NAU8814
Mono Audio Codec with Speaker Driver and Equalizer
emPowerAudio™
1.
GENERAL DESCRIPTION
NAU8814 is a cost effective and low power wideband MONO audio CODEC. It is designed for voice telephony
related applications. Functions include 5-band Graphic Equalizer, Automatic Level Control (ALC) with noise gate,
PGA, standard audio interface I2S, PCM with time slot assignment, and on-chip PLL. The device provides one
differential microphone input and one single ended auxiliary input (multi purpose). There are few variable gain
control stages in the audio path. It also includes MONO line output and integrated BTL speaker driver.
The analog inputs have PGA on the front end, allowing dynamic range optimization with a wide range of input
sources. The microphone amplifiers have a programmable gain from -12dB to +35.25dB to handle both amplified
microphones. In addition to a digital high pass filter to remove DC offset voltages, the ADC also features voice
band digital filtering. Voice band data is accepted by the audio interface (I2S). The DAC converter path includes
filtering and mixing, programmable-gain amplifiers (PGA), and soft muting. The digital interfaces, 2-Wire or SPI,
have independent supply voltage to allow integration into multiple supply systems. NAU8814 operates at supply
voltages from 2.5V to 3.6V, although the digital core can operate at voltage as low as 1.71V to save power.
The NAU8814 is specified for operation from -40°C to +85°C, and is available with automotive AEC-Q100
qualification upon request. Please refer to ordering information for AEC-Q100 compliance part number.
2.
FEATURES
24-bit signal processing linear Audio CODEC
Audio DAC: 93dB SNR and -84dB THD
Audio ADC: 91dB SNR and -79dB THD
Support variable sample rates from 2.5 - 48kHz
Integrated BTL Speaker Driver 1 W (8Ω / 5V)
Integrated Headset Driver 40mW (16Ω / 3.3V)
Analog I/O
Integrated programmable Microphone Amplifier
Integrated Line Input and Line Output
Earphone / Speaker / Line Output selection
Microphone / Line Inputs selection
Low Noise bias supplied for microphone
On-chip PLL
Interfaces
I2S digital interface PCM time slot assignment
SPI & 2-Wire serial control Interface (I2C style;
/Write capable)
emPowerAudio™
Datasheet Revision 2.9
Low Power, Low Voltage
Analog Supply: 2.5V to 3.6V
Digital Supply: 1.71V to 3.6V
Nominal Operating Voltage: 3.3V
Additional features
5-band Graphic Equalizer
Programmable ALC
ADC Notch Filter
Programmable High Pass Filter
Digital A/D-D/A Passthrough
AEC-Q100 & TS16949 compliant device
available upon request
Industrial temperature: range: –40C to +85C
Applications
VoIP Telephones]
Conference speaker-phone
IP PBX
Mobile Telephone Hands-free Kits
Residential & Consumer Intercoms
Page 1 of 110
June 2016
NAU8814
Line Driver
AUX
ADC Filter
AUX
Input
Mixers
Microphone
Interface
MIC-
ADC
&
Volume
Control
DAC
HPF
Gain
Stage
MIC+
Output
Mixers
DAC Filter
Volume
Control
BTL
Speaker
Driver
&
SPK+
Speaker
Volume
Limiter
Notch Filter
-1
PLL
EQUALIZER
Micophone
Bias
MICBIAS
Digital Audio Interface
GPIO
I2S
CSb/GPIO
Serial Control Interface
PCM
2-wire
Audio I/O
SPI
Digital I/O
MICBIAS
1
VDDA
2
MIC +
MIC -
VREF
AUX
VDDSPK
SPKOUT -
24
23
22
21
20
19
PIN CONFIGURATION
NAU8814
MONO AUDIO
CODEC
QFN 24-Pin
18
VSSSPK
17
SPKOUT +
16
MOUT
15
MODE
13
SCLK
ADCOUT
12
6
CSb/GPIO
VSSD
11
SDIN
MCLK
14
10
5
BCLK
VDDB
9
4
FS
VDDC
8
3
DACIN
VSSA
7
3.
SPK-
Figure 1: 24-Pin QFN Package
emPowerAudio™
Datasheet Revision 2.9
Page 2 of 110
June 2016
NAU8814
4.
PIN DESCRIPTION
Pin Name
24-Pin
MICBIAS
1
VDDA
VSSA
Functionality
A/D
Pin Type
Microphone Bias
A
O
2
Analog Supply
A
I
3
Analog Ground
A
O
VDDC
4
Digital Supply Core
D
I
VDDB
5
Digital Supply Buffer
D
I
VSSD
6
Digital Ground
D
O
ADCOUT
7
Digital Audio Data Output
D
O
DACIN
8
Digital Audio Data Input
D
I
FS
9
Frame Sync
D
I/O
BCLK
10
Bit Clock
D
I/O
MCLK
11
Master Clock
D
I
CSb/GPIO
12
SPI Chip Select or General Purposes I/O
D
I/O
SCLK
13
SPI or 2-Wire Serial Clock
D
I
SDIO
14
SPI Data In or 2-Wire I/O
D
O
MODE
15
Interface Select (2-Wire or SPI)
D
I
MOUT
16
MONO Output
A
O
SPKOUT+
17
Speaker Positive Output
A
O
VSSSPK
18
Speaker Ground
A
O
SPKOUT-
19
Speaker Negative Output
A
O
VDDSPK
20
Speaker Supply
A
I
AUX
21
Auxiliary Input
A
I
VREF
22
Decoupling internal analog mid supply reference
A
O
MIC-
23
Microphone
Negative Input
voltage
A
I
MIC+
24
Microphone Positive Input
A
I
Table 1: Pin Description
Notes
1.
The 24-QFN package includes a bulk ground connection pad on the underside of the chip. This bulk ground
should be thermally tied to the PCB, and electrically tied to the analog ground.
2.
Unused analog input pins should be left as no-connection.
3.
Under all condition when digital pins are not used they should be tied to ground.
emPowerAudio™
Datasheet Revision 2.9
Page 3 of 110
June 2016
emPowerAudio™
Datasheet Revision 2.9
Page 4 of 110
VREF
R
R
VDDA
MICROPHONE
BIAS
PLLEN[5]
(0x01)
PMICBSTGAIN[6:4]
(0x2F) = 000
PLL
PMICBSTGAIN[6:4]
(0x2F)
CONTROL
INTERFACE
ADCEN[0]
(0x02)
ADC
EQUALIZER
LIMITER
AUX BYPASS
DIGITAL AUDIO
INTERFACE
NOTCH
FILTER
ALC
VSSA
MICBIASEN[4]
(0x2F)
PMICPGA
PGAMT[6]
(0x2D)
Σ
HPF
VDDSPK
MICBIAS
MIC+
VREF
PGAGAIN
(0x2D)
PGABST[8]
(0x2F)
VSSD
NMICPGA[1]
(0x2C)
AUXBSTGAIN[2:0]
(0x2F) = 000
BSTEN[4]
(0x02)
VDDC
-12 dB to
+35.25 dB
AUXBSTGAIN[2:0]
(0x2F)
VDDB
PGAEN[2]
(0x02)
AUXEN[6]
(0x01)
VSSSPK
AUXPGA[2]
(0x2C)
VREF
AUXM[3]
(0x2C)
20k
(Sidetone) BYPASS
DACEN[0]
(0x03)
DAC
BYPSPK[1]
(0x32)
DACSPK[0]
(0X32)
AUXSPK[5]
(0x32)
BYPMOUT[1]
(0x38)
DACMOUT[0]
(0x38)
AUXMOUT[2]
(0x38)
SPKGAIN[5:0]
(0x36)
SPKMXEN[2]
(0x03)
Σ
Σ
MOUTMXEN[3]
(0x03)
SPK3V[2]
(0x31)
MOUT3V[3]
(0x31)
1.5X
1.0X
1.5X
1.0X
1.5X
1.0X
SPKOUT-
SPKOUT+
MOUT
5.
MIC-
AUX
20k
AUXM[3]
(0x2C)
NAU8814
BLOCK DIAGRAM
VDDA
DACIN
ADCOUT
BCLK
FS
MODE
SCLK
CSb/GPIO
SDIO
MCLK
Figure 2: NAU8814 General Block Diagram
June 2016
NAU8814
6.
Table of Contents
1.
GENERAL DESCRIPTION .................................................................................................................................1
2.
FEATURES .........................................................................................................................................................1
3.
PIN CONFIGURATION .......................................................................................................................................2
4.
PIN DESCRIPTION .............................................................................................................................................3
5.
BLOCK DIAGRAM..............................................................................................................................................4
6.
TABLE OF CONTENTS ......................................................................................................................................5
7.
LIST OF FIGURES ..............................................................................................................................................9
8.
LIST OF TABLES .............................................................................................................................................11
9.
ABSOLUTE MAXIMUM RATINGS ...................................................................................................................12
10.
OPERATING CONDITIONS ..............................................................................................................................12
11.
ELECTRICAL CHARACTERISTICS.................................................................................................................13
12.
FUNCTIONAL DESCRIPTION ..........................................................................................................................17
12.1. INPUT PATH ..............................................................................................................................................17
12.1.1. The Single Ended Auxiliary Input (AUX) .........................................................................................17
12.1.2. The differential microphone input (MIC- & MIC+ pins)...................................................................19
12.1.2.1.
Positive Microphone Input (MIC+) ...........................................................................................20
12.1.2.2.
Negative Microphone Input (MIC-) ...........................................................................................20
12.1.2.3. PGA Gain Control .....................................................................................................................21
12.1.3. PGA Boost Stage ..............................................................................................................................21
12.2. MICROPHONE BIASING ...........................................................................................................................23
12.3. ADC DIGITAL FILTER BLOCK .................................................................................................................25
12.3.1. Programmable High Pass Filter (HPF) ............................................................................................26
12.3.2. Programmable Notch Filter (NF) ......................................................................................................26
12.3.3. Digital ADC Gain Control ..................................................................................................................27
12.4. PROGRAMMABLE GAIN AMPLIFIER (PGA)...........................................................................................27
12.4.1. Automatic level control (ALC) ..........................................................................................................27
12.4.1.1.
Normal Mode .............................................................................................................................30
12.4.1.2. ALC Hold Time (Normal mode Only) ..........................................................................................30
12.4.2. Peak Limiter Mode ............................................................................................................................31
12.4.3. Attack Time ........................................................................................................................................32
12.4.4. Decay Times ......................................................................................................................................32
12.4.5. Noise gate (normal mode only) ........................................................................................................32
12.4.6. Zero Crossing ....................................................................................................................................33
12.5. DAC DIGITAL FILTER BLOCK .................................................................................................................34
12.5.4. Hi-Fi DAC De-Emphasis and Gain Control ......................................................................................35
12.5.5. Digital DAC Output Peak Limiter .....................................................................................................36
12.5.6. Volume Boost ....................................................................................................................................36
12.5.7. 5-Band Equalizer ...............................................................................................................................37
12.6. ANALOG OUTPUTS ..................................................................................................................................38
12.6.1. Speaker Mixer Outputs .....................................................................................................................38
12.6.2. MONO Mixer Output ..........................................................................................................................40
12.6.3. Unused Analog I/O ............................................................................................................................41
12.7. GENERAL PURPOSE I/O .........................................................................................................................42
12.7.1. Slow Timer Clock ..............................................................................................................................43
12.7.2. Jack Detect ........................................................................................................................................43
emPowerAudio™
Datasheet Revision 2.9
Page 5 of 110
June 2016
NAU8814
12.7.3. Thermal Shutdown ............................................................................................................................44
12.8. CLOCK GENERATION BLOCK ................................................................................................................45
12.9. CONTROL INTERFACE ............................................................................................................................49
12.9.1. SPI Serial Control ..............................................................................................................................49
12.9.1.1.
16-bit Write Operation (default) ...............................................................................................49
12.9.1.2. 24-bit Write Operation ..............................................................................................................50
12.9.2. 2-WIRE Serial Control Mode (I2C Style Interface) ...........................................................................51
12.9.2.1.
2-WIRE Protocol Convention ...................................................................................................51
12.9.2.2.
2-WIRE Write Operation ...........................................................................................................52
12.9.2.3. 2-WIRE Operation ....................................................................................................................53
12.10. DIGITAL AUDIO INTERFACES.................................................................................................................54
12.10.1. Right Justified audio data ................................................................................................................55
12.10.2. Left Justified audio data ...................................................................................................................56
12.10.3. I2S audio data ....................................................................................................................................57
12.10.4. PCM audio data .................................................................................................................................58
12.10.5. PCM Time Slot audio data ................................................................................................................59
12.10.6. Companding ......................................................................................................................................60
12.11. POWER SUPPLY ......................................................................................................................................61
12.11.1. Power-On Reset ................................................................................................................................61
12.11.2. Power Related Software Considerations ........................................................................................61
12.11.3. Software Reset ..................................................................................................................................62
12.11.4. Power Up/Down Sequencing ............................................................................................................62
12.11.5. Reference Impedance (REFIMP) and Analog Bias .........................................................................63
12.11.6. Power Saving .....................................................................................................................................63
12.11.7. Estimated Supply Currents ..............................................................................................................64
13.
REGISTER DESCRIPTION ...............................................................................................................................65
13.1. SOFTWARE RESET ..................................................................................................................................67
13.2. POWER MANAGEMENT REGISTERS .....................................................................................................67
13.2.1. Power Management 1 .......................................................................................................................67
13.2.2. Power Management 2 .......................................................................................................................68
13.2.3. Power Management 3 .......................................................................................................................68
13.3. AUDIO CONTROL REGISTERS ...............................................................................................................68
13.3.1. Audio Interface Control ....................................................................................................................68
13.3.2. Audio Interface Companding Control..............................................................................................69
13.3.3. Clock Control Register .....................................................................................................................70
13.3.4. Audio Sample Rate Control Register...............................................................................................71
13.3.5. GPIO Control Register ......................................................................................................................72
13.3.6. DAC Control Register .......................................................................................................................72
13.3.7. DAC Gain Control Register ..............................................................................................................73
13.3.8. ADC Control Register .......................................................................................................................73
13.3.9. ADC Gain Control Register ..............................................................................................................74
13.4. 5-BAND EQUALIZER CONTROL REGISTERS ........................................................................................75
13.5. DIGITAL TO ANALOG CONVERTER (DAC) LIMITER REGISTERS .......................................................76
13.6. NOTCH FILTER REGISTERS ...................................................................................................................77
13.7. AUTOMATIC LEVEL CONTROL REGISTER ...........................................................................................78
13.7.1. ALC1 REGISTER ...............................................................................................................................78
13.7.2. ALC2 REGISTER ...............................................................................................................................79
emPowerAudio™
Datasheet Revision 2.9
Page 6 of 110
June 2016
NAU8814
13.7.3. ALC3 REGISTER ...............................................................................................................................80
13.8. NOISE GAIN CONTROL REGISTER ........................................................................................................81
13.9. PHASE LOCK LOOP (PLL) REGISTERS .................................................................................................82
13.9.1. PLL Control Registers ......................................................................................................................82
13.9.2. Phase Lock Loop Control (PLL) Registers .....................................................................................82
13.10. INPUT, OUTPUT, AND MIXERS CONTROL REGISTER .........................................................................83
13.10.1. Attenuation Control Register ...........................................................................................................83
13.10.2. Input Signal Control Register ...........................................................................................................83
13.10.3. PGA Gain Control Register ..............................................................................................................84
13.10.4. ADC Boost Control Registers ..........................................................................................................85
13.10.5. Output Register .................................................................................................................................85
13.10.6. Speaker Mixer Control Register .......................................................................................................86
13.10.7. Speaker Gain Control Register ........................................................................................................86
13.10.8. MONO Mixer Control Register ..........................................................................................................87
13.10.9. Power Management 4 .......................................................................................................................87
13.11. PCM TIME SLOT CONTROL & ADCOUT IMPEDANCE OPTION CONTROL .........................................88
13.11.1. PCM1 TIMESLOT CONTROL REGISTER .........................................................................................88
13.11.2. PCM2 TIMESLOT CONTROL REGISTER .........................................................................................88
13.12. REGISTER ID ............................................................................................................................................89
13.12.1. Device revision register ....................................................................................................................89
13.12.2. 2-WIRE ID Register ............................................................................................................................89
13.12.3. Additional ID ......................................................................................................................................89
13.13. Reserved ...................................................................................................................................................89
13.14. OUTPUT Driver Control Register ............................................................................................................90
13.15. AUTOMATIC LEVEL CONTROL ENHANCED REGISTER ......................................................................91
13.15.1. ALC1 Enhanced Register .................................................................................................................91
13.15.2. ALC Enhanced 2 Register ................................................................................................................91
13.16. MISC CONTROL REGISTER ....................................................................................................................92
13.17. Output Tie-Off REGISTER ........................................................................................................................93
13.18. AGC PEAK-TO-PEAK OUT REGISTER ...................................................................................................93
13.19. AGC PEAK OUT REGISTER.....................................................................................................................93
13.20. AUTOMUTE CONTROL AND STATUS REGISTER ................................................................................94
13.21. Output Tie-off Direct Manual Control REGISTER ..................................................................................94
14.
CONTROL INTERFACE TIMING DIAGRAM ....................................................................................................95
14.1. SPI WRITE TIMING DIAGRAM ..................................................................................................................95
14.2. 2-WIRE TIMING DIAGRAM........................................................................................................................96
15.
AUDIO INTERFACE TIMING DIAGRAM ..........................................................................................................97
15.1. AUDIO INTERFACE IN SLAVE MODE ......................................................................................................97
15.2. AUDIO INTERFACE IN MASTER MODE ..................................................................................................97
15.3. PCM AUDIO INTERFACE IN SLAVE MODE (PCM Audo Data) ................................................................98
15.4. PCM AUDIO INTERFACE IN MASTER MODE (PCM Audo Data) ............................................................98
15.5. PCM AUDIO INTERFACE IN SLAVE MODE (PCM Time Slot Mode ) .......................................................99
15.6. PCM AUDIO INTERFACE IN MASTER MODE (PCM Time Slot Mode ) ...................................................99
15.7. System Clock (MCLK) Timing Diagram ....................................................................................................100
15.8. µ-LAW ENCODE DECODE CHARACTERISTICS ..................................................................................101
15.9. A-LAW ENCODE DECODE CHARACTERISTICS..................................................................................102
15.10. µ-LAW / A-LAW CODES FOR ZERO AND FULL SCALE ......................................................................103
15.11. µ-LAW / A-LAW OUTPUT CODES (DIGITAL MW).................................................................................103
emPowerAudio™
Datasheet Revision 2.9
Page 7 of 110
June 2016
NAU8814
16.
17.
18.
19.
20.
DIGITAL FILTER CHARACTERISTICS .........................................................................................................104
TYPICAL APPLICATION ................................................................................................................................106
PACKAGE SPECIFICATION ..........................................................................................................................107
ORDERING INFORMATION ...........................................................................................................................108
VERSION HISTORY .......................................................................................................................................109
emPowerAudio™
Datasheet Revision 2.9
Page 8 of 110
June 2016
NAU8814
7.
List of Figures
Figure 1: 24-Pin QFN Package .....................................................................................................................................2
Figure 2: NAU8814 General Block Diagram..................................................................................................................4
Figure 3: Auxiliary Input Circuit Block Diagram with AUXM[3] = 0...............................................................................18
Figure 4: Auxiliary Input Circuit Block Diagram with AUXM[3] = 1...............................................................................18
Figure 5: Input PGA Circuit Block Diagram .................................................................................................................19
Figure 6: Boost Stage Block Diagram .........................................................................................................................21
Figure 7: Microphone Bias Schematic .........................................................................................................................23
Figure 8: ADC Digital Filter Path Block Diagram .........................................................................................................25
Figure 9: ALC Block Diagram ......................................................................................................................................28
Figure 10: ALC Response Graph ................................................................................................................................28
Figure 11: ALC Normal Mode Operation .....................................................................................................................30
Figure 12: ALC Hold Time ...........................................................................................................................................31
Figure 13: ALC Limiter Mode Operations ....................................................................................................................31
Figure 14: ALC Operation with Noise Gate disabled ...................................................................................................32
Figure 15: ALC Operation with Noise Gate Enabled ...................................................................................................33
Figure 16: DAC Digital Filter Path ...............................................................................................................................34
Figure 17: DAC Digital Limiter Control ........................................................................................................................36
Figure 18: Speaker and MONO Analogue Outputs .....................................................................................................38
Figure 19: Tie-off Options for the Speaker and MONO output Pins ............................................................................41
Figure 20: PLL and Clock Select Circuit ......................................................................................................................45
Figure 21: Register write operation using a 16-bit SPI Interface .................................................................................50
Figure 22: Register Write operation using a 24-bit SPI Interface ................................................................................51
Figure 23: Valid START Condition ..............................................................................................................................52
Figure 24: Valid Acknowledge .....................................................................................................................................52
Figure 25: Valid STOP Condition ................................................................................................................................52
Figure 26: Slave Address Byte, Control Address Byte, and Data Byte .......................................................................52
Figure 27: Byte Write Sequence .................................................................................................................................52
Figure 28: Sequence ..................................................................................................................................................53
Figure 29: Right Justified Audio Interface (Normal Mode) ...........................................................................................55
Figure 30: Right Justified Audio Interface (Special mode) ..........................................................................................55
Figure 31: Left Justified Audio Interface (Normal Mode) .............................................................................................56
Figure 32: Left Justified Audio Interface (Special mode) .............................................................................................56
Figure 33: I2S Audio Interface (Normal Mode) ............................................................................................................57
Figure 34: I2S Audio Interface (Special mode)............................................................................................................57
Figure 35: PCM Mode Audio Interface (Normal Mode) ...............................................................................................58
Figure 36: PCM Mode Audio Interface (Special mode) ...............................................................................................58
Figure 37: PCM Time Slot Mode (Time slot = 0) (Normal Mode) ................................................................................59
emPowerAudio™
Datasheet Revision 2.9
Page 9 of 110
June 2016
NAU8814
Figure 38: PCM Time Slot Mode (Time slot = 0) (Special mode) ................................................................................59
Figure 39: The Programmable ADCOUT Pin ..............................................................................................................88
Figure 40: SPI Write Timing Diagram ..........................................................................................................................95
Figure 41: 2-Wire Timing Diagram ..............................................................................................................................96
Figure 42: Audio Interface Slave Mode Timing Diagram .............................................................................................97
Figure 43: Audio Interface in Master Mode Timing Diagram .......................................................................................97
Figure 44: PCM Audio Interface Slave Mode Timing Diagram ....................................................................................98
Figure 45: PCM Audio Interface Slave Mode Timing Diagram ....................................................................................98
Figure 46: PCM Audio Interface Slave Mode (PCM Time Slot Mode )Timing Diagram ..............................................99
Figure 47: PCM Audio Interface Master Mode (PCM Time Slot Mode )Timing Diagram .............................................99
Figure 48: MCLK Timing Diagram .............................................................................................................................100
Figure 49: DAC Filter Frequency Response..............................................................................................................105
Figure 50: ADC Filter Frequency Response..............................................................................................................105
Figure 51: DAC Filter Ripple .....................................................................................................................................105
Figure 52: ADC Filter Ripple .....................................................................................................................................105
Figure 53: Application Diagram For 24-Pin QFN .......................................................................................................106
emPowerAudio™
Datasheet Revision 2.9
Page 10 of 110
June 2016
NAU8814
8.
List of Tables
Table 1: Pin Description ................................................................................................................................................3
Table 2: Register associated with Input PGA Contro ..................................................................................................19
Table 3: Microphone Non-Inverting Input Impedances .................................................................................................20
Table 4: Microphone Inverting Input Impedances .......................................................................................................20
Table 5: Registers associated with ALC and Input PGA Gain Control ........................................................................21
Table 6: Registers associated with PGA Boost Stage Control ....................................................................................22
Table 7: Register associated with Microphone Bias ....................................................................................................23
Table 8: Microphone Bias Voltage Control ..................................................................................................................24
Table 9: Register associated with ADC .......................................................................................................................25
Table 10: High Pass Filter Cut-off Frequencies (HPFAM=1) .......................................................................................26
Table 11: Registers associated with Notch Filter Function ..........................................................................................26
Table 12: Equations to Calculate Notch Filter Coefficients..........................................................................................27
Table 13: Register associated with ADC Gain ............................................................................................................27
Table 14: Registers associated with ALC Control .......................................................................................................29
Table 15: ALC Maximum and Minimum Gain Values ..................................................................................................29
Table 16: Registers associated with DAC Gain Control ..............................................................................................34
Table 17: Registers associated with Equalizer Control ...............................................................................................37
Table 18: Speaker Output Controls .............................................................................................................................40
Table 19: MONO Output Controls ...............................................................................................................................40
Table 20: General Purpose Control .............................................................................................................................43
Table 21: Jack Insert Detect mode ..............................................................................................................................43
Table 22: Jack Insert Detect controls ..........................................................................................................................44
Table 23: Thermal Shutdown ......................................................................................................................................44
Table 24: Registers associated with PLL ....................................................................................................................46
Table 25: Registers associated with PLL ....................................................................................................................47
Table 26: PLL Frequency Examples ...........................................................................................................................48
Table 27: Control Interface Selection ..........................................................................................................................49
Table 28: Standard Interface modes ...........................................................................................................................54
Table 29: Audio Interface Control Registers................................................................................................................54
Table 30: Companding Control ...................................................................................................................................60
Table 31: Power up sequence.....................................................................................................................................63
Table 32: Power down Sequence ...............................................................................................................................63
Table 33: Registers associated with Power Saving .....................................................................................................64
Table 34: VDDA 3.3V Supply Current .........................................................................................................................64
Table 35: SPI Timing Parameters ...............................................................................................................................95
Table 36: 2-WireTiming Parameters ...........................................................................................................................96
Table 37: Audio Interface Timing Parameters ...........................................................................................................100
Table 38: MCLK Timing Parameter ...........................................................................................................................100
emPowerAudio™
Datasheet Revision 2.9
Page 11 of 110
June 2016
NAU8814
9.
ABSOLUTE MAXIMUM RATINGS
CONDITION
MIN
MAX
Units
VDDB, VDDC, VDDA supply voltages
-0.3
+3.63
V
VDDSPK supply voltage (MOUT=0, SPKBST=0)
-0.3
+3.63
V
VDDSPK supply voltage (MOUTBST=1, SPKBST=1)
-0.3
+5.50
V
Core Digital Input Voltage range
VSSD – 0.3
VDDC + 0.30
V
Buffer Digital Input Voltage range
VSSD – 0.3
VDDB + 0.30
V
Analog Input Voltage range
VSSA – 0.3
VDDA + 0.30
V
Industrial operating temperature
-40
+85
0
C
Storage temperature range
-65
+150
0
C
CAUTION: Do not operate at or near the maximum ratings listed for extended period of time. Exposure to such
conditions may adversely influence product reliability and result in failures not covered by warranty. These
devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
10. OPERATING CONDITIONS
Condition
Symbol
Min Value
Analogue supplies range
VDDA
Digital supply range (Buffer)
Digital supply range (Core)
Speaker supply
Ground
Typical
Value
Max Value
Units
2.501
3.60
V
VDDB
1.712
3.60
V
VDDC
1.712
3.60
V
VDDSPK
2.50
5.50
V
VSSD, VSSA,
VSSSPK
0
V
1. VDDA must be ≥ VDDC.
2. VDDB must be ≥ VDDC.
emPowerAudio™
Datasheet Revision 2.9
Page 12 of 110
June 2016
NAU8814
11. ELECTRICAL CHARACTERISTICS
VDDC = 1.8V, VDDA = VDDB = VDDSPK = 3.3V (VDDSPK = 1.5*VDDA when Boost), TA = +25oC, 1kHz signal,
fs = 48kHz, 24-bit audio data unless otherwise stated.
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNIT
Analogue to Digital Converter (ADC)
Full scale input signal 1
Signal to Noise Ratio 2
Total Harmonic Distortion
3
VINFS
PGABST = 0dB
PGAGAIN = 0dB
SNR
Gain = 0dB, A-weighted
THD
Input = -1dBFS, Gain = 0dB
87
1.0
0
VRMS
dBV
91
dB
-79
-65
dB
Digital to Analogue Converter (DAC) to MONO output (all data measured with 10kΩ / 50pF load)
Full Scale output signal
MOUTBST=0
1.0x
(VREF)
MOUTBST=1
1.5 x
VREF
1
VRMS
Signal to Noise Ratio 2
SNR
A-weighted (ADC/DAC oversampling rate
of 128)
Total Harmonic Distortion 3
THD
RL = 10 kΩ; -1.0dBfs
Full-scale Input Signal Level1
VINFS
Gain = 0dB
1
0
VRMS
dBV
Input Resistance
RAUX
AUXM=0
20
kΩ
Input Capacitance
CAUX
10
pF
1
0
VRMS
dBV
90
93
-84
dB
-70
dB
Auxiliary Analogue Input (AUX)
Microphone Inputs (MICN & MICP) and MIC Input Programmable Gain Amplifier (PGA)
PGABST = 0dB
Full-scale Input Signal Level 1
VINFS
PGAGAIN = 0dB
Programmable input PGA gain
-12
Programmable Gain Step Size
Guaranteed monotonic
PGABST = 0
Programmable Boost PGA
gain
Auxiliary Input resistance
RAUX
Positive Microphone Input
resistance
RMIC+
Input Capacitance
CMIC
dB
20
Mute Attenuation
dB
dB
0
PGABST = 1
PGA equivalent output noise
35.25
0.75
100
dB
0 to 20kHz,
Gain set to 35.25dB
110
µV
PGA Gain = 35.25dB
1.6
kΩ
PGA Gain = 0dB
47
kΩ
PGA Gain = -12dB
75
kΩ
PMICPGA = 1
94
kΩ
10
pF
Speaker Output PGA
Programmable Gain
Programmable Gain Step Size
emPowerAudio™
Datasheet Revision 2.9
-57
Guaranteed monotonic
Page 13 of 110
6
1
June 2016
dB
dB
NAU8814
VDDC = 1.8V, VDDA = VDDB = VDDSPK = 3.3V (VDDSPK = 1.5*VDDA when Boost), TA = +25oC, 1kHz signal,
fs = 48kHz, 24-bit audio data unless otherwise stated.
PARAMETER
SYMBOL
TEST CONDITIONS
BTL Speaker Output (SPKOUT+, SPKOUT- with 8Ω bridge tied load)
SPKBST = 0
VDDSPK = VDDA
7
Full scale output
SPKBST = 1
VDDSPK = 1.5*VDDA
Output Power
PO
Signal to Noise Ratio
SNR
PSRR
UNIT
VDDA / 3.3
VRMS
(VDDA / 3.3) * 1.5
90
dB
VDDSPK = 1.5*VDDA
RL = 8Ω
90
dB
-63
dB
-56
dB
-60
dB
-61
dB
PO =1W
-34
dB
VDDSPK = 3V, SPKBST = 0
50
dB
VDDSPK = 1.5*VDDA, SPKBST = 1
50
dB
VDDA / 3.3
VRMS
90
dB
-84
dB
-85
dB
(MICBIASV = 0)
0.9*
VDD
A
V
(MICBIASV = 1)
0.65*
VDD
A
V
VDDSPK=3.3V
PO
=360mW
RL =
8Ω
VDDSPK =
1.5*VDDA
PO
=800mW
Power Supply Rejection Ratio
(50Hz – 22kHz)
MAX
VDDSPK = 3.3V
RL = 8Ω
PO
=400mW
THD
TYP
Output power is very closely correlated with THD;
see below
PO
=180mW
Total Harmonic Distortion
MIN
Headphone’ output (SPKOUTP, SPKOUTN with resistive load to ground)
Full scale output 7
Signal to Noise Ratio
SNR
A-weighted
Po = 20mW
Total Harmonic Distortion
THD
Po = 20mW
RL=16
Ω
RL=32
Ω
VDDSPK=3.3V
Microphone Bias
Bias Voltage
VMICBIAS
Bias Current Source
IMICBIAS
Output Noise Voltage
VN
3
mA
MICBIASM = 0
(1kHz to 20kHz)
14
nV/√Hz
MICBIASM = 1
(1kHz to 20kHz)
4
nV/√Hz
Automatic Level Control (ALC)/Limiter – ADC only
Target Record Level
-28.5
Programmable Gain
-6
dB
35.25
0.75
dB
dB
0 / 2.67 / …/ 43691
ms
-12
Programmable Gain Step Size
Gain Hold Time 4, 6
Guaranteed Monotonic
tHOLD
MCLK=12.288MHz
™
emPowerAudio
Datasheet Revision 2.9
Page 14 of 110
June 2016
NAU8814
(time doubles with
each step)
emPowerAudio™
Datasheet Revision 2.9
Page 15 of 110
June 2016
NAU8814
VDDC = 1.8V, VDDA = VDDB = VDDSPK = 3.3V (VDDSPK = 1.5*VDDA when Boost), TA = +25oC, 1kHz signal,
fs = 48kHz, 24-bit audio data unless otherwise stated.
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNIT
Automatic Level Control (ALC)/Limiter – ADC only
Gain Ramp-Up (Decay) Time 5,
6
Gain Ramp-Down (Attack)
5, 6
Time
tDCY
tATK
ALC Mode
ALCM=0
MCLK=12.288MHz
3.3 / 6.6 / 13.1 / … /
3360 (time doubles every
step)
ms
Limiter Mode
ALCM=1
MCLK=12.288MHz
0.73 / 1.45 / 2.91 / … /
744 (time doubles every
step)
ms
ALC Mode
ALCM=0
MCLK=12.288MHz
0.83 / 1.66 / 3.33 / … /
852 (time doubles every
step)
ms
Limiter Mode
ALCM=1
MCLK=12.288MHz
0.18 / 0.36 / 0.73 / … /
186 (time doubles every
step)
ms
Digital Input / Output
0.7 ×
VDDB
Input HIGH Level
VIH
Input LOW Level
VIL
Output HIGH Level
VOH
IOL = 1mA
Output LOW Level
VOL
IOH = -1mA
V
0.3 ×
VDDB
0.9 ×
VDDB
V
0.1 x
VDDB
Notes
1. Full Scale is relative to VDDA (FS = VDDA/3.3.). Input level to AUX is limited to a maximum of -3dB so that
THD+N performance will not be reduced.
2. Signal-to-noise ratio (dB) – SNR is a measure of the difference in level between the full-scale output and the
output with no signal applied. (No Auto-zero or Automute function is employed in achieving these results).
3. THD+N (dB) – THD+N are a ratio, of the rms values, of (Noise + Distortion)/Signal.
4. Hold Time is the length of time between a signal detected being too quiet and beginning to ramp up the gain.
It does not apply to ramping down the gain when the signal is too loud, which happens without a delay.
5. Ramp-up and Ramp-Down times are defined as the time it takes to change the PGA gain by 6dB of its gain
range.
6. All hold, ramp-up and ramp-down times scale proportionally with MCLK
7. The maximum output voltage can be limited by the speaker power supply. If MOUTBST or SPKBST is, set
then VDDSPK should be 1.5xVDDA to prevent clipping taking place in the output stage (when PGA gains are set
to 0dB).
emPowerAudio™
Datasheet Revision 2.9
Page 16 of 110
V
June 2016
V
NAU8814
12. FUNCTIONAL DESCRIPTION
The NAU8814 is a MONO Audio CODEC with very robust ADC and DAC. The device provides one single ended
auxiliary input (AUX pin) and one differential microphone input (MIC- & MIC+ pins). The auxiliary input (AUX) can
be configured to sum multiple signals into a single input. It has three different amplification paths with a total gain
of up to +55.25dB. The differential input also has amplification paths similar to auxiliary input.
The device also has an internal configurable biasing circuit for biasing the microphone, which in turn reduces
external components. The PGA output has programmable ADC gain. An advanced Sigma Delta DAC is used
along with digital decimation and interpolation filters to give high quality audio at sample rates from 8 kHz to 48
kHz. The Digital Filter blocks include ADC high pass filters, and Notch filter, and a 5-band equalizer. The device
has two output mixers, one for MONO output and the other for the speaker output. It also has one input mixer.
The NAU8814 has two different types of serial control interface 2-Wire and SPI for device control. 2-Wire and
SPI are hardware selectable through MODE pin on the device. The device also supports I2S, PCM time slotting,
Left Justified and Right Justified for audio interface.
The device can operate as a master or slave device. It can operate with sample rates ranging from 8 kHz to 48
kHz, depending on the values of MCLK and its prescaler. The NAU8814 includes a PLL block, where it takes the
external clock (MCLK pin) to generate other clocks for the audio data transfer such as Bit clock (BCLK), Frame
2
sync (FS), and I S clocks. The PLL can also configure a separate programmable clock for the use in the system
through CSb/GPIO pin. The power control registers help save power by controlling the major individual functional
blocks of the NAU8814.
12.1.
INPUT PATH
The NAU8814 has two different types of microphone inputs single ended and differential. Figure 3 shows the
different paths that the input signals can take.
All inputs are maintained at a DC bias at approximately half of the VDDA supply voltage. Connections to these
inputs should be AC-coupled by means of DC blocking capacitors suitable for the device application.
12.1.1. The Single Ended Auxiliary Input (AUX)
The single ended auxiliary input (AUX) has three different paths to MONO output (MOUT).
Directly connected to the MONO Mixer or Speaker Mixer to MOUT or SPKOUT+ and SPKOUT- respectively
Connect through the PGA Boost Mixer which has a range of -12dB to +6dB
Connect through both the input PGA Gain (range of -12dB to +35.25 dB) and PGA Boost Mixer (range of 0db
or +20dB)
emPowerAudio™
Datasheet Revision 2.9
Page 17 of 110
June 2016
NAU8814
The last two paths above go through the ADC filters where the ALC loop controls the amplitude of the input signal.
The device also has an internal configurable biasing circuit for biasing the microphone, reducing external
components.
An internal inverting operational amplifier circuit allows the auxiliary input pin to connect multiple signals for mixing.
This can be achieved by setting AUXM[3] address (0x2C) to LOW. The combination of the 20k ohm resistors can
vary due to process variation in the gain stage. The block can also be configured to be used as a buffer by
setting AUXM[3] address (0x2C) to HIGH. The internal inverting circuit block can be enable/disable by setting
AUXEN[6] address (0x01).
AUXM[3]
(0x2C)
R
20k
20k
AUX
Pin
Output to
PGA Gain
MONO Mixer
Speaker Mixer
AUXM[3]
(0x2C)
VREF
AUXEN[6]
(0x01)
Figure 3: Auxiliary Input Circuit Block Diagram with AUXM[3] = 0
AUXM[3]
(0x2C)
R
R
R
20k
20k
AUX
Pin
Output to
PGA Gain
MONO Mixer
Speaker Mixer
AUXM[3]
(0x2C)
VREF
AUXEN[6]
(0x01)
Figure 4: Auxiliary Input Circuit Block Diagram with AUXM[3] = 1
emPowerAudio™
Datasheet Revision 2.9
Page 18 of 110
June 2016
NAU8814
12.1.2. The differential microphone input (MIC- & MIC+ pins)
The NAU8814 features a low-noise, high common mode rejection ratio (CMRR), differential microphone inputs
(MIC- & MIC+ pins) which are connected to a PGA Gain stage. The differential input structure is essential in
noisy digital systems where amplification of low-amplitude analog signals is necessary such as notebooks and
PDAs. When properly employed, the differential input architecture offers an improved power-supply rejection ratio
(PSRR) and higher ground noise immunity.
PGAGAIN[5:0]
(0x2D)
AUXPGA[2]
(0x2C)
From AUX
stage
AUXPGA[2]
(0x2C)
R
NMICPGA[1]
(0x2C)
R
NMICPGA[1]
(0x2C)
R
MIC-
R
PGAGAIN[5:0]
(0x2D)
PMICPGA[0]
(0x2C)
MIC+
To PGA
Boost
R
-12 dB to +35.25 dB
VREF
PGAGAIN[5:0]
(0x2D)
Figure 5: Input PGA Circuit Block Diagram
Bit(s)
Addr
Parameter
Programmable Range
PMICPGA[0]
0x2C
Positive Microphone to PGA
0 = Input PGA Positive terminal to VREF
1 = Input PGA Positive terminal to MICP
NMICPGA[1]
0x2C
Negative Microphone to
PGA
0 = MICN not connected to input PGA
1 = MICN to input PGA Negative terminal.
Table 2: Register associated with Input PGA Contro
emPowerAudio™
Datasheet Revision 2.9
Page 19 of 110
June 2016
NAU8814
12.1.2.1.
Positive Microphone Input (MIC+)
The positive microphone input (MIC+) can be used as part of the differential input. It connects to the positive
terminal of the PGA gain amplifier by setting PMICPGA[0] address (0x2C) to HIGH or can be connected to VREF
by setting PMICPGA[0] address (0x2C) to LOW.
When the associated control bit is set logic = 1, the MIC+ pin is connected to a resistor of approximately 1kΩ
which is tied to VREF. The purpose of the tie to VREF is to reduce any pop or click sound by keeping the DC
level of the MIC+ pin close to VREF at all times.
Note: In single ended applications where the MIC+ input is used without using MIC-, the PGA gain values will be
valid only if the MIC- pin is terminated to a low impedance signal point. This termination should normally be an
AC coupled path to signal ground. This input impedance is constant regardless of the gain value. The following
table gives the nominal input impedance for this input. Impedance for specific gain values not listed in this table
can be estimated through interpolation between listed values.
MIC+ to non-inverting PGA input
Nominal Input Impedance
MIC- to inverting PGA input
Nominal Input Impedance
Gain (dB)
Impedance (kΩ)
Gain (dB)
Impedance (kΩ)
-12
-9
-6
-3
0
3
6
9
12
18
30
35.25
94
94
94
94
94
94
94
94
94
94
94
94
-12
-9
-6
-3
0
3
6
9
12
18
30
35.25
75
69
63
55
47
39
31
25
19
11
2.9
1.6
Table 3: Microphone Non-Inverting
Input Impedances
12.1.2.2.
Table 4: Microphone Inverting Input
Impedances
Negative Microphone Input (MIC-)
The negative microphone input (MIC-) has two distinctive configuration; differential input or single ended input.
This input connects to the negative terminal of the PGA gain amplifier by setting NMICPGA[1] address (0x2C) to
HIGH. When the MIC- is used as a single ended input, MIC+ should be conned to VREF by setting PMICPGA[0]
address (0x2C) bit to LOW. The AUX input signal can also be mixed with the MIC- input signal by setting
AUXPGA[2] address (0x2C) to HIGH.
emPowerAudio™
Datasheet Revision 2.9
Page 20 of 110
June 2016
NAU8814
When the associated control bit is set logic = 1, the MIC- pin is connected to a resistor of approximately 30kΩ
which is tied to VREF. The purpose of the tie to VREF is to reduce any pop or click sound by keeping the DC
level of the MIC- pin close to VREF at all times. It is important for a system designer to know that the MIC-input
impedance varies as a function of the selected PGA gain. This is normal and expected for a difference amplifier
type topology. The above table gives the nominal resistive impedance values for this input over the possible gain
range. Impedance for specific gain values not listed in this table can be estimated through interpolation between
listed values.
12.1.2.3.
PGA Gain Control
The PGA amplification is common to all three input pins MIC-, MIC+, AUX, and enabled by PGAEN[2] address
(0x02). It has a range of -12dB to +35.25dB in 0.75dB steps, controlled by PGAGAIN[5:0] address (0x2D). Input
PGA gain will not be used when ALC is enabled using ALCEN[8] address (0x20).
Addr
Bit 8
Bit 7
Bit 6
Bit5
0x2D
0
PGAZC
PGAMT
0x20
ALCEN
0
0
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
PGAGAIN[5:0]
ALCMXGAIN[2:0]
Default
0x010
ALCMNGAIN[2:0]
0x038
Table 5: Registers associated with ALC and Input PGA Gain Control
12.1.3.
PGA Boost Stage
The boost stage has three inputs connected to the PGA Boost Mixer.
All three inputs can be individually
connected or disconnected from the PGA Boost Mixer. The boost stage can be enabled by setting BSTEN[4]
address (0x02) to HIGH. The following figure shows the PGA Boost stage.
AUXBSTGAIN[2:0]
(0x2F)
Output from
AUX stage
PGABST[8] PGAMT[6]
(0x2F)
(0x2D)
Output from
PGA Gain
To ADC
PMICBSTGAIN[6:4]
(0x2F)
MIC+
Pin
Figure 6: Boost Stage Block Diagram
emPowerAudio™
Datasheet Revision 2.9
Page 21 of 110
June 2016
NAU8814
The signal from AUX stage can be amplified at the PGA Boost stage before connecting to the Boost Mixer by
setting a binary value from “001” – “111” to AUXBSTGAIN[2:0] address (0x2F). The path is disconnected by
setting “000” to the AUXBSTGAIN bits.
Signal from PGA stage to the PGA Boost Mixer is disconnected or muted by setting PGAMT[6] address (0x2D) to
HIGH. In this path the PGA boost can be a fixed value of +20dB or 0dB, controlled by the PGABST[8] address
(0x2F) bit.
The signal from MIC+ pin to the PGA Boost Mixer is disconnected by setting ‘000’ binary value to
PMICBSTGAIN[6:4] address (0x2F) and any other combination connects the path.
Bit(s)
Addr
Parameter
Programmable Range
BSTEN[4]
0x02
Enable PGA Boost Block
0 = Boost stage OFF
1 = Boost stage ON
PGAMT[6]
0x2D
Mute control for input PGA
0=Input PGA not muted
1=Input PGA muted
AUXBSTGAIN[2:0]
0x2F
Boost AUX signal
Range: -12dB to +6dB @ 3dB increment
PMICBSTGAIN[6:4]
0x2F
Boost MIC+ signal
Range: -12dB to +6dB @ 3dB increment
PGABST[8]
0x2F
Boost PGA stage
0 = PGA output has +0dB
1 = PGA output has +20dB
Table 6: Registers associated with PGA Boost Stage Control
emPowerAudio™
Datasheet Revision 2.9
Page 22 of 110
June 2016
NAU8814
12.2.
MICROPHONE BIASING
MICBIASM[0]
(0x28)
VREF
MICBIAS
R
R
MICBIASV[1:0]
(0x2C)
Figure 7: Microphone Bias Schematic
The MICBIAS pin is a low-noise microphone bias source for an external microphone, which can provide a
maximum of 3mA of bias current. This DC bias voltage is suitable for powering either traditional ECM (electret)
type microphones, or for MEMS types microphones with an independent power supply pin. Seven different bias
voltages are available for optimum system performance, depending on the specific application. The microphone
bias pin normally requires an external filtering capacitor as shown on the schematic in the Application section.
The output bias can be enabled by setting MICBIASEN[4] address (0x01) to HIGH. It has various voltage values
selected by a combination of bits MICBIASM[4] address (0x3A) and MICBIASV[8:7] address (0x2C).
The low-noise feature results in greatly reduced noise in the external MICBIAS voltage by placing a resistor of
approximately 200-ohms in series with the output pin. This creates a low pass filter in conjunction with the
external microphone-bias filter capacitor, but without any additional external components.
Bit(s)
Addr
Parameter
MICBIASEN[4]
0x01
MICBIASM[4]
(0x3A)
Microphone bias mode selection
MICBIASV[8:7]
(0x2C)
Microphone bias voltage selection
Microphone bias enable
Programmable Range
0 = Disable
1 = Enable
0 = Disable
1 = Enable
Table 7: Register associated with Microphone Bias
Below are the unloaded values when MICBIASM[4] is set to 1 and 0. When loaded, the series resistor will cause
the voltage to drop, depending on the load current.
emPowerAudio™
Datasheet Revision 2.9
Page 23 of 110
June 2016
NAU8814
Microphone Bias Voltage Control
MICBIASV[8:7]
MICBIASM[4] = 0
MICBIASM[4]= 1
0
0
0.9* VDDA
0.85* VDDA
0
1
0.65* VDDA
0.60* VDDA
1
0
0.75* VDDA
0.70* VDDA
1
1
0.50* VDDA
0.50* VDDA
Table 8: Microphone Bias Voltage Control
emPowerAudio™
Datasheet Revision 2.9
Page 24 of 110
June 2016
NAU8814
12.3.
ADC DIGITAL FILTER BLOCK
ADC Digital Filters
ADC
Digital
Decimator
Digital
Filter
/
Gain
5-Band
Equalizer
High
Pass
Filter
Notch
Filter
Digital
Audio
Interface
Figure 8: ADC Digital Filter Path Block Diagram
The ADC digital filter block performs a 24-bit signal processing. The block consists of an oversampled analog
sigma-delta modulator, digital decimator, digital filter, 5-band graphic equalizer, high pass filter, and a notch filter.
For digital decimator and 5-band graphic equalizer refer to “Output Signal Path”. The oversampled analog sigmadelta modulator provides a bit stream to the decimation stages and filter. The ADC coding scheme is in twoscomplement format and the full-scale input level is proportional to VDDA. With a 3.3V supply voltage, the fullscale level is 1.0VRMS and any voltage greater than full scale may overload the ADC and cause distortion. The
ADC is enabled by setting ADCEN[0] address (0x02) bit. Polarity and oversampling rate of the ADC output signal
can be changed by ADCPL[0] address (0x0E) and ADCOS[3] address (0x0E) respectively.
Bit(s)
Addr
Parameter
Programmable Range
ADCPL[0]
0x0E
ADCOS[3]
0x0E
HPFEN[8]
0x0E
HPFAM[7]
0x0E
Audio or Application Mode
0 = Audio (1st order, fc ~ 3.7 Hz)
1 = Application (2nd order, fc =HPF)
HPF[6:4]
0x0E
High Pass Filter frequencies
82 Hz to 612 Hz dependant on the sample
rate
ADCEN[0]
0x02
Enable ADC
0 = Disable
1 = Enable
SMPLR[3:1]
0x07
Sample rate
8k Hz to 48 kHz
0 = Normal
1 = Inverted
ADC Polarity
ADC Over Sample
Rate
High Pass Filter
Enable
0=64x (Lowest power)
1=128x (best SNR at typical condition)
0 = Disable
1 = Enable
Table 9: Register associated with ADC
emPowerAudio™
Datasheet Revision 2.9
Page 25 of 110
June 2016
NAU8814
12.3.1. Programmable High Pass Filter (HPF)
The high pass filter (HPF) has two different modes that it can operate in either Audio or Application mode
HPFAM[7] address (0x0E). In Audio Mode (HPFAM=0) the filter is first order, with a cut-off frequency of 3.7Hz.
In Application mode (HPFAM=1) the filter is second order, with a cut-off frequency selectable via the HPF[2:0]
register bits. Cut-off frequency of the HPF depends on sample frequency selected by SMPLR[3:1] address (0x07).
The HPF is enabled by setting HPFEN[8] address (0x0E) to HIGH. Table below shows the cut-off frequencies
with different sampling rate.
SMPLR=101/100
8
11.025
12
fs (kHz)
SMPLR=011/010
16
22.05
24
SMPLR=001/000
32
44.1
48
000
82
113
122
82
113
122
82
113
122
001
102
141
153
102
141
153
102
141
153
010
131
180
156
131
180
156
131
180
156
011
163
225
245
163
225
245
163
225
245
100
204
281
306
204
281
306
204
281
306
101
261
360
392
261
360
392
261
360
392
110
327
450
490
327
450
490
327
450
490
111
408
563
612
408
563
612
408
563
612
HPF[2:0]
Table 10: High Pass Filter Cut-off Frequencies (HPFAM=1)
12.3.2. Programmable Notch Filter (NF)
The NAU8814 has a programmable notch filter where it passes all frequencies except those in a stop band
centered on a given center frequency. The filter gives lower distortion and flattens response. The notch filter is
enabled by setting NFCEN[7] address (0x1B) to HIGH. The variable center frequency is programmed by setting
two’s complement values to NFCA0[6:0] address (0x1C), NFCA0[13:7] address (0x1B) and NFCA1[6:0] address
(0x1E), NFCA1[13:7] address (0x1D) registers. The coefficients are updated in the circuit when the NFCU[8] bit
is set HIGH in a write to any of the registers NF1-NF4 address (0x1B, 0x1C, 0x1D, 0x1E).
Addr
Bit 8
Bit 7
Bit 6
Bit5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Default
0x1B
NFCU
NFCEN
NFCA0[13:7]
0x000
0x1C
NFCU
0
NFCA0[6:0]
0x000
0x1D
NFCU
0
NFCA1[13:7]
0x000
0x1E
NFCU
0
NFCA1[6:0]
0x000
Table 11: Registers associated with Notch Filter Function
emPowerAudio™
Datasheet Revision 2.9
Page 26 of 110
June 2016
NAU8814
A0
Coefficient
A1
2 fb
1 tan
2 fs
2 fb
1 tan
2 fs
1 A0
2 fc
x cos
fs
Notation
Register Value (DEC)
fc = center frequency (Hz)
fb = -3dB bandwidth (Hz)
fs = sample frequency
(Hz)
NFCA0 = -A0 x 213
NFCA1 = -A1 x 212
(then convert to 2’s
complement)
Table 12: Equations to Calculate Notch Filter Coefficients
12.3.3. Digital ADC Gain Control
The digital ADC can be muted by setting “0000 0000” to ADCGAIN[7:0] address (0x0F). Any other combination
digitally attenuates the ADC output signal in the range -127dB to 0dB in 0.5dB increments].
Addr
Name
Bit 8
0x0F
ADCG
0
Bit 7
Bit 6
Bit5
Bit 4
Bit 3
Bit 2
ADCGAIN
Bit 1
Bit 0
Default
0x0FF
Table 13: Register associated with ADC Gain
12.4. PROGRAMMABLE GAIN AMPLIFIER (PGA)
NAU8814 has a programmable gain amplifier (PGA) which controls the gain such that the signal level of the PGA
remains substantially constant as the input signal level varies within a specified dynamic range. The PGA has
two functions
Automatic level control (ALC) or
Input peak limiter
The Automatic Level Control (ALC) seeks to control the PGA gain in response to the amplitude of the input signal
such that the PGA output maintains a constant envelope. A digital peak detector monitors the input signal
amplitude and compares it to a register defined threshold level ALCSL[3:0] address (0x21). Note: When the ALC
automatic level control is enabled, the function of the ALC is to automatically adjust PGAGAIN[5:0] address (0x2D)
volume setting.
12.4.1. Automatic level control (ALC)
The ALC seeks to control the PGA gain such that the PGA output maintains a constant envelope. This helps to
prevent clipping at the input of the sigma delta ADC while maximizing the full dynamic range of the ADC. The
ALC monitors the output of the ADC, measured after the digital decimator has converted it to 1.23 fixed-point
formats. The ADC output is fed into a peak detector, which updates the measured peak value whenever the
absolute value of the input signal is higher than the current measured peak. The measured peak gradually
decays to zero unless a new peak is detected, allowing for an accurate measurement of the signal envelope.
Based on a comparison between the measured peak value and the target value, the ALC block adjusts the gain
control, which is fed back to the PGA.
emPowerAudio™
Datasheet Revision 2.9
Page 27 of 110
June 2016
NAU8814
Rate Convert/ Decimator
Input
Pin
PGA
ADC
Sinc
Filter
Digital
Decimator
Digital
Filter
ALC
Figure 9: ALC Block Diagram
The ALC is enabled by setting ALCEN[8] address (0x20) bit to HIGH. The ALC has two functional modes, which
is set by ALCM[8] address (0x22).
Normal mode (ALCM = LOW)
Peak Limiter mode (ALCM = HIGH)
When the ALC is disabled, the input PGA remains at the last controlled value of the ALC. An input gain update
must be made by writing to the PGAGAIN[5:0] address (0x2D). A digital peak detector monitors the input signal
Output Level
amplitude and compares it to a register defined threshold level ALCSL[3:0] address (0x21).
Input < noise
gate threshold
ALC operation range
Target ALCSL -6dB
Gain (Attenuation) Clipped
at ALCMNGAIN -12dB
+33 dB
PGA Gain
0 dB
-12 dB
ALCNEN = 1
ALCNTH = -39dB
MIC Boost Gain = 0dB
ALCSL = -6dB
ALCMNGAIN = -12dB
ALCMXGAIN = +35.25dB
-39dB
-39dB
-6dB +6dB
Input Level
Figure 10: ALC Response Graph
The registers listed in the following section allow configuration of ALC operation with respect to:
ALC target level
Gain increment and decrement rates
Minimum and maximum PGA gain values for ALC operating range
Hold time before gain increments in response to input signal
emPowerAudio™
Datasheet Revision 2.9
Page 28 of 110
June 2016
NAU8814
Inhibition of gain increment during noise inputs
Limiter mode operation
Bit(s)
Addr
ALCMNGAIN[2:0]
Parameter
Programmable Range
Minimum Gain of PGA
Range: -12dB to +30dB @ 6dB increment
Maximum Gain of PGA
Range: -6.75dB to +35.25dB @ 6dB increment
ALCEN[8]
Enable ALC function
0 = Disable
1 = Enable
ALCSL[3:0]
ALC Target
Range: -28.5dB to -6dB @ 1.5dB increment
ALC Hold Time
Range: 0ms to 1s, time doubles with every step)
ALCZC[8]
ALC Zero Crossing
0 = Disable
1 = Enable
ALCATK[3:0]
ALC Attack time
ALCM=0 – Range: 125us to 128ms
ALCM=1 – Range: 31us to 32ms (time doubles with
every step)
ALC Decay time
ALCM=0 – Range: 500us to 512ms
ALCM=1 – Range: 125us to 128ms
(Both ALC time doubles with every step)
ALC Select
0 = ALC mode
1 = Limiter mode
ALCMXGAIN[2:0]
ALCHT[3:0]
0x20
0x21
0x22
ALCDCY[3:0]
ALCM[8]
Table 14: Registers associated with ALC Control
The operating range of the ALC is set by ALCMXGAIN[5:3] address (0x20) and ALCMNGAIN[2:0] address (0x20)
bits such that the PGA gain generated by the ALC is between the programmed minimum and maximum levels.
When the ALC is enabled, the PGA gain is disabled.
In Normal mode, the ALCMXGAIN bits set the maximum level for the PGA in the ALC mode but in the Limiter
mode ALCMXGAIN has no effect because the maximum level is set by the initial PGA gain setting upon enabling
of the ALC.
ALCMAXGAIN
Maximum Gain (dB)
ALCMINGAIN
Minimum Gain (dB)
111
110
35.25
29.25
000
001
-12
-6
ALC Max Gain Range 35.25dB to -6dB @
6dB increments
001
000
-0.75
-6.75
ALC Min Gain Range -12dB to 30dB @
6dB increments
110
111
24
30
Table 15: ALC Maximum and Minimum Gain Values
emPowerAudio™
Datasheet Revision 2.9
Page 29 of 110
June 2016
NAU8814
12.4.1.1.
Normal Mode
Normal mode is selected when ALCM[8] address (0x22) is set LOW and the ALC is enabled by setting ALCEN[8]
address (0x20) HIGH. This block adjusts the PGA gain setting up and down in response to the input level. A
peak detector circuit measures the envelope of the input signal and compares it to the target level set by
ALCSL[3:0] address (0x21). The ALC increases the gain when the measured envelope is greater than the target
and decreases the gain when the measured envelope is less than – 1.5dB. The following waveform illustrates the
behavior of the ALC.
PGA Input
PGA Output
PGA Gain
Figure 11: ALC Normal Mode Operation
12.4.1.2.
ALC Hold Time (Normal mode Only)
The hold parameter ALCHT[3:0] configures the time between detection of the input signal envelope being outside
of the target range and the actual gain increase.
Input signals with different characteristics (e.g., voice vs. music) may require different settings for this parameter
for optimal performance. Increasing the ALC hold time prevents the ALC from reacting too quickly to brief periods
of silence such as those that may appear in music recordings; having a shorter hold time, on the other hand, may
be useful in voice applications where a faster reaction time helps to adjust the volume setting for speakers with
different volumes. The waveform below shows the operation of the ALCHT parameter.
emPowerAudio™
Datasheet Revision 2.9
Page 30 of 110
June 2016
NAU8814
PGA Input
PGA Output
PGA Gain
Hold Delay
Change
Figure 12: ALC Hold Time
12.4.2. Peak Limiter Mode
Peak Limiter mode is selected when ALCM[8] address (0x22) is set to HIGH and the ALC is enabled by setting
ALCEN[8] address (0x20). In limiter mode, the PGA gain is constrained to be less than or equal to the gain
setting at the time the limiter mode is enabled. In addition, attack and decay times are faster in limiter mode than
in normal mode as indicated by the different lookup tables for these parameters for limiter mode. The following
waveform illustrates the behavior of the ALC in Limiter mode in response to changes in various ALC parameters.
PGA Input
PGA
Output
PGA Gain
Limiter
Enabled
Figure 13: ALC Limiter Mode Operations
When the input signal exceeds 87.5% of full scale, the ALC block ramps down the PGA gain at the maximum
attack rate (ALCATK=0000) regardless of the mode and attack rate settings until the ADC output level has been
reduced below the threshold. This limits ADC clipping if there is a sudden increase in the input signal level.
emPowerAudio™
Datasheet Revision 2.9
Page 31 of 110
June 2016
NAU8814
12.4.3. Attack Time
When the absolute value of the ADC output exceeds the level set by the ALC threshold, ALCSL[3:0] address
(0x21), attack mode is initiated at a rate controlled by the attack rate register ALCATK[3:0] address (0x22). The
peak detector in the ALC block loads the ADC output value when the absolute value of the ADC output exceeds
the current measured peak; otherwise, the peak decays towards zero, until a new peak has been identified. This
sequence is continuously running. If the peak is ever below the target threshold, then there is no gain decrease
at the next attack timer time; if it is ever above the target-1.5dB, then there is no gain increase at the next decay
timer time.
12.4.4. Decay Times
The decay time ALCDCY[6:4] address (0x22) is the time constant used when the gain is increasing. In limiter
mode, the time constants are faster than in ALC mode.
12.4.5. Noise gate (normal mode only)
A noise gate is used when there is no input signal or the noise level is below the noise gate threshold. The noise
gate is enabled by setting ALCNEN[3] address (0x23) to HIGH. It does not remove noise from the signal. The
noise gate threshold ALCNTH[2:0] address (0x23) is set to a desired level so when there is no signal or a very
quiet signal (pause), which is composed mostly of noise, the ALC holds the gain constant instead of amplifying
the signal towards the target threshold. The noise gate only operates in conjunction with the ALC and ONLY in
Normal mode. The noise gate flag is asserted when
(Signal at ADC – PGA gain – MIC Boost gain) < ALCNTH (ALC Noise Gate Threshold) (dB)
Levels at the extremes of the range may cause inappropriate operation, so care should be taken when setting up
the function.
PGA Input
PGA Output
PGA Gain
Figure 14: ALC Operation with Noise Gate disabled
emPowerAudio™
Datasheet Revision 2.9
Page 32 of 110
June 2016
NAU8814
PGA Input
Noise Gate Threshold
PGA Output
PGA Gain
Figure 15: ALC Operation with Noise Gate Enabled
12.4.6. Zero Crossing
The PGA gain comes from either the ALC block when it is enabled or from the PGA gain register setting when the
ALC is disabled. Zero crossing detection may be enabled to cause PGA gain changes to occur only at an input
zero crossing. Enabling zero crossing detection limits clicks and pops that may occur if the gain changes while
the input signal has a high volume.
There are two zero crossing detection enables:
Register ALCZC[8] address (0x21) – is only relevant when the ALC is enabled.
Register PGAZC[7] address (0x2D) – is only relevant when the ALC is disabled.
If the zero crossing function is enabled (using either register) and SCLKEN[0] address (0x07) is asserted, the zero
cross timeout function may take effect. If the zero crossing flag does not change polarity within 0.25 seconds of a
PGA gain update (either via ALC update or PGA gain register update), then the gain will update. This backup
system prevents the gain from locking up if the input signal has a small swing and a DC offset that prevents the
zero crossing flag from toggling.
emPowerAudio™
Datasheet Revision 2.9
Page 33 of 110
June 2016
NAU8814
12.5.
DAC DIGITAL FILTER BLOCK
DAC Digital Filters
Digital
Audio
Interface
Digital
Gain
Digital
Peak
Limiter
5-Band
Equalizer
Digital
Filters
Interpolation
Sigma
Delta
Modulator
DAC
Figure 16: DAC Digital Filter Path
The DAC digital block uses 24-bit signal processing to generate analog audio with a 16-bit digital sample stream
input. This block consists of a sigma-delta modulator, 5-band graphic equalizer, high pass filter, digital gain/filters,
de-emphasis, and analog mixers. The DAC coding scheme is in twos complement format and the full-scale
output level is proportional to VDDA. With a 3.3V supply voltage, the full-scale output level is 1.0VRMS. The DAC
is enabled by setting DACEN[0] address (0x03) bit HIGH.
Bit(s)
Addr
Parameter
Programmable Range
DACEN[0]
0x03
DAC enable
0 = Disable
1 = Enable
ADDAP[0]
0x05
Pass-through of ADC output data
into DAC input
0 = Disable
1 = Enable
DACPL[0]
DAC Polarity
0 = No Inversion
1 = DAC Output Inverted
AUTOMT[2]
Auto Mute
0 = Disable
1 = Enable
DEEMP[5:4]
Sample Rate
32 kHz, 44.1 kHz, and 48 kHz
DACMT[6]
Soft Mute
0 = Disable
1 = Enable
DAC Volume Control
Range: -127dB to 0dB @ 0.5dB
increment, 00 hex is Muted
DAC Limiter Attack
Range: 68us to 139ms
DAC Limiter Decay
Range: 544us to 1.1s
DAC Limiter Enable
0 = Disable
1 = Enable
DAC Limiter Volume Boost
Range: 0dB to +12dB @ 1dB
increment
DAC Limiter Threshold
Range: -6dB to -1bB @ 1dB increment
0x0A
DACGAIN[7:0]
0x0B
DACLIMATK[3:0]
DACLIMDCY[7:4]
0x18
DACLIMEN[8]
DACLIMBST[3:0]
0x19
DACLIMTHL[6:4]
Table 16: Registers associated with DAC Gain Control
emPowerAudio™
Datasheet Revision 2.9
Page 34 of 110
June 2016
NAU8814
12.5.1. DAC Soft Mute
The NAU8814 also has a Soft Mute function, which gradually attenuates the volume of the digital signal to zero.
When removed, the gain will ramp back up to the digital gain setting. This function is disabled by default. This
feature provides a tool that is useful for using the DACs without introducing pop and click sounds. To play back
an audio signal, it must first be disabled by setting the DACMT[6] address (0x0A) bit to LOW.
12.5.2. DAC Auto Mute
The output of the DAC can be muted by the analog auto mute function. The auto mute function is enabled by
setting AUTOMT[2] address (0x0A) to HIGH and applied to the DAC output when it sees 1024 consecutive zeros
at its input.
If at any time there is a non-zero sample value, the DAC will be un-muted, and the 1024 count will be reinitialized
to zero.
12.5.3. DAC Sampling / Oversampling rate, Polarity, DAC Volume control and Digital Passthrough
The sampling rate of the DAC is determined entirely by the frequency of its input clock and the oversampling rate
setting. The oversampling rate of the DAC can be changed to 64x or 128x. In the 128x oversampling mode it
gives an improved audio performance at slightly higher power consumption. Because the additional supply
current is only 1mA, in most applications the 128x oversampling is preferred for maximum audio performance.
The polarity of the DAC output signal can be changed as a feature sometimes useful in management of the audio
phase. This feature can help minimize any audio processing that may be otherwise required as the data are
passed to other stages in the system.
The effective output audio volume of the DAC can be changed using the digital volume control feature. This
processes the output of the DAC to scale the output by the amount indicated in the volume register setting.
Included is a “digital mute” value which will completely mute the signal output of the DAC. The digital volume
setting can range from 0dB through -127dB in 0.5dB steps.
Digital audio pass-through allows the output of the ADC to be directly sent to the DAC as the input signal to the
DAC for DAC output. In this mode of operation, the external digital audio signal for the DAC will be ignored. The
pass-through function is useful for many test and application purposes, and the DAC output may be utilized in any
way that is normally supported for the DAC analog output signals.
12.5.4. Hi-Fi DAC De-Emphasis and Gain Control
The NAU8814 has Hi-Fi DAC gain control for signal conditioning. The level of attenuation for an eight-bit code X
is given by:
0.5 × (X-255) dB
for 1 ≤ X ≤ 255;
MUTE for X = 0
It includes on-chip digital de-emphasis and is available for sample rates of 32 kHz, 44.1 kHz, and 48 kHz. The
digital de-emphasis can be enabled by setting DEEMP[5:4] address (0x0A) bits depending on the input sample
emPowerAudio™
Datasheet Revision 2.9
Page 35 of 110
June 2016
NAU8814
rate. The de-emphasis feature is included to accommodate audio recordings that utilize 50/15 s pre-emphasis
equalization as a means of noise reduction.
The DAC output can be inverted (phase inversion) by setting
DACPL[1:0] address (0x0A) to HIGH, non-inverted output is set by default.
12.5.5. Digital DAC Output Peak Limiter
Output Peak-Limiters reduce the dynamic range by ensuring the signal will not exceed a certain threshold, while
maximizing the RMS of the resulted audio signal, and minimizing audible distortions. NAU8814 has a digital
output limiter function. The operation of this is shown in figure below. In this diagram the upper graph shows the
envelope of the input/output signals and the lower graph shows the gain characteristic.
The limiter has a
programmable threshold, DACLIMTHL[6:4] address (0x19), which ranges from -1dB to -6dB in 1dB increments.
The digital peak limiter seeks to keep the envelope of the output signal within the target threshold +/- 0.5dB. The
attack and decay rates programmed in registers DACLIMATK[3:0] address (0x18) and DACLIMDCY[7:4] address
(0x18) specify how fast the digital peak limiter decrease and increase the gain, respectively, in response to the
envelope of the output signal falling outside of this range. In normal operation LIMBST=000 signals below this
threshold are unaffected by the limiter.
DAC Input
Data
Threshold
-1dB
DAC Output
Signal
0dB
Digital Gain
-0.5dB
-1dB
Figure 17: DAC Digital Limiter Control
12.5.6. Volume Boost
The limiter has programmable upper gain, which boosts signals below the threshold to compress the dynamic
range of the signal and increase its perceived loudness. This operates as an ALC function with limited boost
capability. The volume boost is from 0dB to +12dB in 1dB steps, controlled by the DACLIMBST[3:0] register bits.
The output limiter volume boost can also be used as a stand-alone digital gain boost when the limiter is disabled.
emPowerAudio™
Datasheet Revision 2.9
Page 36 of 110
June 2016
NAU8814
12.5.7. 5-Band Equalizer
NAU8814 features 5-band graphic equalizer with low distortion, low noise, and wide dynamic range, and is an
ideal choice for Hi-Fi applications. All five bands are fully parametric with independently adjustable bandwidth
that displays exceptional tonal qualities. Each of the five bands offers +/- 12dB of boost and cut with 1dB
resolution. The five bands are divided in to three sections Low, Mid and High bands. The High and the Low
bands are shelving filters and the mid three are peak filters. The equalizer can be applied to the ADC or DAC
path under control of the EQM[8] address (0x12) register bit.
Bit(s)
Address
EQM[8]
EQ1CF[6:5]
Parameter
Programmable Range
Equalizer Enable
Band 1 Cut-off Frequency
Range: 80 Hz to 175 Hz
EQ1GC[4:0]
Band 1 Gain Control
Range: -12 dB to +12 dB
@ 1.0dB increment
EQ2BW[8]
Band 2 Equalizer Bandwidth
Narrow or Wide
Band 2 Centre Frequency
Range: 230 Hz to 500 Hz
EQ2GC[4:0]
Band 2 Gain Control
Range: -12 dB to +12 dB
@ 1.0dB increment
EQ2BW[8]
Band 3 Equalizer Bandwidth
Narrow or Wide
Band 3 Centre Frequency
Range: 650 Hz to 1.4 kHz
EQ3GC[4:0]
Band 3 Gain Control
Range: -12 dB to +12 dB
@ 1.0dB increment
EQ4BW[8]
Band 4 Equalizer Bandwidth
Narrow or Wide
Band 4 Centre Frequency
Range: 1.8 kHz to 4.1 kHz
Band 4 Gain Control
Range: -12 dB to +12 dB
@ 1.0dB increment
Band 5 Cut-off Frequency
Range: 5.3 kHz to 11.7 kHz
Band 5 Gain Control
Range: -12 dB to +12 dB
@ 1.0dB increment
EQ2CF[6:5]
EQ3CF[6:5]
EQ4CF[6:5]
0x12
0x13
0x14
0x15
EQ4GC[4:0]
EQ5CF[6:5]
0x16
EQ5GC[4:0]
Table 17: Registers associated with Equalizer Control
emPowerAudio™
Datasheet Revision 2.9
Page 37 of 110
June 2016
NAU8814
12.6. ANALOG OUTPUTS
The NAU8814 features two different types of outputs, a single-ended MONO output (MOUT) and a differential
speaker outputs (SPKOUT+ and SPKOUT-). The speaker amplifiers designed to drive a load differentially; a
configuration referred to as Bridge-Tied Load (BTL).
MOUTBST[3]
(0x31)
Output from
Auxiliary Amplifier
VDDSPK
MOUTMXEN[3]
(0x03)
DACOUT[0]
(0x38)
DAC Output
MOUT
MONO
MIXER
MOUTBST GAIN
0
1.0x
1
1.5x
DC output
1.0 x VREF
1.5 x VREF
-10dB or +0dB
SIDETONE
Output from PGA Boost
VSSSPK
VDDSPK
Zero Cross
Detection
SPEAKER
MIXER
-1
SPKOUTSPKBST GAIN
0
1.0x
1
1.5x
DC output
1.0 x VREF
1.5 x VREF
SPKOUT+
-10dB or 0dB
SPKMXEN[2]
(0x03)
SPKVOL[5:0]
(0x36)
Zero Cross
Detection
Buffer
SPKBST[2]
(0x31)
VSSSPK
Figure 18: Speaker and MONO Analogue Outputs
Important: For analog outputs depopping purpose, when powering up speakers, headphone,
AUXOUTs, certain delays are generated after enabling sequence. However, the delays are created
by MCLK and sample rate register. For correct operation, sending I2S signal no earlier than 250ms
after speaker or headphone enabled and MCLK appearing.
12.6.1.
Speaker Mixer Outputs
The speaker amplifiers are designed to drive a load differentially; a configuration referred to as Bridge-Tied Load
(BTL). The differential speaker outputs can drive a single 8Ω speaker or two headphone loads of 16Ω or 32Ω or
a line output. Driving the load differentially doubles the output voltage. The output of the speaker can be
manipulated by changing attenuation and the volume (loudness of the output signal).
emPowerAudio™
Datasheet Revision 2.9
Page 38 of 110
June 2016
NAU8814
The output stage is powered by the speaker supply, VDDSPK, which are capable of driving up to 1.5VRMS signals
(equivalent to 3VRMS into a BTL speaker). The speaker outputs can be controlled and can be muted individually.
The output pins are at reference DC level when the output is muted.
emPowerAudio™
Datasheet Revision 2.9
Page 39 of 110
June 2016
NAU8814
Bit(s)
Addr
Parameter
Programmable Range
SPKMXEN[2]
0x03
Speaker Mixer enable
0 – Disabled
1 – Enabled
PSPKEN[5]
0x03
Speaker positive terminal
enable
0 – Disabled
1 – Enabled
NSPKEN[6]
0x03
Speaker negative terminal
enable
0 – Disabled
1 – Enabled
SPKATT[1]
0x28
Speaker output attenuation
0 – 0dB
1 - -10dB
SPKBST[2]
0x31
Speaker output Boost
0 – (1.0x VREF) Boost
1- (1.5 x VREF) Boost
SPKGAIN[5:0]
0x36
Speaker output Volume
Range: -57dB to +6dB @ 6dB increment
SPKMT[6]
0x36
Speaker output Mute
0 – Speaker Enabled
1 – Speaker Muted
Table 18: Speaker Output Controls
12.6.2. MONO Mixer Output
The single ended output can drive headphone loads of 16Ω or 32Ω or a line output.
The MOUT can be
manipulated by changing attenuation and the volume (loudness of the output signal).
The output stage is powered by the speaker supply, VDDSPK, which are capable of driving up to 1.5VRMS signals.
The MONO output can be enabled for signal output or muted. The output pins are at reference DC level when the
output is muted.
Bit(s)
Addr
Parameter
Programmable Range
MOUTMXEN[3]
0x03
MONO mixer enable
0 – Disabled
1 – Enabled
MOUTEN[7]
0x03
MONO output enable
0 – Disabled
1 – Enabled
MOUTATT[2]
0x28
MONO output attenuation
0 – 0dB
1 - -10dB
MOUTBST[3]
0x31
MONO output boost
0 – (1.0x VREF) Boost
1- (1.5 x VREF) Boost
MOUTMXMT[6]
0x38
MONO Output Mixer Mute
0 – MONO Mixer Normal Mode
1 – MONO Mixer Muted
MOUTMT[4]
0x45
MONO Output Mute
0 – MONO Output Normal Mode
1 – MONO Output Muted
Table 19: MONO Output Controls
emPowerAudio™
Datasheet Revision 2.9
Page 40 of 110
June 2016
NAU8814
12.6.3. Unused Analog I/O
AUX
30k
AUXEN[6]
(0x01)
MIC-
SMOUT[3]
(0x4F)
MOUTBST[3] = 0
(0x31)
30k
1K
NMICPGA[1]
(0x2C)
MIC+
MOUT
30K
40k
PMICPGA[0]
(0x2C)
MOUTBST[3] = 1
(0x31)
SPSPK[4]
(0x4F)
1.0 x VREF
1K
VREF
SPKOUT+
SBUFL[6]
(0x4F)
DCBUFEN[8]
(0x01)
SBUFH[7]
(0x4F)
SNSPK[5]
(0x4F)
SPKBST[2] = 1
(0x31)
IOBUFEN[2]
(0x01)
SPKBST[2] = 0
(0x31)
30K
1K
SPKOUT-
1.5 x VREF
30K
AOUTIMP[0]
(0x31)
R
R
Figure 19: Tie-off Options for the Speaker and MONO output Pins
In audio and voice systems, any time there is a sudden change in voltage to an audio signal, an audible pop or
click
sound may be the result.
Systems that change inputs and output configurations dynamically, or which are
required to manage low power operation, need special attention to possible pop and click situations.
The
NAU8814 includes many features which may be used to greatly reduce or eliminate pop and click sounds. The
most common cause of a pop or click signal is a sudden change to an input or output voltage. This may happen
in either a DC coupled system, or in an AC coupled system.
The strategy to control pops and clicks is similar for either a DC coupled system, or an AC coupled system. The
case of the AC coupled system is the most common and the more difficult situation, and therefore, the AC
coupled case will be the focus for this information section. When an input or output pin is being used, the DC
level of that pin will be very close to half of the VDDA voltage that is present on the VREF pin. The only exception
is that when outputs are operated in the 5-Volt mode known as the 1.5x boost condition, then the DC level for
emPowerAudio™
Datasheet Revision 2.9
Page 41 of 110
June 2016
NAU8814
those outputs will be equal to 1.5xVREF. In all cases, any input or output capacitors will become charged to the
operating voltage of the used input or output pin. The goal to reduce pops and clicks is to insure that the charge
voltage on these capacitors does not change suddenly at any time.
When an input or output is in a not-used operating condition, it is desirable to keep the DC voltage on that pin at
the same voltage level as the DC level of the used operating condition. This is accomplished using special
internal DC voltage sources that are at the required DC values. When an input or output is in the not-used
condition, it is connected to the correct internal DC voltage as not to have a pop or click. This type of connection
is known as a “tie-off” condition.
Two internal DC voltage sources are provided for making tie-off connections. One DC level is equal to the VREF
voltage value, and the other DC level is equal to 1.5x the VREF value. All inputs are always tied off to the VREF
voltage value. Outputs will automatically be tied to either the VREF voltage value or to the 1.5xVREF value,
depending on the value of the “boost” control bit for that output. That is to say, when an output is set to the 1.5x
gain condition, then that same output will automatically use the 1.5xVREF value for tie-off in the not-used
condition. The input pull-ups are connected to IOBUFEN[2] address (0x01) buffer with a voltage source (VREF).
The output pull-ups can be connected two different buffers depending on the voltage source.
IOBUFEN[2]
address (0x01) buffer is enabled if the voltage source is (VREF) and DCBUFEN[8] address (0x01) buffer is
enabled if the voltage source is (1.5 x VREF). IOBUFEN[2] address (0x01) buffer is shared between input and
output pins.
To conserve power, these internal voltage buffers may be enabled/disabled using control register settings. To
better manage pops and clicks, there is a choice of impedance of the tie-off connection for unused outputs. The
nominal values for this choice are 1kΩ and 30kΩ. The low impedance value will better maintain the desired DC
level in the case when there is some leakage on the output capacitor or some DC resistance to ground at the
NAU8814 output pin. A tradeoff in using the low-impedance value is primarily that output capacitors could change
more suddenly during power-on and power-off changes.
Automatic internal logic determines whether an input or output pin is in the used or un-used condition. This logic
function is always active. An output is determined to be in the un-used condition when it is in the disabled
unpowered condition, as determined by the power management registers. An input is determined to be in the unused condition when all internal switches connected to that input are in the “open” condition.
12.7. GENERAL PURPOSE I/O
The CSb/GPIO pin can be configured in two ways, chip select for SPI interface and general purpose GPIO.
Therefore, the general-purpose configuration is only available in the 2-Wire interface mode, which is configured
by setting GPIOSEL[2:0] address (0x08) to 001 – 101. “000” configures the pin to be a chip select for SPI mode.
The CSb/GPIO pin is not available in the SPI interface mode. When the pin is configured as an input, it can be
used as chip select signal for SPI interface or for jack detect. When the pin is configured as output, it can be used
for signaling analog mute, temperature alert, PLL frequency output, and PLL frequency lock. The CSb/GPIO pin
can also output the master clock through a PLL or directly. The path also included a divider for different clocks
emPowerAudio™
Datasheet Revision 2.9
Page 42 of 110
June 2016
NAU8814
needed in the system. Note that SCLKEN must be enabled when using the Jack Detect function.
Addr
D8
D7
D6
0x08
0
0
0
0x07
0
0
0
D5
D4
D3
GPIOPLL[1:0]
0
D2
GPIOPL
0
D1
D0
GPIOSEL[2:0]
Default
0x000
SCLKEN 0x000
SMPLR[2:0]
Table 20: General Purpose Control
12.7.1. Slow Timer Clock
An internal Slow Timer Clock is supplied to automatically control features that happen over a relatively long period
of time, or time-spans.
This enables the NAU8814 to implement long time-span features without any
host/processor management or intervention.
The Slow Timer Clock supports two features automatic time out for the zero-crossing holdoff of PGA volume
changes, and timing for debouncing of the mechanical jack detection feature. If either feature is required, the
Slow Timer Clock must be enabled. The Slow Timer Clock is initialized in the disabled state.
The Slow Timer Clock rate is derived from MCLK using an integer divider that is compensated for the sample rate
as indicated by the register address (0x07).
If the sample rate register value precisely matches the actual
sample rate, then the internal Slow Timer Clock rate will be a constant value of 128ms. If the actual sample rate
is, for example, 44.1kHz and the sample rate selected in register 0x07 is 48kHz, the rate of the Slow Timer Clock
will be approximately 10% slower in direct proportion of the actual vs. indicated sample rate. This scale of
difference should not be important in relation to the dedicated end uses of the Slow Timer Clock.
12.7.2. Jack Detect
Jack detect is a specific GPIO function. Jack detect is only available in 2-Wire mode only. Jack detect is selected
by setting GPIOSEL[2:0] address (0x08) to “001”. The GPIOPL[3] bit address (0x08) inverts the CSb/GPIO pin
when set to 1. The table below shows all the combinations for jack insert detects.
The CSb/GPIO pin has an internal de-bounce circuit so that when the jack detect feature is enabled it does not
toggle multiple times due to input glitches. Slow clock mode must be enabled when using jack insert detect by
setting SCLKEN[0] address (0x07).
GPIOPL
CSb/GPIO
NSPKEN/
PSPKEN
MOUTEN
Speaker
Enabled
MONO output
Enabled
0
0
1
X
Yes
No
0
1
X
1
No
Yes
1
0
X
1
No
Yes
1
1
1
X
Yes
No
Table 21: Jack Insert Detect mode
emPowerAudio™
Datasheet Revision 2.9
Page 43 of 110
June 2016
NAU8814
Bit(s)
Addr
Parameter
GPIOSEL[2:0]
0x08
GPIO select
GPIOPL[3]
0x08
GPIO polarity
GPIOPLL[4:5]
0x08
GPIO PLL divider
PSPKEN[5]
0x03
Speaker positive terminal enable
NSPKEN[6]
0x03
Speaker negative terminal
enable
MOUTEN[7]
0x03
MONO Output enable
SCLKEN[0]
0x07
Slow clock enable
Programmable Range
0 – CSb Input
1 – Jack Detect
2 – Temperature OK
3 – AMUTE Active
4 – PLL Frequency Output
5 – PLL Lock (0- Locked, 1 – Not
Locked)
6 – HIGH
7 – LOW
0 – Non- Inverted
1 – Inverted
0 – Divide by 1
1 – Divide by 2
2 – Divide by 3
3 – Divide by 4
0 – Muted
1 – Enabled
0 – Muted
1 – Enabled
0 – Muted
1 – Enabled
Period 221 * MCLK
Table 22: Jack Insert Detect controls
12.7.3. Thermal Shutdown
The device contains an on-chip temperature sensor that senses the temperature inside the package. By enabling
the temperature sensor interrupt in GPIOSEL[2:0] address (0x08), an interrupt will be generated if the
temperature reaches a threshold of approximately 125°C. This facilitates control of the temperature should the
device get close to the junction temperature. Note that there is no filtering associated with this temperature alarm
since the package has an intrinsic thermal time constant. The thermal temperature is enabled by setting TSEN[1]
address (0x31).
Bit(s)
Addr
Parameter
TSEN[1]
0x31
Temperature Sense Enable
Programmable Range
0: Thermal Shutdown Disable
1: Thermal Shutdown Enable
Table 23: Thermal Shutdown
emPowerAudio™
Datasheet Revision 2.9
Page 44 of 110
June 2016
NAU8814
12.8.
CLOCK GENERATION BLOCK
ADCOS[3]
(0x0E)
f1
MCLK
MCLKSEL[7:5]
(0x06)
fPLL
PLLMCLK[4]
(0x24)
PLL1
R=f2/f1
f2
IMCLK
f/N
f/4
f/N
f/N
ADC
DAC
f/2
DACOS[3]
(0x0A)
CLKM[8]
(0x06)
PLL BLOCK
BCLKSEL[4:2]
(0x06)
…
GPIO1
/CSb
IMCLK/
N
IMCLK/
256
CLKIOEN[0]
(0x06)
f/N
FS
Digital Audio
Interface
BCLK
GPIO1PLL[5:4]
(0x08)
GPIO1SEL[2:0]
(0x08)
Figure 20: PLL and Clock Select Circuit
The NAU8814 has two basic clock modes that support the ADC and DAC data converters. It can accept external
clocks in the slave mode, or in the master mode, it can generate the required clocks from an external reference
frequency using an internal PLL (Phase Locked Loop). The internal PLL is a fractional type scaling PLL, and
therefore, a very wide range of external reference frequencies can be used to create accurate audio sample rates.
Separate from this ADC and DAC clock subsystem, audio data are clocked to and from the NAU8814 by means
of the control logic described in the Digital Audio Interfaces section. The Frame Sync (FS) and Bit Clock (BCLK)
pins in the Digital Audio Interface manage the audio bit rate and audio sample rate for this data flow.
It is important to understand that the Digital Audio Interface does not determine the sampling rate for the ADC and
DAC data converters, and instead, this rate is derived exclusively from the Internal Master Clock (IMCLK). It is
therefore a requirement that the Digital Audio Interface and data converters be operated synchronously, and that
the FS, BCLK, and IMCLK signals are all derived from a common reference frequency. If these three clocks
signals are not synchronous, audio quality will be reduced.
The IMCLK is always exactly 256 times the sampling rate of the data converters. IMCLK is output from the
Master Clock Prescaler. The prescaler reduces by an integer division factor the input frequency input clock. The
source of this input frequency clock is either the external MCLK pin, or the output from the internal PLL Block.
emPowerAudio™
Datasheet Revision 2.9
Page 45 of 110
June 2016
NAU8814
Addr
D8
D7
D6
D5
D4
0x01
DCBUFEN
0
AUXEN
PLLEN
MICBIASEN
0x06
CLKM
0x07
0
0
0
0
0
0x24
0
0
0
0
PLLMCLK
0x25
0
0
0
MCLKSEL[2:0]
D3
D2
D1
ABIASEN IOBUFEN
BCLKSEL[2:0]
PLLN[3:0]
PLLK[23:18]
Default
REFIMP
0
SMPLR[2:0]
D0
CLKIOEN
0x140
SCLKEN
0x000
0x008
0x00C
0x26
PLLK[17:9]
0x093
0x27
PLLK[8:0]
0x0E9
Table 24: Registers associated with PLL
In Master Mode, the IMCLK signal is used to generate FS and BCLK signals that are driven onto the FS and
BCLK pins and input to the Digital Audio Interface.
FS is always IMCLK/256 and the duty cycle of FS is
automatically adjusted to be correct for the mode selected in the Digital Audio Interface. The frequency of BCLK
may optionally be divided to optimize the bit clock rate for the application scenario.
In Slave Mode, there is no connection between IMCLK and the FS and BCLK pins. In this mode, FS and BLCK
are strictly input pins, and it is the responsibility of the system designer to insure that FS, BCLK, and IMCLK are
synchronous and scaled appropriately for the application.
12.8.1. Phase Locked Loop (PLL) General description
The PLL may be optionally used to multiply an external input clock reference frequency by a high resolution
fractional number. To enable the use of the widest possible range of external reference clocks, the PLL block
includes an optional divide-by-two prescaler for the input clock, a fixed divide-by-four scaler on the PLL output,
and an additional programmable integer divider that is the Master Clock Prescaler.
The high resolution fraction for the PLL is the ratio of the desired PLL oscillator frequency (f2), and the reference
frequency at the PLL input (f1). This can be represented as R = f2/f1, with R in the form of a decimal number:
xy.abcdefgh.
To program the NAU8814, this value is separated into an integer portion (“xy”), and a fractional
portion, “abcdefgh”. The fractional portion of the multiplier is a value that when represented as a 24-bit binary
number (stored in three 9-bit registers on the NAU8814), very closely matches the exact desired multiplier factor.
To keep the PLL within its optimal operating range, the integer portion of the decimal number (“xy”), must be any
of the following decimal values: 6, 7, 8, 9, 10, 11, or 12. The input and output dividers outside of the PLL are
often helpful to scale frequencies as needed to keep the “xy” value within the required range. Also, the optimum
PLL oscillator frequency is in the range between 90MHz and 100MHz, and thus, it is best to keep f 2 within this
range.
emPowerAudio™
Datasheet Revision 2.9
Page 46 of 110
June 2016
NAU8814
In summary, for any given design, choose:
Equations
Description
Notes
IMCLK = (256) * (desired codec
sample rate)
IMCLK = desired Master Clock
f2 = (4 * P * IMCLK)
where P is the Master Clock divider
integer value;
optimal f2: 90MHz< f2 300 uA
161k/595k < 100 uA
40uA
600uA
MICBIASEN[4]
500 uA
PLLEN[5]
2.5mA Clocks Applied
DCBUFEN[8]
80uA
x64 - ADCOS= 0 => 2.0mA
x128 – ADCOS= 1 => 3.0mA
400uA
ADCEN[0]
PGAEN[2]
0x02
BSTEN[4]
200 uA
X64 (DACOS=0)=>1.6mA
x128(DACOS=1)=>1.7mA
400uA
DACEN[0]
SPKMXEN[2]
MOUTMXEN[3]
0x03
200uA
NSPKEN[6]
1mA from VDDSPK + 100uA (VDDA = 5V mode)
PSPKEN[5]
1mA from VDDSPK + 100uA (VDDA = 5V mode)
MOUTEN[7]
100uA
Table 34: VDDA 3.3V Supply Current
emPowerAudio™
Datasheet Revision 2.9
Page 64 of 110
June 2016
NAU8814
13. REGISTER DESCRIPTION
Register
Address
Register Bits
Register Names
DEC HEX
0
0
Default
D8
D7
D6
D5
Software Reset
D4
D3
D2
D1
D0
RESET (SOFTWARE)
000
POWER MANAGEMENT
1
01
Power Management 1 DCBUFEN
0
AUXEN
PLLEN
MICBIASEN
ABIASEN
IOBUFEN
2
02
Power Management 2
0
0
0
0
BSTEN
0
PGAEN
3
03
Power Management 3
0
MOUTEN
NSPKEN
PSPKEN
0
REFIMP
000
0
ADCEN
000
0
DACEN
000
ADCPHS
0
050
ADDAP
000
CLKIOEN
140
SCLKEN
000
MOUTMXEN SPKMXEN
AUDIO CONTROL
4
04
Audio Interface
5
05
Companding
6
06
Clock Control 1
CLKM
7
07
Clock Control 2
0
0
0
0
8
08
GPIO CTRL
0
0
0
GPIOPLL[1:0]
GPIOPL
10
0A DAC CTRL
0
0
DACMT
DEEMP[1:0]
DACOS
11
0B DAC Volume
0
14
0E ADC CTRL
15
0F
ADC Volume
BCLKP
FSP
0
0
HPFEN
WLEN[1:0]
0
AIFMT[1:0]
0
DACPHS
DACCM[1:0]
MCLKSEL[2:0]
ADCCM[1:0]
BCLKSEL[2:0]
0
0
SMPLR[2:0]
GPIOSEL[2:0]
AUTOMT
0
000
DACPL
DACGAIN
HPFAM
HPF[2:0]
0FF
ADCOS
0
000
0
0
ADCPL
ADCGAIN
100
0FF
EQUALISER
18
0x12 EQ1-Low Cutoff
EQM
0
EQ1CF[1:0]
EQ1GC[4:0]
12C
19
0x13 EQ2-Peak 1
EQ2BW
0
EQ2CF[1:0]
EQ2GC[4:0]
02C
20
0x14 EQ3-Peak 2
EQ3BW
0
EQ3CF[1:0]
EQ3GC[4:0]
02C
21
0x15 EQ4-Peak3
EQ4BW
0
EQ4CF[1:0]
EQ4GC[4:0]
02C
22
0x16 EQ5-High Cutoff
0
0
EQ5CF[1:0]
EQ5GC[4:0]
02C
DIGITAL TO ANALOG (DAC) LIMITER
24
18
DAC Limiter 1
DACLIMEN
25
19
DAC Limiter 2
0
DACLIMDCY[3:0]
0
DACLIMTHL[2:0]
DACLIMATK[3:0]
032
DACLIMBST[3:0]
000
NOTCH FILTER
27
1B Notch Filter High
NFCU
NFCEN
NFCA0[13:7]
000
28
1C Notch Filter Low
NFCU
0
NFCA0[6:0]
000
29
1D Notch Filter High
NFCU
0
NFCA1[13:7]
000
30
1E Notch Filter Low
NFCU
0
NFCA1[6:0]
000
ALC CONTROL
32
20
ALC CTRL 1
ALCEN
33
21
ALC CTRL 2
ALCZC
ALCHT[3:0]
ALCSL[3:0]
00B
34
22
ALC CTRL 3
ALCM
ALCDCY[3:0]
ALCATK[3:0]
032
35
23
Noise Gate
0
0
0
0
0
ALCMXGAIN[2:0]
0
0
ALCMNGAIN[2:0]
ALCNEN
ALCNTH[2:0]
038
000
PLL CONTROL
36
24
PLL N CTRL
0
0
0
37
25
PLL K 1
0
0
0
emPowerAudio™
Datasheet Revision 2.9
0
PLLMCLK
Page 65 of 110
PLLN[3:0]
PLLK[23:18]
008
00C
June 2016
NAU8814
Register
Address
Register Bits
Register Names
DEC HEX
Default
D8
D7
D6
D5
D4
D3
D2
D1
D0
38
26
PLL K 2
PLLK[17:9]
093
39
27
PLL K 3
PLLK[8:0]
0E9
INPUT, OUTPUT & MIXER CONTROL
40
28
Attenuation CTRL
44
2C Input CTRL
45
2D PGA Gain
47
2F
ADC Boost
49
31
50
0
0
MICBIASV
0
0
0
0
MOUTATT
SPKATT
0
000
0
0
0
AUXM
AUXPGA
NMICPGA
PMICPGA
003
0
PGAZC
PGAMT
PGAGAIN[5:0]
PGABST
0
Output CTRL
0
0
0
0
0
MOUTBST
SPKBST
TSEN
AOUTIMP
002
32
Mixer CTRL
0
0
0
AUXSPK
0
0
0
BYPSPK
DACSPK
001
54
36
SPKOUT Volume
0
SPKZC
SPKMT
56
38
MONO Mixer Control
0
0
MOUTMT
PMICBSTGAIN
0
010
AUXBSTGAIN
100
SPKGAIN[5:0]
0
0
0
AUXMOUT
039
BYPMOUT DACMOUT
001
IBADJ
000
LOW POWER CONTROL
58
3A Power Management 4
LPIPBST
LPADC
LPSPKD
LPDAC
MICBIASM
TRIMREG
PCM TIME SLOT & ADCOUT IMPEDANCE OPTION CONTROL
59
3B Time Slot
60
3C ADCOUT Drive
TSLOT[8:0]
PCMTSEN
TRI
PCM8BIT
PUDOEN
PUDPE
000
PUDPS
LOUTR
PCMB
TSLOT[9:8]
020
REGISTER ID
62
3E Silicon Revision
0
1
1
1
0
1
1
1
0
0EE
63
3F
2-Wire ID
0
0
0
0
1
1
0
1
0
01A
64
40
Additional ID
0
1
1
0
0
1
0
1
0
0CA
65
41
Reserved
1
0
0
1
0
0
1
0
0
124
69
45
High Voltage CTRL
0
0
0
0
MOUTMT
0
HVOPU
0
HVOP
001
70
46
ALC Enhancements 1 ALCTBLSEL ALCPKSEL ALCNGSEL
71
47
ALC Enhancements 2
73
49
Additional IF CTRL
75
4B
Power/Tie-off CTRL
76
4C
AGC P2P Detector
P2PDET ( ONLY)
000
77
4D
AGC Peak Detector
PDET ( ONLY)
000
78
4E
Control and Status
0
0
AMTCTRL
HVDET
NSGATE
AMUTE
DMUTE
0
FTDEC
000
79
4F
Output tie-off CTRL
MANOUTEN
SBUFH
SBUFL
SNSPK
SPSPK
SMOUT
0
0
0
000
PKLIMEN
SPIEN
0
emPowerAudio™
Datasheet Revision 2.9
0
0
FSERRVAL[1:0]
LPSPKA
0
ALCGAINL ( ONLY)
1
1
FSERFLSH FSERRENA
0
1
0
NFDLY
DACINMT
0
Page 66 of 110
0
000
0
1
039
PLLLOCKP DACOS256
000
MANVREFH MANVREFM MANVREFL
000
June 2016
NAU8814
13.1. SOFTWARE RESET
Addr
D8
D7
D6
D5
0x00
D4
D3
D2
D1
D0
Default
0x000
RESET (SOFTWARE)
This is device Reset register. Performing a write instruction to this register with any data will reset all the bits in
the register map to default.
13.2. POWER MANAGEMENT REGISTERS
13.2.1. Power Management 1
Addr
D8
0x01 DCBUFEN
D7
D6
D5
D4
0
AUXEN
PLLEN
D3
D2
D1
MICBIASEN ABIASEN IOBUFEN
D0
Default
REFIMP[1:0]
0x000
Name
Buffer for DC
level shifting
Enable
AUX input
buffer enable
PLL enable
Microphone
Bias
Enable
Analogue
amplifier
bias control
Unused
input/output tie
off buffer enable
Bit
DCBUFEN[8]
AUXEN[6]
PLLEN[5]
MICBIASEN[4]
ABIASEN[3]
IOBUFEN[2]
0
Disable
Disable
Disable
Disable
Disable
Disable
1
Enable
(required for
1.5x gain)
Enable
Enable
Enable
Enable
Enable
The DCBUFEN[8] address (0x01) is a dedicated buffer for DC level shifting output stages when in 1.5x gain
boost configuration. There are three different reference impedance selections to choose from as follows:
VREF REFERENCE
IMPEDANCE SELECTION
(“R” refers to “R” as shown in Figure3)
REFIMP[1]
REFIMP[0]
Mode
emPowerAudio™
Datasheet Revision 2.9
0
0
Disable
0
1
R = 80 k
1
0
R = 300 k
1
1
R = 3 k
Page 67 of 110
June 2016
NAU8814
13.2.2. Power Management 2
Addr
D8
D7
D6
D5
D4
D3
D2
D1
D0
Default
0x02
0
0
0
0
BSTEN
0
PGAEN
0
ADCEN
0x000
Name
Input Boost
Enable
MIC(+/-)
PGA Enable
ADC Enable
Bit
BSTEN[4]
PGAEN[2]
ADCEN[0]
0
Stage Disable
Disable
Disable
1
Stage Enable
Enable
Enable
13.2.3. Power Management 3
Addr
D8
0x03
0
D7
D6
D5
D4
D3
D2
D1
MOUTEN NSPKEN PSPKEN BIASGEN MOUTMXEN SPKMXEN
0
D0
Default
DACEN 0x000
Name
MOUT
Enable
SPKOUTEnable
SPKOUT+
Enable
Bias Enable
MONO Mixer
Enable
Speaker
Mixer Enable
DAC
Enable
Bit
MOUTEN[7]
NSPKEN[6]
PSPKEN[5]
BIASGEN[4]
MOUTMXEN[3]
SPKMXEN[2]
DACEN[0]
0
Disable
Disable
Disable
Disable
Disable
Disable
Disable
1
Enable
Enable
Enable
Enable
Enable
Enable
Enable
13.3. AUDIO CONTROL REGISTERS
13.3.1. Audio Interface Control
Addr
D8
D7
0x04
BCLKP
FSP
D6
D5
WLEN[1:0]
D4
D3
AIFMT[1:0]
D2
D1
DACPHS ADCPHS
D0
Default
0
0x050
The following table explains the PCM control register bits.
Name
BCLK
Polarity
Frame Clock
Polarity
DAC Data ‘right’ or ‘left’
phases of FRAME clock
ADC Data ‘right’ or ‘left’
phases of FRAME clock
Bit
BCLKP[8]
FSP[7]
DACPHS[2]
ADCPHS[1]
0
Normal
Normal
DAC data appear in ‘left’ phase of
FRAME
ADC data appear in ‘left’ phase of
FRAME
1
Inverted
Inverted
DAC data appears in ‘right’ phase of
FRAME
ADC data appears in ‘right’ phase of
FRAME
There are three different CODEC modes to choose from as follows:
emPowerAudio™
Datasheet Revision 2.9
Page 68 of 110
June 2016
NAU8814
Word Length Selection
Audio Data Format Select
WLEN[6]
WLEN[5]
Bits
AIFMT[4]
AIFMT[3]
Format
0
0
16
0
0
Right
Justified
0
1
20
0
1
Left Justified
1
0
24
1
0
I2 S
1
1
32
1
1
PCM A
13.3.2. Audio Interface Companding Control
Addr
D8
D7
D6
D5
D4
0x05
0
0
0
CMB8
D3
DACCM[1:0]
D2
D1
ADCCM[1:0]
D0
Default
ADDAP
0x000
The NAU8814 provides a Digital Loopback ADDAP[0] address (0x05) bit. Setting ADDAP[0] bit to HIGH enables
the loopback so that the ADC data can be fed directly into the DAC input.
Companding Mode 8-bit
word enable
CMB8[5]
0
1
Mode
normal
operation
8-bit operation
emPowerAudio™
Datasheet Revision 2.9
DAC Companding Selection
ADC Companding Select
DACCM[4]
DACCM[3]
Mode
ADCCM[2]
ADCCM[1]
Mode
0
0
Disabled
0
0
Disabled
0
1
Reserved
0
1
Reserved
1
0
µ-Law
1
0
µ-Law
1
1
A-Law
1
1
A-Law
Page 69 of 110
June 2016
NAU8814
13.3.3. Clock Control Register
Addr
D8
0x06
CLKM
D7
D6
D5
D4
MCLKSEL[2:0]
D3
D2
BCLKSEL[2:0]
Master Clock Selection
MCLKSEL
[7]
MCLKSEL
[6]
MCLKSEL
[5]
0
0
0
0
0
1
0
1
0
0
1
D1
0
D0
Default
CLKIOEN 0x140
Bit Clock Select
BCLKSEL
[4]
BCLKSEL
[3]
BCLKSEL
[2]
0
0
0
0
0
1
2
0
1
0
1
3
0
1
1
8
Mode
1
1.5
Mode
1
(BCLK=MCLK)
2
(BCLK=MCLK/2)
4
1
0
0
4
1
0
0
16
1
0
1
6
1
0
1
32
1
1
0
8
1
1
0
Reserved
1
12
1
1
1
Reserved
1
1
Name
Source of Internal Clock
FRAME and BCLK
Bit
CLKM[8]
CLKIOEN[0]
0
MCLK (PLL Bypassed)
Slave Mode
1
MCLK (PLL Output)
Master Mode
emPowerAudio™
Datasheet Revision 2.9
Page 70 of 110
June 2016
NAU8814
13.3.4. Audio Sample Rate Control Register
Addr
D8
D7
D6
D5
D4
0x07
SPIEN
0
0
0
0
D3
D2
SMPLR[2:0]
D1
D0
Default
SCLKEN
0x000
The Audio sample rate configures the coefficients for the internal digital filters
Sample Rate Selection
SMPLR[3]
SMPLR[2]
SMPLR[1]
Mode (Hz)
0
0
0
48 k
0
0
1
32 k
0
1
0
24 k
0
1
1
16 k
1
0
0
12 k
1
0
1
8k
1
1
0
Reserved
1
1
1
Reserved
NAU8814 provides a slow clock to be used for both the jack insert detect debounce circuit and the zero cross
timeout.
Bit
emPowerAudio™
Datasheet Revision 2.9
Slow Clock Enable
SCLKEN[0]
0
MCLK
1
PLL Output (Period 221 * MCLK)
Page 71 of 110
June 2016
NAU8814
13.3.5. GPIO Control Register
Addr
D8
D7
D6
0x08
0
0
0
D5
D4
GPIOPLL[4:5]
D3
D2
D1
GPIOPL
D0
Default
0x000
GPIOSEL[2:0]
General Purpose I/O Selection
GPIOSEL
[2]
GPIOSEL
[1]
GPIOSEL
[0]
0
0
0
CSb Input
0
0
1
Jack Insert Detect
0
1
0
Temperature OK
0
1
1
AMUTE Active
1
0
0
PLL CLK Output
1
0
1
PLL Lock
1
1
0
1
1
1
1
0
Mode (Hz)
PLL Output Clock Divider
GPIO Polarity
GPIOPLL[5]
GPIOPLL[4]
Mode
Bit
GPIOPL[3]
0
0
1
0
Normal
0
1
2
1
Inverted
1
0
3
1
1
4
13.3.6. DAC Control Register
Addr
D8
D7
D6
0x0A
0
0
DACMT
D5
D4
DEEMP[1:0]
D3
D2
DACOS AUTOMT
D1
D0
Default
0
DACPL
0x000
Name
Soft Mute Enable
Over Sample Rate
Auto Mute enable
Polarity Invert
Bit
DACMT[6]
DACOS[3]
AUTOMT[2]
DACPL[0]
0
Disable
64x
(Lowest power)
Disable
Normal
1
Enable
128x
(best SNR)
Enable
DAC Output
Inverted
emPowerAudio™
Datasheet Revision 2.9
Page 72 of 110
June 2016
NAU8814
De-emphasis
DEEMP[5]
DEEMP[4]
Mode
0
0
No de-emphasis
0
1
32kHz sample rate
1
0
44.1kHz sample rate
1
1
48kHz sample rate
13.3.7. DAC Gain Control Register
Addr
D8
0x0B
0
D7
D6
D5
D4
D3
D2
D1
D0
Default
0x0FF
DACGAIN
DAC Gain
DACGAIN[7:0]
Mode (dB)
B7
B6
B5
B4
B3
B2
B1
B0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
Digital
Mute
-127.0
0
0
0
0
0
0
1
0
-126.5
0
0
0
0
0
0
1
1
-126.0
DAC Gain Range -127dB to 0dB @ 0.5 increments
1
1
1
1
1
1
0
0
-1.5
1
1
1
1
1
1
0
1
-1.0
1
1
1
1
1
1
1
0
-0.5
1
1
1
1
1
1
1
1
0.0
13.3.8. ADC Control Register
Addr
D8
D7
0x0E
HPFEN
HPFAM
Name
High Pass Filter
Enable
Bit
HPFEN[8]
0
1
Disable
Enable
emPowerAudio™
Datasheet Revision 2.9
D6
D5
D4
HPF[2:0]
D3
D2
D1
D0
Default
ADCOS
0
0
ADCPL
0x100
Audio or Application
Mode
Over Sample
Rate
ADC Polarity
HPFAM[7]
ADCOS[3]
ADCPL[0]
64x (Lowest power)
Normal
128x (best SNR)
Inverted
st
Audio (1 order, fc ~ 3.7 Hz)
nd
Application (2
order, fc = HPF)
Page 73 of 110
June 2016
NAU8814
High Pass Filter
fs ( kHz)
HPF[6]
HPF[5]
HPF[4]
B2
B1
B0
0
0
0
0
0
SMPLR=101
SMPLR=100
SMPLR=011
SMPLR=010
8
11.025
12
0
82
113
1
102
141
1
0
131
0
1
1
1
0
0
1
0
1
1
SMPLR=001
SMPLR=000
16
22.05
24
32
44.1
48
122
82
113
153
102
141
122
82
113
122
153
102
141
153
180
156
131
180
156
131
180
156
163
225
245
204
281
306
163
225
245
163
225
245
204
281
306
204
281
306
1
261
360
392
261
360
392
261
360
392
1
0
327
1
1
408
450
490
327
450
490
327
450
490
563
612
408
563
612
408
563
612
13.3.9. ADC Gain Control Register
Addr
D8
0x0F
0
D7
D6
D5
D4
D3
D2
D1
D0
Default
0x0FF
ADCGAIN
ADC Gain
ADCGAIN[7:0]
Mode (dB)
B7
B6
B5
B4
B3
B2
B1
B0
0
0
0
0
0
0
0
0
Unused
0
0
0
0
0
0
0
1
-127.0
0
0
0
0
0
0
1
0
-126.5
0
0
0
0
0
0
1
1
-126.0
ADC Gain Range -127dB to 0dB @ 0.5 increments
1
1
1
1
1
1
0
0
-1.5
1
1
1
1
1
1
0
1
-1.0
1
1
1
1
1
1
1
0
-0.5
1
1
1
1
1
1
1
1
0.0
emPowerAudio™
Datasheet Revision 2.9
Page 74 of 110
June 2016
NAU8814
13.4.
5-BAND EQUALIZER CONTROL REGISTERS
Address
D8
D7
D6
D5
D4
D3
D2
D1
D0
Default
0x12
EQM
0
EQ1CF[1:0]
EQ1GC[4:0]
0x12C
0x13
EQ2BW
0
EQ2CF[1:0]
EQ2GC[4:0]
0x02C
0x14
EQ3BW
0
EQ3CF[1:0]
EQ3GC[4:0]
0x 02C
0x15
EQ4BW
0
EQ4CF[1:0]
EQ4GC[4:0]
0x02C
0x16
0
0
EQ5CF[1:0]
EQ5GC[4:0]
0x02C
Equalizer Gain
EQ1GC, EQ2GC, EQ3GC, EQ4GC, EQ5GC [4:0]
Mode (dB)
B4
B3
B2
B1
B0
0
0
0
0
0
+12
0
0
0
0
1
+11
:::
:::
:::
:::
:::
:::
0
1
0
1
1
+1
0
1
1
0
0
0
0
1
1
0
1
-1
Equalizer Gain Range -12dB to +12dB @ 1.0 increment
:::
:::
:::
:::
:::
:::
1
0
1
1
1
-11
1
1
0
0
0
-12
1
1
0
0
1
To
1
1
Reserved
1
1
1
Center Frequencies
emPowerAudio™
Datasheet Revision 2.9
B1
B0
EQ2CF[6:5]
EQ3CF[6:5]
EQ4CF[6:5]
0
0
230
650
1.8 k
0
1
300
850
2.4 k
1
0
385
1.1 k
3.2 k
1
1
500
1.4 k
4.1 k
Page 75 of 110
June 2016
NAU8814
Cut-off Frequencies
EQ5CF[6:5
]
0
80
5.3 k
1
105
6.9 k
1
0
135
9.0 k
1
1
175
11.7 k
B0
0
0
Bandwidth Control
Equalizer Path
EQ2BW – EQ4BW
EQM[8]
0
Narrow bandwidth
ADC path
1
Wide bandwidth
DAC path
Bit
13.5.
EQ1CF[6:5]
B1
DIGITAL TO ANALOG CONVERTER (DAC) LIMITER REGISTERS
Addr
D8
D7
0x18
DACLIMEN
0x19
0
D6
D5
D4
D3
DACLIMDCY[3:0]
0
DACLIMTHL[2:0]
DAC Limiter Decay time (per 6dB gain change) for 44.1
kHz sampling. Note that these will scale with sample
rate
D2
D1
D0
Default
DACLIMATK[3:0]
0x032
DACLIMBST[3:0]
0x000
DAC Limiter Attack time (per 6dB gain change) for 44.1
kHz sampling. Note that these will scale with sample rate
DACLIMDCY[3:0]
DACLIMATK[3:0]
B3
B2
B1
B0
Decay Time
B3
B2
B1
B0
Attack Time
0
0
0
0
544.0 us
0
0
0
0
68 us
0
0
0
1
1.1 ms
0
0
0
1
136 us
0
0
1
0
2.2 ms
0
0
1
0
272 us
0
0
1
1
4.4 ms
0
0
1
1
544 us
0
1
0
0
8.7 ms
0
1
0
0
1.1 ms
0
1
0
1
17.4 ms
0
1
0
1
2.2 ms
0
1
1
0
35.0 ms
0
1
1
0
4.4 ms
0
1
1
1
69.6 ms
0
1
1
1
8.7 ms
1
0
0
0
139.0 ms
1
0
0
0
17.4 ms
1
0
0
1
278.5 ms
1
0
0
1
35 ms
1
0
1
0
557.0 ms
1
0
1
0
69.6 ms
1
0
1
1
1
0
1
1
To
1
1
1.1 s
1
To
1
emPowerAudio™
Datasheet Revision 2.9
1
Page 76 of 110
1
139 ms
1
1
June 2016
NAU8814
DAC Limiter volume Boost (can be used as
a
stand alone volume Boost when
DACLIMEN=0)
DACLIMBST[3:0]
Boost
(dB)
B3
B2
B1
B0
DAC Limiter Programmable signal threshold level
(determines level at which the limiter starts to
operate)
DACLIMTHL[3:0]
B2
B1
B0
Threshold
(dB)
0
0
0
-1
0
0
0
0
0
0
0
1
-2
0
0
0
1
+1
0
1
0
-3
0
0
1
0
+2
0
1
1
-4
0
0
1
1
+3
1
0
0
-5
0
1
0
0
+4
1
0
1
0
1
0
1
+5
0
1
1
0
+6
0
1
1
1
+7
1
0
0
0
+8
1
0
0
1
+9
To
1
-6
1
1
1
0
1
0
+10
Bit
DAC Digital Limiter
DACLIMEN[8]
1
0
1
1
+11
0
Disabled
1
1
0
0
+12
1
Enabled
1
1
0
1
1
1
1
1
Reserved
To
13.6. NOTCH FILTER REGISTERS
Addr
D8
D7
0x1B
NFCU
NFCEN
0x1C
NFCU
0x1D
NFCU
0x1E
NFCU
D6
D5
D4
D3
D2
D1
D0
Default
NFCA0[13:7]
0x000
0
NFCA0[6:0]
0x000
0
NFCA1[13:7]
0x000
0
NFCA1[6:0]
0x000
The Notch Filter is enabled by setting NFCEN[7] address (0x1B) bit to HIGH. The coefficients, A0 and A1, should
be converted to 2’s complement numbers to determine the register values. A0 and A1 are represented by the
register bits NFCA0[13:0] and NFCA1[13:0]. Since there are four register of coefficients, a Notch Filter Update bit
is provided so that the coefficients can be updated simultaneously. NFCU[8] is provided in all registers of the
Notch Filter coefficients but only one bit needs to be toggled for LOW – HIGH – LOW for an update. If any of the
NFCU[8] bits are left HIGH then the Notch Filter coefficients will continuously update. An example of how to
calculate is provided in the Notch Filter section.
emPowerAudio™
Datasheet Revision 2.9
Page 77 of 110
June 2016
NAU8814
Name
A0
A1
Coefficient
2fb
1 tan
2fs
2fb
1 tan
2fs
2f
1 A0 x cos c
fs
Notation
Register Value (DEC)
fc = center frequency (Hz)
fb = -3dB bandwidth (Hz)
fs = sample frequency
(Hz)
NFCA0 = -A0 x 213
NFCA1 = -A1 x 212
(then convert to 2’s
complement)
13.7. AUTOMATIC LEVEL CONTROL REGISTER
13.7.1. ALC1 REGISTER
Addr
D8
D7
D6
0x20
ALCEN
0
0
D5
D4
D3
ALCMXGAIN[2:0]
ALCMXGAIN[2:0]
B1
B0
0
0
0
0
0
1
0
1
0
1
1
D1
D0
ALCMNGAIN[2:0]
Maximum Gain
B2
D2
0x038
Minimum Gain
ALCMNGAIN[2:0]
Mode
Mode
B2
B1
B0
-6.75dB
0
0
0
-12dB
-0.75dB
0
0
1
-6dB
0
+5.25dB
0
1
0
0dB
1
+11.25dB
0
1
1
+6dB
0
0
+17.25dB
1
0
0
+12dB
1
0
1
+23.25dB
1
0
1
+18dB
1
1
0
+29.25dB
1
1
0
+24dB
1
1
1
+35.25dB
1
1
1
+30dB
emPowerAudio™
Datasheet Revision 2.9
Default
Name
ALC Enable
Bit
ALCEN[8]
0
Disabled (PGA gain set by PGAGAIN
register bits)
1
Enabled
(ALC controls PGA gain)
Page 78 of 110
June 2016
NAU8814
13.7.2. ALC2 REGISTER
Addr
D8
0x21
ALCZC
D7
D6
D5
D4
D3
D2
ALCHT[3:0]
D0
Default
0x00B
ALCSL[3:0]
ALC TARGET – sets signal level at ADC input
ALC HOLD TIME before gain is increased.
ALCHT[3:0]
D1
ALCSL[3:0]
B7
B6
B5
B4
ALC Hold
Time (sec)
B3
B2
B1
B0
ALC Target
Level (dB)
0
0
0
0
0
0
0
0
0
-28.5 fs
0
0
0
1
2 ms
0
0
0
1
-27 fs
0
0
1
0
4 ms
0
0
1
0
25.5 fs
ALC Target Level Range
-28.5dB to -6dB @ 1.5dB increments
Time Doubles with every increment
1
0
0
0
256 ms
1
0
1
1
-12 fs
1
0
0
1
512 ms
1
1
0
0
-10.5 fs
1
0
1
0
1
1
0
1
-9 fs
1
1
1
0
-7.5 fs
1
1
1
1
-6 fs
To
1
1
1s
1
1
Name
ALC Zero Crossing
Detect
Bit
ALCZC[8]
0
Disabled
1
Enabled
It is recommended that zero crossing should not be used in conjunction with the ALC or Limiter functions
emPowerAudio™
Datasheet Revision 2.9
Page 79 of 110
June 2016
NAU8814
13.7.3. ALC3 REGISTER
Addr
D8
D7
0x22
ALCM
D6
D5
D4
D3
D2
ALCDCY[3:0]
D1
D0
Default
0x032
ALCATK[3:0]
ALC DECAY TIME
ALCDCY[3:0]
ALCM = 0 (Normal Mode)
ALCM = 1 (Limiter Mode)
B3
B2
B1
B0
Per Step
Per 6dB
90% of
Range
Per Step
Per 6dB
90% of
Range
0
0
0
0
500 us
4 ms
28.78 ms
125 us
1 ms
7.2 ms
0
0
0
1
1 ms
8 ms
57.56 ms
250 us
2 ms
14.4 ms
0
0
1
0
2 ms
16 ms
115 ms
500 us
4 ms
28.8 ms
Time doubles with every increment
1
0
0
0
128 ms
1s
7.37 s
32 ms
256 ms
1.8 s
1
0
0
1
256 ms
2s
14.7 s
64 ms
512 ms
3.7 s
1
0
1
0
512 ms
4s
29.5 s
128 ms
1s
7.37 s
To
1
1
1
1
ALC ATTACK TIME
ALCATK[3:0]
ALCM = 0 (Normal Mode)
ALCM = 1 (Limiter Mode)
90% of
Range
Per Step
Per 6dB
90% of
Range
B3
B2
B1
B0
Per Step
Per 6dB
0
0
0
0
125 us
1 ms
7.2 ms
31 us
248 us
1.8 ms
0
0
0
1
250 us
2 ms
14.4 ms
62 us
496 us
3.6 ms
0
0
1
0
500 us
4 ms
28.85 ms
124 us
992 us
7.15 ms
1
0
0
0
26.5 ms
256 ms
1.53 s
7.9 ms
63.2 ms
455.8 ms
1
0
0
1
53 ms
512 ms
3.06 s
15.87 ms
127 ms
916 ms
1
0
1
0
128 ms
1s
7.89 s
31.7ms
254 ms
1.83 s
1
1
Time doubles with every increment
To
1
1
emPowerAudio™
Datasheet Revision 2.9
Page 80 of 110
June 2016
NAU8814
13.8. NOISE GAIN CONTROL REGISTER
Addr
D8
D7
D6
D5
D4
D3
0x23
0
0
0
0
0
ALCNEN
Noise Gate Enable
D2
D1
ALCNTH[2:0]
D0
Default
0x000
Noise Gate Threshold
Bit
ALCNEN[3]
0
Disabled
B2
B1
B0
1
Enabled
0
0
0
-39 dB
0
0
1
-45 dB
0
1
0
-51 dB
0
1
1
-57 dB
1
0
0
-63 dB
1
0
1
-69 dB
1
1
0
-75 dB
1
1
1
-81 dB
ALCNTH[2:0]
Mode
emPowerAudio™
Datasheet Revision 2.9
Page 81 of 110
June 2016
NAU8814
13.9. PHASE LOCK LOOP (PLL) REGISTERS
13.9.1. PLL Control Registers
Addr
D8
D7
D6
D5
D4
0x24
0
0
0
0
PLLMCLK
D3
D2
D1
D0
0x008
PLLN[3:0]
PLL Integer
Default
PLL Clock
PLLN[3:0]
B3
B2
B1
B0
0
0
0
1
Bit
Frequency
Ratio
PLLMCLK[4]
0
MCLK not divided
1
Divide MCLK by 2 before input
PLL
Not Valid
To
0
1
0
0
0
1
0
1
5
0
1
1
0
6
0
1
1
1
7
1
0
0
0
8
1
0
0
1
9
1
0
1
0
10
1
0
1
1
11
1
1
0
0
12
1
1
0
1
13
1
1
1
0
1
1
1
1
Not Valid
13.9.2. Phase Lock Loop Control (PLL) Registers
Addr
D8
D7
D6
0x25
0
0
0
D5
D4
D3
D2
PLLK[23:18]
D1
D0
Default
0x00C
0x26
PLLK[17:9]
0x093
0x27
PLLK[8:0]
0x0E9
Fractional (K) part of PLLK1 – PLLK3 input/output frequency ratio
emPowerAudio™
Datasheet Revision 2.9
Page 82 of 110
June 2016
NAU8814
13.10.
INPUT, OUTPUT, AND MIXERS CONTROL REGISTER
13.10.1.
Attenuation Control Register
Addr
D8
D7
D6
D5
D4
D3
0x28
0
0
0
0
0
0
D2
D1
D0
Default
0
0x000
D0
Default
MOUTATT SPKATT
Attenuation Control
Name
Attenuation control for bypass path (output of
input boost stage) to speaker mixer and MONO
mixer input
MOUTATT[2]
Bit
Microphone bias
Mode selection
SPKATT[1]
MICBIASM[0]
0
0 dB
0 dB
Disable
1
-10 dB
-10 dB
Enable
13.10.2. Input Signal Control Register
Addr
0x2C
D8
D7
MICBIASV
D6
D5
D4
D3
D2
0
0
0
AUXM
D1
AUXPGA NMICPGA PMICPGA 0x003
Auxiliary Input mode
AUX amplifier output to
input PGA signal source
MICN to input PGA
negative terminal
Input PGA amplifier
positive terminal to
MIC+ or VREF
Bit
AUXM[3]
AUXPGA[2]
NMICPGA[1]
PMICPGA[0]
0
Inverting Buffer
AUX not connected to
input PGA
MICN not connected to
input PGA
Input PGA Positive
terminal to VREF
1
Mixer (Internal Resistor
bypassed)
AUX to input PGA
Negative terminal
MICN to input PGA
Negative terminal.
Input PGA Positive
terminal to MICP
through variable resistor
Microphone Bias Voltage Control
MICBIASV[8:7]
Address (0x2C)
MICBIASM[4] = 0
Address (0x28)
MICBIASM[4] =
1 Address
(0x28)
0
0
0.9* VDDA
0.85* VDDA
0
1
0.65* VDDA
0.60* VDDA
1
0
0.75* VDDA
0.70* VDDA
1
1
0.50* VDDA
0.50* VDDA
emPowerAudio™
Datasheet Revision 2.9
Page 83 of 110
June 2016
NAU8814
13.10.3. PGA Gain Control Register
Addr
D8
D7
D6
D5
0x2D
0
PGAZC
PGAMT
D4
D3
D2
D1
PGAGAIN[5:0]
D0
Default
0x010
Programmable Gain Amplifier Gain
PGAGAIN[5:0]
B5
B4
B3
B2
B1
B0
Gain
0
0
0
0
0
0
-12.00 dB
0
0
0
0
0
1
-11.25 dB
0
0
0
0
1
0
-10.50 dB
:::
:::
:::
:::
:::
:::
:::
0
0
1
1
1
1
-0.75 dB
0
1
0
0
0
0
0 dB
0
1
0
0
0
1
+0.75 dB
PGA Gain Range -12dB to +35.25dB @ 0.75
increment
:::
:::
:::
:::
:::
:::
:::
1
1
1
1
0
1
33.75
1
1
1
1
1
0
34.50
1
1
1
1
1
1
35.25
PGA Zero Cross Enable
Mute Control for PGA
Bit
PGAZC[7]
PGAMT[6]
0
Update gain when gain
register changes
Normal Mode
st
1
emPowerAudio™
Datasheet Revision 2.9
Update gain on 1 zero
cross after gain register
write
Page 84 of 110
PGA Muted
June 2016
NAU8814
13.10.4. ADC Boost Control Registers
Addr
D8
D7
0x2F
PGABST
0
D6
D5
D4
D3
PMICBSTGAIN
0
MIC+ pin to the input Boost Stage
(NB, when using this path set
PMICPGA=0):
PMICBSTGAIN[2:0]
B1
B0
0
0
0
0
0
1
Path
Disconnected
-12
0
1
0
0
1
1
0
1
D1
D0
Default
0x100
AUXBSTGAIN
Auxiliary to Input Boost Stage
AUXBSTGAIN[2:0]
Gain (dB)
B2
D2
Gain (dB)
B2
B1
B0
0
0
0
0
0
1
Path
Disconnected
-12
-9
0
1
0
-9
1
-6
0
1
1
-6
0
-3
1
0
0
-3
0
1
0
1
0
1
0
1
1
0
+3
1
1
0
+3
1
1
1
+6
1
1
1
+6
Name
Input Boost
Bit
PGABST[8]
0
PGA output has +0dB gain through input Boost stage
1
PGA output has +20dB gain through input Boost stage
13.10.5. Output Register
Addr
D8
D7
D6
D5
D4
0x31
0
0
0
0
0
D3
D2
MOUTBST SPKBST
D1
TSEN
D0
Default
AOUTIMP 0x002
MONO Output Boost
Stage
Speaker Output Boost
Stage
Thermal Shutdown
Analog Output Resistance
Bit
MOUTBST[3]
SPKBST[2]
TSEN[1]
AOUTIMP[0]
0
(1.0 x VREF) Gain Boost
(1.0 x VREF) Gain Boost
Disabled
~1kΩ
1
(1.5 x VREF) Gain Boost
(1.5 x VREF) Gain Boost
Enabled
~30 kΩ
emPowerAudio™
Datasheet Revision 2.9
Page 85 of 110
June 2016
NAU8814
13.10.6. Speaker Mixer Control Register
Addr
D8
D7
D6
D5
D4
D3
D2
0x32
0
0
0
AUXSPK
0
0
0
D1
D0
Default
BYPSPK DACSPK 0x001
Auxiliary to Speaker Mixer
Bypass path (output of
Boost stage) to Speaker
Mixer
DAC to Speaker Mixer
Bit
AUXSPK[5]
BYPSPK[1]
DACSPK[0]
0
Disconnected
Disconnected
Disconnected
1
Connected
Connected
Connected
13.10.7. Speaker Gain Control Register
Addr
D8
D7
D6
0x36
0
SPKZC
SPKMT
D5
D4
D3
D2
D1
D0
Default
0x039
SPKGAIN[5:0]
Speaker Gain
SPKGAIN[5:0]
B5
B4
B3
B2
B1
B0
Gain (dB)
0
0
0
0
0
0
-57.0
0
0
0
0
0
1
-56.0
0
0
0
0
1
0
-55.0
:::
:::
:::
:::
:::
:::
:::
1
1
1
0
0
0
-1.0
1
1
1
0
0
1
0.0
1
1
1
0
1
0
+1.0
Speaker Gain Range -57 dB to +6 dB @ +1
increment
:::
:::
:::
:::
:::
:::
:::
1
1
1
1
0
1
+4.0
1
1
1
1
1
0
+5.0
1
1
1
1
1
1
+6.0
Speaker Gain Control Zero Cross
Speaker Output
Bit
SPKZC[7]
SPKMT[6]
0
Change Gain on Zero Cross
ONLY
Speaker Enabled
1
Change Gain Immediately
Speaker Muted
emPowerAudio™
Datasheet Revision 2.9
Page 86 of 110
June 2016
NAU8814
13.10.8. MONO Mixer Control Register
Addr
D8
D7
D6
D5
D4
D3
0x38
0
0
MOUTMXMT
0
0
0
D2
D1
D0
Default
AUXMOUT BYPMOUT DACMOUT 0x001
MOUT Mute
Auxiliary to
MONO Mixer
Bypass path (output of
Boost Stage) to MONO
Mixer
DAC to
MONO Mixer
Bit
MOUTMXMT[6]
AUXMOUT[2]
BYPMOUT[1]
DACMOUT[0]
0
Not Muted
Disconnected
Disconnected
Disconnected
1
Muted
Connected
Connected
Connected
During mute, the MONO output will output VREF that can be used as a DC reference for a headphone out.
13.10.9. Power Management 4
Addr
D8
D7
0x3A LPIPBST LPADC
B1
D6
D5
LPSPKD
D4
D3
LPDAC MICBIASM
D2
D1
TRIMREG[3:2]
D0
Default
0x000
IBADJ[1:0]
Trim Output Regulator (V)
Adjust Master Bias of the Analog Portion
TRIMREG[3:2]
IBADJ[1:0]
B0
0
0
1.800
Default Current Consumption
0
1
1.610
25% Current Increase from Default
1
0
1.400
14% Current Decrease from Default
1
1
1.218
25% Current Decrease from Default
Trim regulator bits can be used only when VDDD 0.546*fs
-60
Group Delay
dB
21/fs
ADC High Pass Filter
High Pass Filter
Corner Frequency
-3dB
3.7
-0.5dB
10.4
-0.1dB
21.6
Hz
DAC Filter
+/- 0.035dB
0
0.454*fs
Passband
-6dB
0.5*fs
Passband Ripple
+/-0.035
Stopband
Stopband
Attenuation
dB
0.546*fs
f > 0.546*fs
-55
Group Delay
dB
29/fs
Table 57 Digital Filter Characteristics
TERMINOLOGY
1. Stop Band Attenuation (dB) – the degree to which the frequency spectrum is attenuated (outside audio band)
2. Pass-band Ripple – any variation of the frequency response in the pass-band region
3. Note that this delay applies only to the filters and does not include
emPowerAudio™
Datasheet Revision 2.9
Page 104 of 110
June 2016
NAU8814
Figure 49: DAC Filter Frequency Response
Figure 50: ADC Filter Frequency Response
Figure 51: DAC Filter Ripple
Figure 52: ADC Filter Ripple
emPowerAudio™
Datasheet Revision 2.9
Page 105 of 110
June 2016
NAU8814
17. TYPICAL APPLICATION
VSS
VDDSPK
MICBIAS
19
VDDSPK
20
AUX
SPKOUT -
VSSSPK
1
18
2
17
SPKOUT +
16
MOUT
15
MODE
5
14
SDIN
6
13
SCLK
VDDA
ADCOUT
VSSD
12
C3
4.7uF
C5
1uF
CSb/GPIO
C2
4.7uF
11
C1
4.7uF
7
VDDB
MCLK
4
10
VDDC
VDDB
BCLK
3
VDDC
9
NAU8814
MONO AUDIO
CODEC
QFN 24-Pin
FS
VSSA
8
VDDA
DACIN
C6
4.7uF
21
R1
1.2k ohm
23
MIC +
24
R2
1.2k ohm
C10
1uF
VREF
MIC -
C7
1uF
C4
4.7uF
22
C8
1u
C9
4.7uF
Figure 53: Application Diagram For 24-Pin QFN
Note 1: All non-polar capacitors are assumed to be low ESR type parts, such as with MLC construction or similar.
If capacitors are not low ESR, additional 0.1uF and/or 0.01uF capacitors may be necessary in parallel
with the bulk 4.7uF capacitors on the supply rails.
Note 2: Load resistors to ground on outputs may be helpful in some applications to insure a DC path for the
output capacitors to charge/discharge to the desired levels. If the output load is always present and the
output load provides a suitable DC path to ground, then the additional load resistors may not be
necessary. If needed, such load resistors are typically a high value, but a value dependent upon the
application requirements.
Note 3: To minimize pops and clicks, large polarized output capacitors should be a low leakage type.
Note 4: Depending on the microphone device and PGA gain settings, common mode rejection can be improved
by choosing the resistors on each node of the microphone such that the impedance presented to any
noise on either microphone wire is equal.
emPowerAudio™
Datasheet Revision 2.9
Page 106 of 110
June 2016
NAU8814
18. PACKAGE SPECIFICATION
ITEM NAME
TOTAL THINCKNESS
STAND OFF
MOLD THINCKNESS
L/F THICKNESS
LEAD WIDTH
BODY SIZE
X
Y
LEAD SIZE
EP SIZE
LEAD LENGTH
emPowerAudio™
Datasheet Revision 2.9
X
Y
SYMBOL
A
A1
A2
A3
b
D
E
e
J
K
L
MIN
0.8
0
--0.2
2.4
2.4
0.35
Page 107 of 110
NOM
0.85
0.035
0.65
.203 REF
0.25
4 BSC
4 BSC
0.5 BSC
2.5
2.5
0.4
MAX
0.9
0.05
0.67
0.3
2.55
2.55
0.45
June 2016
NAU8814
19. ORDERING INFORMATION
Nuvoton Part Number Description
NAU88_14_ _
Package Material:
G
=
Pb-free Package
Package Type:
Y
=
24-Pin QFN Package
Feature:
Blank =
U
=
emPowerAudio™
Datasheet Revision 2.9
Industrial grade
AEC-Q100 (Available upon request, contact Nuvoton
sales representative for detail)
Page 108 of 110
June 2016
NAU8814
20. VERSION HISTORY
VERSION
1.0
1.1
1.2
DATE
PAGE
December
DESCRIPTION
Preliminary Revision
2009
December
3
2009
13 – 15
Electrical Specification table format updated
47 – 48
SPI interface description updated
January 2010
Note Added
94
Table 35 updated
107
Package description updated
1.3
January 2010
47 – 51
1.4
January 2010
107
Package description updated
1.5
February 2010
22
Figure 7 updated
14
Speaker THD for 2-stage updated
1.6
1.7
March 2010
64, 89
Bit-8 of register 0x46 deleted from the document.
64, 89
Default value of register 0x47 updated
4
Block diagram updated
45
Table 25 was updated
62
Table 34 was updated
April 2010
64, 87
1.8
2.0
2.1
November
2010
January 2011
October 2013
2.3
2.4
Jan 2014
Register 0x41 Reserved updated
1
Extended variable sample rate range
48
Removed trailing clock cycle from SPI timing diagram
64
Corrected Register 0x38 Register name
81
Improved description of Mic Bias set up
98
Added TMCLKH and TMCLKL parameters to table
94
Corrected 2 wire timing diagram Figure 41
12
Added conditions VDDA >= DBVDD and DBVDD>=DBVDDC
15
Corrected Digital I/O voltages to DBVDD from DCVDD.
13 – 15
2.2
Control interface description updated
An additional remark of VDDSPK boost mode
50
Modify Figure 27 Byte Write Sequence
51
Modify Figure 28 2-Wire Read Sequence
14
Corrected headphone full scale output
98
Corrected rising/falling time specification of I2S
1
AEC-Q100 note updated
Mar 2014
Sep 2014
emPowerAudio™
Datasheet Revision 2.9
Page 109 of 110
June 2016
NAU8814
94
Corrected TSDIOS setup time
106
Added AEC-Q100 ordering information
2.5
Jan 2015
1
AEC-Q100 note updated
2.6
July 2015
24, 25, 71
Change 3.7KHz to 3.7Hz
2.7
July 2015
106
Change EP size (MIN and NOM)
2.8
March 2016
37
Add important notice
46
Revise equation from * to /
2.9
June 2016
65 88
Silicon Revision ID
Important Notice
Nuvoton Products are neither intended nor warranted for usage in systems or
equipment, any malfunction or failure of which may cause loss of human life,
bodily injury or severe property damage. Such applications are deemed,
“Insecure Usage”.
Insecure usage includes, but is not limited to: equipment for surgical
implementation, atomic energy control instruments, airplane or spaceship
instruments, the control or operation of dynamic, brake or safety systems
designed for vehicular use, traffic signal instruments, all types of safety
devices, and other applications intended to support or sustain life.
All Insecure Usage shall be made at customer’s risk, and in the event that third
parties lay claims to Nuvoton as a result of customer’s Insecure Usage,
customer shall indemnify the damages and liabilities thus incurred by Nuvoton.
emPowerAudio™
Datasheet Revision 2.9
Page 110 of 110
June 2016