0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IP4786CZ32,118

IP4786CZ32,118

  • 厂商:

    NEXPERIA(安世)

  • 封装:

    QFN32

  • 描述:

    IC DVI/HDMI ESD PROT 32HVQFN

  • 数据手册
  • 价格&库存
IP4786CZ32,118 数据手册
Important notice Dear Customer, On 7 February 2017 the former NXP Standard Product business became a new company with the tradename Nexperia. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below. Instead of http://www.nxp.com, http://www.philips.com/ or http://www.semiconductors.philips.com/, use http://www.nexperia.com Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email) Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below: - © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved Should be replaced with: - © Nexperia B.V. (year). All rights reserved. If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via salesaddresses@nexperia.com). Thank you for your cooperation and understanding, Kind regards, Team Nexperia HV QF N3 2 IP4786CZ32 DVI and HDMI interface ESD and overcurrent protection, DDC/CEC buffering, hot plug detect and backdrive protection Rev. 5 — 24 June 2014 Product data sheet 1. Product profile 1.1 General description The IP4786CZ32 is designed to protect High-Definition Multimedia Interface (HDMI) transmitter host interfaces. It includes HDMI 5 V overcurrent / overvoltage protection, Display Data Channel (DDC) buffering and decoupling, hot plug detect, backdrive protection, Consumer Electronic Control (CEC) buffering and decoupling, and 12 kV contact ElectroStatic Discharge (ESD) protection for all I/Os, exceeding the IEC 61000-4-2 level 4 standard. The IP4786CZ32 incorporates Transmission Line Clamping (TLC) technology on the high-speed Transition Minimized Differential Signaling (TMDS) lines to simplify routing and help reduce impedance discontinuities. All TMDS lines are protected by an impedance-matched diode configuration that minimizes impedance discontinuities caused by typical shunt diodes. The enhanced 60 mA overcurrent / overvoltage linear regulator guarantees HDMI-compliant 5 V output voltage levels with up to 6.5 V inputs. The DDC lines use a new buffering concept which decouples the internal capacitive load from the external capacitive load for use with standard Complementary Metal Oxide Semiconductor (CMOS) or Low Voltage Transistor-Transistor Logic (LVTTL) I/O cells down to 1.8 V. This buffering also redrives the DDC and CEC signals, allowing the use of longer or cheaper HDMI cables with a higher capacitance. The internal hot plug detect module simplifies the application of the HDMI transmitter to control the hot plug signal. All lines provide appropriate integrated pull-ups and pull-downs for HDMI compliance and backdrive protection to guarantee that HDMI interface signals are not pulled down if the system is powered down or enters Standby mode. Only a single external capacitor is required for operation. 1.2 Features and benefits     HDMI 2.0 and all backward compatible standards are supported 6.0 Gbps TMDS Bit Rate (600 Mcsc TMDS Character Rate) compatible Supports UHD 4k (2160p) 60 Hz display modes Impedance matched 100  differential transmission line ESD protection for TMDS lines (10 ). No Printed-Circuit Board (PCB) pre-compensation required  Simplified flow-through routing utilizing less overall PCB space  DDC capacitive decoupling between system side and HDMI connector side and buffering to drive cable with high capacitive load (> 700 pF/25 m) IP4786CZ32 NXP Semiconductors DVI and HDMI interface ESD and overcurrent protection  All external I/O lines with ESD protection of at least 12 kV, exceeding the IEC 61000-4-2, level 4 standard  Hot plug detect module  CEC buffering and isolation, with integrated backdrive-protected 26 k pull-up  Robust ESD protection without degradation after repeated ESD strikes  Highest integration in a small footprint, PCB level, optimized RF routing, 32-pin HVQFN leadless package 1.3 Applications  The IP4786CZ32 can be used for a wide range of HDMI source devices, consumer and computing electronics:  Standard-Definition (SD) and High-Definition (HD) DVD player  Set-top box  PC graphic card  Game console  HDMI picture performance quality enhancer module  Digital Visual Interface (DVI) 2. Pinning information 25 CEC_CON 27 VCC(SYS) 26 ESD_BYPASS 28 CEC_STBY 29 CEC_SYS 30 n.c. terminal 1 index area 31 n.c. 32 HOTPLUG_DET_SYS 2.1 Pinning TMDS_D2+_SYS 1 24 TMDS_D2+_CON TMDS_D2–_SYS 2 23 TMDS_D2–_CON TMDS_D1+_SYS 3 22 TMDS_D1+_CON TMDS_D1–_SYS 4 TMDS_D0+_SYS 5 TMDS_D0–_SYS 6 19 TMDS_D0–_CON TMDS_CK+_SYS 7 18 TMDS_CK+_CON TMDS_CK–_SYS 8 17 TMDS_CK–_CON 21 TMDS_D1–_CON UTILITY_CON 16 20 TMDS_D0+_CON DDC_CLK_CON 15 DDC_DAT_CON 14 HDMI_5V0_CON 13 HOTPLUG_DET_CON 12 VCC(5V0) 11 9 DDC_CLK_SYS DDC_DAT_SYS 10 IP4786CZ32 018aaa083 Transparent top view Fig 1. IP4786CZ32 Product data sheet Pin configuration IP4786CZ32 All information provided in this document is subject to legal disclaimers. Rev. 5 — 24 June 2014 © NXP Semiconductors N.V. 2014. All rights reserved. 2 of 36 IP4786CZ32 NXP Semiconductors DVI and HDMI interface ESD and overcurrent protection 2.2 Pin description Table 1. IP4786CZ32 Product data sheet Pin description Pin Name Description 1 TMDS_D2+_SYS TMDS to ASIC inside system 2 TMDS_D2_SYS TMDS to ASIC inside system 3 TMDS_D1+_SYS TMDS to ASIC inside system 4 TMDS_D1_SYS TMDS to ASIC inside system 5 TMDS_D0+_SYS TMDS to ASIC inside system 6 TMDS_D0_SYS TMDS to ASIC inside system 7 TMDS_CK+_SYS TMDS to ASIC inside system 8 TMDS_CK_SYS TMDS to ASIC inside system 9 DDC_CLK_SYS DDC clock system side 10 DDC_DAT_SYS DDC data system side 11 VCC(5V0) 5 V supply input 12 HOTPLUG_DET_CON hot plug detect connector side 13 HDMI_5V0_CON 5 V overcurrent out to connector 14 DDC_DAT_CON DDC data connector side 15 DDC_CLK_CON DDC clock connector side 16 UTILITY_CON utility line ESD protection 17 TMDS_CK_CON TMDS ESD protection to connector 18 TMDS_CK+_CON TMDS ESD protection to connector 19 TMDS_D0_CON TMDS ESD protection to connector 20 TMDS_D0+_CON TMDS ESD protection to connector 21 TMDS_D1_CON TMDS ESD protection to connector 22 TMDS_D1+_CON TMDS ESD protection to connector 23 TMDS_D2_CON TMDS ESD protection to connector 24 TMDS_D2+_CON TMDS ESD protection to connector 25 CEC_CON CEC signal connector side 26 ESD_BYPASS ESD bias voltage 27 VCC(SYS) supply voltage for level shifting 28 CEC_STBY CEC Standby mode control (LOW for lowest power, CEC-only mode) 29 CEC_SYS CEC I/O signal system side 30 n.c. not connected 31 n.c. not connected 32 HOTPLUG_DET_SYS hot plug detect system side ground pad GND ground All information provided in this document is subject to legal disclaimers. Rev. 5 — 24 June 2014 © NXP Semiconductors N.V. 2014. All rights reserved. 3 of 36 IP4786CZ32 NXP Semiconductors DVI and HDMI interface ESD and overcurrent protection 3. Ordering information Table 2. Ordering information Type number Package Name IP4786CZ32 IP4786CZ32 Product data sheet Description Version HVQFN32 plastic thermal enhanced very thin quad flat package; SOT617-3 no leads; 32 terminals; body 5  5  0.85 mm All information provided in this document is subject to legal disclaimers. Rev. 5 — 24 June 2014 © NXP Semiconductors N.V. 2014. All rights reserved. 4 of 36 IP4786CZ32 NXP Semiconductors DVI and HDMI interface ESD and overcurrent protection 4. Functional diagram TMDS_D2+_SYS TMDS_D2+_CON ESD TMDS_D2–_SYS TMDS_D2–_CON TMDS_D1+_SYS TMDS_D1+_CON TMDS_D1–_SYS TMDS_D1–_CON TMDS_D0+_SYS TMDS_D0+_CON TMDS_D0–_SYS TMDS_D0–_CON TMDS_CK+_SYS TMDS_CK+_CON TMDS_CK–_SYS TMDS_CK–_CON VCC(5V0) ESD 3.3 V VOLTAGE REGULATOR VCC(SYS) ESD CEC driver 10 kΩ 26 kΩ CEC_SYS CEC_CON ESD HDMI_5V0_CON VCC(SYS) ESD DDC driver 3.65 kΩ 1.85 kΩ DDC_CLK_SYS DDC_CLK_CON VCC(SYS) ESD HDMI_5V0_CON ESD DDC driver 3.65 kΩ 1.85 kΩ DDC_DAT_SYS DDC_DAT_CON Hot plug ESD ESD HOTPLUG_DET_SYS HOTPLUG_DET_CON 100 kΩ 100 kΩ ESD ESD HDMI_5V0_CON VCC(5V0) ESD ESD_BYPASS CURRENT LIMITER VCC(SYS) main clamp VCC(5V0) ESD ESD enable enLim enRef POWER MANAGEMENT UNIT CEC_STBY enCEC VCC(SYS) VCC(SYS) 100 kΩ VCC(5V0) ESD ibias 1..n vref 1..m CURRENT-/VOLTAGEREFERENCES Fig 2. IP4786CZ32 Product data sheet n m UTILITY_CON 100 kΩ aaa-013776 Functional diagram All information provided in this document is subject to legal disclaimers. Rev. 5 — 24 June 2014 © NXP Semiconductors N.V. 2014. All rights reserved. 5 of 36 IP4786CZ32 NXP Semiconductors DVI and HDMI interface ESD and overcurrent protection 5. Limiting values Table 3. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). Symbol Parameter VCC(5V0) supply voltage (5.0 V) VI input voltage I/O pins VESD electrostatic discharge voltage IEC 61000-4-2, level 4 (contact) [1] - 12 kV IEC 61000-4-2, level 1 (contact) [2] - 2 kV total power dissipation DDC operating at 100 kHz; CEC operating at 1 kHz; 50 % duty cycle; CEC_STBY = HIGH; no current at HDMI_5V0_CON - 50 mW DDC and CEC bus in idle mode; CEC_STBY = HIGH; no current at HDMI_5V0_CON - 3.0 mW DDC and CEC bus in idle mode; CEC_STBY = LOW - 1.0 mW Ptot Conditions Min Max GND  0.5 6.5 GND  0.5 5.5 Unit V V Tamb ambient temperature 25 +85 C Tstg storage temperature 55 +125 C [1] Connector-side pins (typically denoted with “_CON” suffix) to ground. [2] System-side pins: CEC_SYS, DDC_DAT_SYS, DDC_CLK_SYS, HOTPLUG_DET_SYS, CEC_STBY, VCC(SYS) and VCC(5V0). IP4786CZ32 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 5 — 24 June 2014 © NXP Semiconductors N.V. 2014. All rights reserved. 6 of 36 IP4786CZ32 NXP Semiconductors DVI and HDMI interface ESD and overcurrent protection 6. Static characteristics Table 4. Supplies Tamb = 25 C to +85 C unless otherwise specified. Symbol Parameter Conditions VCC(5V0) supply voltage (5.0 V) VCC(SYS) system supply voltage [1] [1] Min Typ Max Unit 4.5 5.0 6.5 V 1.62 3.3 5.5 V The IP4786CZ32 contains a 5 V voltage regulator function for higher input voltages. Any input voltage of 4.925 V < VCC(5V0) < 6.50 V will provide HDMI-compliant output levels of 4.8 V to 5.3 V on HDMI_5V0_CON. Table 5. TMDS protection circuit Tamb = 25 C to +85 C unless otherwise specified. Symbol Parameter Conditions Min Typ Max Unit 90 100 110  - 0.6 - pF 6.0 - 9.0 V positive transient - 1.0 -  negative transient - 1.0 -  TMDS channel Zi(dif) differential input impedance TDR measured; tr = 200 ps Ceff effective capacitance equivalent shunt capacitance for TDR minimum; tr = 200 ps [1][2] Protection diode VBRzd Zener diode breakdown voltage I = 1.0 mA rdyn dynamic resistance surge; I = 1.0 A; IEC 61000-4-5/9 TLP - 1.0 -  negative transient [3] - 1.0 -  [4][5] Ibck back current VCC(5V0) < Vch(TMDS) reverse leakage current VI = 3.0 V VF forward voltage [1] Product data sheet [3] ILR VCL(ch)trt(pos) positive transient channel clamping voltage IP4786CZ32 positive transient 100 ns TLP; 50  pulser at 50 ns - 0.1 1.0 A - 1.0 - A - 0.7 - V - 8.0 - V This parameter is guaranteed by design. [2] Capacitive dip at HDMI Time Domain Reflectometer (TDR) measurement conditions. [3] ANSI-ESDSP5.5.1-2004, ESD sensitivity testing Transmission Line Pulse (TLP) component level method 50 TDR. [4] Signal pins: TMDS_D0+_CON, TMDS_D0_CON, TMDS_D1+_CON, TMDS_D1_CON, TMDS_D2+_CON, TMDS_D2_CON, TMDS_CK+_CON, TMDS_CK_CON, TMDS_D0+_SYS, TMDS_D0_SYS, TMDS_D1+_SYS, TMDS_D1_SYS, TMDS_D2+_SYS, TMDS_D2_SYS, TMDS_CK+_SYS and TMDS_CK_SYS. [5] Backdrive current from TMDS_x_SYS and TMDS_x_CON pins to local VCC(5V0) bias rail at power-down. Device does not block backdrive current leakage through the device to/from ASIC I/O pins connected to TMDS_x_SYS pins. All information provided in this document is subject to legal disclaimers. Rev. 5 — 24 June 2014 © NXP Semiconductors N.V. 2014. All rights reserved. 7 of 36 IP4786CZ32 NXP Semiconductors DVI and HDMI interface ESD and overcurrent protection Table 6. HDMI_5V0_CON Tamb = 25 C to +85 C unless otherwise specified. Symbol Parameter Conditions rdyn dynamic resistance TLP Min Typ Max Unit positive transient [1] - 1.0 -  negative transient [1] - 1.0 -  VCL clamping voltage 100 ns TLP; 50  pulser at 50 ns - 8 - V IO(max) maximum output current V(HDMI_5V0_CON) = 4.8 V 55 - - mA Ibck back current VCC(5V0) < V(HDMI_5V0_CON) - - 10 A IO(sc) short-circuit output current V(HDMI_5V0_CON) = 0 V - 125 175 mA - 70 - mV - - 125 mV 4.8 5.05 5.3 dropout voltage Vdo 4.5 V < VCC(5V0) < 4.925 V; DDC = LOW [2] IO = 10 mA IO = 55 mA VO(LDO) LDO output voltage IO  55 mA; 4.925 V < VCC(5V0) < 6.5 V; DDC = LOW [2] V [1] ANSI-ESDSP5.5.1-2004, ESD sensitivity testing TLP component level method 50 TDR. [2] The IP4786CZ32 contains a 5 V voltage regulator function for higher input voltages. Any input voltage of 4.925 V < VCC(5V0) < 6.50 V will provide HDMI-compliant output levels of 4.8 V to 5.3 V on HDMI_5V0_CON. Table 7. UTILITY_CON Tamb = 25 C to +85 C unless otherwise specified. Symbol Parameter Conditions Min Typ Max Unit Supplies: pins VCC(5V0) and VCC(SYS) rdyn Product data sheet TLP positive transient [1] - 1.0 -  negative transient [1] - 1.0 -  VCL clamping voltage 100 ns TLP; 50  pulser at 50 ns - 8.0 - V Ci input capacitance VCC(5V0) = 0 V; VCC(SYS) = 0 V; Vbias = 2.5 V; AC input = 3.5 V(p-p); f = 100 kHz - 8.0 10 pF Rpd pull-down resistance 60 100 140 k [1] IP4786CZ32 dynamic resistance ANSI-ESDSP5.5.1-2004, ESD sensitivity testing TLP component level method 50 TDR. All information provided in this document is subject to legal disclaimers. Rev. 5 — 24 June 2014 © NXP Semiconductors N.V. 2014. All rights reserved. 8 of 36 IP4786CZ32 NXP Semiconductors DVI and HDMI interface ESD and overcurrent protection Table 8. Static characteristics Tamb = 25 C to +85 C unless otherwise specified. Symbol Parameter Conditions DDC buffer on connector Min Typ Max Unit V side[1] VIH HIGH-level input voltage 0.5  V(HDMI_5V0_CON) 6.5 VIL LOW-level input voltage 0.5 - 0.3  V V(HDMI_5V0_CON) VOH HIGH-level output voltage V(HDMI_5V0_CON)  0.02 V(HDMI_5V0_CON) V + 0.02 VOL LOW-level output voltage internal pull-up and external sink - 100 200 mV VIK input clamping voltage II = 18 mA - - 1.0 V - 8.0 10 pF 1.6 1.8 2.0 k VCC(SYS) = 1.8 V 450 - - mV VCC(SYS) = 2.5 V 620 - - mV VCC(SYS) = 3.3 V 760 - - mV VCC(SYS) = 5.0 V 800 - - mV VCC(SYS) = 1.8 V - - 330 mV VCC(SYS) = 2.5 V - - 380 mV VCC(SYS) = 3.3 V - - 400 mV - - 420 mV CIO input/output capacitance Rpu pull-up resistance DDC buffer on system VIH VIL [2] VCC(5V0) = 5.0 V; VCC(SYS) = 3.3 V; CEC_STBY = HIGH [2][3] side[1][4] HIGH-level input voltage LOW-level input voltage VCC(SYS) = 5.0 V VOH VOL HIGH-level output voltage [2] VCC(SYS)  0.02 - VCC(SYS) + 0.02 V LOW-level output voltage VCC(SYS) = 1.8 V [5] - 490 500 mV VCC(SYS) = 2.5 V [5] - 640 690 mV VCC(SYS) = 3.3 V [5] - 685 790 mV VCC(SYS) = 5.0 V [5] - 720 820 mV - - 1.0 V - 6.0 8.0 pF 3.2 3.65 4.1 k VIK input clamping voltage II = 18 mA CIO input/output capacitance VCC(5V0) = 0 V; VCC(SYS) = 0 V; Vbias = 2.5 V; AC input = 3.5 V(p-p); f = 100 kHz Rpu pull-up resistance IP4786CZ32 Product data sheet [2] All information provided in this document is subject to legal disclaimers. Rev. 5 — 24 June 2014 © NXP Semiconductors N.V. 2014. All rights reserved. 9 of 36 IP4786CZ32 NXP Semiconductors DVI and HDMI interface ESD and overcurrent protection Table 8. Static characteristics …continued Tamb = 25 C to +85 C unless otherwise specified. Symbol Parameter Conditions Min Typ Max Unit 2.0 - - V CEC_CON[1] VIH HIGH-level input voltage VIL LOW-level input voltage - - 0.80 V VOH HIGH-level output voltage 2.88 3.3 3.63 V VOL LOW-level output voltage - 100 200 mV - 8.0 10 pF CIO input/output capacitance Rpu pull-up resistance Ileak(CEC) CEC leakage current IOL = 1.5 mA VCC(5V0) = 0 V; VCC(SYS) = 0 V; Vbias = 1.65 V; AC input = 2.5 V(p-p); f = 100 kHz [2] 23.4 26.0 28.6 k VCC(5V0) = 0 V; VCC(SYS) = 0 V; CEC_CON connected to 3.63 V via 27 k - - 0.1 A VCC(SYS) = 1.8 V 450 - - mV VCC(SYS) = 2.5 V 620 - - mV VCC(SYS) = 3.3 V 760 - - mV VCC(SYS) = 5.0 V 800 - - mV VCC(SYS) = 1.8 V - - 330 mV VCC(SYS) = 2.5 V - - 380 mV VCC(SYS) = 3.3 V - - 400 mV VCC(SYS) = 5.0 V - - 420 mV CEC_SYS[1][4] VIH VIL VOH VOL HIGH-level input voltage LOW-level input voltage HIGH-level output voltage [2] VCC(SYS)  0.02 - VCC(SYS) + 0.02 V LOW-level output voltage VCC(SYS) = 1.8 V [5] - 490 500 mV VCC(SYS) = 2.5 V [5] - 640 690 mV VCC(SYS) = 3.3 V [5] - 675 770 mV VCC(SYS) = 5.0 V [5] - 710 800 mV VCC(5V0) = 0 V; VCC(SYS) = 0 V; Vbias = 1.65 V; AC input = 2.5 V(p-p); f = 100 kHz [2] - 6.0 7.0 pF 8.5 10 11.5 k CIO input/output capacitance Rpu pull-up resistance HOTPLUG_DET_CON[1] VIH HIGH-level input voltage 2.0 - - V VIL LOW-level input voltage - - 0.8 V Rpd pull-down resistance 60 100 140 k Ci input capacitance - 8.0 10 pF IP4786CZ32 Product data sheet VCC(5V0) = 0 V; VCC(SYS) = 0 V; Vbias = 2.5 V; AC input = 3.5 V(p-p); f = 100 kHz [2] All information provided in this document is subject to legal disclaimers. Rev. 5 — 24 June 2014 © NXP Semiconductors N.V. 2014. All rights reserved. 10 of 36 IP4786CZ32 NXP Semiconductors DVI and HDMI interface ESD and overcurrent protection Table 8. Static characteristics …continued Tamb = 25 C to +85 C unless otherwise specified. Symbol Parameter Conditions Min Typ Max Unit 0.7  VCC(SYS) - - V HOTPLUG_DET_SYS[1] VOH HIGH-level output voltage IOL = 1 mA VOL LOW-level output voltage Rpd pull-down resistance [1] IOL = 1 mA - 200 300 mV 60 100 140 k The device is active if the input voltage at pin CEC_STBY is above the HIGH level. [2] This parameter is guaranteed by design. [3] Capacitive load measured at power-on. [4] No external pull-up resistor attached. [5] Typical value at Tamb = +25 °C. Table 9. CEC_STBY power management circuit VCC(SYS) = 1.62 V to 5.5 V; VCC(5V0) = 4.5 V to 6.5 V; GND = 0 V; Tamb = 25 C to +85 C unless otherwise specified. Symbol Parameter Board side: input pin Conditions Min Typ Max Unit CEC_STBY[1] VIH HIGH-level input voltage HIGH = active [2] 1.2 - 6.5 V VIL LOW-level input voltage LOW = standby [3] 0.5 - 0.8 V Rpd pull-down resistance 60 100 140 k Ci input capacitance - 6 7 pF VI = 3 V or 0 V [1] The CEC_STBY pin should be connected permanently to VCC(5V0) or VCC(SYS) if no enable control is needed. [2] DDC buffers, Hot Plug Detect (HPD) buffer, and HDMI_5V0_CON out enabled; CEC buffer enabled. [3] DDC buffers, HPD buffer, and HDMI_5V0_CON out disabled; CEC buffer enabled. IP4786CZ32 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 5 — 24 June 2014 © NXP Semiconductors N.V. 2014. All rights reserved. 11 of 36 IP4786CZ32 NXP Semiconductors DVI and HDMI interface ESD and overcurrent protection 7. Dynamic characteristics Table 10. Dynamic characteristics VCC(5V0) = 5.0 V; VCC(SYS) = 1.8 V; GND = 0 V; Tamb = 25 C to +85 C unless otherwise specified. Symbol Parameter Conditions DDC_DAT_SYS, DDC_CLK_SYS, DDC_DAT_CON, Min Typ Max Unit DDC_CLK_CON[1] tPLH LOW to HIGH propagation delay system side to connector side Figure 16 - 80 - ns tPHL HIGH to LOW propagation delay system side to connector side Figure 16 - 60 - ns tPLH LOW to HIGH propagation delay connector side to system side Figure 17 - 120 - ns tPHL HIGH to LOW propagation delay connector side to system side Figure 17 - 80 - ns tTLH LOW to HIGH transition time connector side Figure 18 - 150 - ns tTHL HIGH to LOW transition time connector side Figure 18 - 100 - ns tTLH LOW to HIGH transition time system side Figure 19 - 250 - ns tTHL HIGH to LOW transition time system side Figure 19 - 80 - ns [1] All dynamic measurements are done with a 75 pF load. Rise times are determined by internal pull-up resistors. DDD  =GLI ȍ 70'6B&. 70'6B' 70'6B' 70'6B'           WLPH QV  tr = 200 ps; no filter; VCC(5V0) = 5 V 100  differential (CH1 + CH2) Fig 3. IP4786CZ32 Product data sheet Differential TDR plot All information provided in this document is subject to legal disclaimers. Rev. 5 — 24 June 2014 © NXP Semiconductors N.V. 2014. All rights reserved. 12 of 36 IP4786CZ32 NXP Semiconductors DVI and HDMI interface ESD and overcurrent protection 018aaa086 3 Sdd21; Scc21 (dB) (1) –3 (2) –9 –15 106 107 108 109 1010 f (Hz) (1) Sdd21 (2) Scc21 Normalized to 100 ; differential pairs at signal pins. Fig 4. Mixed-mode differential and common-mode insertion loss; typical values 018aaa087 3 Sdd21 (dB) (1) –3 (2) –9 –15 106 107 108 109 1010 f (Hz) (1) Sdd21; Near End Crosstalk (NEXT) (2) Sdd21; Far End Crosstalk (FEXT) normalized to 100 ; differential pairs CH1/CH2 versus CH3/CH4 Fig 5. IP4786CZ32 Product data sheet Mixed-mode differential and common-mode NEXT / FEXT; typical values All information provided in this document is subject to legal disclaimers. Rev. 5 — 24 June 2014 © NXP Semiconductors N.V. 2014. All rights reserved. 13 of 36 IP4786CZ32 NXP Semiconductors DVI and HDMI interface ESD and overcurrent protection DDD 227 MHz pixel clock Horizontal scale: 90 ps/div Vertical scale: 200 mV/div Offset: 42.6 mV Fig 6. Eye diagram using IP4786CZ32 (1080p, 12 bit) DDD 297 MHz pixel clock Horizontal scale: 67.5 ps/div Vertical scale: 200 mV/div Offset: 42.6 mV Fig 7. IP4786CZ32 Product data sheet Eye diagram using IP4786CZ32 (1080p, 16 bit) All information provided in this document is subject to legal disclaimers. Rev. 5 — 24 June 2014 © NXP Semiconductors N.V. 2014. All rights reserved. 14 of 36 IP4786CZ32 NXP Semiconductors DVI and HDMI interface ESD and overcurrent protection aaa-013775 148.5 MHz test frequency Horizontal scale: 53.8 ps/div Vertical scale: 200 mV/div Measured at TP2 with worst cable emulator, reference cable equalizer and worst case negative skew Fig 8. Eye diagram using IP4786CZ32 (2160p, 60 Hz) 018aaa090 0.4 Cline (pF) 0.2 0.0 –0.2 –0.4 –1.0 1.0 3.0 5.0 7.0 Vbias (V) Deviation from typical capacitance normalized at Vbias = 2.5 V Fig 9. IP4786CZ32 Product data sheet Line capacitance as a function of bias voltage; typical values All information provided in this document is subject to legal disclaimers. Rev. 5 — 24 June 2014 © NXP Semiconductors N.V. 2014. All rights reserved. 15 of 36 IP4786CZ32 NXP Semiconductors DVI and HDMI interface ESD and overcurrent protection 018aaa091 4.00 018aaa092 2.5 VCL (V) VCL (V) 3.75 2.0 3.50 1.5 3.25 3.00 0.5 0.6 0.7 0.8 0.9 1.0 1.1 I (A) 1.2 1.0 0.4 0.6 0.8 1.0 1.2 I (A) IEC 61000-4-5; tp = 8/20 s; positive pulse IEC 61000-4-5; tp = 8/20 s; negative pulse Fig 10. Dynamic resistance with positive clamping Fig 11. Dynamic resistance with negative clamping 018aaa093 14 I (A) 12 10 –4 8 –6 6 –8 4 –10 2 –12 0 6 10 14 18 018aaa094 0 I (A) –2 22 –14 –12 VCL (V) tp = 100 ns; TLP; signal pins; typical values Product data sheet –4 0 VCL (V) tp = 100 ns; TLP; signal pins; typical values Fig 12. Dynamic resistance with positive clamping IP4786CZ32 –8 Fig 13. Dynamic resistance with negative clamping All information provided in this document is subject to legal disclaimers. Rev. 5 — 24 June 2014 © NXP Semiconductors N.V. 2014. All rights reserved. 16 of 36 IP4786CZ32 NXP Semiconductors DVI and HDMI interface ESD and overcurrent protection 018aaa095 6.5 018aaa096 6.0 VI (V) VO (V) 6.0 (2) (5) (4) (1) 4.0 5.5 (1) 2.0 (3) 5.0 (4) (3) (2) 4.5 5.0 5.5 6.0 6.5 0.0 0.00 0.02 0.04 VCC(5V0) (V) (1) 5.3 V; maximum values; HDMI CTS TID 7-11 (1) VCC(5V0) = 4.5 V (2) 4.8 V; minimum values; HDMI CTS TID 7-11 (2) VCC(5V0) = 5.0 V (3) I = 0 mA (3) VCC(5V0) = 5.5 V (4) I = 55 mA (4) VCC(5V0) = 6.5 V 0.06 0.08 0.10 0.12 IO (A) 0.14 (5) VCC(5V0) supply input; 4.925 V to 6.5 V Fig 14. Overvoltage limiter function (HDMI_5V0_CON) IP4786CZ32 Product data sheet Fig 15. Overcurrent limiter function (HDMI_5V0_CON) All information provided in this document is subject to legal disclaimers. Rev. 5 — 24 June 2014 © NXP Semiconductors N.V. 2014. All rights reserved. 17 of 36 IP4786CZ32 NXP Semiconductors DVI and HDMI interface ESD and overcurrent protection 8. AC waveforms 8.1 DDC propagation delay VCC(SYS) DDC system side 0.5 VCC(SYS) 0.28 VCC(SYS) VOL V(HDMI_5V0_CON) DDC connector side 0.5 V(HDMI_5V0_CON) 0.5 V(HDMI_5V0_CON) VOL tPHL tPLH 018aaa097 Fig 16. Propagation delay DDC, DDC system side to DDC connector side V(HDMI_5V0_CON) DDC connector side 0.5 V(HDMI_5V0_CON) 0.5 V(HDMI_5V0_CON) VOL VCC(SYS) DDC system side 0.5 VCC(SYS) 0.5 VCC(SYS) VOL tPHL tPLH 018aaa098 Fig 17. Propagation delay DDC, DDC connector side to DDC system side IP4786CZ32 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 5 — 24 June 2014 © NXP Semiconductors N.V. 2014. All rights reserved. 18 of 36 IP4786CZ32 NXP Semiconductors DVI and HDMI interface ESD and overcurrent protection 8.2 DDC transition time DDC system side VCC(SYS) VOL V(HDMI_5V0_CON) DDC connector side 80 % V(HDMI_5V0_CON) 20 % V(HDMI_5V0_CON) VOL tPHL tPLH 018aaa099 Fig 18. Transition time DDC connector side V(HDMI_5V0_CON) DDC connector side VOL VCC(SYS) DDC system side 80 % VCC(SYS) 20 % VCC(SYS) VOL tPHL tPLH 018aaa100 Fig 19. Transition time DDC system side IP4786CZ32 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 5 — 24 June 2014 © NXP Semiconductors N.V. 2014. All rights reserved. 19 of 36 IP4786CZ32 NXP Semiconductors DVI and HDMI interface ESD and overcurrent protection 9. Application information 9.1 TMDS ESD To protect the TMDS lines and also to comply with the impedance requirements of the HDMI specification, the IP4786CZ32 provides ESD protection with matched TLC ESD structures. Typical Dual Rail Clamp (DRC) or rail-to-rail shunt structures are common for low-capacitance ESD protection (as shown on the left side of Figure 20) where the dominant factor for the TMDS line impedance dip is determined by the capacitive load to ground. Parasitic lead inductances of the packaging in this case works against the ESD clamping performance by including the I/t reactance of the inductance into the path of the ESD shunt. The IP4786CZ32 utilizes these inherent inductances in series with the transmission line in order to present an effective capacitive load of roughly only 0.7 pF. This TLC structure minimizes the capacitive dip, for ideal signal integrity (Figure 20; right side) without complicated PCB pre-compensation. As a beneficial side effect, this enhances the ESD performance of the device as well, since the reactance of the series inductance attenuates the fast initial peak of the ESD pulse, for a lower residual pulse delivered to the Application Specific Integrated Circuit (ASIC). 018aaa102 018aaa101 a. Classic parallel ESD shunt protection b. Improved series shunt TLC clamping Fig 20. TLC ESD protection of TMDS lines IP4786CZ32 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 5 — 24 June 2014 © NXP Semiconductors N.V. 2014. All rights reserved. 20 of 36 IP4786CZ32 NXP Semiconductors DVI and HDMI interface ESD and overcurrent protection 9.2 DDC circuit The DDC bus circuit integrates all required pull-ups, and provides full capacitive decoupling between the HDMI connector and the DDC bus lines on the PCB. The capacitive decoupling ensures that the maximum capacitive load is well within the 50 pF maximum of the HDMI specification. No external pull-ups or pull-downs are required. The bidirectional buffers support high-capacitive load on the HDMI cable-side. Various non-compliant but prevalent low-cost cables have been observed with a capacitive load of up to 6 nF on the DDC lines, far exceeding the 700 pF HDMI limit. The IP4786CZ32 can easily decouple this from the weaker ASIC I/O buffers, and drive the rogue cable successfully. ESD_BYPASS HDMI_5V0_CON 1.85 kΩ ESD_BYPASS VCC(SYS) VCC(SYS) 1.85 kΩ 3.65 kΩ 3.65 kΩ DDC_DAT_SYS DDC_DAT_CON DDC_CLK_SYS DDC_CLK_CON HDMI_5V0_CON 018aaa103 018aaa104 a. DDC clock b. DDC data Fig 21. DDC circuit 5 (1) 4 V 3 2 (2) 1 0 time 018aaa105 (1) Valid I2C signaling example on the cable (connector side) from 5 V (HIGH) to approximately 1 V (LOW). (2) Valid logic-level signaling example to the ASIC (system side) from 1.8 V (HIGH) to approximately 0.5 V (LOW). Fig 22. DDC level shifting waveform example IP4786CZ32 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 5 — 24 June 2014 © NXP Semiconductors N.V. 2014. All rights reserved. 21 of 36 IP4786CZ32 NXP Semiconductors DVI and HDMI interface ESD and overcurrent protection 9.3 Logic low I2C voltage shifter The DDC buffers provide an additional feature commonly required for high-integration HDMI ASICs which are limited to CMOS or LVTTL LOW-level input voltage (VIL) on their available I/O buffer cells. These I/Os are not strictly compliant with the 0.3 VDD threshold voltage levels of I2C and may miss intended logic low levels on the cable between 0.8 V and 1.5 V (typical values). This feature is also included in the CEC buffer, and thus allows standard I/O buffer cells to be used in ASICs and microcontrollers. 018aaa106 0.9 (1) VOL;VIH; VIL (V) (2) 0.7 (3) 0.5 0.3 1.6 2.6 3.6 4.6 5.6 VCC(SYS) (V) (1) VOL(max) driven to system (ASIC) side when I2C logic low (less than 0.3  HDMI_5V0_CON) (2) VIH(min) threshold on system (ASIC) side to drive I2C logic high (3) VIL(max) threshold on system (ASIC) side to drive I2C logic low Fig 23. Logic voltage thresholds as a function of supply voltage on system side IP4786CZ32 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 5 — 24 June 2014 © NXP Semiconductors N.V. 2014. All rights reserved. 22 of 36 IP4786CZ32 NXP Semiconductors DVI and HDMI interface ESD and overcurrent protection 9.4 Hot plug detect circuit and HEAC support The IP4786CZ32 includes a hot plug detect circuit that simplifies the hot plug application. The circuit generates a standard logic level from the hot plug signal. The hot plug detect circuit is pulling down the signal to avoid any floating signal. The comparator guarantees a save detection of the 2 V hot plug signal without any glitches or oscillation at the hot plug output. The IP4786CZ32 also provides an additional ESD pin to protect the reserved / HEAC pin along with hot plug detect to 12 kV, exceeding IEC 61000-4-2 level 4. ESD_BYPASS VCC(5V0) HOTPLUG_DET_CON HOTPLUG_DET_SYS 100 kΩ 100 kΩ 018aaa107 Fig 24. Hot plug detect circuit 9.5 CEC The logical multidrop topology of the CEC bus can include complex physical stubs, loading cables, and interconnects that may deteriorate signal quality. The IP4786CZ32 includes a full bidirectional buffer to drive the CEC bus and isolate the CEC microcontroller or ASIC General-Purpose Input/Output (GPIO). The CEC buffer derives power from an on-board 3.3 V regulator from the VCC(5V0) domain (see Figure 25). This allows extensive system power management configurations and guarantees an HDMI-compliant V(CEC_CON) on the connector, as well as the backdrive-protected 125 A nominal CEC pull-up which does not degrade the bus when powered down. By placing the CEC microcontroller and VCC(5V0) input on a 5 V rail as shown in Figure 28, the CEC microcontroller can communicate over CEC for power commands, and then enable the HDMI port via the CEC_STBY pin, as well as the rest of the system as needed. If IP4786CZ32 Standby modes are not required, or if the Power-down modes are not desired, the CEC_STBY pin can be pulled HIGH to VCC(5V0) or VCC(SYS) for continuous HDMI and CEC operation. Strapping the CEC_STBY = VCC(SYS) = VDD of ASIC guarantees that all interface signals ending with the suffix “_SYS” on the system side will be disabled when VCC(SYS) goes low, protecting the ASIC I/O signals from exceeding its local VDD. In this mode, even if VCC(5V0) is powered, HDMI_5V0_CON go active and hot plug events can be detected only when the ASIC power supply rail is on. Strapping CEC_STBY = VCC(5V0) is the most basic configuration where the buffers are enabled whenever the local VCC(5V0) and VCC(SYS) supplies reach minimum operating levels. IP4786CZ32 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 5 — 24 June 2014 © NXP Semiconductors N.V. 2014. All rights reserved. 23 of 36 IP4786CZ32 NXP Semiconductors DVI and HDMI interface ESD and overcurrent protection ESD_BYPASS VCC(5V0) VCC(SYS) 3V3 10 kΩ 26 kΩ CEC_CON CEC_SYS 018aaa108 Fig 25. CEC module 9.6 Backdrive protection The HDMI connector contains various signals which can partly supply current into an HDMI device that is powered down. Typically, the DDC lines and the CEC signals can force significant current back into the powered-down rails as shown in Figure 26, causing power-on reset problems with the system, and possible damage. The IP4786CZ32 prevents this backdrive condition whenever the I/O voltage is greater than the local supply. supply off 5V HDMI source HDMI sink backdrive current HDMI ASIC I2C-bus ASIC 018aaa109 Fig 26. Generalized backdrive protection IP4786CZ32 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 5 — 24 June 2014 © NXP Semiconductors N.V. 2014. All rights reserved. 24 of 36 IP4786CZ32 NXP Semiconductors DVI and HDMI interface ESD and overcurrent protection 9.7 55 mA overcurrent / overvoltage LDO function The IP4786CZ32 integrates a complete linear output overcurrent protection to isolate faults from the source power supply, while still meeting HDMI output specifications. The Low DropOut (LDO) design provides a low-cost solution requiring just a single output capacitor (1 F or higher, Equivalent Series Resistance (ESR) < 1 ), eliminating start-up and ripple concerns (see Figure 27). A typical 100 mV Vdo overcurrent-only solution would require a 5.1 V  3 % input supply to guarantee 4.8 V to 5.3 V over 0 mA to 55 mA at the HDMI connector. The overcurrent / overvoltage feature of the IP4786CZ32 allows the use of wider tolerance input supplies up to 6.5 V while still meeting the 4.8 V-to-5.3 V output limit required by HDMI. This means, for example, a cost-reduced 5.2 V  5 % or even a 5.5 V  10 % supply can be used with the IP4786CZ32. As with all the I/O pins, this block is ESD-protected and also provides backdrive protection when a rogue HDMI sink powers the HDMI cable unexpectedly. ESD_BYPASS VCC(5V0) CEC 3V3 regulator HDMI_5V0_CON 60 mA overcurrent control DDC/HPD buffers CEC buffer 018aaa110 Fig 27. 5 V LDO with overcurrent / overvoltage protection IP4786CZ32 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 5 — 24 June 2014 © NXP Semiconductors N.V. 2014. All rights reserved. 25 of 36 IP4786CZ32 NXP Semiconductors DVI and HDMI interface ESD and overcurrent protection 9.8 Schematic view of application Only a single external component (CO = 1 F) is required to protect and interface the ASIC to a complete and compliant HDMI port. The 100 nF ESD bypass capacitor is optional. CEC μC +4.5 V to 6.5 V SUPPLY CEC_STBY CEC_SYS 11 27 +1.62 V to 5.5 V SUPPLY 28 29 26 ESD bypass (optional) VDD 100 nF HDMI CONNECTOR TMDS_D2+_SYS 1 24 TMDS_D2+_CON TMDS_D2–_SYS 2 23 TMDS_D2–_CON TMDS_D1+_SYS 3 22 TMDS_D1+_CON TMDS_D1–_SYS 4 21 TMDS_D1–_CON TMDS_D0+_SYS 5 20 TMDS_D0+_CON TMDS_D0–_SYS 6 19 TMDS_D0–_CON TMDS_CK+_SYS 7 18 TMDS_CK+_CON TMDS_CK–_SYS 8 17 TMDS_CK–_CON 25 CEC_CON IP4786CZ32 DDC_CLK_SYS 9 15 DDC_CLK_CON DDC_DAT_SYS 10 14 DDC_DAT_CON HOTPLUG_DET_SYS 32 12 HOTPLUG_DET_CON HDMI ASIC PAD HDMI_5V0_CON 13 16 CO 1 μF UTILITY_CON 018aaa111 Fig 28. Schematic view of IP4786CZ32 application IP4786CZ32 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 5 — 24 June 2014 © NXP Semiconductors N.V. 2014. All rights reserved. 26 of 36 IP4786CZ32 NXP Semiconductors DVI and HDMI interface ESD and overcurrent protection 9.9 Typical application The IP4786CZ32 is designed to simplify routing to the HDMI connector, and ease the incorporation of high-level ESD protection into delicately balanced high-speed TMDS lines. These lines rely on tightly controlled microstrip or stripline transmission lines with minimal impedance discontinuities, which can deteriorate return loss, increase deterministic jitter and generally erode overall link signal integrity. Normally when designing the PCB with standard shunt ESD clamps, careful consideration must be given to manual pre-compensation of the additional load of the added ESD component. With the IP4786CZ32 TLCs, the ESD suppressor is designed to maintain the characteristic impedance of the PCB microstrip or stripline, and therefore the designer needs only be concerned with the standard-controlled impedance of the unloaded PCB lines. This simplifies the task of the PCB designer, and minimizes the tuning cycles, which are sometimes required when pre-compensation misses the mark. A basic application diagram for the ESD protection of an HDMI interface is shown in Figure 29 and Figure 30 for type-A and type-D HDMI connector versions. The optimized HVQFN32 pinning simplifies the PCB design to keep the ESD protection close to the connector where it can minimize the coupling of the ESD pulse onto other lines in the system during a strike. Due to the integrated pull-up and pull-down resistors, only two external capacitors are required to implement a fully compliant HDMI port. 001aan367 Fig 29. Application of the IP4786CZ32 showing optimized single-layer HDMI type-A connector routing IP4786CZ32 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 5 — 24 June 2014 © NXP Semiconductors N.V. 2014. All rights reserved. 27 of 36 IP4786CZ32 NXP Semiconductors DVI and HDMI interface ESD and overcurrent protection 001aan368 Fig 30. Application of the IP4786CZ32 showing optimized HDMI type-D connector routing IP4786CZ32 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 5 — 24 June 2014 © NXP Semiconductors N.V. 2014. All rights reserved. 28 of 36 IP4786CZ32 NXP Semiconductors DVI and HDMI interface ESD and overcurrent protection 10. Package outline HVQFN32: plastic thermal enhanced very thin quad flat package; no leads; 32 terminals; body 5 x 5 x 0.85 mm D B SOT617-3 A terminal 1 index area A A1 E detail X C e1 e 9 y1 C C A B C v w 1/2 e b y 16 L 17 8 e e2 Eh 1/2 e 24 1 terminal 1 index area 32 25 X Dh 0 2.5 scale Dimensions Unit(1) mm 5 mm A(1) A1 b max 0.05 0.30 nom 0.85 min 0.00 0.18 c D(1) Dh E(1) Eh 5.1 3.75 5.1 3.75 4.9 3.45 4.9 3.45 0.2 e e1 e2 L v w y y1 0.5 0.5 3.5 3.5 0.1 0.05 0.05 0.1 0.3 Note 1. Plastic or metal protrusions of 0.075 mm maximum per side are not included. Outline version SOT617-3 References IEC JEDEC JEITA sot617-3_po European projection Issue date 11-06-14 11-06-21 MO-220 Fig 31. Package outline SOT617-3 (HVQFN32) IP4786CZ32 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 5 — 24 June 2014 © NXP Semiconductors N.V. 2014. All rights reserved. 29 of 36 IP4786CZ32 NXP Semiconductors DVI and HDMI interface ESD and overcurrent protection 11. Soldering of SMD packages This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note AN10365 “Surface mount reflow soldering description”. 11.1 Introduction to soldering Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization. 11.2 Wave and reflow soldering Wave soldering is a joining technology in which the joints are made by solder coming from a standing wave of liquid solder. The wave soldering process is suitable for the following: • Through-hole components • Leaded or leadless SMDs, which are glued to the surface of the printed circuit board Not all SMDs can be wave soldered. Packages with solder balls, and some leadless packages which have solder lands underneath the body, cannot be wave soldered. Also, leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered, due to an increased probability of bridging. The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable. Key characteristics in both wave and reflow soldering are: • • • • • • Board specifications, including the board finish, solder masks and vias Package footprints, including solder thieves and orientation The moisture sensitivity level of the packages Package placement Inspection and repair Lead-free soldering versus SnPb soldering 11.3 Wave soldering Key characteristics in wave soldering are: • Process issues, such as application of adhesive and flux, clinching of leads, board transport, the solder wave parameters, and the time during which components are exposed to the wave • Solder bath specifications, including temperature and impurities IP4786CZ32 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 5 — 24 June 2014 © NXP Semiconductors N.V. 2014. All rights reserved. 30 of 36 IP4786CZ32 NXP Semiconductors DVI and HDMI interface ESD and overcurrent protection 11.4 Reflow soldering Key characteristics in reflow soldering are: • Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see Figure 32) than a SnPb process, thus reducing the process window • Solder paste printing issues including smearing, release, and adjusting the process window for a mix of large and small components on one board • Reflow temperature profile; this profile includes preheat, reflow (in which the board is heated to the peak temperature) and cooling down. It is imperative that the peak temperature is high enough for the solder to make reliable solder joints (a solder paste characteristic). In addition, the peak temperature must be low enough that the packages and/or boards are not damaged. The peak temperature of the package depends on package thickness and volume and is classified in accordance with Table 11 and 12 Table 11. SnPb eutectic process (from J-STD-020D) Package thickness (mm) Package reflow temperature (C) Volume (mm3) < 350  350 < 2.5 235 220  2.5 220 220 Table 12. Lead-free process (from J-STD-020D) Package thickness (mm) Package reflow temperature (C) Volume (mm3) < 350 350 to 2000 > 2000 < 1.6 260 260 260 1.6 to 2.5 260 250 245 > 2.5 250 245 245 Moisture sensitivity precautions, as indicated on the packing, must be respected at all times. Studies have shown that small packages reach higher temperatures during reflow soldering, see Figure 32. IP4786CZ32 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 5 — 24 June 2014 © NXP Semiconductors N.V. 2014. All rights reserved. 31 of 36 IP4786CZ32 NXP Semiconductors DVI and HDMI interface ESD and overcurrent protection temperature maximum peak temperature = MSL limit, damage level minimum peak temperature = minimum soldering temperature peak temperature time 001aac844 MSL: Moisture Sensitivity Level Fig 32. Temperature profiles for large and small components For further information on temperature profiles, refer to Application Note AN10365 “Surface mount reflow soldering description”. 12. Glossary HDMI sink — Device which receives HDMI signals e.g. a TV set. HDMI source — Device which transmit HDMI signal e.g. DVD player. IP4786CZ32 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 5 — 24 June 2014 © NXP Semiconductors N.V. 2014. All rights reserved. 32 of 36 IP4786CZ32 NXP Semiconductors DVI and HDMI interface ESD and overcurrent protection 13. Revision history Table 13. Revision history Document ID Release date Data sheet status Change notice Supersedes IP4786CZ32 v.5 20140624 Product data sheet - IP4786CZ32 v.4 Modifications: • Added support for HDMI 2.0 display modes; updated ESD robustness IP4786CZ32 v.4 20120705 Product data sheet - IP4786CZ32 v.3 IP4786CZ32 v.3 20120608 Product data sheet - IP4786CZ32 v.2 IP4786CZ32 v.2 20120321 Product data sheet - IP4786CZ32 v.1 IP4786CZ32 v.1 20110415 Product data sheet - - IP4786CZ32 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 5 — 24 June 2014 © NXP Semiconductors N.V. 2014. All rights reserved. 33 of 36 IP4786CZ32 NXP Semiconductors DVI and HDMI interface ESD and overcurrent protection 14. Legal information 14.1 Data sheet status Document status[1][2] Product status[3] Definition Objective [short] data sheet Development This document contains data from the objective specification for product development. Preliminary [short] data sheet Qualification This document contains data from the preliminary specification. Product [short] data sheet Production This document contains the product specification. [1] Please consult the most recently issued document before initiating or completing a design. [2] The term ‘short data sheet’ is explained in section “Definitions”. [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com. 14.2 Definitions Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet. 14.3 Disclaimers Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors. Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. IP4786CZ32 Product data sheet Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk. Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). NXP does not accept any liability in this respect. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device. Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer’s general terms and conditions with regard to the purchase of NXP Semiconductors products by customer. No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. All information provided in this document is subject to legal disclaimers. Rev. 5 — 24 June 2014 © NXP Semiconductors N.V. 2014. All rights reserved. 34 of 36 IP4786CZ32 NXP Semiconductors DVI and HDMI interface ESD and overcurrent protection Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities. Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors’ warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors’ specifications such use shall be solely at customer’s own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors’ standard warranty and NXP Semiconductors’ product specifications. Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions. 14.4 Trademarks Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. 15. Contact information For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com IP4786CZ32 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 5 — 24 June 2014 © NXP Semiconductors N.V. 2014. All rights reserved. 35 of 36 IP4786CZ32 NXP Semiconductors DVI and HDMI interface ESD and overcurrent protection 16. Contents 1 1.1 1.2 1.3 2 2.1 2.2 3 4 5 6 7 8 8.1 8.2 9 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10 11 11.1 11.2 11.3 11.4 12 13 14 14.1 14.2 14.3 14.4 15 16 Product profile . . . . . . . . . . . . . . . . . . . . . . . . . . 1 General description . . . . . . . . . . . . . . . . . . . . . 1 Features and benefits . . . . . . . . . . . . . . . . . . . . 1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Pinning information . . . . . . . . . . . . . . . . . . . . . . 2 Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 3 Ordering information . . . . . . . . . . . . . . . . . . . . . 4 Functional diagram . . . . . . . . . . . . . . . . . . . . . . 5 Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 6 Static characteristics. . . . . . . . . . . . . . . . . . . . . 7 Dynamic characteristics . . . . . . . . . . . . . . . . . 12 AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . 18 DDC propagation delay . . . . . . . . . . . . . . . . . 18 DDC transition time . . . . . . . . . . . . . . . . . . . . 19 Application information. . . . . . . . . . . . . . . . . . 20 TMDS ESD . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 DDC circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Logic low I2C voltage shifter . . . . . . . . . . . . . . 22 Hot plug detect circuit and HEAC support . . . 23 CEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Backdrive protection . . . . . . . . . . . . . . . . . . . . 24 55 mA overcurrent / overvoltage LDO function 25 Schematic view of application . . . . . . . . . . . . 26 Typical application . . . . . . . . . . . . . . . . . . . . . 27 Package outline . . . . . . . . . . . . . . . . . . . . . . . . 29 Soldering of SMD packages . . . . . . . . . . . . . . 30 Introduction to soldering . . . . . . . . . . . . . . . . . 30 Wave and reflow soldering . . . . . . . . . . . . . . . 30 Wave soldering . . . . . . . . . . . . . . . . . . . . . . . . 30 Reflow soldering . . . . . . . . . . . . . . . . . . . . . . . 31 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Revision history . . . . . . . . . . . . . . . . . . . . . . . . 33 Legal information. . . . . . . . . . . . . . . . . . . . . . . 34 Data sheet status . . . . . . . . . . . . . . . . . . . . . . 34 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Contact information. . . . . . . . . . . . . . . . . . . . . 35 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Please be aware that important notices concerning this document and the product(s) described herein, have been included in section ‘Legal information’. © NXP Semiconductors N.V. 2014. All rights reserved. For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com Date of release: 24 June 2014 Document identifier: IP4786CZ32
IP4786CZ32,118 价格&库存

很抱歉,暂时无法提供与“IP4786CZ32,118”相匹配的价格&库存,您可以联系我们找货

免费人工找货