0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
W78E858A40FL

W78E858A40FL

  • 厂商:

    NUVOTON(新唐)

  • 封装:

    BQFP44

  • 描述:

    IC MCU 8BIT 32KB FLASH 44QFP

  • 数据手册
  • 价格&库存
W78E858A40FL 数据手册
W78E858 Data Sheet 8-BIT MICROCONTROLLER Table of Contents1. GENERAL DESCRIPTION .......................................................................................................... 3 2. FEATURES.................................................................................................................................. 3 3. PIN CONFIGURATIONS ............................................................................................................. 4 4. PIN DESCRIPTION ..................................................................................................................... 5 5. FUNCTIONAL DESCRIPTION .................................................................................................... 6 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 RAM................................................................................................................................. 6 EEPROM ......................................................................................................................... 6 5.2.1 Byte Write Mode................................................................................................................ 6 5.2.2 Page Write Mode .............................................................................................................. 6 5.2.3 Software Protected Data Write .......................................................................................... 7 5.2.4 Command Codes for Software Data Protection Enable/Disable and Software Erase ....... 7 Demo Code: .................................................................................................................... 7 On-chip Flash EPROM .................................................................................................. 10 Timers 0, 1, and 2 ......................................................................................................... 11 Clock ............................................................................................................................. 11 Crystal Oscillator ........................................................................................................... 11 External Clock ............................................................................................................... 11 Power Management ...................................................................................................... 11 5.9.1 Idle Mode ........................................................................................................................ 11 5.9.2 Power-down Mode .......................................................................................................... 11 5.9.3 Wake-up Via External Interrupts INT0 to INT9 ................................................................ 12 Reset ............................................................................................................................. 14 Pulse Width Modulator System ..................................................................................... 15 5.11.1 PWMCON (91H) ........................................................................................................... 15 5.11.2 PWMP (92H) ................................................................................................................. 15 In-system Programming System ................................................................................... 16 5.12.1 SFRAL (C4H) ................................................................................................................ 16 5.12.2 SFRAH (C5H) ............................................................................................................... 16 5.12.3 SFRFD (C6H) ............................................................................................................... 16 5.12.4 SFRCN (C7H) ............................................................................................................... 17 In-system Programming Mode Operating Table ........................................................... 17 5.13.1 5.14 5.15 5.16 CHPCON (BFH) ............................................................................................................ 18 MXPSR (A2H) ............................................................................................................... 18 Interrupt System ............................................................................................................ 18 External Interrupts INT2 to INT9 ................................................................................... 19 5.16.1 IE_1 (E8H) .................................................................................................................... 19 -1- Publication Release Date: April 22, 2008 Revision A8 W78E858 5.17 5.16.2 IP1 (F8H) ...................................................................................................................... 19 5.16.3 IX1 (E9H) ...................................................................................................................... 20 5.16.4 IRQ1 (C0H) ................................................................................................................... 20 5.16.5 Interrupt Priority and Vector Address ............................................................................ 20 F04KBOOT Mode (Boot From 4K Bytes LDROM)........................................................ 21 5.17.1 5.18 5.19 5.18.1 Lock Bit (Bit0) ................................................................................................................ 22 5.18.2 MOVC Lock (Bit1) ......................................................................................................... 22 5.18.3 Scramble Enable (Bit2) ................................................................................................. 22 5.18.4 Oscillator Gain Select (Bit7) .......................................................................................... 22 Watch Dog Timer .......................................................................................................... 23 5.19.1 5.20 5.21 6. 6.3.1 Clock Input Waveform ..................................................................................................... 27 6.3.2 Program Fetch Cycle ...................................................................................................... 27 6.3.3 Data Read Cycle ............................................................................................................. 28 6.3.4 Data Write Cycle ............................................................................................................. 28 6.3.5 Port Access Cycle ........................................................................................................... 28 6.3.6 Flash Mode Timing.......................................................................................................... 28 Program Fetch Cycle .................................................................................................... 29 Data Read Cycle ........................................................................................................... 29 Data Write Cycle ........................................................................................................... 30 Port Access Cycle ......................................................................................................... 30 Expanded External Program Memory and Crystal........................................................ 31 Expanded External Data Memory and Oscillator .......................................................... 32 PACKAGE DIMENSIONS ......................................................................................................... 33 9.1 9.2 9.3 10. Absolute Maximum Ratings .......................................................................................... 25 D.C. Characteristics ...................................................................................................... 25 A.C. Characteristics ...................................................................................................... 27 TYPICAL APPLICATION CIRCUITS ......................................................................................... 31 8.1 8.2 9. Programmable Clock-out .............................................................................................. 24 Reduce EMI Emission ................................................................................................... 24 TIMING WAVEFORMS ............................................................................................................. 29 7.1 7.2 7.3 7.4 8. WDTC (8FH) ................................................................................................................. 23 ELECTRICAL CHARACTERISTICS ......................................................................................... 25 6.1 6.2 6.3 7. F04KBOOT Mode ......................................................................................................... 21 Security ......................................................................................................................... 21 40-pin DIP ..................................................................................................................... 33 44-pin PLCC .................................................................................................................. 33 44-pin PQFP.................................................................................................................. 34 VERSION HISTORY ................................................................................................................. 35 -2- Publication Release Date: April 22, 2008 Revision A8 W78E858 1. GENERAL DESCRIPTION The W78E858 is an 8-bit microcontroller which has an in-system programmable Flash EPROM for firmware updating. The instruction set of the W78E858 is fully compatible with the standard 8052. The W78E858 contains a 32K bytes of main Flash EPROM and a 4K bytes of auxiliary Flash EPROM which allows the contents of the 32KB main Flash EPROM to be updated by the loader program located at the 4KB auxiliary Flash EPROM ROM; 768 bytes of on-chip RAM; 128 bytes of EEPROM, 8 extra power down wake-up through INT2 to INT9; 4 channel 8-bit PWM; four 8-bit bi-directional and bit-addressable I/O ports; an additional 4-bit port P4; three 16-bit timer/counters where the TIMER2 with programmable clock output and 17-bit watchdog timer are built in this device; a serial port. These peripherals are supported by a eight sources two-level interrupt capability. To facilitate programming and verification, the Flash EPROM inside the W78E858 allows the program memory to be programmed and read electronically. Once the code is confirmed, the user can protect the code for security. 2. FEATURES  Fully static design 8-bit CMOS micro-controller up to 40 MHz  32K bytes of in-system programmable FLASH EPROM for Application Program (APROM)  4K bytes of auxiliary FLASH EPROM for Loader Program (LDROM)  Low standby current at full supply voltage  256 + 512 bytes of on-chip RAM  128 bytes on-chip EEPROM memory  64K bytes program memory address space and 64K bytes data memory address space  Four 8-bit bi-directional ports  One 4-bit bi-directional port  Extra interrupts INT2 to INT9 at PORT1  Wake-up via external interrupts INT0  INT9  Three 16-bit timer/counters  One full duplex serial port  Fourteen-sources, two-level interrupt capability  Programmable Timer2 clock output via P1.0  17-bits watchdog timer  Four channels 8-bit PWM  Built-in power management  Code protection  Packaged in PDIP 40 / PLCC 44 / PQFP 44 -3- Publication Release Date: April 22, 2008 Revision A8 W78E858 3. PIN CONFIGURATIONS P 1 . 4 P 1 . 3 P 1 . 2 T 2 E X . P 1 . 1 6 5 4 3 T 2 . P 1 . 0 2 A D 0 . P 0 . 0 P V 4 D . D 2 A D 1 . P 0 . 1 A D 3 . P 0 . 3 A D 2 . P 0 . 2 P0.4, AD 4 8 1 44 43 42 41 40 39 38 P1.7 9 37 P0.6, AD 6 RST 10 36 P0.7, AD 7 RXD, P3.0 P4.3 11 35 EA TXD, P3.1 P1.5 7 P1.6 44-pin PLCC 12 P0.5, AD 5 34 P4.1 13 33 ALE INT0, P3.2 14 32 INT1, P3.3 15 31 PSEN P2.7, A15 T0, P3.4 T1, P3.5 16 30 17 29 18 19 20 21 22 23 24 25 26 27 28 P 3 . 6 , / W R P1.0 1 40 VCC P1.1 2 39 P0.0, AD0 P 3 . 7 , / R D X T A L 2 X T A L 1 V P S 4 S . 0 P 2 . 0 , A 8 P 2 . 1 , A 9 P 2 . 2 , A 1 0 P 2 . 3 , A 1 1 P2.6, A14 P2.5, A13 P 2 . 4 , A 1 2 P 1 . 4 P1.2 3 38 P0.1, AD1 P1.3 4 37 P0.2, AD2 P1.4 5 36 P0.3, AD3 P1.5 1 P1.5 6 35 P0.4, AD4 P1.6 P1.6 7 34 P0.5, AD5 P1.7 8 33 RST 9 40-pin DIP T 2 E X . P P P 1 1 1 . . . 3 2 1 T 2 . P 1 . 0 P 4 . 2 V D D A D 3 . P 0 . 3 A D 2 . P 0 . 2 A D 1 . P 0 . 1 A D 0 . P 0 . 0 P0.4, AD4 2 44 43 42 41 40 39 38 37 36 35 34 33 32 P1.7 3 31 P0.6, AD6 P0.6, AD6 RST 4 30 P0.7, AD7 32 P0.7, AD7 RXD, P3.0 5 29 EA 31 EA P4.3 6 28 P4.1 30 ALE TXD, P3.1 7 27 ALE INT0, P3.2 8 26 INT1, P3.3 9 25 PSEN P2.7, A15 T0, P3.4 10 24 P2.6, A14 T1, P3.5 11 23 P2.5, A13 RXD , P3.0 10 TXD , P3.1 11 INT0, P3.2 12 29 PSEN INT1, P3.3 13 28 P2.7, A15 T0, P3.4 14 27 P2.6, A14 T1, P3.5 15 26 P2.5, A13 W R , P3.6 16 25 P2.4, A12 R D, P3.7 17 24 P2.3, A11 XTAL2 18 23 P2.2, A10 XTAL1 19 22 P2.1, A9 VSS 20 21 P2.0, A8 44-pin PQFP 12 13 14 15 16 17 18 19 20 21 22 P 3 . 6 , / W R -4- P 3 . 7 , / R D X T A L 2 X T A L 1 V P S 4 S . 0 P 2 . 0 , A 8 P 2 . 1 , A 9 P 2 . 2 , A 1 0 P 2 . 3 , A 1 1 P0.5, AD5 P 2 . 4 , A 1 2 Publication Release Date: April 22, 2008 Revision A8 W78E858 4. PIN DESCRIPTION SYMBOL EA TYPE I DESCRIPTIONS External Access Enable: EA low forces the processor to execute the external ROM. The ROM address and data will not be present on the bus if the EA pin is high and the program counter is within the 32 KB area. Otherwise they will be present on the bus. O/H Program Strobe Enable: PSEN enables the external ROM data in the Port 0 address/data bus. When internal ROM access is performed, no PSEN strobe signal outputs originate from this pin. ALE O/H Address Latch Enable: ALE is used to enable the address latch that separates the address from the data on Port 0. ALE runs at 1/6th of the oscillator frequency. An ALE pulse is omitted during external data memory accesses. RST I/L RESET: A high on this pin for two machine cycles while the oscillator is running resets the device. RST has a Schmitt trigger input stage to provide additional noise immunity with a slow rising input voltage. XTAL1 I Crystal 1: This is the crystal oscillator input. This pin may be driven by an external clock XTAL2 O Crystal 2: This is the crystal oscillator output. It is the inversion of XTAL1. VSS I Ground: Ground potential. VDD I Power Supply: Supply voltage for operation. PSEN P0.0  P0.7 I/O D Port 0: Function is the same as that of the standard 8052. P1.0  P1.7 I/O H Port 1: Function is the same as that of the standard 8052. Port1 also service the alternative function INT2  INT9. P1.0 provide a timer2 programmable clock output. Four channel PWM clock output via P1.4  P1.7 P2.0  P2.7 I/O H Port 2: Port 2 is a bi-directional I/O port with internal pull-ups and emits the high-order address byte during accesses external memory P3.0  P3.7 I/O H Port 3: Function is the same as that of the standard 8052 P4.0  P4.3 I/O H Port 4: Function is the same as Port1 * Note: TYPE I: input, O: output, I/O: bi-directional, H: pull-high, L: pull-low, D: open drain -5- Publication Release Date: April 22, 2008 Revision A8 W78E858 5. FUNCTIONAL DESCRIPTION The W78E858 architecture consists of a core controller surrounded by various registers, four 8-bit general purpose I/O ports, one 4-bits general purpose I/O port, 256 bytes data RAM and 512 bytes auxiliary RAM, 128 bytes embedded EEPROM memory, three timer/counters, one serial port, 17-bit watch-dog timer, 8-bit four channels PWM, programmable timer2 clock output, extra external interrupts INT2 to INT9, power-down wake up via external interrupts INT0  INT9. The CPU supports 111 different op-codes and references both a 64K program address space and a 64 K data storage space. 5.1 RAM The internal data RAM in W78E858 is 768 bytes. It is divided into two banks: 256 bytes of data RAM and 512 bytes of auxiliary RAM. These RAM are addressed by different ways.  RAM 00H  7FH can be addressed directly and indirectly as the same as in 80C51. Address pointers are R0 and R1 of the selected register bank.  RAM 80H  FFH can only be addressed indirectly as the same as in 80C51. Address pointers are R0, R1 of the selected registers bank.  Auxiliary RAM 0000H  01FFH is addressed indirectly as the same way to access external data memory with the MOVX instruction. Address pointers are R0 and R1 of the selected register bank and DPTR register. By setting ENAUXRAM flag in CHPCON register bit4 to enable on-chip auxiliary RAM 512 bytes. When the auxiliary RAM is enabled, the data and address will not appear on P0 and P2, they will keep their previous status that before the MOVX instruction be executed. Write the page select 00H or 01H to MXPSR register if R0 and R1 are used as address pointer. When the address of external data memory locations higher than 01FFH or disable auxiliary RAM 512 bytes micro-controller will be performed with the MOVX instruction in the same way as in the 80C51. The auxiliary RAM 512 bytes default is disabled after chip reset. 5.2 EEPROM The 128 bytes EEPROM is defined in external data memory space that located in FF80H-FFFFH in standard 8-bit series. It is accessed the same as auxiliary RAM512 bytes, the ENEEPROM flag in CHPCON register bit5 is set. Write the page select 02H to MXPSR register, R0 and R1are used as address pointer. The EEPROM provided byte write, page write mode and software write protection is used to protect the data lose when power on or noise. They are described as below: 5.2.1 Byte Write Mode Once a byte write has been started, it will automatically time itself to completion. A BUSY signal (MXPSR.7) will be used to detect the end of write operation. 5.2.2 Page Write Mode The EEPROM is divided into 2 pages and each page contains 64 bytes. The page write allows one to 64 bytes of data to be written into the memory during a single internal programming cycle. Page write is initiated in the same manner as byte write mode. After the first byte is written, it can then be followed by one to 63 additional bytes. If a second byte is written within a byte-load cycle time (TBLC) of 150us, the EEPROM will stay at page load cycle. Additional bytes can then be loaded consecutively. The page load cycle will be terminated and the internal programming cycle will start if no additional byte is load within 300us from the last byte be loaded. The address bit6 specify the page address. All bytes that are loaded to the buffer must have the same page address. The data for page write may be loaded in any order, the sequential loading is not required. -6- Publication Release Date: April 22, 2008 Revision A8 W78E858 5.2.3 Software Protected Data Write The EEPROM provides a JEDED-approved optional software-protected data write. Once this scheme is enabled, any write operation requires a series of three-byte program commands (with specific data to a specific address) to be performed before the data load operation. The three-byte load command sequence begins the page load cycle, without which the write operation will not activated. This write scheme provides optimal protection against inadvertent write cycles, such as cycles triggered by noise during system power-up or power-down. Once enabled, the software data protection will remain enabled unless the disable commands are issued. To reset the device to unprotected mode, a six-byte command sequence is required. The address mapping of the external memory is given as following, if ENAUXRAM or ENEEPROM flags in CHPCON is not set, the CPU will access external memory instead of the on-chip memory. The data, address and read/write strobe signal will appear on relative IO port just like standard 80C52. 5.2.4 Command Codes for Software Data Protection Enable/Disable and Software Erase BYTE ENABLE WRITE PROTECT SEQUENCE ADDRESS DATA 0 Write FFD5H 1 Write FFAAH 2 Write 3 Write DISABLE WRITE PROTECT ADDRESS DATA AAH FFD5H 55H FFAAH FFD5H A0H - - SOFTWARE ERASE ADDRESS DATA AAH FFD5H AAH 55H FFAAH 55H FFD5H 80H FFD5H 80H FFD5H AAH FFD5H AAH 4 Write - - FFAAH 55H FFAAH 55H 5 Write - - FFD5H 20H FFD5H 10H 0000H Auiliary RAM 512 Bytes 01FFH 0200H External M em ory FF80H EEPROM 128 Bytes FFFFH (a) Standard 51 Series Fig. On-Chip External Mem ory Addressed Mapping 5.3 Demo Code: EEPROM_BASE EQU FF80H -7- Publication Release Date: April 22, 2008 Revision A8 W78E858 org 0000h jmp start org 500h start: mov chpenr,#87h mov chpenr,#59h orl chpcon,#00100000b mov chpenr,#00h call enable_protect mov dptr,#EEPROM_BASE mov r0,#40h byte/page. Write from FF80h to FFBFh. mov r1,#55h call write_eeprom_block call enable_protect mov dptr,#EEPROM_BASE+40h mov r0,#40h address. mov r1,#55h call write_eeprom_block mov mov mov call jc dptr,#EEPROM_BASE r0,#80h r1,#55h read_eeprom_block $error mov mov anl mov clr jmp chpenr,#87h chpenr,#59h chpcon,#11011111b chpenr,#00h c $end mov mov anl mov setb chpenr,#87h chpenr,#59h chpcon,#11011111b chpenr,#00h c ; enable eeprom ; only write up to 64 ; write 55 data. ; Call it before writing ; Write from FFC0h to FFFFh ; disable eeprom $error: ; disable eeprom $end: sjmp $ ;----------------------------------------------------------------disable_protect: mov dptr,#EEPROM_BASE+55h mov a,#aah movx @dptr,a mov dptr,#EEPROM_BASE+2ah mov a,#55h movx @dptr,a mov dptr,#EEPROM_BASE+55h mov a,#80h movx @dptr,a mov dptr,#EEPROM_BASE+55h -8- Publication Release Date: April 22, 2008 Revision A8 W78E858 mov a,#aah movx @dptr,a mov dptr,#EEPROM_BASE+2ah mov a,#55h movx @dptr,a mov dptr,#EEPROM_BASE+55h mov a,#20h movx @dptr,a call busy_waiting ret ;----------------------------------------------------------------eeprom_erase: mov dptr,#EEPROM_BASE+55h mov a,#aah movx @dptr,a mov dptr,#EEPROM_BASE+2ah mov a,#55h movx @dptr,a mov dptr,#EEPROM_BASE+55h mov a,#80h movx @dptr,a mov dptr,#EEPROM_BASE+55h mov a,#aah movx @dptr,a mov dptr,#EEPROM_BASE+2ah ;a5~a0 mov a,#55h movx @dptr,a mov dptr,#EEPROM_BASE+55h mov a,#10h movx @dptr,a call busy_waiting ret ;----------------------------------------------------------------enable_protect: mov dptr,#EEPROM_BASE+55h mov a,#aah movx @dptr,a mov dptr,#EEPROM_BASE+2ah mov a,#55h movx @dptr,a mov dptr,#EEPROM_BASE+55h mov a,#a0h movx @dptr,a ret ;----------------------------------------------------------------busy_waiting: $wait1: mov a,mxpsr jnb acc.7,$wait1 $wait0: mov a,mxpsr jb acc.7,$wait0 ret ;---------------------------------------------------------------- -9- Publication Release Date: April 22, 2008 Revision A8 W78E858 write_eeprom_block: ;input r0:counter ;input r1:pattern form ;input dptr:eeprom base address $write_loop: mov a,r1 movx @dptr,a inc dpl djnz r0,$write_loop call busy_waiting ret ;---------------------------------------------------------------read_eeprom_block: ;input r0:counter ;input r1:pattern form ;input dptr:eeprom base address ;output setb c --> fail push b $read_loop: movx a,@dptr mov b,a mov a,r1 cjne a,b,$error inc dpl djnz r0,$read_loop clr c jmp $end $error: setb c $end: pop b ret .end 5.4 On-chip Flash EPROM The W78E858 includes two banks of FLASH EPROM. One is 32K bytes of main FLASH EPROM for application program (APROM) and another 4K bytes of FLASH EPROM for loader program (LDROM) when operating the in-system programming feature. In normal operation, the micro-controller will execute the code from the 32K bytes of APROM. By setting program registers, user can force CPU to switch to the programming mode which will execute the code (loader program) from the 4K bytes of auxiliary LDROM, and this loader program is going to update the contents of the 32K bytes of APROM. After chip reset, the micro-controller executes the new application program in the APROM. This in-system programming feature makes the job easy and efficient in which the application needs to update firmware frequently. In some applications, the in-system programming feature make it possible that end-user is able to easily update the system firmware by themselves without opening the chassis. - 10 - Publication Release Date: April 22, 2008 Revision A8 W78E858 5.5 Timers 0, 1, and 2 Timers 0, 1, and 2 each consist of two 8-bit data registers. These are called TL0 and TH0 for Timer 0, TL1 and TH1 for Timer 1, and TL2 and TH2 for Timer 2. The TCON and TMOD registers provide control functions for timers 0, 1. The T2CON register provides control functions for Timer 2. RCAP2H and RCAP2L are used as reload/capture registers for Timer 2. The operations of Timer 0 and Timer 1 are the same as in the W78C51. Timer 2 is a 16-bit timer/counter that is configured and controlled by the T2CON register. Like Timers 0 and 1, Timer 2 can operate as either an external event counter or as an internal timer, depending on the setting of bit C/T2 in T2CON. Timer 2 has three operating modes: capture, auto-reload, and baud rate generator. The clock speed at capture or auto-reload mode is the same as that of Timers 0 and 1. 5.6 Clock The W78E858 is designed to use with either a crystal oscillator or an external clock. Internally, the clock is divided by two before it is used by default. This makes the W78E858 relatively insensitive to duty cycle variations in the clock. 5.7 Crystal Oscillator The W78E858 incorporates a built-in crystal oscillator. To make the oscillator work, a crystal must be connected across pins XTAL1 and XTAL2. In addition, a load capacitor must be connected from each pin to ground, and a resistor must also be connected from XTAL1 to XTAL2 to provide a DC bias when the crystal frequency is above 24 MHz. 5.8 External Clock An external clock should be connected to pin XTAL1. Pin XTAL2 should be left unconnected. The XTAL1 input is a CMOS-type input, as required by the crystal oscillator. As a result, the external clock signal should have an input one level of greater than 3.5 volts. 5.9 Power Management 5.9.1 Idle Mode The CPU will enter to idle by setting the IDL bit in the PCON register. In the idle mode, the internal clock to the processor is stopped. The peripherals and the interrupt logic continue to be clocked. The processor will exit idle mode when either an interrupt or a reset occurs. 5.9.2 Power-down Mode When the PD bit of the PCON register is set, the processor enters the power-down mode. In this mode all of the clocks, including the oscillator are stopped. There are two ways to exit power-down mode, one is by a chip reset and another is via external interrupts wake up if the related control flags are enabled. - 11 - Publication Release Date: April 22, 2008 Revision A8 W78E858 5.9.3 Wake-up Via External Interrupts INT0 to INT9 If the external interrupts INT0 to INT9 are enabled, the W78E858 can be awakened from power down mode with the external interrupts if the EA flag in IE register and related interrupt enable is set before enter power down mode. To ensure that the oscillator is stable before the controller starts, the internal clock will remain inactive for some oscillator periods. This is controlled by a on-chip delay counter. The delay time is software selectable and the reset default value is 1536 periods. By setting the PS2  PS0 bits in AUXR register the delay periods is given as below: PS2 PS1 PS0 DELAY PERIODS DELAY TIME (20 MHZ) 0 0 0 192 0.0096 mS 0 0 1 384 0.0192 mS 0 1 0 768 0.0384 mS 0 1 1 1536 0.0768 mS 1 0 0 3072 0.1536 mS 1 0 1 6144 0.372 mS 1 1 0 12288 0.6144 mS 1 1 1 24576 1.2288 mS Power-Down RESET-Pin Internal Clock ... .... Interrupt IN0~INT9 Oscillator > 24 x Tosc delay counter x Tosc Fig. Power-Down W ake Up Operation - 12 - Publication Release Date: April 22, 2008 Revision A8 W78E858 P1.7 X9 P1.6 X8 P1.5 X7 P1.4 X6 P1.3 X5 P1.2 X4 P1.1 X3 P1.0 X2 OR8 IX1 IEN1 IRQ 1 W ake Up Fig. Port1 External Interrupt Configuration - 13 - Publication Release Date: April 22, 2008 Revision A8 W78E858 5.10 Reset The external RST signal is sampled at S5P2. To take effect, it must be held high for at least two machine cycles while the oscillator is running. An internal trigger circuit in the reset line is used to deglitch the reset line when the RA80xx is used with an external RC network. The reset logic also has a special glitch removal circuit that ignores glitches on the reset line. During reset, the ports are initialized to FFH, the stack pointer to 07H, PCON (with the exception of bit 4) to 00H, and all of the other SFR registers except SBUF to 00H. SBUF is not reset. W78E858 Special Function Registers and Reset Values F8 F0 E8 E0 D8 D0 C8 C0 B8 B0 A8 A0 98 90 88 80 +IP1 0000000 +B 00000000 +IE_1 00000000 +ACC 00000000 +P4 11111111 +PSW 00000000 +T2CON 00000000 +IRQ1 00000000 +IP 000000 +P3 11111111 +IE 01000000 +P2 11111111 +SCON 00000000 +P1 11111111 +TCON 00000000 +P0 11111111 FF CHPENR 00000000 F7 IX1 00000000 EF E7 DF D7 T2MOD Xxxxxx0x RCAP2L 00000000 RCAP2H 00000000 TL2 00000000 SFRAL 00000000 TH2 00000000 SFRAH 00000000 CF SFRFD 00000000 SFRCN 00000000 CHPCON 0xx00000 C7 BF B7 AF MXPSR 0xxxxx00 SBUF xxxxxxxx PWMCON PWMP xxxx0000 00000000 TMOD TL0 00000000 00000000 SP DPL 00000111 00000000 A7 9F DAC0 00000000 TL1 00000000 DPH 00000000 DAC1 00000000 TH0 00000000 DAC2 00000000 TH1 00000000 DAC3 00000000 AUXR xxxx0110 97 WDTC 000xx000 PCON 00110000 8F 87 Note: the SFRs marked with a plus sign(+) are both byte and bit-addressable. - 14 - Publication Release Date: April 22, 2008 Revision A8 W78E858 5.11 Pulse Width Modulator System The pulse width modulator system of W78E858 contains four PWM output channels with a common 8bit counter. These channels generate pulses of programmable length and interval. The prescaler and counter are common to four PWM channels. 5.11.1 PWMCON (91H) BIT 74 3 2 1 0 NAME - Reverse FUNCTION PWM3 PWM2 PWM1 PWM0 Enable P1.7 as PWM clock output. Enable P1.6 as PWM clock output. Enable P1.5 as PWM clock output. Enable P1.4 as PWM clock output. 5.11.2 PWMP (92H) The prescaler is loaded with the complement of the PWMP register during counter overflow. The repetition frequency is defined by 8-bit prescaler which clocks the counter. The prescaler division factor = (PWMP + 1). Reading the PWMP gives the current reload value. The actual count of the prescaler can’t be read. The PWM counter is enabled with any bit PWMENn (n = 0, 1, 2, 3) of the PWMCON register. Output to the port pin is separately enabled by setting the PWMENn bits in the PWMCON register. The PWM function is reset by a chip reset. In idle mode, the PWM will function as configurated in PWMCON. In power-down state of the PWM will freeze when the internal clock stops. If the chip is awakened with an external interrupt, the PWM will continue to function its state when power-down was entered. The repetition frequency is given by: Fpwm = Fosc [255 x (1+PWMP)] An oscillator frequency of 24 MHz results in a repetition range of 367.65 Hz to 94.12 KHz. The high/low ratio of PWMn is DACn/(255-DACn) for DACn values except 255. A DACn value 255 results in a high PWMn output. - 15 - Publication Release Date: April 22, 2008 Revision A8 W78E858 Fosc PW MEN0 PW MEN1 OR ENDAC PW MEN2 AND PW MEN3 INTERNAL PW MP SFR 8-BIT PRESCALER 8-BIT UP CO UNTER BUS DAC0 8-BIT DETECT O UTPUT BUFFER P1.4 DAC1 8-BIT DETECT O UTPUT BUFFER P1.5 DAC2 8-BIT DETECT OUTPUT BUFFER P1.6 DAC3 8-BIT DETECT O UTPUT BUFFER P1.7 Fig. Four Channels 8-Bit PW M Function Block Diagram 5.12 In-system Programming System The W78E858 provided in-system programming function for new firmware updated. After the related register and flags are set, user can start timer and force the CPU enter idle mode, then W78E858 will perform the in-system program mode function specify in SFRCN register, the destination data and address will come from the related SFR. The CHPCON is read only by default. Firmware designer must write 87H, 59H sequentially to this special register CHPENR to enable the CHPCON write attribute, and write other value to disable CHPCON write attribute. This register protects from writing to the CHPCON register carelessly. 5.12.1 SFRAL (C4H) The programming low-order byte address of FLASH EPROM in-system programming mode 5.12.2 SFRAH (C5H) The programming high-order byte address of FLASH EPROM in-system programming mode 5.12.3 SFRFD (C6H) The programming data for on-chip FLASH EPROM in-system programming mode - 16 - Publication Release Date: April 22, 2008 Revision A8 W78E858 5.12.4 SFRCN (C7H) BIT NAME 7 - FUNCTION Reserve. On-chip FLASH EPROM bank select for in-system programming. 6 WFWIN = 0: 32K bytes FLASH EPROM bank is selected as destination for reprogramming. = 1: 4K bytes FLASH EPROM bank is selected as destination for reprogramming. 5 OEN FLASH EPROM output enable. 4 CEN FLASH EPROM chip enable. 30 CTRL[3:0] The flash control signals 5.13 In-system Programming Mode Operating Table MODE CTRL WFWIN OEN CEN SFRAL SFRAH SFRFD Erase 32K APROM 0010 0 1 0 X X X Erase 4K LDROM 0010 1 1 0 X X X Program 32K APROM 0001 0 1 0 Address Address Data In Program 4K LDROM 0001 1 1 0 Address Address Data In Read 32K APROM 0000 0 0 0 Address Address Data Out Read 4K LDROM 0000 1 0 0 Address Address Data Out - 17 - Publication Release Date: April 22, 2008 Revision A8 W78E858 5.13.1 CHPCON (BFH) BIT 7 6 5 4 NAME FUNCTION When this bit is set to 1, and both FBOOTSL and FPROGEN are set to 1. It SWRESET will enforce microcontroller reset to initial condition just like power on reset. (F04KMODE) This action will re-boot the microcontroller and start to normal operation. To read this bit can determine that the F04KBOOT mode is running. Reserve. ENEEPROM Enable on-chip 128 bytes EEPROM. ENAUXRAM Enable on-chip 512 bytes auxiliary RAM. 32 - 1 FBOOTSL 0 FPROGEN The loader program location selection. = 0: loader program in 32K memory bank. = 1: loader program in 4K memory bank. In system programming enable flag. = 1: enable. The CPU switches to the programming flash mode after entering the idle mode and waken up from interrupt. The CPU will execute the loader program while in on-chip programming mode. = 0: disable. The on-chip FLASH EPROM read-only. In-system programmability is inhibit. 5.14 MXPSR (A2H) BIT NAME 7 BUSY 6-2 - 1-0 ADDRPNT FUNCTION EEPROM BUSY signal. 1: EEPROM is writing. Reserved. Address pointer by MOVX instruction 0: read or write lower 256 byte Auxiliary RAM by pointer of R0 or R1 register 1: read or write Higher 256 byte Auxiliary RAM by pointer of R0 or R1 register 2: 128 byte EEPROM by pointer of R0 or R1 register 5.15 Interrupt System External events and the real-time-driven on-chip peripherals require service by the CPU asynchronous to do execution of any particular section of code. To tie the asynchronous actives of these functions to normal program execution, a multiple-source, two-priority-level, nested interrupt system is provided. The W78E858 acknowledges interrupt requests from fourteen sources as below:     INT0 and INT1 Timer0 and Timer1 UART serial I/O INT2 to INT9 (at Port1) - 18 - Publication Release Date: April 22, 2008 Revision A8 W78E858 5.16 External Interrupts INT2 to INT9 Port1 lines serve an alternative purpose at eight additional interrupts INT2 to INT9. When enabled, each of these lines may "wake-up" the device from power-down mode. Using the IX1 register, the each pin may be initialized to either active HIGH or LOW. IRQ1 is the interrupt request flag register. Each flag, if the interrupt is enabled will be set on an interrupt request but must be cleared by software, i.e. via the interrupt software or when the interrupt is disable. The Port1 interrupts are level sensitive. A Port1 interrupt will be recognized when a level (HIGH or LOW depending on Interrupt Polarity Register IX1) on P1.x is held active for at least one machine cycle. The interrupt request is not served until the next machine cycle. 5.16.1 IE_1 (E8H) BIT NAME FUNCTION 7 EX9 Enable external interrupt 9 6 EX8 Enable external interrupt 8 5 EX7 Enable external interrupt 7 4 EX6 Enable external interrupt 6 3 EX5 Enable external interrupt 5 2 EX4 Enable external interrupt 4 1 EX3 Enable external interrupt 3 0 EX2 Enable external interrupt 2 5.16.2 IP1 (F8H) BIT NAME FUNCTION 7 PX9 External interrupt 9 priority level 6 PX8 External interrupt 8 priority level 5 PX7 External interrupt 7 priority level 4 PX6 External interrupt 6 priority level 3 PX5 External interrupt 5 priority level 2 PX4 External interrupt 4 priority level 1 PX3 External interrupt 3 priority level 0 PX2 External interrupt 2 priority level - 19 - Publication Release Date: April 22, 2008 Revision A8 W78E858 5.16.3 IX1 (E9H) BIT NAME FUNCTION 7 IL9 External interrupt 9 polarity level 6 IL8 External interrupt 8 polarity level 5 IL7 External interrupt 7 polarity level 4 IL6 External interrupt 6 polarity level 3 IL5 External interrupt 5 polarity level 2 IL4 External interrupt 4 polarity level 1 IL3 External interrupt 3 polarity level 0 IL2 External interrupt 2 polarity level 5.16.4 IRQ1 (C0H) BIT NAME FUNCTION 7 IQ9 External interrupt 9 request flag 6 IQ8 External interrupt 8 request flag 5 IQ7 External interrupt 7 request flag 4 IQ6 External interrupt 6 request flag 3 IQ5 External interrupt 5 request flag 2 IQ4 External interrupt 4 request flag 1 IQ3 External interrupt 3 request flag 0 IQ2 External interrupt 2 request flag 5.16.5 Interrupt Priority and Vector Address PRIORITY INTERRUPT VECTOR SOURCE PRIORITY INTERRUPT VECTOR SOURCE 1 INT0 0003H External 0 8 TF1 001BH Timer 1 2 INT5 0053H External 5 9 SINT 0023H UART 3 TF0 000BH Timer 0 10 TF2 002BH Timer 2 4 INT6 005BH External 6 11 INT3 0043H External 3 5 INT1 0013H External 1 12 INT8 006BH External 8 6 INT2 003BH External 2 13 INT4 004BH External 4 7 INT7 0063H External 7 14 INT9 0073H External 9 - 20 - Publication Release Date: April 22, 2008 Revision A8 W78E858 5.17 F04KBOOT Mode (Boot From 4K Bytes LDROM) The W78E858 boots from APROM program (32K bytes bank) by default after chip reset. On some occasions, user can force the W78E858 to boot from the LDROM program (4K bank) after chip reset. The setting for this special mode is as follow. 5.17.1 F04KBOOT Mode RST P4.3 P2.7 P2.6 MODE H X L L FO4KBOOT H L X X FO4KBOOT Note: In application system design, user must take care the P2, P3, ALE, EA and PSEN pin status at reset to avoid W78E858 entering the programming mode or F04KBOOT mode in normal operation. Enter 4K Reboot M ode Tim ing P2.6 X P2.7 X Ts=1us RESET Th > 24 clocks 5.18 Security During the on-chip FLASH EPROM programming mode, the FLASH EPROM can be programmed and verified repeatedly. Until the code inside the FLASH EPROM is confirmed OK, the code can be protected. The protection of FLASH EPROM and those operations on it are described below: The W78E858 has several special setting registers in FLASH EPROM block. Those bits of the security register can’t be changed once they have been programmed from high to low. They can only be reset through erase-all operation. The security register is located at the FFFFH on the same bank with 4K LDROM i.e., P3.6 must set high at writer mode. - 21 - Publication Release Date: April 22, 2008 Revision A8 W78E858 0000H On-Chip 4KB LDROM 0FFEH Reversed FFFFH Security Register 5.18.1 Lock Bit (Bit0) This bit is used to protect the customer's program code in the W78E858. It may be set after the programmer finishes the programming and verifies sequence. Once these bits are set to logic 0, both the FLASH EPROM data and all data in FLASH EPROM block can’t be accessed again. 5.18.2 MOVC Lock (Bit1) When this bit is program to "0", the MOVC instruction will be disable when the program counter more than 7FFFh or EA pin is forced low. 5.18.3 Scramble Enable (Bit2) This bit is used to protect the customer's program code in the W78E858. If this bit is set to logic 0, the dump ROM code are scrambled by a scramble circuit and the dump ROM code will become a random ROM code. 5.18.4 Oscillator Gain Select (Bit7) If this bit is set to logic 0 (for 24 MHz), the EMI effect will be reduce. If this bit is set to logic 1 (for 40 MHz), the W78E858 could to use 40 MHz crystal, but the EMI effect is major. So we provide the option bit which could be chose by customer. - 22 - Publication Release Date: April 22, 2008 Revision A8 W78E858 5.19 Watch Dog Timer For more system reliability, W78E858 provides a programmable watch-dog time-out reset function. From programming prescaler select, user can choose a variable prescaler from divided by 2 to divided by 256 to get a suitable time-out period. The time-out period is given by: Ttim e-out = 1 Fosc x 2 14 x PRESCALER x 1000 x 12 (mS) (Note: Fosc unit = Hz) 5.19.1 WDTC (8FH) BIT NAME FUNCTION 7 ENW 6 CLRW Clear watch-dog timer and prescaler if set. This flag will be cleared automatically. 5 WIDL If this bit is set, watch-dog is enabled under idle mode. If cleared, watch-dog is disable under idle mode. Default is cleared. 43 - 2 PS2 Watch-dog prescaler timer select. 1 PS1 Watch-dog prescaler timer select. 0 PS0 Watch-dog prescaler timer select. Enable watch-dog timer if set. Reversed. PS2 PS1 PS0 PRESCALER SELCET WATCH-DOG TIME-OUT PERIOD (FOSC = 20 MHz) 0 0 0 2 19.66 mS 0 1 0 4 39.32 mS 0 0 1 8 78.64 mS 0 1 1 16 157.28 mS 1 0 0 32 314.57 mS 1 0 1 64 629.14 mS 1 1 0 128 1.25 mS 1 1 1 256 2.52 mS - 23 - Publication Release Date: April 22, 2008 Revision A8 W78E858 5.20 Programmable Clock-out A 50% duty cycle clock can be programmed to come out on P1.0. To configure the timer/counter2 as a clock generator, bit C/T2 in T2CON register must be cleared and bit T2OE in T2MOD register must be set. Bit TR2 (T2CON.2) also must be set to start timer. The clock-out frequency depends on the oscillator frequency and reload value of Timer2 capture register (RCAP2H, RCAP2L) as shown in this equation: oscillatotr frequency 4  (65536  ( RCAP 2 H , RCAP 2 L)) In the clock-out mode, timer2 roll-overs will not generate an interrupt. This is similar to when it is used as a baud-rate generator. It is possible to use Timer2 as a baud-rate generator and a clock and a clock generator simultaneously. 5.21 Reduce EMI Emission The transition of ALE will cause noise, so it cab be turned off to reduce the EMI emission if it is useless. Turn off the ALE signal transition only need too set the ALEOFF flag in the AUXR register When ALE is turned off, it will be reactived when program access external ROM or RAM data or jump to execute external ROM code. After access completely or program returns to internal ROM code, ALE signal will turn off again. W IDL IDLE Fosc EXTERNAL RESET 1/12 PRESCALER ENW 14-BIT TIMER SYSTEM RESET CLRW Fig. 17-BIT W atch-Dog Tim er Function Block Diagram - 24 - Publication Release Date: April 22, 2008 Revision A8 W78E858 6. ELECTRICAL CHARACTERISTICS 6.1 Absolute Maximum Ratings PARAMETER SYMBOL MIN. MAX. UNIT VDD  VSS -0.3 +6.0 V Input Voltage Vin VSS -0.3 VDD +0.3 V Operating Temperature Ta 0 70 C Storage Temperature Tst -55 +150 C DC Power Supply Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of the device. 6.2 D.C. Characteristics (VDD  VSS = 5V 10%, TA = 25 C, Fosc = 20 MHz, unless otherwise specified.) PARAMETER SYM. SPECIFICATION MIN. MAX. UNIT TEST CONDITIONS Operating Voltage VDD 4.5 5.5 V Operating Current IDD - 20 mA IIDLE - 6 mA IPWDN - 50 A IIN1 -50 +10 A IIN2 -10 +300 A ILK -10 +10 A ITL[*4] -500 - A VIL1 0 0.8 V VDD = 4.5V VIL2 0 0.8 V VDD = 4.5V VIL3 0 0.8 V VDD = 4.5V Idle Current Power Down Current Input Current P1, P2, P3, P4 Input Current RST Input Leakage Current P0, EA Logic 1 to 0 Transition Current P1, P2, P3, P4 RST = 1, P0 = VDD No load VDD = 5.5V Idle mode VDD = 5.5V Power-down mode VDD = 5.5V VDD = 5.5V VIN = 0V or VDD VDD = 5.5V 0 < VIN < VDD VDD = 5.5V 0 < VIN < VDD VDD = 5.5V VIN = 2.0V Input Low Voltage P0, P1, P2, P3, P4, EA Input Low Voltage RST Input Low Voltage XTAL1[*4] - 25 - Publication Release Date: April 22, 2008 Revision A8 W78E858 D.C. Characteristics, continued PARAMETER SYM. SPECIFICATION MIN. MAX. UNIT Input High Voltage VIH1 2.4 VDD +0.2 V VDD = 5.5V VIH2 3.5 VDD +0.2 V VDD = 5.5V VIH3 3.5 VDD +0.2 V VDD = 5.5V VOL1 - 0.45 V VOL2 - 0.45 V ISK1 4 12 mA I SK2 10 20 mA VOH1 2.4 - V VOH2 2.4 - V ISR1 -120 -250 A ISR2 -8 -20 mA P0, P1, P2, P3, P4, EA Input High Voltage RST Input High Voltage XTAL1[*4] Output Low Voltage P1, P2, P3, P4 Output Low Voltage P0, ALE, PSEN [*3] Sink Current P1, P3, P4 Sink Current P0, P2, ALE, PSEN Output High Voltage P1, P2, P3, P4 Output High Voltage P0, ALE, PSEN [*3] Source Current P1, P2, P3, P4 Source Current P0, P2, ALE, PSEN TEST CONDITIONS VDD = 4.5V IOL = +2 mA VDD = 4.5V IOL = +4 mA VDD = 4.5V VIN = 0.45V VDD = 4.5V VIN = 0.45V VDD = 4.5V IOH = -100 A VDD = 4.5V IOH = -400 A VDD = 4.5V VIN = 2.4V (latch) VDD = 4.5V VIN = 2.4V Notes: *1. RST pin is a Schmitt trigger input. *3. P0, ALE and PSEN are tested in the external access mode. *4. XTAL1 is a CMOS input. *5. Pins of P1, P2, P3, P4 can source a transition current when they are being externally driven from 1 to 0. The transition current reaches its maximum value when VIN approximates to 2V. - 26 - Publication Release Date: April 22, 2008 Revision A8 W78E858 6.3 A.C. Characteristics The AC specifications are a function of the particular process used to manufacture the part, the ratings of the I/O buffers, the capacitive load, and the internal routing capacitance. Most of the specifications can be expressed in terms of multiple input clock periods (TCP), and actual parts will usually experience less than a 20 nS variation. The numbers below represent the performance expected from a 0.6 micron CMOS process when using 2 and 4 mA output buffers. 6.3.1 Clock Input Waveform XTAL1 T CH T CL F OP, PARAMETER SYMBOL TCP MIN. TYP. MAX. UNIT NOTES Operating Speed FOP 0 - 40 MHz 1 Clock Period TCP 25 - - nS 2 Clock High TCH 10 - - nS 3 Clock Low TCL 10 - - nS 3 Notes: 1. The clock may be stopped indefinitely in either state. 2. The TCP specification is used as a reference in other specifications. 3. There are no duty cycle requirements on the XTAL1 input. 6.3.2 Program Fetch Cycle MIN. TYP. MAX. UNIT NOTES Address Valid to ALE Low PARAMETER SYMBOL TAAS 1 TCP- - - nS 4 Address Hold from ALE Low TAAH 1 TCP- - - nS 1, 4 ALE Low to PSEN Low TAPL 1 TCP- - - nS 4 PSEN Low to Data Valid TPDA - - 2 TCP nS 2 Data Hold after PSEN High TPDH 0 - 1 TCP nS 3 Data Float after PSEN High TPDZ 0 - 1 TCP nS ALE Pulse Width TALW 2 TCP- 2 TCP - nS 4 PSEN Pulse Width TPSW 3 TCP- 3 TCP - nS 4 Notes: 1. P0.0  P0.7, P2.0  P2.7 remain stable throughout entire memory cycle. 2. Memory access time is 3 TCP. 3. Data have been latched internally prior to PSEN going high. 4. "" (due to buffer driving delay and wire loading) is 20 nS. - 27 - Publication Release Date: April 22, 2008 Revision A8 W78E858 6.3.3 Data Read Cycle PARAMETER SYMBOL MIN. TYP. MAX. UNIT NOTES ALE Low to RD Low Tdar 3 TCP- - 3 TCP+ nS 1, 2 RD Low to Data Valid Tdda - - 4 TCP nS 1 Data Hold from RD High Tddh 0 - 2 TCP nS Data Float from RD High Tddz 0 - 2 TCP nS RD Pulse Width Tdrd 6 TCP- 6 TCP - nS 2 Notes: 1. Data memory access time is 8 TCP. 2. "" (due to buffer driving delay and wire loading) is 20 nS. 6.3.4 Data Write Cycle PARAMETER SYMBOL MIN. TYP. MAX. UNIT ALE Low to WR Low TDAW 3 TCP- - 3 TCP+ nS Data Valid to WR Low TDAD 1 TCP- - - nS Data Hold from WR High TDWD 1 TCP- - - nS WR Pulse Width TDWR 6 TCP- 6 TCP - nS SYMBOL MIN. TYP. MAX. UNIT Port Input Setup to ALE Low TPDS 1 TCP - - nS Port Input Hold from ALE Low TPDH 0 - - nS Port Output to ALE TPDA 1 TCP - - nS Note: "" (due to buffer driving delay and wire loading) is 20 nS. 6.3.5 Port Access Cycle PARAMETER Note: Ports are read during S5P2, and output data becomes available at the end of S6P2. The timing data are referenced to ALE, since it provides a convenient reference. 6.3.6 Flash Mode Timing PARAMETER SYMBOL MIN. TYP. MAX. UNIT NOTES TRV 9 10 11 S - Enter Flash Mode Reset Low TEFRL 9 10 11 S - Program Pulse High TPPH 18 20 22 S - Program Pulse Low TPPL 40 50 60 S - Erase Pulse Low TEPL 25 30 50 mS - Read Pulse Low TRPL 1.35 1.5 1.65 S - Address PreFix TAPF 45 50 55 nS - Data Remain TDR 81 90 99 nS - Reset Valid - 28 - Publication Release Date: April 22, 2008 Revision A8 W78E858 7. TIMING WAVEFORMS 7.1 Program Fetch Cycle S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6 XTAL1 T ALW ALE T APL PSEN T PSW T AAS PORT 2 T PDA T AAH T PDH, T PDZ PORT 0 A0-A7 Code A0-A7 Data A0-A7 Code Data A0-A7 7.2 Data Read Cycle S4 S5 S6 S1 S2 S3 S4 S5 S6 S1 S2 S3 XTAL1 ALE PSEN PORT 2 A8-A15 DATA A0-A7 PORT 0 T DAR T DDA T DDH, T DDZ RD T DRD - 29 - Publication Release Date: April 22, 2008 Revision A8 W78E858 7.3 Data Write Cycle S4 S5 S6 S1 S2 S3 S4 S5 S6 S1 S2 S3 XTAL1 ALE PSEN PORT 2 PORT 0 A8-A15 A0-A7 DATA OUT T DW D TDAD WR T DW R T DAW 7.4 Port Access Cycle S5 S6 S1 XTAL1 ALE T PDS T PDA T PDH DATA OUT PORT INPUT SAMPLE - 30 - Publication Release Date: April 22, 2008 Revision A8 W78E858 8. TYPICAL APPLICATION CIRCUITS 8.1 Expanded External Program Memory and Crystal V DD V DD 35 21 10 u R 22 CRYSTAL 8.2 K 10 C1 EA XTAL1 XTAL2 RST C2 INT0 14 15 16 17 INT1 T0 T1 2 3 4 5 6 7 8 9 P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7 P0.0 P0.1 P0.2 P0.3 P0.4 P0.5 P0.6 P0.7 43 42 41 40 39 38 37 36 AD0 AD1 AD2 AD3 AD4 AD5 AD6 AD7 P2.0 P2.1 P2.2 P2.3 P2.4 P2.5 P2.6 P2.7 24 25 26 27 28 29 30 31 A8 A9 A10 A11 A12 A13 A14 A15 RD WR PSEN ALE TXD RXD 19 18 32 33 13 11 AD0 3 AD1 4 AD2 7 AD3 8 AD4 13 AD5 14 AD6 17 AD7 18 D0 D1 D2 D3 D4 D5 D6 D7 Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 A0 10 A1 9 A2 8 A3 7 A4 6 A5 5 A6 4 A7 3 A8 25 A9 24 A10 21 A11 23 A12 2 A13 26 A14 27 A15 1 2 A0 5 A1 6 A2 9 A3 12 A4 15 A5 16 A6 19 A7 GND 1 OC 11 G 74LS373 GND 20 22 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 O0 O1 O2 O3 O4 O5 O6 O7 11 12 13 15 16 17 18 19 AD0 AD1 AD2 AD3 AD4 AD5 AD6 AD7 CE OE 2764 W78E858 Figure A CRYSTAL C1 C2 R 6 MHz 68P  100P 68P  100P 6.8K 16 MHz 20P  100P 20P  100P 6.8K 24 MHz 10P  68P 10P  68P 6.8K 32 MHz 5P  20P 5P  20P 6.8K 40 MHz 5P 5P 3.3K Above table shows the reference values for crystal applications. Notes: 1. C1, C2, R components refer to Figure A 2. Crystal layout must get close to XTAL1 and XTAL2 pins on user's application board. - 31 - Publication Release Date: April 22, 2008 Revision A8 W78E858 8.2 Expanded External Data Memory and Oscillator VDD VDD 35 EA 21 XTAL1 20 XTAL2 10 u OSCILLATOR 8.2 K 10 RST 14 15 16 17 2 3 4 5 6 7 8 9 INT0 INT1 T0 T1 P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7 P0.0 P0.1 P0.2 P0.3 P0.4 P0.5 P0.6 P0.7 43 42 41 40 39 38 37 36 AD0 AD1 AD2 AD3 AD4 AD5 AD6 AD7 P2.0 P2.1 P2.2 P2.3 P2.4 P2.5 P2.6 P2.7 24 25 26 27 28 29 30 31 A8 A9 A10 A11 A12 A13 A14 RD 19 18 32 33 13 11 WR PSEN ALE TXD RXD AD0 3 AD1 4 AD2 7 AD3 8 AD4 13 AD5 14 AD6 17 AD7 18 GND 1 D0 D1 D2 D3 D4 D5 D6 D7 Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 2 5 6 9 12 15 16 19 OC 11 G 74LS373 A0 A1 A2 A3 A4 A5 A6 A7 A0 10 A1 9 A2 8 A3 7 A4 6 A5 5 A6 4 A7 3 A8 25 A9 24 A10 21 A11 23 A12 2 A13 26 A14 1 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 GND 20 22 27 CE OE D0 11 D1 12 D2 13 D3 15 D4 16 D5 17 D6 18 D7 19 AD0 AD1 AD2 AD3 AD4 AD5 AD6 AD7 WR 20256 W78E858 Figure B - 32 - Publication Release Date: April 22, 2008 Revision A8 W78E858 9. PACKAGE DIMENSIONS 9.1 40-pin DIP Dimension in inch Dimension in mm Min. Nom. Max. Min. Nom. Max. Symbol A A1 A2 B B1 c D E E1 e1 L D 40 21 E1 0.155 0.160 3.81 3.937 4.064 0.016 0.018 0.022 0.406 0.457 0.559 0.048 0.050 0.054 1.219 1.27 1.372 0.008 0.010 0.014 0.203 0.254 0.356 2.055 2.070 52.20 52.58 15.494 0.590 0.600 0.610 14.986 15.24 0.540 0.545 0.550 13.72 13.84 13.97 0.090 0.100 0.110 2.286 2.54 2.794 0.120 0.130 0.140 3.048 3.302 3.556 15 0 0.670 16.00 16.51 17.01 0 eA S 20 0.254 0.150 a 1 5.334 0.210 0.010 0.630 0.650 15 0.090 2.286 Notes: E S 1. Dimension D Max. & S include mold flash or tie bar burrs. 2. Dimension E1 does not include interlead flash. 3. Dimension D & E1 include mold mismatch and . parting line. are determined at the mold 4. Dimension B1 does not include dambar protrusion/intrusion. 5. Controlling dimension: Inches. 6. General appearance spec. should be based on final visual inspection spec. c A A2 A1 Base Plane Seating Plane L B e1 eA a B1 9.2 44-pin PLCC HD D 6 1 44 40 Symbol 39 7 E 17 HE GE 29 18 28 c A A1 A2 b1 b c D E e GD GE HD HE L y Dimension in inch Min. Nom. Max. Dimension in mm Min. Nom. Max. 0.185 4.699 0.508 0.020 0.145 0.150 0.155 3.683 3.81 3.937 0.026 0.028 0.032 0.66 0.711 0.813 0.016 0.018 0.022 0.406 0.457 0.559 0.008 0.010 0.014 0.203 0.254 0.356 0.648 0.653 0.658 16.46 16.59 16.71 0.648 0.653 0.658 16.46 16.59 16.71 0.050 BSC 1.27 BSC 0.590 0.610 0.630 14.99 15.49 16.00 0.590 0.610 0.630 14.99 15.49 16.00 0.680 0.690 0.700 17.27 17.53 17.78 0.680 0.690 0.700 17.27 17.53 17.78 0.090 0.100 0.110 2.296 2.54 2.794 0.004 0.10 L Notes: A2 A 1. Dimension D & E do not include interlead flash. 2. Dimension b1 does not include dambar protrusion/intrusion. 3. Controlling dimension: Inches 4. General appearance spec. should be based on final visual inspection spec.  e b b1 Seating Plane A1 y GD - 33 - Publication Release Date: April 22, 2008 Revision A8 W78E858 9.3 44-pin PQFP HD D Symbol 34 44 A A1 A2 b c D E e HD HE L L1 y  33 1 E HE 11 12 e b 22 Dimension in inch Dimension in mm Min. Nom. Max. Min. Nom. Max. --- --- --- --- 0.002 0.01 0.02 0.05 0.25 0.5 0.075 0.081 0.087 1.90 2.05 2.20 0.01 0.014 0.018 0.25 0.35 0.45 0.004 0.006 0.010 0.101 0.152 0.254 0.390 0.394 0.398 9.9 10.00 10.1 0.390 0.394 0.398 9.9 10.00 10.1 --- --- 0.025 0.031 0.036 0.635 0.80 0.952 0.510 0.520 0.530 12.95 13.2 13.45 13.45 0.510 0.520 0.530 12.95 13.2 0.025 0.031 0.037 0.65 0.8 0.95 0.051 0.063 0.075 1.295 1.6 1.905 0.08 0.003 0 7 0 7 Notes: 1. Dimension D & E do not include interlead flash. 2. Dimension b does not include dambar protrusion/intrusion. 3. Controlling dimension: Millimeter 4. General appearance spec. should be based on final visual inspection spec. c A2 A Seating Plane See Detail F A1 y  L L1 Detail F - 34 - Publication Release Date: April 22, 2008 Revision A8 W78E858 10. VERSION HISTORY VERSION DATE PAGE DESCRIPTION A Oct. 2001 - B Jul. 2002 15 Modify timer 2 interrupt vector address C Nov. 2002 5 EEPROM address of command code D May. 2004 6 Remove erase acquisition flow 6 Add a demo code Initial Issued A5 April 20, 2005 33 Add Important Notice A6 May 3, 2006 7 Revise “03H to MXPSR” to ”02H to MXPSR” A7 November 6, 2006 A8 April 22, 2008 Remove block diagram 14 Update P3 reset state Important Notice Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed, “Insecure Usage”. Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other applications intended to support or sustain life. All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay claims to Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the damages and liabilities thus incurred by Nuvoton. - 35 - Publication Release Date: April 22, 2008 Revision A8
W78E858A40FL 价格&库存

很抱歉,暂时无法提供与“W78E858A40FL”相匹配的价格&库存,您可以联系我们找货

免费人工找货