0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
XL212-512-TQ128-I20

XL212-512-TQ128-I20

  • 厂商:

    XMOS

  • 封装:

    TQFP128_EP

  • 描述:

    ICMCU32BITROMLESS128TQFP

  • 数据手册
  • 价格&库存
XL212-512-TQ128-I20 数据手册
XL212-512-TQ128 Datasheet 2018/09/05 XMOS © 2018, All Rights Reserved Document Number: X007787, XL212-512-TQ128 Datasheet 1 Table of Contents 1 xCORE Multicore Microcontrollers . . . . 2 XL212-512-TQ128 Features . . . . . . . 3 Pin Configuration . . . . . . . . . . . . . 4 Signal Description . . . . . . . . . . . . . 5 Example Application Diagram . . . . . . 6 Product Overview . . . . . . . . . . . . . 7 PLL . . . . . . . . . . . . . . . . . . . . . . 8 Boot Procedure . . . . . . . . . . . . . . . 9 Memory . . . . . . . . . . . . . . . . . . . 10 JTAG . . . . . . . . . . . . . . . . . . . . . 11 Board Integration . . . . . . . . . . . . . 12 Electrical Characteristics . . . . . . . . . 13 Package Information . . . . . . . . . . . 14 Ordering Information . . . . . . . . . . . Appendices . . . . . . . . . . . . . . . . . . . . A Configuration of the XL212-512-TQ128 B Processor Status Configuration . . . . . C Tile Configuration . . . . . . . . . . . . . D Node Configuration . . . . . . . . . . . . E JTAG, xSCOPE and Debugging . . . . . . F Schematics Design Check List . . . . . . G PCB Layout Design Check List . . . . . . H Associated Design Documentation . . . I Related Documentation . . . . . . . . . . J Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4 5 6 10 11 14 15 19 19 20 23 27 28 29 29 31 42 50 58 60 62 63 63 64 TO OUR VALUED CUSTOMERS It is our intention to provide you with accurate and comprehensive documentation for the hardware and software components used in this product. To subscribe to receive updates, visit http://www.xmos.com/. XMOS Ltd. is the owner or licensee of the information in this document and is providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. XMOS Ltd. makes no representation that the information, or any particular implementation thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any such claims. XMOS and the XMOS logo are registered trademarks of XMOS Ltd in the United Kingdom and other countries, and may not be used without written permission. Company and product names mentioned in this document are the trademarks or registered trademarks of their respective owners. X007787, XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet 1 2 xCORE Multicore Microcontrollers The xCORE-200 Series is a comprehensive range of 32-bit multicore microcontrollers that brings the low latency and timing determinism of the xCORE architecture to mainstream embedded applications. Unlike conventional microcontrollers, xCORE multicore microcontrollers execute multiple real-time tasks simultaneously and communicate between tasks using a high speed network. Because xCORE multicore microcontrollers are completely deterministic, you can write software to implement functions that traditionally require dedicated hardware. X0Dxx I/O pins xTIME scheduler Hardware response ports PLL JTAG xCORE logical core Figure 1: XL212-512TQ128 block diagram xCORE logical core xCORE logical core SRAM OTP Hardware response ports xCORE logical core xCONNECT Switch xCORE logical core X1Dxx I/O pins xCORE logical core xCORE logical core xCORE logical core xTIME scheduler xCORE logical core xCORE logical core xCORE logical core xCORE logical core OTP SRAM Key features of the XL212-512-TQ128 include: · Tiles: Devices consist of one or more xCORE tiles. Each tile contains between five and eight 32-bit xCOREs with highly integrated I/O and on-chip memory. · Logical cores Each logical core can execute tasks such as computational code, DSP code, control software (including logic decisions and executing a state machine) or software that handles I/O. Section 6.1 · xTIME scheduler The xTIME scheduler performs functions similar to an RTOS, in hardware. It services and synchronizes events in a core, so there is no requirement for interrupt handler routines. The xTIME scheduler triggers cores on events generated by hardware resources such as the I/O pins, communication channels and timers. Once triggered, a core runs independently and concurrently to other cores, until it pauses to wait for more events. Section 6.2 · Channels and channel ends Tasks running on logical cores communicate using channels formed between two channel ends. Data can be passed synchronously or asynchronously between the channel ends assigned to the communicating tasks. Section 6.5 · xCONNECT Switch and Links Between tiles, channel communications are implemented over a high performance network of xCONNECT Links and routed through a hardware xCONNECT Switch. Section 6.6 X007787, XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet 3 · Ports The I/O pins are connected to the processing cores by Hardware Response ports. The port logic can drive its pins high and low, or it can sample the value on its pins optionally waiting for a particular condition. Section 6.3 · Clock blocks xCORE devices include a set of programmable clock blocks that can be used to govern the rate at which ports execute. Section 6.4 · Memory Each xCORE Tile integrates a bank of SRAM for instructions and data, and a block of one-time programmable (OTP) memory that can be configured for system wide security features. Section 9 · PLL The PLL is used to create a high-speed processor clock given a low speed external oscillator. Section 7 · JTAG The JTAG module can be used for loading programs, boundary scan testing, in-circuit source-level debugging and programming the OTP memory. Section 10 1.1 Software Devices are programmed using C, C++ or xC (C with multicore extensions). XMOS provides tested and proven software libraries, which allow you to quickly add interface and processor functionality such as USB, Ethernet, PWM, graphics driver, and audio EQ to your applications. 1.2 xTIMEcomposer Studio The xTIMEcomposer Studio development environment provides all the tools you need to write and debug your programs, profile your application, and write images into flash memory or OTP memory on the device. Because xCORE devices operate deterministically, they can be simulated like hardware within xTIMEcomposer: uniquely in the embedded world, xTIMEcomposer Studio therefore includes a static timing analyzer, cycle-accurate simulator, and high-speed in-circuit instrumentation. xTIMEcomposer can be driven from either a graphical development environment, or the command line. The tools are supported on Windows, Linux and MacOS X and available at no cost from xmos.com/downloads. Information on using the tools is provided in the xTIMEcomposer User Guide, X3766. X007787, XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet 2 4 XL212-512-TQ128 Features · Multicore Microcontroller with Advanced Multi-Core RISC Architecture • 12 real-time logical cores on 2 xCORE tiles • Cores share up to 1000 MIPS — Up to 2000 MIPS in dual issue mode • Each logical core has: — Guaranteed throughput of between 1/5 and 1/6 of tile MIPS — 16x32bit dedicated registers • 167 high-density 16/32-bit instructions — All have single clock-cycle execution (except for divide) — 32x32→64-bit MAC instructions for DSP, arithmetic and user-definable cryptographic functions · Programmable I/O • 88 general-purpose I/O pins, configurable as input or output — Up to 32 x 1bit port, 12 x 4bit port, 8 x 8bit port, 4 x 16bit port — 4 xCONNECT links • Port sampling rates of up to 60 MHz with respect to an external clock • 64 channel endss (32 per tile) for communication with other cores, on or off-chip · Memory • 512KB internal single-cycle SRAM (max 256KB per tile) for code and data storage • 16KB internal OTP (max 8KB per tile) for application boot code · Hardware resources • 12 clock blocks (6 per tile) • 20 timers (10 per tile) • 8 locks (4 per tile) · JTAG Module for On-Chip Debug · Security Features • Programming lock disables debug and prevents read-back of memory contents • AES bootloader ensures secrecy of IP held on external flash memory · Ambient Temperature Range • Commercial qualification: 0 °C to 70 °C • Industrial qualification: -40 °C to 85 °C · Speed Grade • 20: 1000 MIPS · Power Consumption • 570 mA (typical) · 128-pin TQFP package 0.4 mm pitch X007787, XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet TDO 4F 97 X0D29 4F 98 X0D30 VDD X0D31 4F VDD 101 99 PLL_AVDD 102 100 PLL_AGND 103 X1D40 OTP_VCC 8D 105 104 8D 106 X1D41 X1D43 8D 107 X1D42 VDDIOT 8D 109 108 X1D26 VDDIOT 4E 111 110 4E 112 X1D27 4F 113 X1D28 4F 114 X1D29 4F 115 X1D30 4F 116 X1D31 4E 117 X1D32 VDD X1D33 4E 118 X1D10 X1D11 1C 120 119 TRST_N 1D 122 121 CLK RST_N VDD 125 123 TMS 126 124 TDI TCK 127 Pin Configuration 128 3 5 1 96 4E X0D33 X0D36 1M 2 95 4F X0D28 X0D37 1N 3 94 4E X0D32 X 0 Lo4 7 93 4E X0D27 X 0 Lo3 7 92 4E VDDIOL X 0 L i4 0 4 X0D38 1O 5 X 0 L i3 0 X0D39 1P 6 X 0 L i2 0 X0D40 8D 7 X 0 L i1 0 X 0 Lo2 7 90 1L X0D35 X0D41 8D 8 X 0 L i0 0 X 0 Lo1 7 89 1K X0D34 X 0 Lo0 7 88 1J X0D25 X 0 L i0 7 87 1I X0D24 VDD 91 9 X0D42 8D 10 X 0 Lo0 0 X0D43 8D 11 X 0 Lo1 0 X1D34 1K 12 X 0 Lo2 0 VDDIOL 86 13 X1D35 1L 14 X 0 Lo3 0 X1D36 1M 15 X 0 Lo4 0 VDD 16 VDD 17 X1D37 1N VDDIOL 18 VDD X 0 L i1 7 85 1B X1D01 X 0 L i2 7 84 1A X1D00 X 0 L i3 7 83 4A 82 X 0 L i4 7 GND 81 X 0 L i4 3 4A 78 X1D08 VDD 79 X 0 Lo4 4 X1D09 VDDIOR 80 19 X0D26 VDDIOR VDD 4B X1D07 X1D38 1O 20 X 0 L i3 3 X1D39 1P 21 X 0 L i2 3 X 0 Lo3 4 76 4B X1D06 X1D16 4D 22 X 0 L i1 3 X 0 Lo2 4 75 4B X1D05 X1D17 4D 23 X 0 L i0 3 X 0 Lo1 4 74 4B X1D04 X 0 Lo0 4 73 4A X1D03 VDD 77 24 VDDIOR X1D18 4D 25 X 0 Lo0 3 X1D19 4D 26 X 0 Lo1 3 X 0 L i0 4 71 4A X1D02 X0D01 1B 27 X 0 Lo2 3 X 0 L i1 4 70 4D X0D19 X0D10 1C 28 X 0 Lo3 3 X 0 L i2 4 69 4D X0D18 X 0 L i3 4 68 4D X0D17 X 0 L i4 4 67 4D VDDIOL 72 29 X 0 Lo4 3 VDD X007787, 1G 1H X0D22 X0D23 X0D16 64 1F X0D13 63 1E X0D12 62 60 4C X0D21 61 59 58 4C X0D20 VDD 4C X0D15 57 56 4C 1J X1D25 X0D14 1I X1D24 55 4C X1D21 VDD 4C X1D20 54 4C X1D15 53 49 4C X1D14 52 48 VDDIOR 51 47 VDD 50 46 VDDIOL 1F X1D13 45 1E X1D12 44 43 41 40 4A 4B X0D07 X0D09 4B X0D06 42 4B X0D05 VDD 4B X0D04 4A 1D X0D11 X0D08 NC 39 65 4A 32 4A 1A X0D03 X0D00 X0D02 VDDIOR 38 66 VDD 31 37 1H 36 X1D23 35 30 34 1G 33 X1D22 XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet 4 6 Signal Description This section lists the signals and I/O pins available on the XL212-512-TQ128. The device provides a combination of 1bit, 4bit, 8bit and 16bit ports, as well as wider ports that are fully or partially (gray) bonded out. All pins of a port provide either output or input, but signals in different directions cannot be mapped onto the same port. Pins may have one or more of the following properties: · PD/PU: The IO pin has a weak pull-down or pull-up resistor. The resistor is enabled during and after reset. Enabling a link or port that uses the pin disables the resistor. Thereafter, the resistor can be enabled or disabled under software control. The resistor is designed to ensure defined logic input state for unconnected pins. It should not be used to pull external circuitry. Note that the resistors are highly non-linear and only a maximum pull current is specified in Section 12.3. · ST: The IO pin has a Schmitt Trigger on its input. · IOL/IOT/IOR: The IO pin is powered from VDDIOL, VDDIOT, and VDDIOR respectively Power pins (8) Signal Function Type GND Digital ground GND OTP_VCC OTP power supply PWR PLL_AGND Analog ground for PLL PWR PLL_AVDD Analog PLL power PWR VDD Digital tile power PWR VDDIOL Digital I/O power (left) PWR VDDIOR Digital I/O power (right) PWR VDDIOT Digital I/O power (top) PWR Properties JTAG pins (6) X007787, Signal Function Type Properties RST_N Global reset input Input IOL, PU, ST TCK Test clock Input IOL, PD, ST TDI Test data input Input IOL, PU TDO Test data output Output IOL, PD TMS Test mode select Input IOL, PU TRST_N Test reset input Input IOL, PU, ST XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet 7 I/O pins (88) Signal Function X0D00 X0D01 X0 L32 out Type Properties 1A0 I/O IOL, PD 1B0 I/O IOL, PD X0D02 4A0 8A0 16A0 32A20 I/O IOL, PD X0D03 4A1 8A1 16A1 32A21 I/O IOL, PD X0D04 4B0 8A2 16A2 32A22 I/O IOL, PD X0D05 4B1 8A3 16A3 32A23 I/O IOL, PD X0D06 4B2 8A4 16A4 32A24 I/O IOL, PD X0D07 4B3 8A5 16A5 32A25 I/O IOL, PD X0D08 4A2 8A6 16A6 32A26 I/O IOL, PD X0D09 4A3 8A7 16A7 32A27 I/O IOL, PD 1C0 I/O IOL, PD X0D11 1D0 I/O IOL, PD X0D12 1E0 I/O IOR, PD X0D13 1F0 I/O IOR, PD X0D10 X0 L33 out X0D14 4C0 8B0 16A8 32A28 I/O IOR, PD X0D15 4C1 8B1 16A9 32A29 I/O IOR, PD X0D16 X0 L44 in 4D0 8B2 16A10 I/O IOR, PD X0D17 X0 L43 in 4D1 8B3 16A11 I/O IOR, PD X0D18 X0 L42 in 4D2 8B4 16A12 I/O IOR, PD X0D19 X0 L41 in 4D3 8B5 16A13 I/O IOR, PD X0D20 4C2 8B6 16A14 32A30 I/O IOR, PD X0D21 4C3 8B7 16A15 32A31 I/O IOR, PD X0D22 1G0 I/O IOR, PD X0D23 1H0 I/O IOR, PD X0D24 X0 L70 in 1I0 I/O IOR, PD X0D25 X0 L70 out 1J0 I/O IOR, PD X0D26 X0 L73 out 4E0 8C0 16B0 I/O IOR, PD X0D27 X0 L74 out 4E1 8C1 16B1 I/O IOR, PD X0D28 4F0 8C2 16B2 I/O IOR, PD X0D29 4F1 8C3 16B3 I/O IOR, PD X0D30 4F2 8C4 16B4 I/O IOR, PD X0D31 4F3 8C5 16B5 I/O IOR, PD X0D32 4E2 8C6 16B6 I/O IOR, PD X0D33 4E3 8C7 16B7 I/O IOR, PD X0D34 X0 L71 out 1K0 I/O IOR, PD X0D35 X0 L72 out 1L0 I/O IOR, PD X0D36 1M0 8D0 16B8 I/O IOL, PD X0D37 X0 L04 in 1N0 8D1 16B9 I/O IOL, PD X0D38 X0 L03 in 1O0 8D2 16B10 I/O IOL, PD X0D39 X0 L02 in 1P0 8D3 16B11 I/O IOL, PD X0D40 X0 L01 in 8D4 16B12 I/O IOL, PD (continued) X007787, XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet 8 Signal Function Type Properties X0D41 X0 L00 in 8D5 16B13 I/O IOL, PD X0D42 X0 L00 out 8D6 16B14 I/O IOL, PD X0D43 X0 L01 out 8D7 16B15 I/O IOL, PD X1D00 X0 L72 in 1A0 I/O IOR, PD X1D01 X0 L71 in 1B0 I/O IOR, PD X1D02 X0 L40 in 4A0 8A0 16A0 32A20 I/O IOR, PD X1D03 X0 L40 out 4A1 8A1 16A1 32A21 I/O IOR, PD X1D04 X0 L41 out 4B0 8A2 16A2 32A22 I/O IOR, PD X1D05 X0 L42 out 4B1 8A3 16A3 32A23 I/O IOR, PD X1D06 X0 L43 out 4B2 8A4 16A4 32A24 I/O IOR, PD X1D07 X0 L44 out 4B3 8A5 16A5 32A25 I/O IOR, PD X1D08 X0 L74 in 4A2 8A6 16A6 32A26 I/O IOR, PD X1D09 X0 L73 in 4A3 8A7 16A7 32A27 I/O IOR, PD X1D10 1C0 I/O IOT, PD X1D11 1D0 I/O IOT, PD X1D12 1E0 I/O IOL, PD X1D13 1F0 I/O IOL, PD X1D14 4C0 8B0 16A8 32A28 I/O IOR, PD X1D15 4C1 8B1 16A9 32A29 I/O IOR, PD X1D16 X0 L31 in 4D0 8B2 16A10 I/O IOL, PD X1D17 X0 L30 in 4D1 8B3 16A11 I/O IOL, PD X1D18 X0 L30 out 4D2 8B4 16A12 I/O IOL, PD X1D19 X0 L31 out 4D3 8B5 16A13 I/O IOL, PD X1D20 4C2 8B6 16A14 32A30 I/O IOR, PD X1D21 4C3 8B7 16A15 32A31 I/O IOR, PD 1G0 I/O IOL, PD X1D23 1H0 I/O IOL, PD X1D24 1I0 I/O IOR, PD X1D25 1J0 I/O IOR, PD X1D22 X0 L34 out X1D26 4E0 8C0 16B0 I/O IOT, PD X1D27 4E1 8C1 16B1 I/O IOT, PD X1D28 4F0 8C2 16B2 I/O IOT, PD X1D29 4F1 8C3 16B3 I/O IOT, PD X1D30 4F2 8C4 16B4 I/O IOT, PD X1D31 4F3 8C5 16B5 I/O IOT, PD X1D32 4E2 8C6 16B6 I/O IOT, PD X1D33 4E3 8C7 16B7 I/O IOT, PD X1D34 X0 L02 out 1K0 I/O IOL, PD X1D35 X0 L03 out 1L0 I/O IOL, PD X1D36 X0 L04 out 1M0 8D0 16B8 I/O IOL, PD X1D37 X0 L34 in 1N0 8D1 16B9 I/O IOL, PD X1D38 X0 L33 in 1O0 8D2 16B10 I/O IOL, PD X1D39 X0 L32 in 1P0 8D3 16B11 I/O IOL, PD (continued) X007787, XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet Signal 9 Type Properties X1D40 Function 8D4 16B12 I/O IOT, PD X1D41 8D5 16B13 I/O IOT, PD X1D42 8D6 16B14 I/O IOT, PD X1D43 8D7 16B15 I/O IOT, PD System pins (1) X007787, Signal Function Type Properties CLK PLL reference clock Input IOL, PD, ST XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet 5 10 Example Application Diagram IN IN 1V0 OUT 3V3 PLL_AGND VDD RESET SUPERVISOR PLL_AVDD OUT RST_N TRST_N OSCILLATOR 25 MHz CLK OTP_VCC XnDnn GPIO xCORE200 VDDIOT VDDIOL GND Figure 2: Simplified Reference Schematic X0D01 X0D04 X0D05 X0D06 X0D07 X0D10 VDDIOR QSPI FLASH · see Section 11 for details on the power supplies and PCB design X007787, XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet 6 11 Product Overview The XL212-512-TQ128 is a powerful device that consists of two xCORE Tiles, each comprising a flexible logical processing cores with tightly integrated I/O and on-chip memory. 6.1 Logical cores Each tile has 6 active logical cores, which issue instructions down a shared fivestage pipeline. Instructions from the active cores are issued round-robin. If up to five logical cores are active, each core is allocated a fifth of the processing cycles. If more than five logical cores are active, each core is allocated at least 1/n cycles (for n cores). Figure 3 shows the guaranteed core performance depending on the number of cores used. Figure 3: Logical core performance Speed MIPS Frequency grade 10 1000 MIPS 500 MHz Minimum MIPS per core (for n cores) 1 2 3 4 5 6 100 100 100 100 100 83 There is no way that the performance of a logical core can be reduced below these predicted levels (unless priority threads are used: in this case the guaranteed minimum performance is computed based on the number of priority threads as defined in the architecture manual). Because cores may be delayed on I/O, however, their unused processing cycles can be taken by other cores. This means that for more than five logical cores, the performance of each core is often higher than the predicted minimum but cannot be guaranteed. The logical cores are triggered by events instead of interrupts and run to completion. A logical core can be paused to wait for an event. 6.2 xTIME scheduler The xTIME scheduler handles the events generated by xCORE Tile resources, such as channel ends, timers and I/O pins. It ensures that all events are serviced and synchronized, without the need for an RTOS. Events that occur at the I/O pins are handled by the Hardware-Response ports and fed directly to the appropriate xCORE Tile. An xCORE Tile can also choose to wait for a specified time to elapse, or for data to become available on a channel. Tasks do not need to be prioritised as each of them runs on their own logical xCORE. It is possible to share a set of low priority tasks on a single core using cooperative multitasking. 6.3 Hardware Response Ports Hardware Response ports connect an xCORE tile to one or more physical pins and as such define the interface between hardware attached to the XL212-512-TQ128, and the software running on it. A combination of 1bit, 4bit, 8bit, 16bit and 32bit X007787, XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet 12 ports are available. All pins of a port provide either output or input. Signals in different directions cannot be mapped onto the same port. reference clock readyOut conditional value clock port clock block readyIn port port counter port logic stamp/time PORT FIFO PINS Figure 4: Port block diagram port value output (drive) SERDES transfer register CORE input (sample) The port logic can drive its pins high or low, or it can sample the value on its pins, optionally waiting for a particular condition. Ports are accessed using dedicated instructions that are executed in a single processor cycle. xCORE-200 IO pins can be used as open collector outputs, where signals are driven low if a zero is output, but left high impedance if a one is output. This option is set on a per-port basis. Data is transferred between the pins and core using a FIFO that comprises a SERDES and transfer register, providing options for serialization and buffered data. Each port has a 16-bit counter that can be used to control the time at which data is transferred between the port value and transfer register. The counter values can be obtained at any time to find out when data was obtained, or used to delay I/O until some time in the future. The port counter value is automatically saved as a timestamp, that can be used to provide precise control of response times. The ports and xCONNECT links are multiplexed onto the physical pins. If an xConnect Link is enabled, the pins of the underlying ports are disabled. If a port is enabled, it overrules ports with higher widths that share the same pins. The pins on the wider port that are not shared remain available for use when the narrower port is enabled. Ports always operate at their specified width, even if they share pins with another port. 6.4 Clock blocks xCORE devices include a set of programmable clocks called clock blocks that can be used to govern the rate at which ports execute. Each xCORE tile has six clock blocks: the first clock block provides the tile reference clock and runs at a default frequency of 100MHz; the remaining clock blocks can be set to run at different frequencies. X007787, XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet 13 100MHz reference clock 1-bit port ... ... divider readyIn clock block Figure 5: Clock block diagram port counter A clock block can use a 1-bit port as its clock source allowing external application clocks to be used to drive the input and output interfaces. xCORE-200 clock blocks optionally divide the clock input from a 1-bit port. In many cases I/O signals are accompanied by strobing signals. The xCORE ports can input and interpret strobe (known as readyIn and readyOut) signals generated by external sources, and ports can generate strobe signals to accompany output data. On reset, each port is connected to clock block 0, which runs from the xCORE Tile reference clock. 6.5 Channels and Channel Ends Logical cores communicate using point-to-point connections, formed between two channel ends. A channel-end is a resource on an xCORE tile, that is allocated by the program. Each channel-end has a unique system-wide identifier that comprises a unique number and their tile identifier. Data is transmitted to a channel-end by an output-instruction; and the other side executes an input-instruction. Data can be passed synchronously or asynchronously between the channel ends. 6.6 xCONNECT Switch and Links XMOS devices provide a scalable architecture, where multiple xCORE devices can be connected together to form one system. Each xCORE device has an xCONNECT interconnect that provides a communication infrastructure for all tasks that run on the various xCORE tiles on the system. The interconnect relies on a collection of switches and XMOS links. Each xCORE device has an on-chip switch that can set up circuits or route data. The switches are connected by xConnect Links. An XMOS link provides a physical connection between two switches. The switch has a routing algorithm that supports many different topologies, including lines, meshes, trees, and hypercubes. The links operate in either 2 wires per direction or 5 wires per direction mode, depending on the amount of bandwidth required. Circuit switched, streaming X007787, XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet 14 xCONNECT Link to another device switch CORE CORE CORE CORE CORE CORE CORE CORE CORE CORE xCONNECT switch CORE CORE Figure 6: Switch, links and channel ends CORE CORE CORE CORE xCORE Tile xCORE Tile and packet switched data can both be supported efficiently. Streams provide the fastest possible data rates between xCORE Tiles (up to 250 MBit/s), but each stream requires a single link to be reserved between switches on two tiles. All packet communications can be multiplexed onto a single link. Information on the supported routing topologies that can be used to connect multiple devices together can be found in the XS1-L Link Performance and Design Guide, X2999. 7 PLL The PLL creates a high-speed clock that is used for the switch, tile, and reference clock. The initial PLL multiplication value is shown in Figure 7: Figure 7: The initial PLL multiplier values Oscillator Frequency 9-25 MHz Tile Boot Frequency 144-400 MHz PLL Ratio 16 PLL settings OD F R 1 63 0 Figure 7 also lists the values of OD, F and R, which are the registers that define the ratio of the tile frequency to the oscillator frequency: Fcor e = Fosc × F +1 1 1 × × 2 R+1 OD + 1 OD, F and R must be chosen so that 0 ≤ R ≤ 63, 0 ≤ F ≤ 4095, 0 ≤ OD ≤ 7, and F +1 1 260MHz ≤ Fosc × 2 × R+1 ≤ 1.3GHz. The OD, F , and R values can be modified by writing to the digital node PLL configuration register. X007787, XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet 15 If a different tile frequency is required (eg, 500 MHz), then the PLL must be reprogrammed after boot to provide the required tile frequency. The XMOS tools perform this operation by default. Further details on configuring the clock can be found in the xCORE-200 Clock Frequency Control document. 8 Boot Procedure The device is kept in reset by driving RST_N low. When in reset, all GPIO pins have a pull-down enabled. When the device is taken out of reset by releasing RST_N the processor starts its internal reset process. After 15-150 µs (depending on the input clock) the processor boots. The xCORE Tile boot procedure is illustrated in Figure 8. If bit 5 of the security register (see §9.1) is set, the device boots from OTP. To get a high value, a 3K3 pull-up resistor should be strapped onto the pin. To assure a low value, a pull-down resistor is required if other external devices are connected to this port. Start Boot ROM Primary boot Security Register Bit [5] set No Yes Copy OTP contents to base of SRAM OTP Figure 8: Boot procedure Figure 9: Boot source pins Boot according to boot source pins Execute program X0D06 X0D05 X0D04 Tile 0 boot Tile 1 boot Enabled links 0 0 0 QSPI master Channel end 0 None 0 0 1 SPI master Channel end 0 None 0 1 0 SPI slave Channel end 0 None 0 1 1 SPI slave SPI slave None 1 0 0 Channel end 0 Channel end 0 XL0 (2w) The boot image has the following format: · A 32-bit program size s in words. · Program consisting of s × 4 bytes. · A 32-bit CRC, or the value 0x0D15AB1E to indicate that no CRC check should be performed. X007787, XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet 16 The program size and CRC are stored least significant byte first. The program is loaded into the lowest memory address of RAM, and the program is started from that address. The CRC is calculated over the byte stream represented by the program size and the program itself. The polynomial used is 0xEDB88320 (IEEE 802.3); the CRC register is initialized with 0xFFFFFFFF and the residue is inverted to produce the CRC. 8.1 Boot from QSPI master If set to boot from QSPI master, the processor enables the six pins specified in Figure 10, and drives the SPI clock at 50 MHz (assuming a 400 MHz core clock). A READ command is issued with a 24-bit address 0x000000. The clock polarity and phase are 0 / 0. Figure 10: QSPI pins Pin Signal Description X0D01 SS Slave Select X0D04..X0D07 SPIO Data X0D10 SCLK Clock The xCORE Tile expects each byte to be transferred with the least-significant nibble first. Programmers who write bytes into an QSPI interface using the most significant nibble first may have to reverse the nibbles in each byte of the image stored in the QSPI device. The pins used for QSPI boot are hardcoded in the boot ROM and cannot be changed. If required, an QSPI boot program can be burned into OTP that uses different pins. 8.2 Boot from SPI master If set to boot from SPI master, the processor enables the four pins specified in Figure 11, and drives the SPI clock at 2.5 MHz (assuming a 400 MHz core clock). A READ command is issued with a 24-bit address 0x000000. The clock polarity and phase are 0 / 0. Figure 11: SPI master pins Pin Signal Description X0D00 MISO Master In Slave Out (Data) X0D01 SS Slave Select X0D10 SCLK Clock X0D11 MOSI Master Out Slave In (Data) The xCORE Tile expects each byte to be transferred with the least-significant bit first. Programmers who write bytes into an SPI interface using the most significant bit first may have to reverse the bits in each byte of the image stored in the SPI device. If a large boot image is to be read in, it is faster to first load a small boot-loader that reads the large image using a faster SPI clock, for example 50 MHz or as fast as the flash device supports. X007787, XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet 17 The pins used for SPI boot are hardcoded in the boot ROM and cannot be changed. If required, an SPI boot program can be burned into OTP that uses different pins. 8.3 Boot from SPI slave If set to boot from SPI slave, the processor enables the three pins specified in Figure 12 and expects a boot image to be clocked in. The supported clock polarity and phase are 0/0 and 1/1. Figure 12: SPI slave pins Pin Signal Description X0D00 SS Slave Select X0D10 SCLK Clock X0D11 MOSI Master Out Slave In (Data) The xCORE Tile expects each byte to be transferred with the least-significant bit first. The pins used for SPI boot are hardcoded in the boot ROM and cannot be changed. If required, an SPI boot program can be burned into OTP that uses different pins. 8.4 Boot from xConnect Link If set to boot from an xConnect Link, the processor enables its link(s) around 2 us after the boot process starts. Enabling the Link switches off the pull-down resistors on the link, drives all the TX wires low (the initial state for the Link), and monitors the RX pins for boot-traffic; they must be low at this stage. If the internal pull-down is too weak to drain any residual charge, external pull-downs of 10K may be required on those pins. The boot-rom on the core will then: 1. Allocate channel-end 0. 2. Input a word on channel-end 0. It will use this word as a channel to acknowledge the boot. Provide the null-channel-end 0x0000FF02 if no acknowledgment is required. 3. Input the boot image specified above, including the CRC. 4. Input an END control token. 5. Output an END control token to the channel-end received in step 2. 6. Free channel-end 0. 7. Jump to the loaded code. 8.5 Boot from OTP If an xCORE tile is set to use secure boot (see Figure 8), the boot image is read from address 0 of the OTP memory in the tile’s security module. X007787, XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet 18 This feature can be used to implement a secure bootloader which loads an encrypted image from external flash, decrypts and CRC checks it with the processor, and discontinues the boot process if the decryption or CRC check fails. XMOS provides a default secure bootloader that can be written to the OTP along with secret decryption keys. Each tile has its own individual OTP memory, and hence some tiles can be booted from OTP while others are booted from SPI or the channel interface. This enables systems to be partially programmed, dedicating one or more tiles to perform a particular function, leaving the other tiles user-programmable. 8.6 Security register The security register enables security features on the xCORE tile. The features shown in Figure 13 provide a strong level of protection and are sufficient for providing strong IP security. Figure 13: Security register features X007787, Feature Bit Description Disable JTAG 0 The JTAG interface is disabled, making it impossible for the tile state or memory content to be accessed via the JTAG interface. Disable Link access 1 Other tiles are forbidden access to the processor state via the system switch. Disabling both JTAG and Link access transforms an xCORE Tile into a “secure island” with other tiles free for non-secure user application code. Secure Boot 5 The xCORE Tile is forced to boot from address 0 of the OTP, allowing the xCORE Tile boot ROM to be bypassed (see §8). Redundant rows 7 Enables redundant rows in OTP. Sector Lock 0 8 Disable programming of OTP sector 0. Sector Lock 1 9 Disable programming of OTP sector 1. Sector Lock 2 10 Disable programming of OTP sector 2. Sector Lock 3 11 Disable programming of OTP sector 3. OTP Master Lock 12 Disable OTP programming completely: disables updates to all sectors and security register. Disable JTAG-OTP 13 Disable all (read & write) access from the JTAG interface to this OTP. 21..15 General purpose software accessable security register available to end-users. 31..22 General purpose user programmable JTAG UserID code extension. XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet 9 19 Memory 9.1 OTP Each xCORE Tile integrates 8 KB one-time programmable (OTP) memory along with a security register that configures system wide security features. The OTP holds data in four sectors each containing 512 rows of 32 bits which can be used to implement secure bootloaders and store encryption keys. Data for the security register is loaded from the OTP on power up. All additional data in OTP is copied from the OTP to SRAM and executed first on the processor. The OTP memory is programmed using three special I/O ports: the OTP address port is a 16-bit port with resource ID 0x100200, the OTP data is written via a 32-bit port with resource ID 0x200100, and the OTP control is on a 16-bit port with ID 0x100300. Programming is performed through libotp and xburn. 9.2 SRAM Each xCORE Tile integrates a single 256KB SRAM bank for both instructions and data. All internal memory is 32 bits wide, and instructions are either 16-bit or 32-bit. Byte (8-bit), half-word (16-bit) or word (32-bit) accesses are supported and are executed within one tile clock cycle. There is no dedicated external memory interface, although data memory can be expanded through appropriate use of the ports. 10 JTAG The JTAG module can be used for loading programs, boundary scan testing, incircuit source-level debugging and programming the OTP memory. TDI TDI BS TAP TDO TDO TCK TMS Figure 14: JTAG chain structure TRST_N The JTAG chain structure is illustrated in Figure 14. It comprises a single 1149.1 compliant TAP that can be used for boundary scan of the I/O pins. It has a 4-bit IR and 32-bit DR. It also provides access to a chip TAP that in turn can access the xCORE Tile for loading code and debugging. X007787, XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet 20 The TRST_N pin must be asserted low during and after power up for 100 ns. If JTAG is not required, the TRST_N pin can be tied to ground to hold the JTAG module in reset. The JTAG device identification register can be read by using the IDCODE instruction. Its contents are specified in Figure 15. Figure 15: IDCODE return value Bit31 Device Identification Register Version 0 0 0 Bit0 Part Number 0 0 0 0 0 0 0 0 0 0 0 0 Manufacturer Identity 0 0 0 0 0 1 0 0 1 0 1 5 1 0 0 0 6 1 1 1 0 0 3 1 1 3 The JTAG usercode register can be read by using the USERCODE instruction. Its contents are specified in Figure 16. The OTP User ID field is read from bits [22:31] of the security register on xCORE Tile 0, see §9.1 (all zero on unprogrammed devices). Figure 16: USERCODE return value 11 Bit31 Usercode Register OTP User ID 0 0 0 0 0 0 0 0 0 Bit0 Unused 0 0 0 0 0 0 0 Silicon Revision 0 1 2 0 1 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Board Integration The device has the following power supply pins: · VDD pins for the xCORE Tile · VDDIO pins for the I/O lines. Separate I/O supplies are provided for the left, top, and right side of the package; different I/O voltages may be supplied on those. The signal description (Section 4) specifies which I/O is powered from which power-supply · PLL_AVDD pins for the PLL · OTP_VCC pins for the OTP Several pins of each type are provided to minimize the effect of inductance within the package, all of which must be connected. The power supplies must be brought up monotonically and input voltages must not exceed specification at any time. VDDIO/OTP_VCC and VDD can ramp up independently. In order to reduce stresses on the device, it is preferable to make them ramp up in a short time frame of each other, no more than 50 ms apart. RST_N and TRST_N should be kept low until all power supplies are stable and within tolerances of their final voltage. When RST_N comes up, the processor will attempt to boot within a very short period of time. If booting from external flash, ensure that there is enough time between before RST_N coming up for the external flash to settle. Power sequencing is summarised in Figure 17 X007787, XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet Bring up in short succession 21 System dependent timing 1.0 VDD 0 3.3 VDDIO, OTP_VCC V Figure 17: Sequencing of power supplies and RST_N 0 3.3 RST_N 0 Time The PLL_AVDD supply should be separated from the other noisier supplies on the board. The PLL requires a very clean power supply, and a low pass filter (for example, a 4.7 Ω resistor and 100 nF multi-layer ceramic capacitor) is recommended on this pin. The following ground pins are provided: · PLL_AGND for PLL_AVDD · GND for all other supplies All ground pins must be connected directly to the board ground. The VDD and VDDIO supplies should be decoupled close to the chip by several 100 nF low inductance multi-layer ceramic capacitors between the supplies and GND (for example, 100nF 0402 for each supply pin). The ground side of the decoupling capacitors should have as short a path back to the GND pins as possible. A bulk decoupling capacitor of at least 10 uF should be placed on each of these supplies. RST_N is an active-low asynchronous-assertion global reset signal. Following a reset, the PLL re-establishes lock after which the device boots up according to the boot mode (see §8). RST_N and must be asserted low during and after power up for 100 ns. 11.1 Land patterns and solder stencils The package is a 128 pin Thin Quad Flat Package (TQFP) with exposed ground paddle/heat slug on a 0.4mm pitch. The land patterns and solder stencils will depend on the PCB manufacturing process. We recommend you design them with using the IPC specifications “Generic Requirements for Surface Mount Design and Land Pattern Standards” IPC-7351B. This standard aims to achieve desired targets of heel, toe and side fillets for solder-joints. The mechanical drawings in Section 13 specify the dimensions and tolerances. X007787, XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet 11.2 22 Ground and Thermal Vias Vias under the heat slug into the ground plane of the PCB are recommended for a low inductance ground connection and good thermal performance. Typical designs could use 16 vias in a 4 x 4 grid, equally spaced across the heat slug. 11.3 Moisture Sensitivity XMOS devices are, like all semiconductor devices, susceptible to moisture absorption. When removed from the sealed packaging, the devices slowly absorb moisture from the surrounding environment. If the level of moisture present in the device is too high during reflow, damage can occur due to the increased internal vapour pressure of moisture. Example damage can include bond wire damage, die lifting, internal or external package cracks and/or delamination. All XMOS devices are Moisture Sensitivity Level (MSL) 3 - devices have a shelf life of 168 hours between removal from the packaging and reflow, provided they are stored below 30C and 60% RH. If devices have exceeded these values or an included moisture indicator card shows excessive levels of moisture, then the parts should be baked as appropriate before use. This is based on information from Joint IPC/JEDEC Standard For Moisture/Reflow Sensitivity Classification For Nonhermetic Solid State Surface-Mount Devices J-STD-020 Revision D. X007787, XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet 12 23 Electrical Characteristics 12.1 Absolute Maximum Ratings Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime. Figure 18: Absolute maximum ratings Symbol Parameter MIN MAX VDD Tile DC supply voltage -0.2 1.1 UNITS V Notes PLL_AVDD PLL analog supply -0.2 1.1 V VDDIO I/O supply voltage -0.3 3.75 V OTP_VCC OTP supply voltage -0.3 3.75 V Tj Junction temperature 125 °C Tstg Storage temperature -65 150 °C V(Vin) Voltage applied to any IO pin -0.3 3.75 V I(XxDxx) GPIO current -30 30 mA I(VDDIOL) Current for VDDIOL domain 490 mA A, B, C I(VDDIOR) Current for VDDIOR domain 490 mA A, B, C I(VDDIOT) Current for VDDIOT domain 98 mA A, C A Exceeding these current limits will result in premature aging and reduced lifetime. B This current consumption must be evenly distributed over all VDDIO pins. C All main power (VDD, VDDIO) and ground (VSS) pins must always be connected to the external power supply, in the permitted range. 12.2 Symbol Parameter MIN TYP MAX UNITS VDD Tile DC supply voltage 0.95 1.00 1.05 V VDDIOL I/O supply voltage 3.135 3.30 3.465 V VDDIOR I/O supply voltage 3.135 3.30 3.465 V VDDIOT 3v3 I/O supply voltage 3.135 3.30 3.465 V VDDIOT 2v5 I/O supply voltage 2.375 2.50 2.625 V PLL_AVDD PLL analog supply 0.95 1.00 1.05 V OTP_VCC OTP supply voltage 3.135 3.30 3.465 V Cl xCORE Tile I/O load capacitance Ta Figure 19: Operating conditions X007787, Operating Conditions Ambient operating temperature (Commercial) Ambient operating temperature (Industrial) Tj Junction temperature 25 pF 0 70 °C -40 85 °C 125 °C Notes XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet 12.3 Figure 20: DC characteristics 24 DC Characteristics, VDDIO=3V3 Symbol Parameter MIN MAX UNITS Notes V(IH) Input high voltage 2.00 TYP 3.60 V A V(IL) Input low voltage -0.30 0.70 V A V(OH) Output high voltage V B, C V(OL) Output low voltage V B, C I(PU) Internal pull-up current (Vin=0V) µA D I(PD) Internal pull-down current (Vin=3.3V) 100 µA D I(LC) Input leakage current 10 µA 2.20 0.40 -100 -10 3.0 3.0 2.0 2.0 1.0 1.0 0.0 40 60 80 100 -100 -80 -60 -40 -20 0 0.0 I(PU) current, uA ESD Stress Voltage Symbol Parameter HBM Human body model CDM Charged Device Model 12.5 Figure 23: Reset timing 20 I(PD) current, uA 12.4 Figure 22: ESD stress voltage 0 IO Pin Voltage, V Figure 21: Typical internal pull-down and pull-up currents IO Pin Voltage, V A All pins except power supply pins. B Pins X1D40, X1D41, X1D42, X1D43, X1D26, and X1D27 are nominal 8 mA drivers, the remainder of the general-purpose I/Os are 4 mA. C Measured with 4 mA drivers sourcing 4 mA, 8 mA drivers sourcing 8 mA. D Used to guarantee logic state for an I/O when high impedance. The internal pull-ups/pull-downs should not be used to pull external circuitry. In order to pull the pin to the opposite state, a 4K7 resistor is recommended to overome the internal pull current. MAX UNITS -2.00 MIN TYP 2.00 KV -500 500 Notes V Reset Timing Symbol Parameters MIN T(RST) Reset pulse width 5 T(INIT) Initialization time TYP MAX UNITS Notes µs 150 µs A A Shows the time taken to start booting after RST_N has gone high. X007787, XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet 12.6 Figure 24: xCORE Tile currents 25 Power Consumption Symbol Parameter I(DDCQ) Quiescent VDD current PD Tile power dissipation IDD I(ADDPLL) MIN TYP MAX UNITS Notes 45 mA A, B, C 325 µW/MIPS A, D, E, F Active VDD current 570 700 mA A, G PLL_AVDD current 5 mA H 7 A B C D E F G Use for budgetary purposes only. Assumes typical tile and I/O voltages with no switching activity. Includes PLL current. Assumes typical tile and I/O voltages with nominal switching activity. Assumes 1 MHz = 1 MIPS. PD(TYP) value is the usage power consumption under typical operating conditions. Measurement conditions: VDD = 1.0 V, VDDIO = 3.3 V, 25 °C, 500 MHz, average device resource usage. H PLL_AVDD = 1.0 V The tile power consumption of the device is highly application dependent and should be used for budgetary purposes only. More detailed power analysis can be found in the XS1-L Power Consumption document, 12.7 Figure 25: Clock Clock Symbol Parameter MIN TYP MAX UNITS f Frequency 9 25 25 MHz Notes SR Slew rate 0.10 TJ(LT) Long term jitter (pk-pk) 2 % A f(MAX) Processor clock frequency 500 MHz B V/ns A Percentage of CLK period. B Assumes typical tile and I/O voltages with nominal activity. Further details can be found in the XS1-L Clock Frequency Control document, 12.8 Figure 26: I/O AC characteristics xCORE Tile I/O AC Characteristics Symbol Parameter MIN TYP MAX UNITS T(XOVALID) Input data valid window 8 T(XOINVALID) Output data invalid window 9 T(XIFMAX) Rate at which data can be sampled with respect to an external clock Notes ns ns 60 MHz The input valid window parameter relates to the capability of the device to capture data input to the chip with respect to an external clock source. It is calculated as the sum of the input setup time and input hold time with respect to the external clock X007787, XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet 26 as measured at the pins. The output invalid window specifies the time for which an output is invalid with respect to the external clock. Note that these parameters are specified as a window rather than absolute numbers since the device provides functionality to delay the incoming clock with respect to the incoming data. Information on interfacing to high-speed synchronous interfaces can be found in the Port I/O Timing document, X5821. 12.9 Figure 27: Link performance xConnect Link Performance Symbol Parameter MAX UNITS Notes B(2blinkP) 2b link bandwidth (packetized) MIN TYP 87 MBit/s A, B B(5blinkP) 5b link bandwidth (packetized) 217 MBit/s A, B B(2blinkS) 2b link bandwidth (streaming) 100 MBit/s B B(5blinkS) 5b link bandwidth (streaming) 250 MBit/s B A Assumes 32-byte packet in 3-byte header mode. Actual performance depends on size of the header and payload. B 7.5 ns symbol time. The asynchronous nature of links means that the relative phasing of CLK clocks is not important in a multi-clock system, providing each meets the required stability criteria. 12.10 Figure 28: JTAG timing JTAG Timing Symbol Parameter f(TCK_D) TCK frequency (debug) MIN TYP MAX UNITS 18 MHz 10 MHz f(TCK_B) TCK frequency (boundary scan) T(SETUP) TDO to TCK setup time 5 ns A T(HOLD) TDO to TCK hold time 5 ns A T(DELAY) TCK to output delay ns B 15 Notes A Timing applies to TMS and TDI inputs. B Timing applies to TDO output from negative edge of TCK. All JTAG operations are synchronous to TCK apart from the global asynchronous reset TRST_N. X007787, XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet 13 27 Package Information X007787, XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet 13.1 Part Marking FXCCRNTMM MCYYWWXX Figure 29: Part marking scheme 14 28 LLLLLL.LL F - Product family X - Reserved CC - Number of logical cores R - RAM [in log2(kbytes)] N - Flash size [in log2(Mbytes)+1] T - Temperature grade MM - Speed grade MC - Manufacturer YYWW - Date XX - Reserved Wafer lot code Ordering Information Figure 30: Orderable part numbers X007787, Product Code XL212-512-TQ128-C20 XL212-512-TQ128-I20 Marking L11290C20 L11290I20 Qualification Commercial Industrial Speed Grade 1000 MIPS 1000 MIPS XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet 29 Appendices A Configuration of the XL212-512-TQ128 The device is configured through banks of registers, as shown in Figure 31. xTIME scheduler Hardware response ports PLL JTAG xTIME scheduler Hardware response ports xCORE logical core Figure 31: Registers xCORE logical core SRAM OTP Tile configuration xCORE logical core Node configuration xCONNECT Switch Processor status xCORE logical core xCORE logical core Tile configuration xCORE logical core xCORE logical core X1Dxx I/O pins xCORE logical core Processor status X0Dxx I/O pins xCORE logical core xCORE logical core xCORE logical core xCORE logical core OTP SRAM The following communication sequences specify how to access those registers. Any messages transmitted contain the most significant 24 bits of the channel-end to which a response is to be sent. This comprises the node-identifier and the channel number within the node. if no response is required on a write operation, supply 24-bits with the last 8-bits set, which suppresses the reply message. Any multi-byte data is sent most significant byte first. A.1 Accessing a processor status register The processor status registers are accessed directly from the processor instruction set. The instructions GETPS and SETPS read and write a word. The register number should be translated into a processor-status resource identifier by shifting the register number left 8 places, and ORing it with 0x0B. Alternatively, the functions getps(reg) and setps(reg,value) can be used from XC. A.2 Accessing an xCORE Tile configuration register xCORE Tile configuration registers can be accessed through the interconnect using the functions write_tile_config_reg(tileref, ...) and read_tile_config_reg(tile > ref, ...), where tileref is the name of the xCORE Tile, e.g. tile[1]. These functions implement the protocols described below. Instead of using the functions above, a channel-end can be allocated to communicate with the xCORE tile configuration registers. The destination of the channel-end should be set to 0xnnnnC20C where nnnnnn is the tile-identifier. A write message comprises the following: X007787, XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet 30 control-token 24-bit response 16-bit 32-bit control-token 192 channel-end identifier register number data 1 The response to a write message comprises either control tokens 3 and 1 (for success), or control tokens 4 and 1 (for failure). A read message comprises the following: control-token 24-bit response 16-bit control-token 193 channel-end identifier register number 1 The response to the read message comprises either control token 3, 32-bit of data, and control-token 1 (for success), or control tokens 4 and 1 (for failure). A.3 Accessing node configuration Node configuration registers can be accessed through the interconnect using the functions write_node_config_reg(device, ...) and read_node_config_reg(device, > ...), where device is the name of the node. These functions implement the protocols described below. Instead of using the functions above, a channel-end can be allocated to communicate with the node configuration registers. The destination of the channel-end should be set to 0xnnnnC30C where nnnn is the node-identifier. A write message comprises the following: control-token 24-bit response 16-bit 32-bit control-token 192 channel-end identifier register number data 1 The response to a write message comprises either control tokens 3 and 1 (for success), or control tokens 4 and 1 (for failure). A read message comprises the following: control-token 24-bit response 16-bit control-token 193 channel-end identifier register number 1 The response to a read message comprises either control token 3, 32-bit of data, and control-token 1 (for success), or control tokens 4 and 1 (for failure). X007787, XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet B 31 Processor Status Configuration The processor status control registers can be accessed directly by the processor using processor status reads and writes (use getps(reg) and setps(reg,value) for reads and writes). Number Figure 32: Summary X007787, Perm Description 0x00 RW RAM base address 0x01 RW Vector base address 0x02 RW xCORE Tile control 0x03 RO xCORE Tile boot status 0x05 RW Security configuration 0x06 RW Ring Oscillator Control 0x07 RO Ring Oscillator Value 0x08 RO Ring Oscillator Value 0x09 RO Ring Oscillator Value 0x0A RO Ring Oscillator Value 0x0C RO RAM size 0x10 DRW Debug SSR 0x11 DRW Debug SPC 0x12 DRW Debug SSP 0x13 DRW DGETREG operand 1 0x14 DRW DGETREG operand 2 0x15 DRW Debug interrupt type 0x16 DRW Debug interrupt data 0x18 DRW Debug core control 0x20 .. 0x27 DRW Debug scratch 0x30 .. 0x33 DRW Instruction breakpoint address 0x40 .. 0x43 DRW Instruction breakpoint control 0x50 .. 0x53 DRW Data watchpoint address 1 0x60 .. 0x63 DRW Data watchpoint address 2 0x70 .. 0x73 DRW Data breakpoint control register 0x80 .. 0x83 DRW Resources breakpoint mask 0x90 .. 0x93 DRW Resources breakpoint value 0x9C .. 0x9F DRW Resources breakpoint control register XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet B.1 32 RAM base address: 0x00 This register contains the base address of the RAM. It is initialized to 0x00040000. 0x00: RAM base address Bits Perm 31:2 RW 1:0 RO B.2 Init Description Most significant 16 bits of all addresses. - Reserved Vector base address: 0x01 Base address of event vectors in each resource. On an interrupt or event, the 16 most significant bits of the destination address are provided by this register; the least significant 16 bits come from the event vector. 0x01: Vector base address Bits Perm 31:18 RW 17:0 RO B.3 Init Description The event and interrupt vectors. - Reserved xCORE Tile control: 0x02 Register to control features in the xCORE tile Bits 0x02: xCORE Tile control X007787, Perm Init Description 31:26 RO - Reserved 25:18 RW 0 RGMII TX data delay value (in PLL output cycle increments) 17:9 RW 0 RGMII TX clock divider value. TX clk rises when counter (clocked by PLL output) reaches this value and falls when counter reaches (value»1). Value programmed into this field should be actual divide value required minus 1 8 RW 0 Enable RGMII interface periph ports 7:6 RO - 5 RW 0 Reserved Select the dynamic mode (1) for the clock divider when the clock divider is enabled. In dynamic mode the clock divider is only activated when all active threads are paused. In static mode the clock divider is always enabled. 4 RW 0 Enable the clock divider. This divides the output of the PLL to facilitate one of the low power modes. 3:0 RO - Reserved XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet B.4 33 xCORE Tile boot status: 0x03 This read-only register describes the boot status of the xCORE tile. Bits Perm Init RO 23:16 RO 15:9 RO 8 RO 7:6 RO 5 RO Indicates if core1 has been powered off 4 RO Cause the ROM to not poll the OTP for correct read levels 3 RO Boot ROM boots from RAM 2 RO Boot ROM boots from JTAG 1:0 RO The boot PLL mode pin value. 0x03: xCORE Tile boot status B.5 - Description 31:24 Reserved Processor number. - Reserved Overwrite BOOT_MODE. - Reserved Security configuration: 0x05 Copy of the security register as read from OTP. Bits 0x05: Security configuration X007787, Perm 31 RW 30:15 RO 14 RW Init Description Disables write permission on this register - Reserved Disable access to XCore’s global debug 13 RO 12 RW lock all OTP sectors 11:8 RW lock bit for each OTP sector 7 RW 6 RO 5 RW 4 RW 3:1 RO 0 RW - Reserved Enable OTP reduanacy - Reserved Override boot mode and read boot image from OTP Disable JTAG access to the PLL/BOOT configuration registers - Reserved Disable access to XCore’s JTAG debug TAP XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet B.6 34 Ring Oscillator Control: 0x06 There are four free-running oscillators that clock four counters. The oscillators can be started and stopped using this register. The counters should only be read when the ring oscillator has been stopped for at least 10 core clock cycles (this can be achieved by inserting two nop instructions between the SETPS and GETPS). The counter values can be read using four subsequent registers. The ring oscillators are asynchronous to the xCORE tile clock and can be used as a source of random bits. 0x06: Ring Oscillator Control Bits Perm 31:2 RO - 1 RW 0 Core ring oscillator enable. 0 RW 0 Peripheral ring oscillator enable. B.7 Init Description Reserved Ring Oscillator Value: 0x07 This register contains the current count of the xCORE Tile Cell ring oscillator. This value is not reset on a system reset. 0x07: Ring Oscillator Value Bits Perm Init 31:16 RO - 15:0 RO 0 B.8 Description Reserved Ring oscillator Counter data. Ring Oscillator Value: 0x08 This register contains the current count of the xCORE Tile Wire ring oscillator. This value is not reset on a system reset. 0x08: Ring Oscillator Value Bits Perm Init 31:16 RO - 15:0 RO 0 B.9 Description Reserved Ring oscillator Counter data. Ring Oscillator Value: 0x09 This register contains the current count of the Peripheral Cell ring oscillator. This value is not reset on a system reset. X007787, XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet 0x09: Ring Oscillator Value Bits Perm 35 Init 31:16 RO - 15:0 RO 0 B.10 Description Reserved Ring oscillator Counter data. Ring Oscillator Value: 0x0A This register contains the current count of the Peripheral Wire ring oscillator. This value is not reset on a system reset. 0x0A: Ring Oscillator Value Bits Perm Init 31:16 RO - 15:0 RO 0 B.11 Description Reserved Ring oscillator Counter data. RAM size: 0x0C The size of the RAM in bytes 0x0C: RAM size Bits Perm 31:2 RO 1:0 RO B.12 Init Description Most significant 16 bits of all addresses. - Reserved Debug SSR: 0x10 This register contains the value of the SSR register when the debugger was called. X007787, XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet Bits 31:11 Perm 36 Init RO - Description Reserved 10 DRW Address space indentifier 9 DRW Determines the issue mode (DI bit) upon Kernel Entry after Exception or Interrupt. 8 RO 7 DRW When 1 the thread is in fast mode and will continually issue. 6 DRW When 1 the thread is paused waiting for events, a lock or another resource. 0x10: Debug SSR Determines the issue mode (DI bit). 5 RO 4 DRW - Reserved 1 when in kernel mode. 3 DRW 1 when in an interrupt handler. 2 DRW 1 when in an event enabling sequence. 1 DRW When 1 interrupts are enabled for the thread. 0 DRW When 1 events are enabled for the thread. B.13 Debug SPC: 0x11 This register contains the value of the SPC register when the debugger was called. 0x11: Debug SPC Bits Perm 31:0 DRW B.14 Init Description Value. Debug SSP: 0x12 This register contains the value of the SSP register when the debugger was called. 0x12: Debug SSP Bits Perm 31:0 DRW B.15 Init Description Value. DGETREG operand 1: 0x13 The resource ID of the logical core whose state is to be read. X007787, XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet 0x13: DGETREG operand 1 Bits Perm 31:8 RO 7:0 B.16 37 Init Description - Reserved DRW Thread number to be read DGETREG operand 2: 0x14 Register number to be read by DGETREG 0x14: DGETREG operand 2 Bits Perm 31:5 RO 4:0 B.17 Init Description - Reserved DRW Register number to be read Debug interrupt type: 0x15 Register that specifies what activated the debug interrupt. Bits Perm Init - Description 31:18 RO 17:16 DRW Number of the hardware breakpoint/watchpoint which caused the interrupt (always 0 for =HOST= and =DCALL=). If multiple breakpoints/watchpoints trigger at once, the lowest number is taken. 15:8 DRW Number of thread which caused the debug interrupt (always 0 in the case of =HOST=). 7:3 RO - 2:0 DRW 0 0x15: Debug interrupt type B.18 Reserved Reserved Indicates the cause of the debug interrupt 1: Host initiated a debug interrupt through JTAG 2: Program executed a DCALL instruction 3: Instruction breakpoint 4: Data watch point 5: Resource watch point Debug interrupt data: 0x16 On a data watchpoint, this register contains the effective address of the memory operation that triggered the debugger. On a resource watchpoint, it countains the resource identifier. X007787, XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet 0x16: Debug interrupt data Bits Perm 31:0 DRW B.19 38 Init Description Value. Debug core control: 0x18 This register enables the debugger to temporarily disable logical cores. When returning from the debug interrupts, the cores set in this register will not execute. This enables single stepping to be implemented. 0x18: Debug core control Bits Perm 31:8 RO 7:0 B.20 Init - DRW Description Reserved 1-hot vector defining which threads are stopped when not in debug mode. Every bit which is set prevents the respective thread from running. Debug scratch: 0x20 .. 0x27 A set of registers used by the debug ROM to communicate with an external debugger, for example over JTAG. This is the same set of registers as the Debug Scratch registers in the xCORE tile configuration. 0x20 .. 0x27: Debug scratch Bits Perm 31:0 DRW B.21 Init Description Value. Instruction breakpoint address: 0x30 .. 0x33 This register contains the address of the instruction breakpoint. If the PC matches this address, then a debug interrupt will be taken. There are four instruction breakpoints that are controlled individually. 0x30 .. 0x33: Instruction breakpoint address X007787, Bits Perm 31:0 DRW Init Description Value. XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet B.22 39 Instruction breakpoint control: 0x40 .. 0x43 This register controls which logical cores may take an instruction breakpoint, and under which condition. Bits 0x40 .. 0x43: Instruction breakpoint control Perm Init Description 31:24 RO - 23:16 DRW 0 RO - 1 DRW 0 When 0 break when PC == IBREAK_ADDR. When 1 = break when PC != IBREAK_ADDR. 0 DRW 0 When 1 the instruction breakpoint is enabled. 15:2 B.23 Reserved A bit for each thread in the machine allowing the breakpoint to be enabled individually for each thread. Reserved Data watchpoint address 1: 0x50 .. 0x53 This set of registers contains the first address for the four data watchpoints. 0x50 .. 0x53: Data watchpoint address 1 Bits Perm 31:0 DRW B.24 Init Description Value. Data watchpoint address 2: 0x60 .. 0x63 This set of registers contains the second address for the four data watchpoints. 0x60 .. 0x63: Data watchpoint address 2 Bits Perm 31:0 DRW B.25 Init Description Value. Data breakpoint control register: 0x70 .. 0x73 This set of registers controls each of the four data watchpoints. X007787, XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet Bits 0x70 .. 0x73: Data breakpoint control register Perm 40 Init 31:24 RO - 23:16 DRW 0 15:3 Description Reserved A bit for each thread in the machine allowing the breakpoint to be enabled individually for each thread. RO - 2 DRW 0 When 1 the breakpoints will be be triggered on loads. 1 DRW 0 Determines the break condition: 0 = A AND B, 1 = A OR B. 0 DRW 0 When 1 the instruction breakpoint is enabled. B.26 Reserved Resources breakpoint mask: 0x80 .. 0x83 This set of registers contains the mask for the four resource watchpoints. 0x80 .. 0x83: Resources breakpoint mask Bits Perm 31:0 DRW B.27 Init Description Value. Resources breakpoint value: 0x90 .. 0x93 This set of registers contains the value for the four resource watchpoints. 0x90 .. 0x93: Resources breakpoint value Bits Perm 31:0 DRW B.28 Init Description Value. Resources breakpoint control register: 0x9C .. 0x9F This set of registers controls each of the four resource watchpoints. X007787, XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet Bits 0x9C .. 0x9F: Resources breakpoint control register X007787, Perm 41 Init 31:24 RO - 23:16 DRW 0 15:2 Description Reserved A bit for each thread in the machine allowing the breakpoint to be enabled individually for each thread. RO - 1 DRW 0 Reserved When 0 break when condition A is met. When 1 = break when condition B is met. 0 DRW 0 When 1 the instruction breakpoint is enabled. XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet C 42 Tile Configuration The xCORE Tile control registers can be accessed using configuration reads and writes (use write_tile_config_reg(tileref, ...) and read_tile_config_reg(tileref, > ...) for reads and writes). Number Perm Description 0x00 CRO Device identification 0x01 CRO xCORE Tile description 1 0x02 CRO xCORE Tile description 2 0x04 CRW Control PSwitch permissions to debug registers 0x05 CRW Cause debug interrupts 0x06 CRW xCORE Tile clock divider 0x07 CRO Security configuration 0x20 .. 0x27 CRW Debug scratch 0x40 CRO PC of logical core 0 0x41 CRO PC of logical core 1 Figure 33: Summary C.1 0x42 CRO PC of logical core 2 0x43 CRO PC of logical core 3 0x44 CRO PC of logical core 4 0x45 CRO PC of logical core 5 0x46 CRO PC of logical core 6 0x47 CRO PC of logical core 7 0x60 CRO SR of logical core 0 0x61 CRO SR of logical core 1 0x62 CRO SR of logical core 2 0x63 CRO SR of logical core 3 0x64 CRO SR of logical core 4 0x65 CRO SR of logical core 5 0x66 CRO SR of logical core 6 0x67 CRO SR of logical core 7 Device identification: 0x00 This register identifies the xCORE Tile X007787, XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet 0x00: Device identification 43 Bits Perm 31:24 CRO Processor ID of this XCore. 23:16 CRO Number of the node in which this XCore is located. 15:8 CRO XCore revision. 7:0 CRO XCore version. C.2 Init Description xCORE Tile description 1: 0x01 This register describes the number of logical cores, synchronisers, locks and channel ends available on this xCORE tile. 0x01: xCORE Tile description 1 Bits Perm 31:24 CRO Number of channel ends. 23:16 CRO Number of the locks. 15:8 CRO Number of synchronisers. 7:0 C.3 RO Init - Description Reserved xCORE Tile description 2: 0x02 This register describes the number of timers and clock blocks available on this xCORE tile. Bits 0x02: xCORE Tile description 2 31:16 Perm RO Init - Description Reserved 15:8 CRO Number of clock blocks. 7:0 CRO Number of timers. C.4 Control PSwitch permissions to debug registers: 0x04 This register can be used to control whether the debug registers (marked with permission CRW) are accessible through the tile configuration registers. When this bit is set, write -access to those registers is disabled, preventing debugging of the xCORE tile over the interconnect. X007787, XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet 0x04: Control PSwitch permissions to debug registers 44 Bits Perm Init 31 CRW 0 RO - CRW 0 30:1 0 C.5 Description When 1 the PSwitch is restricted to RO access to all CRW registers from SSwitch, XCore(PS_DBG_Scratch) and JTAG Reserved When 1 the PSwitch is restricted to RO access to all CRW registers from SSwitch Cause debug interrupts: 0x05 This register can be used to raise a debug interrupt in this xCORE tile. Bits 0x05: Cause debug interrupts Perm 31:2 C.6 Init Description RO - 1 CRW 0 Reserved 1 when the processor is in debug mode. 0 CRW 0 Request a debug interrupt on the processor. xCORE Tile clock divider: 0x06 This register contains the value used to divide the PLL clock to create the xCORE tile clock. The divider is enabled under control of the tile control register 0x06: xCORE Tile clock divider Bits Perm Init 31 CRW 0 30:16 15:0 C.7 RO - CRW 0 Description Clock disable. Writing ’1’ will remove the clock to the tile. Reserved Clock divider. Security configuration: 0x07 Copy of the security register as read from OTP. X007787, XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet Bits Perm 31 CRO 30:15 45 Init Disables write permission on this register RO 14 CRO 13 RO Description - Reserved Disable access to XCore’s global debug - Reserved 12 CRO lock all OTP sectors 11:8 CRO lock bit for each OTP sector 7 CRO Enable OTP reduanacy 0x07: Security configuration 6 RO 5 CRO Override boot mode and read boot image from OTP 4 CRO Disable JTAG access to the PLL/BOOT configuration registers 3:1 0 C.8 - RO - CRO Reserved Reserved Disable access to XCore’s JTAG debug TAP Debug scratch: 0x20 .. 0x27 A set of registers used by the debug ROM to communicate with an external debugger, for example over the switch. This is the same set of registers as the Debug Scratch registers in the processor status. 0x20 .. 0x27: Debug scratch Bits Perm 31:0 CRW C.9 Init Description Value. PC of logical core 0: 0x40 Value of the PC of logical core 0. 0x40: PC of logical core 0 Bits Perm 31:0 CRO C.10 Init Description Value. PC of logical core 1: 0x41 Value of the PC of logical core 1. X007787, XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet 0x41: PC of logical core 1 Bits Perm 31:0 CRO C.11 46 Init Description Value. PC of logical core 2: 0x42 Value of the PC of logical core 2. 0x42: PC of logical core 2 Bits Perm 31:0 CRO C.12 Init Description Value. PC of logical core 3: 0x43 Value of the PC of logical core 3. 0x43: PC of logical core 3 Bits Perm 31:0 CRO C.13 Init Description Value. PC of logical core 4: 0x44 Value of the PC of logical core 4. 0x44: PC of logical core 4 Bits Perm 31:0 CRO C.14 Init Description Value. PC of logical core 5: 0x45 Value of the PC of logical core 5. 0x45: PC of logical core 5 X007787, Bits Perm 31:0 CRO Init Description Value. XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet C.15 47 PC of logical core 6: 0x46 Value of the PC of logical core 6. 0x46: PC of logical core 6 Bits Perm 31:0 CRO C.16 Init Description Value. PC of logical core 7: 0x47 Value of the PC of logical core 7. 0x47: PC of logical core 7 Bits Perm 31:0 CRO C.17 Init Description Value. SR of logical core 0: 0x60 Value of the SR of logical core 0 0x60: SR of logical core 0 Bits Perm 31:0 CRO C.18 Init Description Value. SR of logical core 1: 0x61 Value of the SR of logical core 1 0x61: SR of logical core 1 Bits Perm 31:0 CRO C.19 Init Description Value. SR of logical core 2: 0x62 Value of the SR of logical core 2 X007787, XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet 0x62: SR of logical core 2 Bits Perm 31:0 CRO C.20 48 Init Description Value. SR of logical core 3: 0x63 Value of the SR of logical core 3 0x63: SR of logical core 3 Bits Perm 31:0 CRO C.21 Init Description Value. SR of logical core 4: 0x64 Value of the SR of logical core 4 0x64: SR of logical core 4 Bits Perm 31:0 CRO C.22 Init Description Value. SR of logical core 5: 0x65 Value of the SR of logical core 5 0x65: SR of logical core 5 Bits Perm 31:0 CRO C.23 Init Description Value. SR of logical core 6: 0x66 Value of the SR of logical core 6 0x66: SR of logical core 6 X007787, Bits Perm 31:0 CRO Init Description Value. XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet C.24 49 SR of logical core 7: 0x67 Value of the SR of logical core 7 0x67: SR of logical core 7 X007787, Bits Perm 31:0 CRO Init Description Value. XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet D 50 Node Configuration The digital node control registers can be accessed using configuration reads and writes (use write_node_config_reg(device, ...) and read_node_config_reg(device, > ...) for reads and writes). Number 0x00 Figure 34: Summary Perm Description RO Device identification 0x01 RO System switch description 0x04 RW Switch configuration 0x05 RW Switch node identifier 0x06 RW PLL settings 0x07 RW System switch clock divider 0x08 RW Reference clock 0x09 R System JTAG device ID register 0x0A R System USERCODE register 0x0C RW Directions 0-7 0x0D RW Directions 8-15 0x10 RW Reserved 0x11 RW Reserved. 0x1F RO Debug source 0x20 .. 0x28 RW Link status, direction, and network 0x40 .. 0x47 RO PLink status and network 0x80 .. 0x88 RW Link configuration and initialization 0xA0 .. 0xA7 RW Static link configuration D.1 Device identification: 0x00 This register contains version and revision identifiers and the mode-pins as sampled at boot-time. Bits 0x00: Device identification X007787, Perm Init - Description 31:24 RO 23:16 RO Reserved Sampled values of BootCtl pins on Power On Reset. 15:8 RO SSwitch revision. 7:0 RO SSwitch version. XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet D.2 51 System switch description: 0x01 This register specifies the number of processors and links that are connected to this switch. Bits 0x01: System switch description Perm Init RO 23:16 RO Number of SLinks on the SSwitch. 15:8 RO Number of processors on the SSwitch. 7:0 RO Number of processors on the device. D.3 - Description 31:24 Reserved Switch configuration: 0x04 This register enables the setting of two security modes (that disable updates to the PLL or any other registers) and the header-mode. Bits Perm 31 0x04: Switch configuration RW Init 0 30:9 RO - 8 RW 0 7:1 RO - 0 RW 0 D.4 Description 0 = SSCTL registers have write access. 1 = SSCTL registers can not be written to. Reserved 0 = PLL_CTL_REG has write access. 1 = PLL_CTL_REG can not be written to. Reserved 0 = 2-byte headers, 1 = 1-byte headers (reset as 0). Switch node identifier: 0x05 This register contains the node identifier. 0x05: Switch node identifier Bits Perm Init 31:16 RO - 15:0 RW 0 D.5 Description Reserved The unique ID of this node. PLL settings: 0x06 An on-chip PLL multiplies the input clock up to a higher frequency clock, used to clock the I/O, processor, and switch, see Oscillator. Note: a write to this register will cause the tile to be reset. X007787, XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet Bits Perm 52 Init Description 31 RW If set to 1, the chip will not be reset 30 RW If set to 1, the chip will not wait for the PLL to re-lock. Only use this if a gradual change is made to the PLL 29 DW If set to 1, set the PLL to be bypassed 28 DW If set to 1, set the boot mode to boot from JTAG 27:26 RO 25:23 RW 22:21 RO 20:8 RW 7 RO 6:0 RW 0x06: PLL settings D.6 - Reserved Output divider value range from 0 (8’h0) to 7 (8’h7). OD value. - Reserved Feedback multiplication ratio, range from 0 (8’h0) to 4095 (8’h3FF). F value. - Reserved Oscilator input divider value range from 0 (8’h0) to 63 (8’h3F). R value. System switch clock divider: 0x07 Sets the ratio of the PLL clock and the switch clock. 0x07: System switch clock divider Bits Perm Init 31:16 RO - 15:0 RW 0 D.7 Description Reserved SSwitch clock generation Reference clock: 0x08 Sets the ratio of the PLL clock and the reference clock used by the node. 0x08: Reference clock X007787, Bits Perm Init 31:16 RO - 15:0 RW 3 Description Reserved Software ref. clock divider XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet D.8 System JTAG device ID register: 0x09 Bits 0x09: System JTAG device ID register Perm 31:28 RO 27:12 RO 11:1 RO 0 RO D.9 0x0A: System USERCODE register 53 Init Description System USERCODE register: 0x0A Bits Perm Init Description 31:18 RO JTAG USERCODE value programmed into OTP SR 17:0 RO metal fixable ID code D.10 Directions 0-7: 0x0C This register contains eight directions, for packets with a mismatch in bits 7..0 of the node-identifier. The direction in which a packet will be routed is goverened by the most significant mismatching bit. Bits 0x0C: Directions 0-7 Perm Init Description 31:28 RW 0 The direction for packets whose dimension is 7. 27:24 RW 0 The direction for packets whose dimension is 6. 23:20 RW 0 The direction for packets whose dimension is 5. 19:16 RW 0 The direction for packets whose dimension is 4. 15:12 RW 0 The direction for packets whose dimension is 3. 11:8 RW 0 The direction for packets whose dimension is 2. 7:4 RW 0 The direction for packets whose dimension is 1. 3:0 RW 0 The direction for packets whose dimension is 0. D.11 Directions 8-15: 0x0D This register contains eight directions, for packets with a mismatch in bits 15..8 of the node-identifier. The direction in which a packet will be routed is goverened by the most significant mismatching bit. X007787, XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet Bits 0x0D: Directions 8-15 Perm 54 Init Description 31:28 RW 0 The direction for packets whose dimension is F. 27:24 RW 0 The direction for packets whose dimension is E. 23:20 RW 0 The direction for packets whose dimension is D. 19:16 RW 0 The direction for packets whose dimension is C. 15:12 RW 0 The direction for packets whose dimension is B. 11:8 RW 0 The direction for packets whose dimension is A. 7:4 RW 0 The direction for packets whose dimension is 9. 3:0 RW 0 The direction for packets whose dimension is 8. D.12 Reserved: 0x10 Reserved. Bits 0x10: Reserved Perm Init Description 31:2 RO - Reserved 1 RW 0 Reserved. 0 RW 0 Reserved. D.13 Reserved.: 0x11 Reserved. 0x11: Reserved. Bits Perm 31:2 RO - Reserved 1 RW 0 Reserved. 0 RW 0 Reserved. D.14 Init Description Debug source: 0x1F Contains the source of the most recent debug event. X007787, XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet 0x1F: Debug source Bits Perm 31:5 RO 55 Init Description - Reserved 4 RW 3:2 RO 1 RW If set, XCore1 is the source of last GlobalDebug event. 0 RW If set, XCore0 is the source of last GlobalDebug event. D.15 Reserved. - Reserved Link status, direction, and network: 0x20 .. 0x28 These registers contain status information for low level debugging (read-only), the network number that each link belongs to, and the direction that each link is part of. The registers control links 0..7. Bits Perm Init RO 25:24 RO Identify the SRC_TARGET type 0 - SLink, 1 - PLink, 2 - SSCTL, 3 Undefine. 23:16 RO When the link is in use, this is the destination link number to which all packets are sent. 15:12 RO - 11:8 RW 0 7:6 RO - 5:4 RW 0 3 RO - 2 RO 1 when the current packet is considered junk and will be thrown away. 1 RO 1 when the dest side of the link is in use. 0 RO 1 when the source side of the link is in use. 0x20 .. 0x28: Link status, direction, and network D.16 - Description 31:26 Reserved Reserved The direction that this link operates in. Reserved Determines the network to which this link belongs, reset as 0. Reserved PLink status and network: 0x40 .. 0x47 These registers contain status information and the network number that each processor-link belongs to. X007787, XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet Bits Perm 56 Init - Description 31:26 RO Reserved 25:24 RO Identify the SRC_TARGET type 0 - SLink, 1 - PLink, 2 - SSCTL, 3 Undefine. 23:16 RO When the link is in use, this is the destination link number to which all packets are sent. 15:6 RO - 5:4 RW 0 3 RO - 2 RO 1 when the current packet is considered junk and will be thrown away. 1 RO 1 when the dest side of the link is in use. 0 RO 1 when the source side of the link is in use. 0x40 .. 0x47: PLink status and network D.17 Reserved Determines the network to which this link belongs, reset as 0. Reserved Link configuration and initialization: 0x80 .. 0x88 These registers contain configuration and debugging information specific to external links. The link speed and width can be set, the link can be initialized, and the link status can be monitored. The registers control links 0..7. Bits 0x80 .. 0x88: Link configuration and initialization X007787, Perm Init Description 31 RW Write to this bit with ’1’ will enable the XLink, writing ’0’ will disable it. This bit controls the muxing of ports with overlapping xlinks. 30 RW 0 29:28 RO - 27 RO 26 RO 0 This end of the xlink has issued credit to allow the remote end to transmit 25 RO 0 This end of the xlink has credit to allow it to transmit. 24 WO Clear this end of the xlink’s credit and issue a HELLO token. 23 WO Reset the receiver. The next symbol that is detected will be the first symbol in a token. 0: operate in 2 wire mode; 1: operate in 5 wire mode Reserved Rx buffer overflow or illegal token encoding received. 22 RO - 21:11 RW 0 Reserved Specify min. number of idle system clocks between two continuous symbols witin a transmit token -1. 10:0 RW 0 Specify min. number of idle system clocks between two continuous transmit tokens -1. XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet D.18 57 Static link configuration: 0xA0 .. 0xA7 These registers are used for static (ie, non-routed) links. When a link is made static, all traffic is forwarded to the designated channel end and no routing is attempted. The registers control links C, D, A, B, G, H, E, and F in that order. Bits 0xA0 .. 0xA7: Static link configuration X007787, Perm Init 31 RW 0 30:9 RO - 8 RW 0 7:5 RO - 4:0 RW 0 Description Enable static forwarding. Reserved The destination processor on this node that packets received in static mode are forwarded to. Reserved The destination channel end on this node that packets received in static mode are forwarded to. XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet E 58 JTAG, xSCOPE and Debugging If you intend to design a board that can be used with the XMOS toolchain and xTAG debugger, you will need an xSYS header on your board. Figure 35 shows a decision diagram which explains what type of xSYS connectivity you need. The three subsections below explain the options in detail. YES YES Is xSCOPE required YES Figure 35: Decision diagram for the xSYS header Use full xSYS header See section 3 E.1 Is debugging required? NO Is fast printf required ? NO YES Does the SPI flash need to be programmed? NO NO Use JTAG xSYS header See section 2 No xSYS header required See section 1 No xSYS header The use of an xSYS header is optional, and may not be required for volume production designs. However, the XMOS toolchain expects the xSYS header; if you do not have an xSYS header then you must provide your own method for writing to flash/OTP and for debugging. E.2 JTAG-only xSYS header The xSYS header connects to an xTAG debugger, which has a 20-pin 0.1" female IDC header. The design will hence need a male IDC header. We advise to use a boxed header to guard against incorrect plug-ins. If you use a 90 degree angled header, make sure that pins 2, 4, 6, ..., 20 are along the edge of the PCB. Connect pins 4, 8, 12, 16, 20 of the xSYS header to ground, and then connect: · TDI to pin 5 of the xSYS header · TMS to pin 7 of the xSYS header · TCK to pin 9 of the xSYS header · TDO to pin 13 of the xSYS header X007787, XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet 59 The RST_N net should be open-drain, active-low, and have a pull-up to VDDIO. E.3 Full xSYS header For a full xSYS header you will need to connect the pins as discussed in Section E.2, and then connect a 2-wire xCONNECT Link to the xSYS header. The links can be found in the Signal description table (Section 4): they are labelled XL0, XL1, etc in the function column. The 2-wire link comprises two inputs and outputs, labelled 0 0 1 1 out , out , in , and in . For example, if you choose to use XL0 for xSCOPE I/O, you need to connect up XL01out , XL00out , XL00in , XL01in as follows: · XL01out (X0D43) to pin 6 of the xSYS header with a 33R series resistor close to the device. · XL00out (X0D42) to pin 10 of the xSYS header with a 33R series resistor close to the device. · XL00in (X0D41) to pin 14 of the xSYS header. · XL01in (X0D40) to pin 18 of the xSYS header. X007787, XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet F 60 Schematics Design Check List This section is a checklist for use by schematics designers using the XL212-512-TQ128. Each of the following sections contains items to check for each design. F.1 Power supplies The VDD (core) supply ramps monotonically (rises constantly) from 0V to its final value (0.95V - 1.05V) within 10ms (Section 11). The VDD (core) supply is capable of supplying 700 mA (Section 11 and Figure 20). PLL_AVDD is filtered with a low pass filter, for example an RC filter, . see Section 11 F.2 Power supply decoupling The design has multiple decoupling capacitors per supply, for example at least four0402 or 0603 size surface mount capacitors of 100nF in value, per supply (Section 11). A bulk decoupling capacitor of at least 10uF is placed on each supply (Section 11). F.3 Power on reset The RST_N and TRST_N pins are asserted (low) until all supplies are good. There is enough time between VDDIO power good and RST_N to allow any boot flash to settle. F.4 Clock The CLK input pin is supplied with a clock with monotonic rising edges and low jitter. You have chosen an input clock frequency that is supported by the device (Section 7). X007787, XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet F.5 61 Boot The device is connected to a QSPI flash for booting, connected to X0D01, X0D04..X0D07, and X0D10 (Section 8). If not, you must boot the device through OTP or JTAG, or set it to boot from SPI and connect a SPI flash. The Flash that you have chosen is supported by xflash, or you have created a specification file for it. F.6 JTAG, XScope, and debugging You have decided as to whether you need an XSYS header or not (Section E) If you have not included an XSYS header, you have devised a method to program the SPI-flash or OTP (Section E). F.7 GPIO You have not mapped both inputs and outputs to the same multi-bit port. Pins X0D04, X0D05, X0D06, and X0D07 are output only and are, during and after reset, pulled high and low appropriately (Section 8) F.8 Multi device designs Skip this section if your design only includes a single XMOS device. One device is connected to a QSPI or SPI flash for booting. Devices that boot from link have, for example, X0D06 pulled high and have link XL0 connected to a device to boot from (Section 8). X007787, XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet G 62 PCB Layout Design Check List This section is a checklist for use by PCB designers using the XS2-L12A512-TQ128. Each of the following sections contains items to check for each design. G.1 Ground Plane Multiple vias (eg, 9) have been used to connect the center pad to the PCB ground plane. These minimize impedance and conduct heat away from the device. (Section 11.2). Other than ground vias, there are no (or only a few) vias underneath or closely around the device. This create a good, solid, ground plane. G.2 Power supply decoupling The decoupling capacitors are all placed close to a supply pin (Section 11). The decoupling capacitors are spaced around the device (Section 11). The ground side of each decoupling capacitor has a direct path back to the center ground of the device. G.3 PLL_AVDD The PLL_AVDD filter (especially the capacitor) is placed close to the PLL_AVDD pin (Section 11). X007787, XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet H 63 Associated Design Documentation Document Title Information Document Estimating Power Consumption For XS1-L Devices Power consumption Link XMOS Programming Guide Timers, ports, clocks, cores and channels Link xTIMEcomposer User Guide Compilers, assembler and linker/mapper Link Timing analyzer, xScope, debugger Flash and OTP programming utilities I Related Documentation Document Title Information Document xCORE200: the XMOS XS2 Architecture ISA manual Link I/O timings for xCORE200 Port timings Link xCONNECT Architecture Link, switch and system information Link XS1-L Link Performance and Design Guidelines Link timings Link XS1-L Clock Frequency Control Advanced clock control Link XS1-L Active Power Conservation Low-power mode during idle Link X007787, XS2-L12A-512-TQ128 XL212-512-TQ128 Datasheet J 64 Revision History Date Description 2015-03-20 Preliminary release 2015-04-14 Added RST to pins to be pulled hard, and removed reference to TCK from Errata Removed TRST_N references in packages that have no TRST_N 2015-04-29 VDDIOR and VDD (pins 47/48) switched - Section 3 2015-05-06 Removed references to DEBUG_N 2015-07-09 Updated electrical characteristics - Section 12 2015-08-27 Updated part marking - Section 14 2016-04-20 Typical internal pull-up and pull down current diagrams added - Section 12 2017-02-02 Clarified available boot modes/source pins - Section 8 2017-09-19 Added Absolute Maximum Ratings - Section 12.1 Reference document links updated - Section H 2018-03-23 Incorrect IDCODE return value updated - Section 10 Updated package information - Section 13 2018-09-05 Power up and reset requirements updated - Section 11 Link to IPC-7351B document updated - Section 11.1 Copyright © 2018, All Rights Reserved. Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. Xmos Ltd. makes no representation that the Information, or any particular implementation thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any such claims. X007787, XS2-L12A-512-TQ128
XL212-512-TQ128-I20 价格&库存

很抱歉,暂时无法提供与“XL212-512-TQ128-I20”相匹配的价格&库存,您可以联系我们找货

免费人工找货