDD
Supports two analog OP amplifiers
Supports OP output voltage measurement by A/D converter
Supports Schmitt trigger buffer outputs and generate interrupt
OP amplifier 0 output can be an optional input source of integrated comparator 0 positive
input
OP amplifier 1 output can be an optional input source of integrated comparator 1 positive
input
M0519 DATASHEET
Jul. 31, 2015
Page 52 of 69
Rev 1.01
M0519
7
7.1
ELECTRICAL CHARACTERISTICS
Absolute Maximum Ratings
SYMBOL
PARAMETER
MIN
MAX
UNIT
VDDVSS
-0.3
+6.3
V
VIN
VSS-0.3
VDD+0.3
V
1/tCLCL
4
24
MHz
Operating Temperature
TA
-40
105
C
Storage Temperature
TST
-55
+150
C
-
120
mA
Maximum Current out of VSS
120
mA
Maximum Current sunk by a I/O pin
35
mA
Maximum Current sourced by a I/O pin
35
mA
Maximum Current sunk by total I/O pins
100
mA
Maximum Current sourced by total I/O pins
100
mA
DC Power Supply
Input Voltage
Oscillator Frequency
Maximum Current into VDD
Note: Exposure to conditions beyond those listed under absolute maximum ratings may adversely affects the lift and
reliability of the device.
M0519 DATASHEET
Jul. 31, 2015
Page 53 of 69
Rev 1.01
M0519
7.2
DC Electrical Characteristics
SPECIFICATION
PARAMETER
Operation voltage
Power Ground
SYM.
VDD
VSS/
AVSS
TEST CONDITIONS
MIN.
TYP.
MAX.
UNIT
2.5
-
5.5
V
-0.3
-
-
V
LDO Output Voltage
VLDO
1.62
1.8
1.98
V
Analog Operating Voltage
AVDD
2.5
-
VDD
V
Analog Reference Voltage
VREF
1.2
-
AVDD
V
Operating Current
IDD1
VDD =2.5V ~ 5.5V
VDD >= 2.5V
HIRC
PLL
All digital
module
5.5V 12MHz
Χ
VDD
38.7
HXT
mA
Normal Run Mode
At 72MHz
while(1){} executed
IDD2
17.9
mA
5.5V 12MHz
Χ
Χ
from flash
IDD3
37.2
mA
3.3V 12MHz
Χ
IDD4
16.4
mA
3.3V 12MHz
Χ
Χ
IDD5
32.9
mA
5.5V 12MHz
Χ
IDD6
15.5
mA
5.5V 12MHz
Χ
Χ
IDD7
31.4
mA
3.3V 12MHz
Χ
VLDO =1.8V
IDD8
14.0
mA
3.3V 12MHz
Χ
Χ
Operating Current
IDD9
29.1
mA
5.5V 12MHz
Χ
IDD10
14.5
mA
5.5V 12MHz
Χ
Χ
IDD11
27.6
mA
3.3V 12MHz
Χ
VLDO =1.8V
IDD12
13.0
mA
3.3V 12MHz
Χ
Χ
Operating Current
IDD13
28.1
mA
5.5V 12MHz
Χ
IDD14
14.0
mA
5.5V 12MHz
Χ
Χ
IDD15
26.6
mA
3.3V 12MHz
Χ
VLDO =1.8V
IDD16
12.5
mA
3.3V 12MHz
Χ
Χ
Operating Current
IDD17
19.9
mA
5.5V 12MHz
Χ
IDD18
10.4
mA
5.5V 12MHz
Χ
Χ
IDD19
18.4
mA
3.3V 12MHz
Χ
IDD20
8.9
mA
3.3V 12MHz
Χ
Χ
VLDO =1.8V
Operating Current
Normal Run Mode
At 60MHz
while(1){} executed
from flash
Normal Run Mode
M0519 DATASHEET
At 50MHz
while(1){} executed
from flash
Normal Run Mode
At 48MHz
while(1){} executed
from flash
Normal Run Mode
At 32MHz
while(1){} executed
from flash
VLDO =1.8V
Jul. 31, 2015
Page 54 of 69
Rev 1.01
M0519
SPECIFICATION
PARAMETER
SYM.
TEST CONDITIONS
MIN.
Operating Current
Normal Run Mode
At 22.1184MHz
while(1){} executed
TYP.
MAX.
UNIT
IDD21
11.7
mA
5.5V
Χ
Χ
IDD22
5.3
mA
5.5V
Χ
Χ
Χ
IDD23
11.6
mA
3.3V
Χ
Χ
IDD24
5.2
mA
3.3V
Χ
Χ
Χ
IDD25
8.6
mA
5.5V 12MHz
Χ
Χ
IDD26
4.9
mA
5.5V 12MHz
Χ
Χ
Χ
IDD27
7.2
mA
3.3V 12MHz
Χ
Χ
IDD28
3.4
mA
3.3V 12MHz
Χ
Χ
Χ
LIRC
PLL
All digital
module
from flash
VLDO =1.8V
Operating Current
Normal Run Mode
At 12MHz
while(1){} executed
from flash
VLDO =1.8V
Operating Current
Normal Run Mode
VDD
IDD29
0.13
LXT
mA
At 10kHz
while(1){} executed
HXT/
5.5V
Χ
10KHz
Χ
IDD30
0.12
mA
5.5V
Χ
10KHz
Χ
Χ
IDD31
0.11
mA
3.3V
Χ
10KHz
Χ
IDD32
0.11
mA
3.3V
Χ
10KHz
Χ
Χ
VDD
HXT
HIRC
PLL
IIDLE1
30.1
mA
All digital
module
5.5V 12MHz
Χ
from flash
VLDO =1.8V
Operating Current
Idle Mode
At 72MHz
IIDLE2
9.2
mA
5.5V 12MHz
Χ
Χ
from flash
IIDLE3
28.6
mA
3.3V 12MHz
Χ
IIDLE4
7.7
mA
3.3V 12MHz
Χ
Χ
IIDLE5
25.7
mA
5.5V 12MHz
Χ
IIDLE6
8.2
mA
5.5V 12MHz
Χ
Χ
IIDLE7
24.2
mA
3.3V 12MHz
Χ
IIDLE8
6.7
mA
3.3V 12MHz
Χ
Χ
IIDLE9
23.0
mA
5.5V 12MHz
Χ
IIDLE10
8.4
mA
5.5V 12MHz
Χ
Χ
IIDLE11
21.5
mA
3.3V 12MHz
Χ
IIDLE12
6.9
mA
3.3V 12MHz
Χ
Χ
VLDO =1.8V
Operating Current
Idle Mode
At 60MHz
while(1){} executed
from flash
VLDO =1.8V
Operating Current
Idle Mode
At 50MHz
while(1){} executed
from flash
VLDO =1.8V
Jul. 31, 2015
Page 55 of 69
Rev 1.01
M0519 DATASHEET
while(1){} executed
M0519
SPECIFICATION
PARAMETER
SYM.
TEST CONDITIONS
MIN.
TYP.
MAX.
UNIT
IIDLE13
22.3
mA
5.5V 12MHz
Χ
IIDLE14
8.1
mA
5.5V 12MHz
Χ
Χ
IIDLE15
20.8
mA
3.3V 12MHz
Χ
IIDLE16
6.7
mA
3.3V 12MHz
Χ
Χ
IIDLE17
16.0
mA
5.5V 12MHz
Χ
IIDLE18
6.4
mA
5.5V 12MHz
Χ
Χ
IIDLE19
14.5
mA
3.3V 12MHz
Χ
VLDO =1.8V
IIDLE20
4.9
mA
3.3V 12MHz
Χ
Χ
Operating Current
IIDLE21
8.6
mA
5.5V
Χ
Χ
IIDLE22
2.2
mA
5.5V
Χ
Χ
Χ
IIDLE23
8.6
mA
3.3V
Χ
Χ
IIDLE24
2.2
mA
3.3V
Χ
Χ
Χ
IIDLE25
7.2
mA
5.5V 12MHz
Χ
Χ
IIDLE26
3.4
mA
5.5V 12MHz
Χ
Χ
Χ
IIDLE27
5.7
mA
3.3V 12MHz
Χ
Χ
IIDLE28
1.9
mA
3.3V 12MHz
Χ
Χ
Χ
LIRC
PLL
All digital
module
Operating Current
Idle Mode
At 48MHz
while(1){} executed
from flash
VLDO =1.8V
Operating Current
Idle Mode
At 32MHz
while(1){} executed
from flash
Idle Mode
At 22.1184MHz
while(1){} executed
from flash
VLDO =1.8V
Operating Current
Idle Mode
At 12MHz
while(1){} executed
from flash
VLDO =1.8V
M0519 DATASHEET
VDD
Operating Current
IIDLE29
0.13
HXT/
LXT
mA
Idle Mode
5.5V
Χ
10KHz
Χ
At 10kHz
while(1){} executed
IIDLE30
0.12
mA
5.5V
Χ
10KHz
Χ
Χ
IIDLE31
0.11
mA
3.3V
Χ
10KHz
Χ
IIDLE32
0.11
mA
3.3V
Χ
10KHz
Χ
Χ
VDD
HXT
HIRC
LIRC
All digital
module
5.5V
Χ
Χ
Χ
from flash
VLDO =1.8V
IPWD1
Standby Current
Power-down Mode
Jul. 31, 2015
-
A
IPWD2
-
A
5.5V
Χ
Χ
Χ
IPWD3
-
A
5.5V
Χ
Χ
Χ
IPWD4
-
A
3.3V
Χ
Χ
Χ
IPWD5
-
A
3.3V
Χ
Χ
Χ
Page 56 of 69
Rev 1.01
M0519
SPECIFICATION
PARAMETER
SYM.
TEST CONDITIONS
MIN.
IPWD6
TYP.
MAX.
UNIT
A
-
3.3V
Χ
Χ
Logic 0 Input Current (Quasibidirectional mode)
IIL
-
-
-75
A
Input Leakage Current (input
only)
ILK
-
-
2
A
Logic 1 to 0 Transition
Current (Quasi-bidirectional
mode)
ITL[3]
-
-
-660
A
Internal Pull-High Resistor of
/RESET[1]
RRST
15
-
-
kΩ
Input Low Voltage (TTL
input)
VIL
-0.3
-
0.2VDD-0.1
V
Input Low Voltage (Schmitt
input)
VIL1
-0.3
0.3VDD
V
Input Low Voltage (/RESET,
XTAL in)
VIL2
-0.3
0.15VDD
V
Input High Voltage (TTL
input)
VIH
0.2VDD+0.9
-
VDD +0.3
V
Input High Voltage (Schmitt
input, /RESET, XTAL in)
VIH1
0.7VDD
-
VDD +0.3
V
Hysteresis voltage of
(Schmitt input)
VHY
-
0.2VDD
-
V
-360
-
-
A
VDD = 4.5V, VS = 2.4V
-60
-
-
A
VDD = 2.7V, VS = 2.2V
-50
-
-
A
VDD = 2.5V, VS = 2.0V
-25
-
-
mA
VDD = 4.5V, VS = 2.4V
-4
-
-
mA
VDD = 2.7V, VS = 2.2V
-3
-
-
mA
VDD = 2.5V, VS = 2.0V
16
-
-
mA
VDD = 4.5V, VS = 0.45V
10
-
-
mA
VDD = 2.7V, VS = 0.45V
9
-
-
mA
VDD = 2.5V, VS = 0.45V
Source Current (Quasibidirectional Mode)
Sink Current (Quasibidirectional and Push-pull
Mode)
IOH1
IOL
Χ
VDD = 5.5V, VIN 2.5 V
Input Voltage VDD
2.5
Output Voltage
1.62
1.8
1.98
V
Operating Temperature
-40
25
105
℃
-
1
-
F
Cbp
NOTE
RESR = 1 Ω
Note:
1. It is recommended that a 10 uF or higher capacitor and a 100 nF bypass capacitor are connected between V DD and the
closest VSS pin of the device.
2. To ensure power stability, a 1 F or higher capacitor must be connected between LDO_CAP pin and the closest V SS
pin of the device.
Jul. 31, 2015
Page 60 of 69
Rev 1.01
M0519
7.4.3
Low Voltage Reset
PARAMETER
CONDITION
MIN.
TYP.
MAX.
UNIT
Operation Voltage
-
0
-
5.5
V
Quiescent Current
AVDD=5.5 V
-
1
5
A
Operation Temperature
-
-40
25
105
℃
Threshold Voltage
-
1.6
2.0
2.4
V
Hysteresis
-
0
0
0
V
CONDITION
MIN.
TYP.
MAX.
UNIT
Operation Voltage
-
0
-
5.5
V
Temperature
-
-40
25
105
℃
AVDD=5.5 V
-
-
125
μA
BOD_VL[1:0]=11
4.2
4.4
4.6
V
BOD_VL [1:0]=10
3.5
3.7
3.9
V
BOD_VL [1:0]=01
2.6
2.7
2.8
V
BOD_VL [1:0]=00
2.1
2.2
2.3
V
-
30
-
150
mV
CONDITION
MIN.
TYP.
MAX.
UNIT
-
-40
25
105
℃
V+
-
2
-
V
Vin > reset voltage
-
1
-
nA
7.4.4
Brown-out Detector
PARAMETER
Quiescent Current
Brown-out Voltage
Hysteresis
7.4.5
Power-On Reset (5V)
Operation Temperature
Reset Voltage
Quiescent Current
Jul. 31, 2015
Page 61 of 69
Rev 1.01
M0519 DATASHEET
PARAMETER
M0519
7.4.6
Temperature Sensor
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Operation Voltage[1]
2.5
-
5.5
V
Operation Temperature
-40
-
105
℃
Current Consumption
6.4
-
10.5
μA
Gain
Temp=0 ℃
Offset Voltage
7.4.7
-1.76
mV/℃
720
mV
Comparator
PARAMETER
CONDITION
MIN.
Operation Voltage AVDD
-
2.5
Operation Temperature
-
-40
MAX.
UNIT
5.5
V
25
85
℃
VDD=3.0 V
-
20
40
μA
Input Offset Voltage
-
-
5
15
mV
Output Swing
-
0.1
-
VDD-0.1
V
Input Common Mode Range
-
0.1
-
VDD-1.2
V
DC Gain
-
-
70
-
dB
VCM=1.2 V and VDIFF=0.1 V
-
200
-
ns
10
20
-
mV
-
±10
-
mV
-
-
2
μs
Operation Current
Propagation Delay
TYP.
M0519 DATASHEET
20 mV at VCM=1 V
Comparison Voltage
50 mV at VCM=0.1 V
50 mV at VCM=VDD-1.2
10 mV for non-hysteresis
Hysteresis
Wake-up Time
Jul. 31, 2015
VCM=0.4 V ~ VDD-1.2 V
CINP=1.3 V
CINN=1.2 V
Page 62 of 69
Rev 1.01
M0519
7.4.8
OP Amplifier
PARAMETER
CONDITION
MIN.
TYP.
MAX.
UNIT
AVDD
-
3.0
3.3
5.5
V
Input offset voltage
-
-
2
5
mV
-
-
1
uV/℃
Input offset average drift
Output swing
-
0.1
-
VDD-0.1
V
Input common mode range
-
0.1
-
VDD-1.2
V
DC gain
-
-
80
-
dB
Unity gain freq.
AVDD=5V
-
-
5
MHz
-
50°
-
°
Phase margin
PSRR+
AVDD=5V
-
90
-
dB
CMRR
AVDD=5V
-
90
-
dB
Slew rate
AVDD=5V, RLOAD=33K,
CLOAD=50p
6.0
-
-
V/us
Wake up time
-
-
1
us
Quiescent current
-
-
2
mA
M0519 DATASHEET
Jul. 31, 2015
Page 63 of 69
Rev 1.01
M0519
7.5
Flash DC Electrical Characteristics
SYMBOL
PARAMETER
VDD
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Supply Voltage
1.62
1.8
1.98
V[2]
NENDUR
Endurance
10000
cycles[1]
TRET
Data Retention
100
year
TERASE
Page Erase Time
20
ms
TMER
Mass Erase Time
40
ms
TPROG
Program Time
40
μs
IDD1
Read Current
IDD2
Program/Erase Current
At 25℃
-
0.15
0.5
mA/MHz
7
mA
Note : This table is guaranteed by design, not test in production.
[1] Number of program/erase cycles.
[2] VDD is source from chip LDO output voltage.
M0519 DATASHEET
Jul. 31, 2015
Page 64 of 69
Rev 1.01
M0519
8
8.1
PACKAGE DIMENSIONS
LQFP 100V (14x14x1.4 mm footprint 2.0mm)
HD
D
7
5
A
A2
51
7
6
50
100
26
A1
HE E
L
1
25
e
L1
c
b
Y
Controlling Dimension : Millimeters
Symbol
Dimension in inch
Min Nom
Max
A1
A
2b
c
0.063
0.002
0.053
0.007
0.004
D
0.547
E
0.547
0.551
0.551
0.057
0.011
0.05
1.35
0.17
0.008
0.10
0.556
0.556
13.90
13.90
e
HD
0.622
0.630
0.638
15.80
HE
L
0.622
0.018
0.630
0.024
0.638
0.030
15.80
0.020
L1
y
Jul. 31, 2015
0.055
0.009
0.006
0.45
0.039
7
1.45
14.00
14.10
14.00
14.10
0.50
16.00
16.00
0.60
1.00
0.27
0.20
16.20
16.20
0.75
0.10
0.004
0
1.40
0.22
0.15
M0519 DATASHEET
A
Dimension in mm
Min Nom
Max
1.60
0
Page 65 of 69
7
Rev 1.01
M0519
8.2
LQFP 64S (7x7x1.4 mm footprint 2.0 mm)
M0519 DATASHEET
Jul. 31, 2015
Page 66 of 69
Rev 1.01
M0519
8.3
LQFP 48L (7x7x1.4mm footprint 2.0mm)
H
36
25
37
24
48
13
H
12
1
Controlling dimension : Millimeters
A
A1
A2
b
c
D
E
e
HD
HE
L
L1
Y
0
Jul. 31, 2015
Dimension in inch
Dimension in mm
Min Nom Max
Min Nom Max
0.002 0.004
0.006
0.05
0.053 0.055
0.057
1.35
1.40
1.45
0.006 0.008
0.010
0.15
0.20
0.25
0.004 0.006
0.008
0.10
0.15
0.20
0.272 0.276
0.280
6.90
7.00
7.10
0.272 0.276
0.280
6.90
7.00
7.10
0.020 0.026
0.35
0.50
0.65
0.014
0.10
0.15
0.350
0.354
0.358
8.90
9.00
9.10
0.350
0.354
0.358
8.90
9.00
9.10
0.018
0.024
0.030
0.45
0.60
0.75
1.00
0.039
0.004
0
M0519 DATASHEET
Symbol
7
Page 67 of 69
0.10
0
7
Rev 1.01
M0519
9
REVISION HISTORY
Date
Revision
Description
2015.06.11
1.00
Preliminary version.
2015.07.31
1.01
Added “Flash DC Electrical Characteristics” in section 7.5.
M0519 DATASHEET
Jul. 31, 2015
Page 68 of 69
Rev 1.01
M0519
Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any
malfunction or failure of which may cause loss of human life, bodily injury or severe property
damage. Such applications are deemed, “Insecure Usage”.
Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic
energy control instruments, airplane or spaceship instruments, the control or operation of
dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all
types of safety devices, and other applications intended to support or sustain life.
All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay
claims to Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the
damages and liabilities thus incurred by Nuvoton.
Jul. 31, 2015
Page 69 of 69
Rev 1.01
M0519 DATASHEET
Important Notice