NAU8812
Mono Audio Codec with Speaker Driver
1.
GENERAL DESCRIPTION
The NAU8812 is a cost effective and low power wideband MONO audio CODEC. It is designed for voice telephony
related applications. Functions include Automatic Level Control (ALC) with noise gate, PGA, standard audio interface
2
I S, PCM with time slot assignment, and on-chip PLL. The device provides one differential microphone input and one
single ended auxiliary input (multipurpose). There are few variable gain control stages in the audio path. It also
includes MONO line output and integrated BTL speaker driver.
The analog inputs have PGA on the front end, allowing dynamic range optimization with a wide range of input
sources. The microphone amplifiers have a programmable gain from -12dB to +35.25dB to handle both amplified
microphones. In addition to a digital high pass filter to remove DC offset voltages, the ADC also features voice band
digital filtering. Voice-band data is accepted by the audio interface (I2S). The DAC converter path includes filtering
and mixing, programmable-gain amplifiers (PGA), and soft muting.
The digital interfaces, 2-Wire or SPI, have
independent supply voltage to allow integration into multiple supply systems.
The NAU8812 operates at supply voltages from 2.5V to 3.6V, although the digital core can operate at voltage as low
as 1.71V to save power. The NAU8812 is specified for operation from -40°C to +85°C. AEC-Q100 & TS16949
compliant device is available upon request.
2.
FEATURES
24-bit signal processing linear Audio CODEC
Audio DAC: 93dB SNR and -84dB THD
Audio ADC: 91dB SNR and -79dB THD
Support variable sample rates from 8 - 48kHz
Integrated BTL Speaker Driver 800mW (8Ω / 5V)
Integrated Headset Driver 40mW (16Ω / 3.3V)
Additional features
Programmable ALC
ADC Notch Filter
Programmable High Pass Filter
Digital A/D-D/A Passthrough
Industrial temperature: range: –40°C to +85°C
Analog I/O
Integrated programmable Microphone Amplifier
Integrated Line Input and Line Output
Earphone / Speaker / Line Output selection
Microphone / Line Inputs selection
Low Noise bias supplied for microphone
On-chip PLL
Applications
VoIP Telephones]
Conference speaker-phone
IP PBX
Mobile Telephone Hands-free Kits
Residential & Consumer Intercoms
Interfaces
2
I S digital interface PCM time slot assignment
2
SPI & 2-Wire serial control Interface (I C style;
Read/Write capable)
Low Power, Low Voltage
Analog Supply: 2.5V to 3.6V
Digital Supply: 1.71V to 3.6V
Nominal Operating Voltage: 3.3V
NAU8812 Datasheet Rev2.9
Page 1 of 110
Jun, 2018
Line Driver
AUX
MIC-
AUX
ADC Filter
Input
Mixers
Microphone
Interface
&
Volume
Control
ADC
Volume
Control
DAC
HPF
Gain
Stage
MIC+
Output
Mixers
DAC Filter
BTL
Speaker
Driver
&
SPK+
Speaker
Volume
Limiter
Notch Filter
-1
SPK-
PLL
MICBIAS
Micophone
Bias
Digital Audio Interface
GPIO
I2S
CSb/GPIO
PCM
Audio I/O
Serial Control Interface
2-wire
SPI
Digital I/O
PIN CONFIGURATION
VREF
1
28
AUX
MIC -
2
27
VDDSPK
MIC +
3
26
VDDSPK
MICBIAS
4
25
SPKOUT -
NC
5
24
VSSSPK
VDDA
6
23
VSSSPK
VSSA
7
22
SPKOUT +
VSSA
8
21
MOUT
VDDC
9
20
MODE
VDDB
10
19
SDIO
VSSD
11
18
SCLK
ADCOUT
12
17
CSb/GPIO
DACIN
13
16
MCLK
FS
14
15
BCLK
NAU8812
MONO AUDIO
CODEC
SSOP 28-Pin
Figure 1: 28-Pin SSOP Package
NAU8812 Datasheet Rev2.9
Page 2 of 110
Jun, 2018
MICBIAS
MIC +
MIC -
VREF
AUX
VDDSPK
VDDSPK
SPKOUT -
32
31
30
29
28
27
26
25
NC
1
24
VSSSPK
VDDA
2
23
VSSSPK
VSSA
3
22
SPKOUT +
VSSA
4
21
MOUT
VDDL
5
20
NC
VDDC
6
19
MODE
VDDB
7
18
SO
VSSD
8
17
SDIO
10
11
12
13
14
15
16
ADCOUT
DACIN
FS
BCLK
MCLK
CSb/GPIO
SCLK
VSSD
9
NAU8812
MONO AUDIO
CODEC
QFN 32-Pin
Figure 2: 32-Pin QFN Package
NAU8812 Datasheet Rev2.9
Page 3 of 110
Jun, 2018
3.
PIN DESCRIPTION
Pin Name
VREF
28-Pin
32-Pin
A/D
Pin Type
1
29
Decoupling internal analog mid supply reference
A
O
MIC-
2
30
Microphone Negative Input
A
I
MIC+
3
31
Microphone Positive Input
A
I
MICBIAS
4
32
Microphone Bias
A
O
NC
5
1
No Connect
VDDA
6
2
Analog Supply
A
I
VSSA
7
3
Analog Ground
A
O
VSSA
8
4
O
-
5
D
O
VDDC
9
6
Analog Ground
Logic supply voltage. This pin should not be
connected up to an external supply
Digital Supply Core
A
VDDL
D
I
VDDB
10
7
Digital Supply Buffer
D
I
VSSD
11
8
Digital Ground
D
O
VSSD
Functionality
-
9
Digital Ground
D
O
ADCOUT
12
10
Digital Audio Data Output
D
O
DACIN
13
11
Digital Audio Data Input
D
I
FS
14
12
Frame Sync
D
I/O
BCLK
15
13
Bit Clock
D
I/O
MCLK
16
14
Master Clock
D
I
CSb/GPIO
17
15
SPI Chip Select or General Purposes 1 I/O
D
I/O
SCLK
18
16
SPI or 2-Wire Serial Clock
D
I
SDIO
19
17
SPI Data In or 2-Wire I/O
D
O
-
18
SPI Data Output
D
O
D
I
SO
MODE
20
19
Interface Select (2-Wire or SPI)
-
20
No Connect
MOUT
21
21
MONO Output
A
O
SPKOUT+
22
22
Speaker Positive Output
A
O
VSSSPK
23
23
Speaker Ground
A
O
NC
VSSSPK
24
24
Speaker Ground
A
O
SPKOUT-
25
25
Speaker Negative Output
A
O
VDDSPK
26
26
Speaker Supply
A
I
VDDSPK
27
27
Speaker Supply
A
I
AUX
28
28
Auxiliary Input
A
I
Table 1: Pin Description for SSOP and QFN Packages
Notes
1.
2.
The 32-QFN package includes a bulk ground connection pad on the underside of the chip. This bulk ground
should be thermally tied to the PCB, and electrically tied to the analog ground.
Unused analog input pins should be left as no-connection.
3.
Under all condition when digital pins are not used they should be tied to ground.
4.
Pins designated as NC (Not Internally Connected) should be left as no-connection
NAU8812 Datasheet Rev2.9
Page 4 of 110
Jun, 2018
NAU8812 Datasheet Rev2.9
Page 5 of 110
MICBIASEN[4]
(0x2F)
R
R
VDDA
MICROPHONE
BIAS
PLLEN[5]
(0x01)
PMICBSTGAIN[6:4]
(0x2F) = 000
PLL
PMICBSTGAIN[6:4]
(0x2F)
Σ
NC
CONTROL
INTERFACE
ADCEN[0]
(0x02)
ADC
VSSA
VSSA
LIMITER
DIGITAL AUDIO
INTERFACE
NOTCH
FILTER
ALC
HPF
DACEN[0]
(0x03)
DAC
(Sidetone) BYPASS
VDDSPK
VREF
MICBIAS
PMICPGA
PGAMT[6]
(0x2D)
PGABST[8]
(0x2F)
AUX BYPASS
VSSSPK
VREF
PGAGAIN
(0x2D)
AUXBSTGAIN[2:0]
(0x2F) = 000
BSTEN[4]
(0x02)
VSSD
NMICPGA[1]
(0x2C)
-12 dB to
+35.25 dB
AUXBSTGAIN[2:0]
(0x2F)
VDDC
AUXPGA[2]
(0x2C)
VDDB
PGAEN[2]
(0x02)
AUXEN[6]
(0x01)
VDDSPK
VREF
AUXM[3]
(0x2C)
20k
VSSSPK
MIC+
MIC-
AUX
20k
AUXM[3]
(0x2C)
BYPSPK[1]
(0x32)
DACSPK[0]
(0X32)
AUXSPK[5]
(0x32)
BYPMOUT[1]
(0x38)
DACMOUT[0]
(0x38)
AUXMOUT[2]
(0x38)
SPKGAIN[5:0]
(0x36)
SPKMXEN[2]
(0x03)
Σ
Σ
MOUTMXEN[3]
(0x03)
SPK3V[2]
(0x31)
MOUT3V[3]
(0x31)
1.5X
1.0X
1.5X
1.0X
1.5X
1.0X
SPKOUT-
SPKOUT+
MOUT
4.
BLOCK DIAGRAM
DACIN
VDDA
BCLK
FS
ADCOUT
SO
SCLK
SDIO
MODE
CSb/GPIO
MCLK
Figure 3: NAU8812 General Block Diagram
Jun, 2018
5.
Table of Contents
1.
GENERAL DESCRIPTION ............................................................................................................................. 1
2.
FEATURES .................................................................................................................................................... 1
PIN CONFIGURATION ............................................................................................................................................. 2
3.
PIN DESCRIPTION ........................................................................................................................................ 4
4.
BLOCK DIAGRAM ......................................................................................................................................... 5
5.
TABLE OF CONTENTS ................................................................................................................................. 6
6.
LIST OF FIGURES ....................................................................................................................................... 10
7.
LIST OF TABLES ........................................................................................................................................ 12
8.
ABSOLUTE MAXIMUM RATINGS ............................................................................................................... 13
9.
OPERATING CONDITIONS ......................................................................................................................... 13
10.
ELECTRICAL CHARACTERISTICS............................................................................................................. 14
11.
FUNCTIONAL DESCRIPTION ..................................................................................................................... 17
11.1. INPUT PATH ......................................................................................................................................... 17
11.1.1. The Single Ended Auxiliary Input (AUX) ...................................................................................... 17
11.1.2. The differential microphone input (MIC- & MIC+ pins) ................................................................ 19
11.1.2.1.
Positive Microphone Input (MIC+) ........................................................................................ 20
11.1.2.2.
Negative Microphone Input (MIC-) ....................................................................................... 20
11.1.2.3. PGA Gain Control ................................................................................................................. 21
11.1.3. PGA Boost Stage .......................................................................................................................... 21
11.2. MICROPHONE BIASING ...................................................................................................................... 23
11.3. ADC DIGITAL FILTER BLOCK ............................................................................................................. 24
11.3.1. Programmable High Pass Filter (HPF) ......................................................................................... 25
11.3.2. Programmable Notch Filter (NF) .................................................................................................. 25
11.3.3. Digital ADC Gain Control .............................................................................................................. 26
11.4. PROGRAMMABLE GAIN AMPLIFIER (PGA) ....................................................................................... 26
11.4.1. Automatic level control (ALC) ...................................................................................................... 26
11.4.1.1.
Normal Mode ......................................................................................................................... 29
11.4.1.2. ALC Hold Time (Normal mode Only) ....................................................................................... 29
11.4.2. Peak Limiter Mode ........................................................................................................................ 30
11.4.3. Attack Time ................................................................................................................................... 31
11.4.4. Decay Times ................................................................................................................................. 31
11.4.5. Noise gate (normal mode only) .................................................................................................... 31
11.4.6. Zero Crossing ............................................................................................................................... 32
11.5. DAC DIGITAL FILTER BLOCK ............................................................................................................. 33
11.5.4. Hi-Fi DAC De-Emphasis and Gain Control................................................................................... 34
11.5.5. Digital DAC Output Peak Limiter .................................................................................................. 35
11.5.6. Volume Boost ............................................................................................................................... 35
11.6. ANALOG OUTPUTS.............................................................................................................................. 36
11.6.1. Speaker Mixer Outputs ................................................................................................................. 36
11.6.2. MONO Mixer Output...................................................................................................................... 37
11.6.3. Unused Analog I/O ........................................................................................................................ 38
11.7. GENERAL PURPOSE I/O ..................................................................................................................... 39
11.7.1. Slow Timer Clock .......................................................................................................................... 40
NAU8812 Datasheet Rev2.9
Page 6 of 110
Jun, 2018
11.7.2. Jack Detect ................................................................................................................................... 40
11.7.3. Thermal Shutdown ....................................................................................................................... 41
11.8. CLOCK GENERATION BLOCK ............................................................................................................ 42
11.9. CONTROL INTERFACE ........................................................................................................................ 46
11.9.1. SPI Serial Control ......................................................................................................................... 46
11.9.1.1.
16-bit Write Operation (default) ............................................................................................ 47
11.9.1.2.
24-bit Write Operation .......................................................................................................... 47
11.9.1.3. 32-bit Read Operation........................................................................................................... 48
2
11.9.2. 2-WIRE Serial Control Mode (I C Style Interface) ........................................................................ 48
11.9.2.1.
2-WIRE Protocol Convention ............................................................................................... 49
11.9.2.2.
2-WIRE Write Operation ....................................................................................................... 49
11.9.2.3. 2-WIRE Read Operation ........................................................................................................ 50
11.10. DIGITAL AUDIO INTERFACES............................................................................................................. 51
11.10.1. Right Justified audio data ............................................................................................................ 52
11.10.2. Left Justified audio data ............................................................................................................... 53
2
11.10.3. I S audio data ................................................................................................................................ 54
11.10.4. PCM audio data ............................................................................................................................. 55
11.10.5. PCM Time Slot audio data ............................................................................................................ 56
11.10.6. Companding ................................................................................................................................. 57
11.11. POWER SUPPLY .................................................................................................................................. 58
11.11.1. Power-On Reset ............................................................................................................................ 58
11.11.2. Power Related Software Considerations ..................................................................................... 58
11.11.3. Software Reset.............................................................................................................................. 59
11.11.4. Power Up/Down Sequencing ........................................................................................................ 59
11.11.5. Reference Impedance (REFIMP) and Analog Bias ...................................................................... 60
11.11.6. Power Saving ................................................................................................................................ 60
11.11.7. Estimated Supply Currents .......................................................................................................... 61
12.
REGISTER DESCRIPTION .......................................................................................................................... 62
12.1. SOFTWARE RESET ............................................................................................................................. 64
12.2. POWER MANAGEMENT REGISTERS ................................................................................................. 64
12.2.1. Power Management 1 ................................................................................................................... 64
12.2.2. Power Management 2 ................................................................................................................... 65
12.2.3. Power Management 3 ................................................................................................................... 65
12.3. AUDIO CONTROL REGISTERS ........................................................................................................... 65
12.3.1. Audio Interface Control ................................................................................................................ 65
12.3.2. Audio Interface Companding Control .......................................................................................... 66
12.3.3. Clock Control Register ................................................................................................................. 67
12.3.4. Audio Sample Rate Control Register ........................................................................................... 68
12.3.5. GPIO Control Register .................................................................................................................. 69
12.3.6. DAC Control Register ................................................................................................................... 69
12.3.7. DAC Gain Control Register .......................................................................................................... 70
12.3.8. ADC Control Register ................................................................................................................... 70
12.3.9. ADC Gain Control Register .......................................................................................................... 71
12.4. DIGITAL TO ANALOG CONVERTER (DAC) LIMITER REGISTERS ..................................................... 72
12.5. NOTCH FILTER REGISTERS ............................................................................................................... 73
12.6. AUTOMATIC LEVEL CONTROL REGISTER ........................................................................................ 74
12.6.1. ALC1 REGISTER ........................................................................................................................... 74
NAU8812 Datasheet Rev2.9
Page 7 of 110
Jun, 2018
12.6.2. ALC2 REGISTER ........................................................................................................................... 75
12.6.3. ALC3 REGISTER ........................................................................................................................... 76
12.7. NOISE GAIN CONTROL REGISTER .................................................................................................... 77
12.8. PHASE LOCK LOOP (PLL) REGISTERS ............................................................................................. 78
12.8.1. PLL Control Registers .................................................................................................................. 78
12.8.2. Phase Lock Loop Control (PLL) Registers .................................................................................. 78
12.9. INPUT, OUTPUT, AND MIXERS CONTROL REGISTER....................................................................... 79
12.9.1. Attenuation Control Register ....................................................................................................... 79
12.9.2. Input Signal Control Register ....................................................................................................... 79
12.9.3. PGA Gain Control Register .......................................................................................................... 80
12.9.4. ADC Boost Control Registers ...................................................................................................... 81
12.9.5. Output Register ............................................................................................................................ 81
12.9.6. Speaker Mixer Control Register ................................................................................................... 82
12.9.7. Speaker Gain Control Register .................................................................................................... 82
12.9.8. MONO Mixer Control Register ...................................................................................................... 83
12.9.9. Trimming Register ........................................................................................................................ 83
12.10. PCM TIME SLOT CONTROL & ADCOUT IMPEDANCE OPTION CONTROL ....................................... 84
12.10.1. PCM1 TIMESLOT CONTROL REGISTER ...................................................................................... 84
12.10.2. PCM2 TIMESLOT CONTROL REGISTER ...................................................................................... 84
12.11. REGISTER ID (READ ONLY) ................................................................................................................ 85
12.11.1. Device revision register................................................................................................................ 85
12.11.2. 2-WIRE ID Register (READ ONLY) ................................................................................................ 85
12.11.3. Additional ID (READ ONLY) .......................................................................................................... 85
12.12. Reserved .............................................................................................................................................. 86
12.13. OUTPUT Driver Control Register ........................................................................................................ 86
12.14. AUTOMATIC LEVEL CONTROL ENHANCED REGISTER ................................................................... 87
12.14.1. ALC1 Enhanced Register ............................................................................................................. 87
12.14.2. ALC Enhanced 2 Register ............................................................................................................ 87
12.15. MISC CONTROL REGISTER ................................................................................................................ 88
12.16. Output Tie-Off REGISTER ................................................................................................................... 89
12.17. ALC PEAK-TO-PEAK READOUT REGISTER ...................................................................................... 89
12.18. ALC PEAK READOUT REGISTER ....................................................................................................... 89
12.19. AUTOMUTE CONTROL AND STATUS READ REGISTER ................................................................... 90
12.20. Output Tie-off Direct Manual Control REGISTER ............................................................................... 90
13.
CONTROL INTERFACE TIMING DIAGRAM ................................................................................................ 91
13.1. SPI WRITE TIMING DIAGRAM .............................................................................................................. 91
13.2. SPI READ TIMING DIAGRAM ............................................................................................................... 91
13.3. 2-WIRE TIMING DIAGRAM ................................................................................................................... 93
14.
AUDIO INTERFACE TIMING DIAGRAM ...................................................................................................... 94
14.1. AUDIO INTERFACE IN SLAVE MODE .................................................................................................. 94
14.2. AUDIO INTERFACE IN MASTER MODE ............................................................................................... 94
14.3. PCM AUDIO INTERFACE IN SLAVE MODE (PCM Audo Data) ............................................................. 95
14.4. PCM AUDIO INTERFACE IN MASTER MODE (PCM Audo Data) .......................................................... 95
14.5. PCM AUDIO INTERFACE IN SLAVE MODE (PCM Time Slot Mode ) .................................................... 96
14.6. PCM AUDIO INTERFACE IN MASTER MODE (PCM Time Slot Mode ) ................................................. 96
14.7.
System Clock (MCLK) Timing Diagram........................................................................................ 97
14.8. µ-LAW ENCODE DECODE CHARACTERISTICS ................................................................................. 98
14.9. A-LAW ENCODE DECODE CHARACTERISTICS ................................................................................ 99
NAU8812 Datasheet Rev2.9
Page 8 of 110
Jun, 2018
14.10. µ-LAW / A-LAW CODES FOR ZERO AND FULL SCALE ................................................................... 100
14.11. µ-LAW / A-LAW OUTPUT CODES (DIGITAL MW) ............................................................................. 100
15.
DIGITAL FILTER CHARACTERISTICS...................................................................................................... 101
16.
TYPICAL APPLICATION ........................................................................................................................... 103
17.
PACKAGE SPECIFICATION ..................................................................................................................... 105
17.1. 28 Pin SSOP32-Pin QFN .................................................................................................................... 105
18.
ORDERING INFORMATION ...................................................................................................................... 107
19.
REVISION HISTORY.................................................................................................................................. 108
IMPORTANT NOTICE .......................................................................................................................................... 110
NAU8812 Datasheet Rev2.9
Page 9 of 110
Jun, 2018
6.
List of Figures
Figure 1: 28-Pin SSOP Package .............................................................................................................................. 2
Figure 2: 32-Pin QFN Package................................................................................................................................. 3
Figure 3: NAU8812 General Block Diagram.............................................................................................................. 5
Figure 4: Auxiliary Input Circuit Block Diagram with AUXM[3] = 0 ........................................................................... 18
Figure 5: Auxiliary Input Circuit Block Diagram with AUXM[3] = 1 ........................................................................... 18
Figure 6: Input PGA Circuit Block Diagram ............................................................................................................. 19
Figure 7: Boost Stage Block Diagram ..................................................................................................................... 21
Figure 8: Microphone Bias Schematic .................................................................................................................... 23
Figure 9: ADC Digital Filter Path Block Diagram ..................................................................................................... 24
Figure 10: ALC Block Diagram ............................................................................................................................... 27
Figure 11: ALC Response Graph ........................................................................................................................... 27
Figure 12: ALC Normal Mode Operation................................................................................................................. 29
Figure 13: ALC Hold Time ...................................................................................................................................... 30
Figure 14: ALC Limiter Mode Operations ................................................................................................................ 30
Figure 15: ALC Operation with Noise Gate disabled ............................................................................................... 31
Figure 16: ALC Operation with Noise Gate Enabled ............................................................................................... 32
Figure 17: DAC Digital Filter Path........................................................................................................................... 33
Figure 18: DAC Digital Limiter Control .................................................................................................................... 35
Figure 19: Speaker and MONO Analogue Outputs ................................................................................................. 36
Figure 20: Tie-off Options for the Speaker and MONO output Pins ......................................................................... 38
Figure 21: PLL and Clock Select Circuit ................................................................................................................. 42
Figure 22: Register write operation using a 16-bit SPI Interface .............................................................................. 47
Figure 23: Register Write operation using a 24-bit SPI Interface ............................................................................. 48
Figure 24: Register Read operation through a 32-bit SPI Interface.......................................................................... 48
Figure 25: Valid START Condition .......................................................................................................................... 49
Figure 26: Valid Acknowledge ................................................................................................................................ 49
Figure 27: Valid STOP Condition............................................................................................................................ 49
Figure 28: Slave Address Byte, Control Address Byte, and Data Byte ..................................................................... 49
Figure 29: Byte Write Sequence ............................................................................................................................. 50
Figure 30: 2-Wire Read Sequence ......................................................................................................................... 50
Figure 31: Right Justified Audio Interface (Normal Mode) ....................................................................................... 52
Figure 32: Right Justified Audio Interface (Special mode) ....................................................................................... 52
Figure 33: Left Justified Audio Interface (Normal Mode).......................................................................................... 53
Figure 34: Left Justified Audio Interface (Special mode) ......................................................................................... 53
Figure 35: I2S Audio Interface (Normal Mode) ........................................................................................................ 54
Figure 36: I2S Audio Interface (Special mode)........................................................................................................ 54
Figure 37: PCM Mode Audio Interface (Normal Mode) ............................................................................................ 55
NAU8812 Datasheet Rev2.9
Page 10 of 110
Jun, 2018
Figure 38: PCM Mode Audio Interface (Special mode)............................................................................................ 55
Figure 39: PCM Time Slot Mode (Time slot = 0) (Normal Mode) ............................................................................. 56
Figure 40: PCM Time Slot Mode (Time slot = 0) (Special mode) ............................................................................. 56
Figure 41: The Programmable ADCOUT Pin .......................................................................................................... 84
Figure 42: SPI Write Timing Diagram ..................................................................................................................... 91
Figure 43: SPI Read Timing Diagram ..................................................................................................................... 91
Figure 44: 2-Wire Timing Diagram .......................................................................................................................... 93
Figure 45: Audio Interface Slave Mode Timing Diagram ......................................................................................... 94
Figure 46: Audio Interface in Master Mode Timing Diagram .................................................................................... 94
Figure 47: PCM Audio Interface Slave Mode Timing Diagram ................................................................................. 95
Figure 48: PCM Audio Interface Slave Mode Timing Diagram ................................................................................. 95
Figure 49: PCM Audio Interface Slave Mode (PCM Time Slot Mode )Timing Diagram ............................................ 96
Figure 50: PCM Audio Interface Master Mode (PCM Time Slot Mode )Timing Diagram ........................................... 96
Figure 51: MCLK Timing Diagram .......................................................................................................................... 97
Figure 52: DAC Filter Frequency Response.......................................................................................................... 102
Figure 53: ADC Filter Frequency Response.......................................................................................................... 102
Figure 54: DAC Filter Ripple................................................................................................................................. 102
Figure 55: ADC Filter Ripple................................................................................................................................. 102
Figure 56: Application Diagram 28-Pin SSOP ....................................................................................................... 103
Figure 57: Application Diagram for 32-Pin QFN .................................................................................................... 104
NAU8812 Datasheet Rev2.9
Page 11 of 110
Jun, 2018
7.
List of Tables
Table 1: Pin Description for SSOP and QFN Packages ............................................................................................ 4
Table 2: Register associated with Input PGA Contro............................................................................................... 19
Table 3: Microphone Non-Inverting Input Impedances ............................................................................................. 20
Table 4: Microphone Inverting Input Impedances.................................................................................................... 20
Table 5: Registers associated with ALC and Input PGA Gain Control ..................................................................... 21
Table 6: Registers associated with PGA Boost Stage Control ................................................................................. 22
Table 7: Register associated with Microphone Bias ................................................................................................ 23
Table 8: Microphone Bias Voltage Control .............................................................................................................. 24
Table 9: Register associated with ADC................................................................................................................... 25
Table 10: High Pass Filter Cut-off Frequencies (HPFAM=1) ................................................................................... 25
Table 11: Registers associated with Notch Filter Function ...................................................................................... 25
Table 12: Equations to Calculate Notch Filter Coefficients ...................................................................................... 26
Table 13: Register associated with ADC Gain ........................................................................................................ 26
Table 14: Registers associated with ALC Control ................................................................................................... 28
Table 15: ALC Maximum and Minimum Gain Values .............................................................................................. 28
Table 16: Registers associated with DAC Gain Control........................................................................................... 33
Table 17: Speaker Output Controls ........................................................................................................................ 37
Table 18: MONO Output Controls........................................................................................................................... 37
Table 19: General Purpose Control ........................................................................................................................ 40
Table 20: Jack Insert Detect mode ......................................................................................................................... 40
Table 21: Jack Insert Detect controls ...................................................................................................................... 41
Table 22: Thermal Shutdown ................................................................................................................................. 41
Table 23: Registers associated with PLL ................................................................................................................ 43
Table 24: Registers associated with PLL ................................................................................................................ 44
Table 25: PLL Frequency Examples ....................................................................................................................... 45
Table 26: Control Interface Selection...................................................................................................................... 46
Table 27: Standard Interface modes ....................................................................................................................... 51
Table 28: Audio Interface Control Registers............................................................................................................ 51
Table 29: Companding Control ............................................................................................................................... 57
Table 30: Power up sequence ................................................................................................................................ 60
Table 31: Power down Sequence ........................................................................................................................... 60
Table 32: Registers associated with Power Saving ................................................................................................. 61
Table 33: VDDA 3.3V Supply Current ..................................................................................................................... 61
Table 34: SPI Timing Parameters ........................................................................................................................... 92
Table 35: 2-WireTiming Parameters ....................................................................................................................... 93
Table 36: Audio Interface Timing Parameters ......................................................................................................... 97
Table 37: MCLK Timing Parameter ........................................................................................................................ 97
NAU8812 Datasheet Rev2.9
Page 12 of 110
Jun, 2018
8.
ABSOLUTE MAXIMUM RATINGS
CONDITION
MIN
MAX
Units
VDDB, VDDC, VDDA supply voltages
-0.3
+3.63
V
VDDSPK supply voltage (MOUT=0, SPKBST=0)
-0.3
+3.63
V
VDDSPK supply voltage (MOUTBST=1, SPKBST=1)
-0.3
+5.50
V
Core Digital Input Voltage range
VSSD – 0.3
VDDC + 0.30
V
Buffer Digital Input Voltage range
VSSD – 0.3
VDDB + 0.30
V
Analog Input Voltage range
VSSA – 0.3
VDDA + 0.30
V
Industrial operating temperature
-40
+85
0
C
Storage temperature range
-65
+150
0
C
CAUTION: Do not operate at or near the maximum ratings listed for extended period of time. Exposure to such
conditions may adversely influence product reliability and result in failures not covered by warranty. These devices
are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
9.
OPERATING CONDITIONS
Condition
Symbol
Min Value
Analogue supplies range
VDDA
2.50
Digital supply range (Buffer)
VDDB
1.71
Digital supply range (Core)
VDDC
VDDSPK
Speaker supply
Ground
VSSD, VSSA,
VSSSPK
Typical
Value
Max Value
Units
1
3.60
V
2
3.60
V
1.71
2
3.60
V
2.50
5.50
V
0
V
Note:
1. VDDA must be ≥ VDDC.
2. VDDB must be ≥ VDDC.
NAU8812 Datasheet Rev2.9
Page 13 of 110
Jun, 2018
10. ELECTRICAL CHARACTERISTICS
o
VDDC = 1.8V, VDDA = VDDB = VDDSPK = 3.3V (VDDSPK = 1.5*VDDA when Boost), TA = +25 C, 1kHz signal, fs =
48kHz, 24-bit audio data unless otherwise stated.
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNIT
Analogue to Digital Converter (ADC)
Full scale input signal
Signal to Noise Ratio
1
2
Total Harmonic Distortion
3
VINFS
PGABST = 0dB
PGAGAIN = 0dB
SNR
Gain = 0dB, A-weighted
THD
Input = -1dBFS, Gain = 0dB
87
1.0
0
VRMS
dBV
91
dB
-79
-65
dB
Digital to Analogue Converter (DAC) to MONO output (all data measured with 10kΩ / 50pF load)
Full Scale output signal
MOUTBST=0
1.0x
(VREF)
MOUTBST=1
1.5 x
VREF
1
VRMS
SNR
A-weighted (ADC/DAC oversampling rate
of 128)
THD
RL = 10 kΩ; -1.0dBfs
Full-scale Input Signal Level
VINFS
Gain = 0dB
1
0
VRMS
dBV
Input Resistance
RAUX
AUXM=0
20
kΩ
Input Capacitance
CAUX
10
pF
1
0
VRMS
dBV
Signal to Noise Ratio
2
Total Harmonic Distortion
3
90
93
-84
dB
-70
dB
Auxiliary Analogue Input (AUX)
1
Microphone Inputs (MICN & MICP) and MIC Input Programmable Gain Amplifier (PGA)
PGABST = 0dB
1
Full-scale Input Signal Level
VINFS
PGAGAIN = 0dB
Programmable input PGA gain
-12
Programmable Gain Step Size
35.25
Guaranteed monotonic
PGABST = 0
Programmable Boost PGA gain
0.75
Auxiliary Input resistance
RAUX
Positive Microphone Input
resistance
RMIC+
Input Capacitance
CMIC
dB
20
Mute Attenuation
PGA equivalent output noise
dB
0
PGABST = 1
dB
100
dB
0 to 20kHz,
Gain set to 35.25dB
110
µV
PGA Gain = 35.25dB
1.6
kΩ
PGA Gain = 0dB
47
kΩ
PGA Gain = -12dB
75
kΩ
PMICPGA = 1
94
kΩ
10
pF
Speaker Output PGA
Programmable Gain
Programmable Gain Step Size
-57
6
Guaranteed monotonic
1
o
VDDC = 1.8V, VDDA = VDDB = VDDSPK = 3.3V (VDDSPK = 1.5*VDDA when Boost), TA = +25 C, 1kHz signal, fs =
48kHz, 24-bit audio data unless otherwise stated.
NAU8812 Datasheet Rev2.9
Page 14 of 110
Jun, 2018
dB
dB
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
BTL Speaker Output (SPKOUT+, SPKOUT- with 8Ω bridge tied load)
SPKBST = 0
VDDSPK = VDDA
7
Full scale output
SPKBST = 1
VDDSPK = 1.5 * VDDA
Output Power
PO
Signal to Noise Ratio
SNR
PSRR
VDDA / 3.3
VRMS
(VDDA / 3.3) * 1.5
90
dB
VDDSPK = 1.5*VDDA
RL = 8Ω
90
dB
-63
dB
-56
dB
-60
dB
-61
dB
PO =1W
-34
dB
VDDSPK = 3V, SPKBST = 0
50
dB
VDDSPK = 1.5*VDDA, SPKBST = 1
50
dB
VDDA / 3.3
VRMS
90
dB
-84
dB
-85
dB
(MICBIASV = 0)
0.9*
VDDA
V
(MICBIASV = 1)
0.65*
VDDA
V
3
mA
MICBIASM = 0
(1kHz to 20kHz)
14
nV/√Hz
MICBIASM = 1
(1kHz to 20kHz)
4
nV/√Hz
VDDSPK=3.3V
PO =360mW
RL = 8Ω
VDDSPK =
1.5*VDDA
PO =800mW
Power Supply Rejection Ratio
(50Hz - 22kHz)
UNIT
VDDSPK = 3.3V
RL = 8Ω
PO =400mW
THD
MAX
Output power is very closely correlated with THD;
see below
PO =180mW
Total Harmonic Distortion
TYP
Headphone’ output (SPKOUTP, SPKOUTN with resistive load to ground)
Full scale output
7
Signal to Noise Ratio
SNR
Total Harmonic Distortion
THD
A-weighted
Po = 20mW
RL=16Ω
Po = 20mW
RL=32Ω
VDDSPK=3.3V
Microphone Bias
Bias Voltage
VMICBIAS
Bias Current Source
IMICBIAS
Output Noise Voltage
VN
Automatic Level Control (ALC)/Limiter – ADC only
Target Record Level
-28.5
Programmable Gain
-12
Programmable Gain Step Size
Gain Hold Time
4, 6
Guaranteed Monotonic
tHOLD
NAU8812 Datasheet Rev2.9
MCLK=12.288MHz
Page 15 of 110
-6
dB
35.25
dB
dB
0.75
0 / 2.67 / …/ 43691
(time doubles with each
step)
Jun, 2018
ms
o
VDDC = 1.8V, VDDA = VDDB = VDDSPK = 3.3V (VDDSPK = 1.5*VDDA when Boost), TA = +25 C, 1kHz signal, fs =
48kHz, 24-bit audio data unless otherwise stated.
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNIT
Automatic Level Control (ALC)/Limiter – ADC only
Gain Ramp-Up (Decay) Time
5, 6
Gain Ramp-Down (Attack) Time
5, 6
tDCY
tATK
ALC Mode
ALCM=0
MCLK=12.288MHz
3.3 / 6.6 / 13.1 / … / 3360
(time doubles every step)
ms
Limiter Mode
ALCM=1
MCLK=12.288MHz
0.73 / 1.45 / 2.91 / … /
744 (time doubles every
step)
ms
ALC Mode
ALCM=0
MCLK=12.288MHz
0.83 / 1.66 / 3.33 / … /
852 (time doubles every
step)
ms
Limiter Mode
ALCM=1
MCLK=12.288MHz
0.18 / 0.36 / 0.73 / … /
186 (time doubles every
step)
ms
Digital Input / Output
0.7 ×
VDDB
Input HIGH Level
VIH
Input LOW Level
VIL
Output HIGH Level
VOH
IOL = 1mA
Output LOW Level
VOL
IOH = -1mA
V
0.3 ×
VDDB
0.9 ×
VDDB
V
0.1 x
VDDB
Notes
1. Full Scale is relative to VDDA (FS = VDDA/3.3.). Input level to AUX is limited to a maximum of -3dB so that
THD+N performance will not be reduced.
2. Signal-to-noise ratio (dB) - SNR is a measure of the difference in level between the full-scale output and the
output with no signal applied. (No Auto-zero or Automute function is employed in achieving these results).
3. THD+N (dB) - THD+N are a ratio, of the rms values, of (Noise + Distortion)/Signal.
4. Hold Time is the length of time between a signal detected being too quiet and beginning to ramp up the gain. It
does not apply to ramping down the gain when the signal is too loud, which happens without a delay.
5. Ramp-up and Ramp-Down times are defined as the time it takes to change the PGA gain by 6dB of its gain
range.
6. All hold, ramp-up and ramp-down times scale proportionally with MCLK
7. The maximum output voltage can be limited by the speaker power supply. If MOUTBST or SPKBST is, set then
VDDSPK should be 1.5xVDDA to prevent clipping taking place in the output stage (when PGA gains are set to 0dB).
NAU8812 Datasheet Rev2.9
Page 16 of 110
V
Jun, 2018
V
11. FUNCTIONAL DESCRIPTION
The NAU8812 is a MONO Audio CODEC with very robust ADC and DAC. The device provides one single ended
auxiliary input (AUX pin) and one differential microphone input (MIC- & MIC+ pins). The auxiliary input (AUX) can be
configured to sum multiple signals into a single input. It has three different amplification paths with a total gain of up
to +55.25dB. The differential input also has amplification paths similar to auxiliary input.
The device also has an internal configurable biasing circuit for biasing the microphone, which in turn reduces external
components. The PGA output has programmable ADC gain. An advanced Sigma Delta DAC is used along with
digital decimation and interpolation filters to give high quality audio at sample rates from 8 kHz to 48 kHz. The Digital
Filter blocks include ADC high pass filters, and Notch filter. The device has two output mixers, one for MONO output
and the other for the speaker output. It also has one input mixer.
The NAU8812 has two different types of serial control interface 2-Wire and SPI for device control. 2-Wire and SPI
2
are hardware selectable through MODE pin on the device. The device also supports I S, PCM time slotting, Left
Justified and Right Justified for audio interface.
The device can operate as a master or slave device. It can operate with sample rates ranging from 8 kHz to 48 kHz,
depending on the values of MCLK and its prescaler. The NAU8812 includes a PLL block, where it takes the external
clock (MCLK pin) to generate other clocks for the audio data transfer such as Bit clock (BCLK), Frame sync (FS), and
2
I S clocks. The PLL can also configure a separate programmable clock for the use in the system through CSb/GPIO
pin. The power control registers help save power by controlling the major individual functional blocks of the NAU8812.
11.1.
INPUT PATH
The NAU8812 has two different types of microphone inputs single ended and differential.
Figure 3 shows the
different paths that the input signals can take.
All inputs are maintained at a DC bias at approximately half of the VDDA supply voltage. Connections to these inputs
should be AC-coupled by means of DC blocking capacitors suitable for the device application.
11.1.1. The Single Ended Auxiliary Input (AUX)
The single ended auxiliary input (AUX) has three different paths to MONO output (MOUT).
Directly connected to the MONO Mixer or Speaker Mixer to MOUT or SPKOUT+ and SPKOUT- respectively
Connect through the PGA Boost Mixer which has a range of -12dB to +6dB
Connect through both the input PGA Gain (range of -12dB to +35.25 dB) and PGA Boost Mixer (range of 0db or
+20dB)
NAU8812 Datasheet Rev2.9
Page 17 of 110
Jun, 2018
The last two paths above go through the ADC filters where the ALC loop controls the amplitude of the input signal.
The device also has an internal configurable biasing circuit for biasing the microphone, reducing external
components.
An internal inverting operational amplifier circuit allows the auxiliary input pin to connect multiple signals for mixing.
This can be achieved by setting AUXM[3] address (0x2C) to LOW. The combination of the 20k ohm resistors can
vary due to process variation in the gain stage. The block can also be configured to be used as a buffer by setting
AUXM[3] address (0x2C) to HIGH. The internal inverting circuit block can be enable/disable by setting AUXEN[6]
address (0x01).
AUXM[3]
(0x2C)
R
20k
20k
AUX
Pin
Output to
PGA Gain
MONO Mixer
Speaker Mixer
AUXM[3]
(0x2C)
VREF
AUXEN[6]
(0x01)
Figure 4: Auxiliary Input Circuit Block Diagram with AUXM[3] = 0
AUXM[3]
(0x2C)
R
R
20k
20k
R
AUX
Pin
Output to
PGA Gain
MONO Mixer
Speaker Mixer
AUXM[3]
(0x2C)
VREF
AUXEN[6]
(0x01)
Figure 5: Auxiliary Input Circuit Block Diagram with AUXM[3] = 1
NAU8812 Datasheet Rev2.9
Page 18 of 110
Jun, 2018
11.1.2. The differential microphone input (MIC- & MIC+ pins)
The NAU8812 features a low-noise, high common mode rejection ratio (CMRR), differential microphone inputs (MIC& MIC+ pins) which are connected to a PGA Gain stage. The differential input structure is essential in noisy digital
systems where amplification of low-amplitude analog signals is necessary such as notebooks and PDAs. When
properly employed, the differential input architecture offers an improved power-supply rejection ratio (PSRR) and
higher ground noise immunity.
PGAGAIN[5:0]
(0x2D)
AUXPGA[2]
(0x2C)
From AUX
stage
AUXPGA[2]
(0x2C)
R
R
NMICPGA[1]
(0x2C)
NMICPGA[1]
(0x2C)
R
MIC-
R
PGAGAIN[5:0]
(0x2D)
PMICPGA[0]
(0x2C)
MIC+
To PGA
Boost
R
-12 dB to +35.25 dB
VREF
PGAGAIN[5:0]
(0x2D)
Figure 6: Input PGA Circuit Block Diagram
Bit(s)
Addr
Parameter
Programmable Range
PMICPGA[0]
0x2C
Positive Microphone to PGA
0 = Input PGA Positive terminal to VREF
1 = Input PGA Positive terminal to MICP
NMICPGA[1]
0x2C
Negative Microphone to PGA
0 = MICN not connected to input PGA
1 = MICN to input PGA Negative terminal.
Table 2: Register associated with Input PGA Contro
NAU8812 Datasheet Rev2.9
Page 19 of 110
Jun, 2018
11.1.2.1.
Positive Microphone Input (MIC+)
The positive microphone input (MIC+) can be used as part of the differential input. It connects to the positive terminal
of the PGA gain amplifier by setting PMICPGA[0] address (0x2C) to HIGH or can be connected to VREF by setting
PMICPGA[0] address (0x2C) to LOW.
When the associated control bit is set logic = 1, the MIC+ pin is connected to a resistor of approximately 1kΩ which is
tied to VREF. The purpose of the tie to VREF is to reduce any pop or click sound by keeping the DC level of the
MIC+ pin close to VREF at all times.
Note: In single ended applications where the MIC+ input is used without using MIC-, the PGA gain values will be
valid only if the MIC- pin is terminated to a low impedance signal point. This termination should normally be an AC
coupled path to signal ground. This input impedance is constant regardless of the gain value. The following table
gives the nominal input impedance for this input. Impedance for specific gain values not listed in this table can be
estimated through interpolation between listed values.
MIC+ to non-inverting PGA input
Nominal Input Impedance
Gain (dB)
Impedance (kΩ)
Gain (dB)
Impedance (kΩ)
-12
-9
-6
-3
0
3
6
9
12
18
30
35.25
94
94
94
94
94
94
94
94
94
94
94
94
-12
-9
-6
-3
0
3
6
9
12
18
30
35.25
75
69
63
55
47
39
31
25
19
11
2.9
1.6
Table 3: Microphone Non-Inverting
Input Impedances
11.1.2.2.
MIC- to inverting PGA input
Nominal Input Impedance
Table 4: Microphone Inverting Input
Impedances
Negative Microphone Input (MIC-)
The negative microphone input (MIC-) has two distinctive configuration; differential input or single ended input. This
input connects to the negative terminal of the PGA gain amplifier by setting NMICPGA[1] address (0x2C) to HIGH.
When the MIC- is used as a single ended input, MIC+ should be conned to VREF by setting PMICPGA[0] address
(0x2C) bit to LOW. The AUX input signal can also be mixed with the MIC- input signal by setting AUXPGA[2]
address (0x2C) to HIGH.
NAU8812 Datasheet Rev2.9
Page 20 of 110
Jun, 2018
When the associated control bit NMICPGA[1] address 0X2C is set to logic = 0, the MIC- pin is connected to a resistor
of approximately 30kΩ which is tied to VREF. The purpose of the tie to VREF is to reduce any pop or click sound by
keeping the DC level of the MIC- pin close to VREF at all times. It is important for a system designer to know that the
MIC-input impedance varies as a function of the selected PGA gain. This is normal and expected for a difference
amplifier type topology. The above table gives the nominal resistive impedance values for this input over the possible
gain range. Impedance for specific gain values not listed in this table can be estimated through interpolation between
listed values.
11.1.2.3.
PGA Gain Control
The PGA amplification is common to all three input pins MIC-, MIC+, AUX, and enabled by PGAEN[2] address
(0x02). It has a range of -12dB to +35.25dB in 0.75dB steps, controlled by PGAGAIN[5:0] address (0x2D). Input
PGA gain will not be used when ALC is enabled using ALCEN[8] address (0x20).
Addr
Bit 8
Bit 7
Bit 6
Bit5
0x2D
0
PGAZC
PGAMT
0x20
ALCEN
0
0
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
PGAGAIN[5:0]
ALCMXGAIN[2:0]
Default
0x010
ALCMNGAIN[2:0]
0x038
Table 5: Registers associated with ALC and Input PGA Gain Control
11.1.3.
PGA Boost Stage
The boost stage has three inputs connected to the PGA Boost Mixer. All three inputs can be individually connected
or disconnected from the PGA Boost Mixer. The boost stage can be enabled by setting BSTEN[4] address (0x02) to
HIGH. The following figure shows the PGA Boost stage.
AUXBSTGAIN[2:0]
(0x2F)
Output from
AUX stage
PGABST[8] PGAMT[6]
(0x2F)
(0x2D)
Output from
PGA Gain
To ADC
PMICBSTGAIN[6:4]
(0x2F)
MIC+
Pin
Figure 7: Boost Stage Block Diagram
NAU8812 Datasheet Rev2.9
Page 21 of 110
Jun, 2018
The signal from AUX stage can be amplified at the PGA Boost stage before connecting to the Boost Mixer by setting
a binary value from “001” - “111” to AUXBSTGAIN[2:0] address (0x2F). The path is disconnected by setting “000” to
the AUXBSTGAIN bits.
Signal from PGA stage to the PGA Boost Mixer is disconnected or muted by setting PGAMT[6] address (0x2D) to
HIGH. In this path the PGA boost can be a fixed value of +20dB or 0dB, controlled by the PGABST[8] address
(0x2F) bit.
The signal from MIC+ pin to the PGA Boost Mixer is disconnected by setting ‘000’ binary value to PMICBSTGAIN[6:4]
address (0x2F) and any other combination connects the path.
Bit(s)
Addr
Parameter
Programmable Range
BSTEN[4]
0x02
Enable PGA Boost Block
0 = Boost stage OFF
1 = Boost stage ON
PGAMT[6]
0x2D
Mute control for input PGA
0=Input PGA not muted
1=Input PGA muted
AUXBSTGAIN[2:0]
0x2F
Boost AUX signal
Range: -12dB to +6dB @ 3dB increment
PMICBSTGAIN[6:4]
0x2F
Boost MIC+ signal
Range: -12dB to +6dB @ 3dB increment
PGABST[8]
0x2F
Boost PGA stage
0 = PGA output has +0dB
1 = PGA output has +20dB
Table 6: Registers associated with PGA Boost Stage Control
NAU8812 Datasheet Rev2.9
Page 22 of 110
Jun, 2018
11.2.
MICROPHONE BIASING
MICBIASM[0]
(0x28)
VREF
MICBIAS
R
R
MICBIASV[1:0]
(0x2C)
Figure 8: Microphone Bias Schematic
The MICBIAS pin is a low-noise microphone bias source for an external microphone, which can provide a maximum
of 3mA of bias current.
This DC bias voltage is suitable for powering either traditional ECM (electret) type
microphones, or for MEMS types microphones with an independent power supply pin. Seven different bias voltages
are available for optimum system performance, depending on the specific application. The microphone bias pin
normally requires an external filtering capacitor as shown on the schematic in the Application section.
The output bias can be enabled by setting MICBIASEN[4] address (0x01) to HIGH. It has various voltage values
selected by a combination of bits MICBIASM[4] address (0x3A) and MICBIASV[8:7] address (0x2C).
The low-noise feature results in greatly reduced noise in the external MICBIAS voltage by placing a resistor of
approximately 200-ohms in series with the output pin. This creates a low pass filter in conjunction with the external
microphone-bias filter capacitor, but without any additional external components.
Bit(s)
Addr
Parameter
MICBIASEN[4]
0x01
MICBIASM[4]
(0x3A)
Microphone bias mode selection
MICBIASV[8:7]
(0x2C)
Microphone bias voltage selection
Microphone bias enable
Programmable Range
0 = Disable
1 = Enable
0 = Disable
1 = Enable
Table 7: Register associated with Microphone Bias
Below are the unloaded values when MICBIASM[4] is set to 1 and 0. When loaded, the series resistor will cause the
voltage to drop, depending on the load current.
NAU8812 Datasheet Rev2.9
Page 23 of 110
Jun, 2018
Microphone Bias Voltage Control
MICBIASV[8:7]
MICBIASM[4] = 0
MICBIASM[4]= 1
0
0
0.9* VDDA
0.85* VDDA
0
1
0.65* VDDA
0.60* VDDA
1
0
0.75* VDDA
0.70* VDDA
1
1
0.50* VDDA
0.50* VDDA
Table 8: Microphone Bias Voltage Control
11.3.
ADC DIGITAL FILTER BLOCK
Figure 9: ADC Digital Filter Path Block Diagram
ADC Digital Filters
Digital
Decimator
ADC
Digital
Filter
/
Gain
High
Pass
Filter
Digital
Audio
Interface
Notch
Filter
The ADC digital filter block performs a 24-bit signal processing. The block consists of an oversampled analog sigmadelta modulator, digital decimator, digital filter, high pass filter, and a notch filter. The oversampled analog sigmadelta modulator provides a bit stream to the decimation stages and filter. The ADC coding scheme is in twoscomplement format and the full-scale input level is proportional to VDDA. With a 3.3V supply voltage, the full-scale
level is 1.0VRMS and any voltage greater than full scale may overload the ADC and cause distortion. The ADC is
enabled by setting ADCEN[0] address (0x02) bit. Polarity and oversampling rate of the ADC output signal can be
changed by ADCPL[0] address (0x0E) and ADCOS[3] address (0x0E) respectively.
Bit(s)
Addr
Parameter
Programmable Range
ADCPL[0]
0x0E
ADCOS[3]
0x0E
HPFEN[8]
0x0E
HPFAM[7]
0x0E
Audio or Application Mode
0 = Audio (1 order, fc ~ 3.7 Hz)
nd
1 = Application (2 order, fc =HPF)
HPF[6:4]
0x0E
High Pass Filter frequencies
82 Hz to 612 Hz dependant on the sample rate
ADCEN[0]
0x02
Enable ADC
0 = Disable
1 = Enable
0 = Normal
1 = Inverted
ADC Polarity
ADC Over Sample
Rate
High Pass Filter
Enable
0=64x (Lowest power)
1=128x (best SNR at typical condition)
0 = Disable
1 = Enable
st
NAU8812 Datasheet Rev2.9
Page 24 of 110
Jun, 2018
SMPLR[3:1]
0x07
Sample rate
8k Hz to 48 kHz
Table 9: Register associated with ADC
11.3.1. Programmable High Pass Filter (HPF)
The high pass filter (HPF) has two different modes that it can operate in either Audio or Application mode HPFAM[7]
address (0x0E). In Audio Mode (HPFAM=0) the filter is first order, with a cut-off frequency of 3.7Hz. In Application
mode (HPFAM=1) the filter is second order, with a cut-off frequency selectable via the HPF[2:0] register bits. Cut-off
frequency of the HPF depends on sample frequency selected by SMPLR[3:1] address (0x07). The HPF is enabled
by setting HPFEN[8] address (0x0E) to HIGH. Table below shows the cut-off frequencies with different sampling
rate.
HPF[2:0]
8
SMPLR=101/100
11.025
12
fs (kHz)
SMPLR=011/010
16
22.05
24
SMPLR=001/000
32
44.1
48
000
82
113
122
82
113
122
82
113
122
001
102
141
153
102
141
153
102
141
153
010
131
180
156
131
180
156
131
180
156
011
163
225
245
163
225
245
163
225
245
100
204
281
306
204
281
306
204
281
306
101
261
360
392
261
360
392
261
360
392
110
327
450
490
327
450
490
327
450
490
111
408
563
612
408
563
612
408
563
612
Table 10: High Pass Filter Cut-off Frequencies (HPFAM=1)
11.3.2. Programmable Notch Filter (NF)
The NAU8812 has a programmable notch filter where it passes all frequencies except those in a stop band centered
on a given center frequency. The filter gives lower distortion and flattens response. The notch filter is enabled by
setting NFCEN[7] address (0x1B) to HIGH.
The variable center frequency is programmed by setting two’s
complement values to NFCA0[6:0] address (0x1C), NFCA0[13:7] address (0x1B) and NFCA1[6:0] address (0x1E),
NFCA1[13:7] address (0x1D) registers. The coefficients are updated in the circuit when the NFCU[8] bit is set HIGH
in a write to any of the registers NF1-NF4 address (0x1B, 0x1C, 0x1D, 0x1E).
Addr
Bit 8
Bit 7
Bit 6
Bit5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Default
0x1B
NFCU
NFCEN
NFCA0[13:7]
0x000
0x1C
NFCU
0
NFCA0[6:0]
0x000
0x1D
NFCU
0
NFCA1[13:7]
0x000
0x1E
NFCU
0
NFCA1[6:0]
0x000
Table 11: Registers associated with Notch Filter Function
NAU8812 Datasheet Rev2.9
Page 25 of 110
Jun, 2018
A0
Coefficient
A1
2 π fb
1 − tan
2 fs
2 π fb
1 + tan
2 fs
− (1 + A0 )
Notation
2 π fc
x cos
fs
Register Value (DEC)
fc = center frequency (Hz)
fb = -3dB bandwidth (Hz)
fs = sample frequency
(Hz)
13
NFCA0 = -A0 x 2
12
NFCA1 = -A1 x 2
(then convert to 2’s
complement)
Table 12: Equations to Calculate Notch Filter Coefficients
11.3.3. Digital ADC Gain Control
The digital ADC can be muted by setting “0000 0000” to ADCGAIN[7:0] address (0x0F). Any other combination
digitally attenuates the ADC output signal in the range -127dB to 0dB in 0.5dB increments].
Addr
Name
Bit 8
0x0F
ADCG
0
Bit 7
Bit 6
Bit5
Bit 4
Bit 3
Bit 2
ADCGAIN
Bit 1
Bit 0
Default
0x0FF
Table 13: Register associated with ADC Gain
11.4. PROGRAMMABLE GAIN AMPLIFIER (PGA)
NAU8812 has a programmable gain amplifier (PGA) which controls the gain such that the signal level of the PGA
remains substantially constant as the input signal level varies within a specified dynamic range. The PGA has two
functions
Automatic level control (ALC) or
Input peak limiter
The Automatic Level Control (ALC) seeks to control the PGA gain in response to the amplitude of the input signal
such that the PGA output maintains a constant envelope. A digital peak detector monitors the input signal amplitude
and compares it to a register defined threshold level ALCSL[3:0] address (0x21). Note: When the ALC automatic
level control is enabled, the function of the ALC is to automatically adjust PGAGAIN[5:0] address (0x2D) volume
setting.
11.4.1. Automatic level control (ALC)
The ALC seeks to control the PGA gain such that the PGA output maintains a constant envelope. This helps to
prevent clipping at the input of the sigma delta ADC while maximizing the full dynamic range of the ADC. The ALC
monitors the output of the ADC, measured after the digital decimator has converted it to 1.23 fixed-point formats. The
ADC output is fed into a peak detector, which updates the measured peak value whenever the absolute value of the
input signal is higher than the current measured peak. The measured peak gradually decays to zero unless a new
peak is detected, allowing for an accurate measurement of the signal envelope. Based on a comparison between the
measured peak value and the target value, the ALC block adjusts the gain control, which is fed back to the PGA.
NAU8812 Datasheet Rev2.9
Page 26 of 110
Jun, 2018
Rate Convert/ Decimator
Input
Pin
PGA
ADC
Sinc
Filter
Digital
Decimator
Digital
Filter
ALC
Figure 10: ALC Block Diagram
The ALC is enabled by setting ALCEN[8] address (0x20) bit to HIGH. The ALC has two functional modes, which is
set by ALCM[8] address (0x22).
Normal mode (ALCM = LOW)
Peak Limiter mode (ALCM = HIGH)
When the ALC is disabled, the input PGA remains at the last controlled value of the ALC. An input gain update must
be made by writing to the PGAGAIN[5:0] address (0x2D). A digital peak detector monitors the input signal amplitude
Output Level
and compares it to a register defined threshold level ALCSL[3:0] address (0x21).
Input < noise
gate threshold
ALC operation range
Target ALCSL -6dB
Gain (Attenuation) Clipped
at ALCMNGAIN -12dB
+33 dB
PGA Gain
0 dB
-12 dB
ALCNEN = 1
ALCNTH = -39dB
MIC Boost Gain = 0dB
ALCSL = -6dB
ALCMNGAIN = -12dB
ALCMXGAIN = +35.25dB
-39dB
-39dB
-6dB +6dB
Input Level
Figure 11: ALC Response Graph
The registers listed in the following section allow configuration of ALC operation with respect to:
ALC target level
Gain increment and decrement rates
Minimum and maximum PGA gain values for ALC operating range
Hold time before gain increments in response to input signal
Inhibition of gain increment during noise inputs
NAU8812 Datasheet Rev2.9
Page 27 of 110
Jun, 2018
Limiter mode operation
Bit(s)
Addr
ALCMNGAIN[2:0]
Parameter
Programmable Range
Minimum Gain of PGA
Range: -12dB to +30dB @ 6dB increment
Maximum Gain of PGA
Range: -6.75dB to +35.25dB @ 6dB increment
ALCEN[8]
Enable ALC function
0 = Disable
1 = Enable
ALCSL[3:0]
ALC Target
Range: -28.5dB to -6dB @ 1.5dB increment
ALC Hold Time
Range: 0ms to 1s, time doubles with every step)
ALCZC[8]
ALC Zero Crossing
0 = Disable
1 = Enable
ALCATK[3:0]
ALC Attack time
ALCM=0 - Range: 125us to 128ms
ALCM=1 - Range: 31us to 32ms (time doubles with
every step)
ALC Decay time
ALCM=0 - Range: 500us to 512ms
ALCM=1 - Range: 125us to 128ms
(Both ALC time doubles with every step)
ALC Select
0 = ALC mode
1 = Limiter mode
ALCMXGAIN[2:0]
ALCHT[3:0]
0x20
0x21
0x22
ALCDCY[3:0]
ALCM[8]
Table 14: Registers associated with ALC Control
The operating range of the ALC is set by ALCMXGAIN[5:3] address (0x20) and ALCMNGAIN[2:0] address (0x20) bits
such that the PGA gain generated by the ALC is between the programmed minimum and maximum levels. When the
ALC is enabled, the PGA gain is disabled.
In Normal mode, the ALCMXGAIN bits set the maximum level for the PGA in the ALC mode but in the Limiter mode
ALCMXGAIN has no effect because the maximum level is set by the initial PGA gain setting upon enabling of the
ALC.
ALCMAXGAIN
Maximum Gain (dB)
ALCMINGAIN
Minimum Gain (dB)
111
110
35.25
29.25
000
001
-12
-6
ALC Max Gain Range 35.25dB to -6dB @
6dB increments
001
000
ALC Min Gain Range -12dB to 30dB @
6dB increments
-0.75
-6.75
110
111
24
30
Table 15: ALC Maximum and Minimum Gain Values
NAU8812 Datasheet Rev2.9
Page 28 of 110
Jun, 2018
11.4.1.1.
Normal Mode
Normal mode is selected when ALCM[8] address (0x22) is set LOW and the ALC is enabled by setting ALCEN[8]
address (0x20) HIGH. This block adjusts the PGA gain setting up and down in response to the input level. A peak
detector circuit measures the envelope of the input signal and compares it to the target level set by ALCSL[3:0]
address (0x21). The ALC decreases the gain when the measured envelope is greater than the target and increases
the gain when the measured envelope is less than - 1.5dB. The following waveform illustrates the behavior of the
ALC.
PGA Input
PGA Output
PGA Gain
Figure 12: ALC Normal Mode Operation
11.4.1.2.
ALC Hold Time (Normal mode Only)
The hold parameter ALCHT[3:0] configures the time between detection of the input signal envelope being outside of
the target range and the actual gain increase.
Input signals with different characteristics (e.g., voice vs. music) may require different settings for this parameter for
optimal performance. Increasing the ALC hold time prevents the ALC from reacting too quickly to brief periods of
silence such as those that may appear in music recordings; having a shorter hold time, on the other hand, may be
useful in voice applications where a faster reaction time helps to adjust the volume setting for speakers with different
volumes. The waveform below shows the operation of the ALCHT parameter.
NAU8812 Datasheet Rev2.9
Page 29 of 110
Jun, 2018
PGA Input
PGA Output
PGA Gain
Hold Delay
Change
Figure 13: ALC Hold Time
11.4.2. Peak Limiter Mode
Peak Limiter mode is selected when ALCM[8] address (0x22) is set to HIGH and the ALC is enabled by setting
ALCEN[8] address (0x20). In limiter mode, the PGA gain is constrained to be less than or equal to the gain setting at
the time the limiter mode is enabled. In addition, attack and decay times are faster in limiter mode than in normal
mode as indicated by the different lookup tables for these parameters for limiter mode. The following waveform
illustrates the behavior of the ALC in Limiter mode in response to changes in various ALC parameters.
PGA Input
PGA
Output
PGA Gain
Limiter
Enabled
Figure 14: ALC Limiter Mode Operations
When the input signal exceeds 87.5% of full scale, the ALC block ramps down the PGA gain at the maximum attack
rate (ALCATK=0000) regardless of the mode and attack rate settings until the ADC output level has been reduced
below the threshold. This limits ADC clipping if there is a sudden increase in the input signal level.
NAU8812 Datasheet Rev2.9
Page 30 of 110
Jun, 2018
11.4.3. Attack Time
When the absolute value of the ADC output exceeds the level set by the ALC threshold, ALCSL[3:0] address (0x21),
attack mode is initiated at a rate controlled by the attack rate register ALCATK[3:0] address (0x22). The peak
detector in the ALC block loads the ADC output value when the absolute value of the ADC output exceeds the current
measured peak; otherwise, the peak decays towards zero, until a new peak has been identified. This sequence is
continuously running. If the peak is ever below the target threshold, then there is no gain decrease at the next attack
timer time; if it is ever above the target-1.5dB, then there is no gain increase at the next decay timer time.
11.4.4. Decay Times
The decay time ALCDCY[6:4] address (0x22) is the time constant used when the gain is increasing. In limiter mode,
the time constants are faster than in ALC mode.
11.4.5. Noise gate (normal mode only)
A noise gate is used when there is no input signal or the noise level is below the noise gate threshold. The noise
gate is enabled by setting ALCNEN[3] address (0x23) to HIGH. It does not remove noise from the signal. The noise
gate threshold ALCNTH[2:0] address (0x23) is set to a desired level so when there is no signal or a very quiet signal
(pause), which is composed mostly of noise, the ALC holds the gain constant instead of amplifying the signal towards
the target threshold. The noise gate only operates in conjunction with the ALC and ONLY in Normal mode. The
noise gate flag is asserted when
(Signal at ADC – PGA gain – MIC Boost gain) < ALCNTH (ALC Noise Gate Threshold) (dB)
Levels at the extremes of the range may cause inappropriate operation, so care should be taken when setting up the
function.
PGA Input
PGA Output
PGA Gain
Figure 15: ALC Operation with Noise Gate disabled
NAU8812 Datasheet Rev2.9
Page 31 of 110
Jun, 2018
PGA Input
Noise Gate Threshold
PGA Output
PGA Gain
Figure 16: ALC Operation with Noise Gate Enabled
11.4.6. Zero Crossing
The PGA gain comes from either the ALC block when it is enabled or from the PGA gain register setting when the
ALC is disabled. Zero crossing detection may be enabled to cause PGA gain changes to occur only at an input zero
crossing. Enabling zero crossing detection limits clicks and pops that may occur if the gain changes while the input
signal has a high volume.
There are two zero crossing detection enables:
Register ALCZC[8] address (0x21) – is only relevant when the ALC is enabled.
Register PGAZC[7] address (0x2D) – is only relevant when the ALC is disabled.
If the zero crossing function is enabled (using either register) and SCLKEN[0] address (0x07) is asserted, the zero
cross timeout function may take effect. If the zero crossing flag does not change polarity within 0.25 seconds of a
PGA gain update (either via ALC update or PGA gain register update), then the gain will update. This backup system
prevents the gain from locking up if the input signal has a small swing and a DC offset that prevents the zero crossing
flag from toggling.
NAU8812 Datasheet Rev2.9
Page 32 of 110
Jun, 2018
11.5.
DAC DIGITAL FILTER BLOCK
DAC Digital Filters
Digital
Audio
Interface
Digital
Peak
Limiter
Digital
Gain
Digital
Filters
Interpolation
Sigma
Delta
Modulator
DAC
Figure 17: DAC Digital Filter Path
The DAC digital block uses 24-bit signal processing to generate analog audio with a 16-bit digital sample stream
input. This block consists of a sigma-delta modulator, high pass filter, digital gain/filters, de-emphasis, and analog
mixers. The DAC coding scheme is in twos complement format and the full-scale output level is proportional to
VDDA. With a 3.3V supply voltage, the full-scale output level is 1.0VRMS. The DAC is enabled by setting DACEN[0]
address (0x03) bit HIGH.
Bit(s)
Addr
Parameter
Programmable Range
0 = Disable
1 = Enable
DACEN[0]
0x03
DAC enable
ADDAP[0]
0x05
Pass-through of ADC output data
into DAC input
0 = Disable
1 = Enable
DACPL[0]
DAC Polarity
0 = No Inversion
1 = DAC Output Inverted
AUTOMT[2]
Auto Mute
0 = Disable
1 = Enable
DEEMP[5:4]
Sample Rate
32 kHz, 44.1 kHz, and 48 kHz
DACMT[6]
Soft Mute
0 = Disable
1 = Enable
DAC Volume Control
Range: -127dB to 0dB @ 0.5dB
increment, 00 hex is Muted
DAC Limiter Attack
Range: 68us to 139ms
DAC Limiter Decay
Range: 544us to 1.1s
DAC Limiter Enable
0 = Disable
1 = Enable
DAC Limiter Volume Boost
Range: 0dB to +12dB @ 1dB increment
DAC Limiter Threshold
Range: -6dB to -1bB @ 1dB increment
0x0A
DACGAIN[7:0]
0x0B
DACLIMATK[3:0]
DACLIMDCY[7:4]
0x18
DACLIMEN[8]
DACLIMBST[3:0]
0x19
DACLIMTHL[6:4]
Table 16: Registers associated with DAC Gain Control
NAU8812 Datasheet Rev2.9
Page 33 of 110
Jun, 2018
11.5.1. DAC Soft Mute
The NAU8812 also has a Soft Mute function, which gradually attenuates the volume of the digital signal to zero.
When removed, the gain will ramp back up to the digital gain setting. This function is disabled by default. This
feature provides a tool that is useful for using the DACs without introducing pop and click sounds. To play back an
audio signal, it must first be disabled by setting the DACMT[6] address (0x0A) bit to LOW.
11.5.2. DAC Auto Mute
The output of the DAC can be muted by the analog auto mute function. The auto mute function is enabled by setting
AUTOMT[2] address (0x0A) to HIGH and applied to the DAC output when it sees 1024 consecutive zeros at its input.
If at any time there is a non-zero sample value, the DAC will be un-muted, and the 1024 count will be reinitialized to
zero.
11.5.3. DAC Sampling / Oversampling rate, Polarity, DAC Volume control and Digital Pass-through
The sampling rate of the DAC is determined entirely by the frequency of its input clock and the oversampling rate
setting. The oversampling rate of the DAC can be changed to 64x or 128x. In the 128x oversampling mode it gives
an improved audio performance at slightly higher power consumption. Because the additional supply current is only
1mA, in most applications the 128x oversampling is preferred for maximum audio performance.
The polarity of the DAC output signal can be changed as a feature sometimes useful in management of the audio
phase. This feature can help minimize any audio processing that may be otherwise required as the data are passed
to other stages in the system.
The effective output audio volume of the DAC can be changed using the digital volume control feature.
This
processes the output of the DAC to scale the output by the amount indicated in the volume register setting. Included
is a “digital mute” value which will completely mute the signal output of the DAC. The digital volume setting can
range from 0dB through -127dB in 0.5dB steps.
Digital audio pass-through allows the output of the ADC to be directly sent to the DAC as the input signal to the DAC
for DAC output. In this mode of operation, the external digital audio signal for the DAC will be ignored. The passthrough function is useful for many test and application purposes, and the DAC output may be utilized in any way that
is normally supported for the DAC analog output signals.
11.5.4. Hi-Fi DAC De-Emphasis and Gain Control
The NAU8812 has Hi-Fi DAC gain control for signal conditioning. The level of attenuation for an eight-bit code X is
given by:
0.5 × (X-255) dB
for 1 ≤ X ≤ 255;
MUTE for X = 0
It includes on-chip digital de-emphasis and is available for sample rates of 32 kHz, 44.1 kHz, and 48 kHz. The digital
de-emphasis can be enabled by setting DEEMP[5:4] address (0x0A) bits depending on the input sample rate. The
de-emphasis feature is included to accommodate audio recordings that utilize 50/15 µs pre-emphasis equalization as
NAU8812 Datasheet Rev2.9
Page 34 of 110
Jun, 2018
a means of noise reduction. The DAC output can be inverted (phase inversion) by setting DACPL[1:0] address
(0x0A) to HIGH, non-inverted output is set by default.
11.5.5. Digital DAC Output Peak Limiter
Output Peak-Limiters reduce the dynamic range by ensuring the signal will not exceed a certain threshold, while
maximizing the RMS of the resulted audio signal, and minimizing audible distortions. NAU8812 has a digital output
limiter function. In the figure below, the upper graph shows the envelope of the input/output signals and the lower
graph shows the gain characteristic. The limiter has a programmable threshold, DACLIMTHL[6:4] address (0x19),
which ranges from -1dB to -6dB in 1dB increments. The digital peak limiter seeks to keep the envelope of the output
signal within the target threshold +/- 0.5dB. The attack and decay rates programmed in registers DACLIMATK[3:0]
address (0x18) and DACLIMDCY[7:4] address (0x18) specify how fast the digital peak limiter decrease and increase
the gain, respectively, in response to the envelope of the output signal falling outside of this range. In normal
operation LIMBST=000 signals below this threshold are unaffected by the limiter.
DAC Input
Data
DAC Output
Signal
Threshold
-1dB
0dB
Digital Gain
Figure 18: DAC Digital Limiter Control
-0.5dB
-1dB
11.5.6. Volume Boost
The limiter has programmable upper gain, which boosts signals below the threshold to compress the dynamic range
of the signal and increase its perceived loudness. This operates as an ALC function with limited boost capability.
The volume boost is from 0dB to +12dB in 1dB steps, controlled by the DACLIMBST[3:0] register bits. The output
limiter volume boost can also be used as a stand-alone digital gain boost when the limiter is disabled.
NAU8812 Datasheet Rev2.9
Page 35 of 110
Jun, 2018
11.6. ANALOG OUTPUTS
The NAU8812 features two different types of outputs, a single-ended MONO output (MOUT) and a differential
speaker outputs (SPKOUT+ and SPKOUT-).
The speaker amplifiers designed to drive a load differentially; a
configuration referred to as Bridge-Tied Load (BTL).
MOUTBST[3]
(0x31)
Output from
Auxiliary Amplifier
VDDSPK
MOUTMXEN[3]
(0x03)
DACOUT[0]
(0x38)
MOUT
DAC Output
MONO
MIXER
MOUTBST GAIN
1.0x
0
1.5x
1
DC output
1.0 x VREF
1.5 x VREF
-10dB or +0dB
SIDETONE
Output from PGA Boost
VSSSPK
VDDSPK
Zero Cross
Detection
SPEAKER
MIXER
-1
SPKOUTSPKBST GAIN
0
1.0x
1
1.5x
DC output
1.0 x VREF
1.5 x VREF
SPKOUT+
-10dB or 0dB
SPKMXEN[2]
(0x03)
SPKVOL[5:0]
(0x36)
Zero Cross
Detection
Buffer
SPKBST[2]
(0x31)
VSSSPK
Figure 19: Speaker and MONO Analogue Outputs
Important: For analog outputs depopping purpose, when powering up speakers, headphone,
AUXOUTs, certain delays are generated after enabling sequence. However, the delays are created by
MCLK and sample rate register. For correct operation, sending I2S signal no earlier than 250ms after
speaker or headphone enabled and MCLK appearing
11.6.1.
Speaker Mixer Outputs
The speaker amplifiers are designed to drive a load differentially; a configuration referred to as Bridge-Tied Load
(BTL). The differential speaker outputs can drive a single 8Ω speaker or two headphone loads of 16Ω or 32Ω or a
line output. Driving the load differentially doubles the output voltage. The output of the speaker can be manipulated
by changing attenuation and the volume (loudness of the output signal).
The output stage is powered by the speaker supply, VDDSPK, which are capable of driving up to 1.5VRMS signals
(equivalent to 3VRMS into a BTL speaker). The speaker outputs can be controlled and can be muted individually. The
output pins are at reference DC level when the output is muted.
NAU8812 Datasheet Rev2.9
Page 36 of 110
Jun, 2018
Bit(s)
Addr
Parameter
Programmable Range
SPKMXEN[2]
0x03
Speaker Mixer enable
0 – Disabled
1 – Enabled
PSPKEN[5]
0x03
Speaker positive terminal
enable
0 – Disabled
1 – Enabled
NSPKEN[6]
0x03
Speaker negative terminal
enable
0 – Disabled
1 – Enabled
SPKATT[1]
0x28
Speaker output attenuation
0 - 0dB
1 - -10dB
SPKBST[2]
0x31
Speaker output Boost
0 – (1.0x VREF) Boost
1- (1.5 x VREF) Boost
SPKGAIN[5:0]
0x36
Speaker output Volume
Range: -57dB to +6dB @ 6dB increment
SPKMT[6]
0x36
Speaker output Mute
0 – Speaker Enabled
1 – Speaker Muted
Table 17: Speaker Output Controls
11.6.2. MONO Mixer Output
The single ended output can drive headphone loads of 16Ω or 32Ω or a line output. The MOUT can be manipulated
by changing attenuation and the volume (loudness of the output signal).
The output stage is powered by the speaker supply, VDDSPK, which are capable of driving up to 1.5VRMS signals.
The MONO output can be enabled for signal output or muted. The output pins are at reference DC level when the
output is muted.
Bit(s)
Addr
Parameter
Programmable Range
MOUTMXEN[3]
0x03
MONO mixer enable
0 – Disabled
1 – Enabled
MOUTEN[7]
0x03
MONO output enable
0 – Disabled
1 – Enabled
MOUTATT[2]
0x28
MONO output attenuation
0 - 0dB
1 - -10dB
MOUTBST[3]
0x31
MONO output boost
0 – (1.0x VREF) Boost
1- (1.5 x VREF) Boost
MOUTMXMT[6]
0x38
MONO Output Mixer Mute
0 – MONO Mixer Normal Mode
1 – MONO Mixer Muted
MOUTMT[4]
0x45
MONO Output Mute
0 – MONO Output Normal Mode
1 – MONO Output Muted
Table 18: MONO Output Controls
NAU8812 Datasheet Rev2.9
Page 37 of 110
Jun, 2018
11.6.3. Unused Analog I/O
AUX
30k
AUXEN[6]
(0x01)
MIC-
SMOUT[3]
(0x4F)
MOUTBST[3] = 0
(0x31)
30k
1K
NMICPGA[1]
(0x2C)
MIC+
MOUT
30K
40k
PMICPGA[0]
(0x2C)
MOUTBST[3] = 1
(0x31)
SPSPK[4]
(0x4F)
1.0 x VREF
1K
VREF
SPKOUT+
SNSPK[5]
(0x4F)
SBUFH[7]
(0x4F)
DCBUFEN[8]
(0x01)
SPKBST[2] = 1
(0x31)
SBUFL[6]
(0x4F)
IOBUFEN[2]
(0x01)
SPKBST[2] = 0
(0x31)
30K
1K
SPKOUT-
1.5 x VREF
30K
AOUTIMP[0]
(0x31)
R
R
Figure 20: Tie-off Options for the Speaker and MONO output Pins
In audio and voice systems, any time there is a sudden change in voltage to an audio signal, an audible pop or click
sound may be the result. Systems that change inputs and output configurations dynamically, or which are required to
manage low power operation, need special attention to possible pop and click situations. The NAU8812 includes
many features which may be used to greatly reduce or eliminate pop and click sounds. The most common cause of a
pop or click signal is a sudden change to an input or output voltage. This may happen in either a DC coupled system,
or in an AC coupled system.
The strategy to control pops and clicks is similar for either a DC coupled system, or an AC coupled system. The case
of the AC coupled system is the most common and the more difficult situation, and therefore, the AC coupled case
will be the focus for this information section. When an input or output pin is being used, the DC level of that pin will
be very close to half of the VDDA voltage that is present on the VREF pin. The only exception is that when outputs
are operated in the 5-Volt mode known as the 1.5x boost condition, then the DC level for those outputs will be equal
to 1.5xVREF. In all cases, any input or output capacitors will become charged to the operating voltage of the used
NAU8812 Datasheet Rev2.9
Page 38 of 110
Jun, 2018
input or output pin. The goal to reduce pops and clicks is to insure that the charge voltage on these capacitors does
not change suddenly at any time.
When an input or output is in a not-used operating condition, it is desirable to keep the DC voltage on that pin at the
same voltage level as the DC level of the used operating condition. This is accomplished using special internal DC
voltage sources that are at the required DC values. When an input or output is in the not-used condition, it is
connected to the correct internal DC voltage as not to have a pop or click. This type of connection is known as a “tieoff” condition.
Two internal DC voltage sources are provided for making tie-off connections. One DC level is equal to the VREF
voltage value, and the other DC level is equal to 1.5x the VREF value. All inputs are always tied off to the VREF
voltage value.
Outputs will automatically be tied to either the VREF voltage value or to the 1.5xVREF value,
depending on the value of the “boost” control bit for that output. That is to say, when an output is set to the 1.5x gain
condition, then that same output will automatically use the 1.5xVREF value for tie-off in the not-used condition. The
input pull-ups are connected to IOBUFEN[2] address (0x01) buffer with a voltage source (VREF). The output pull-ups
can be connected two different buffers depending on the voltage source. IOBUFEN[2] address (0x01) buffer is
enabled if the voltage source is (VREF) and DCBUFEN[8] address (0x01) buffer is enabled if the voltage source is
(1.5 x VREF). IOBUFEN[2] address (0x01) buffer is shared between input and output pins.
To conserve power, these internal voltage buffers may be enabled/disabled using control register settings. To better
manage pops and clicks, there is a choice of impedance of the tie-off connection for unused outputs. The nominal
values for this choice are 1kΩ and 30kΩ. The low impedance value will better maintain the desired DC level in the
case when there is some leakage on the output capacitor or some DC resistance to ground at the NAU8812 output
pin. A tradeoff in using the low-impedance value is primarily that output capacitors could change more suddenly
during power-on and power-off changes.
Automatic internal logic determines whether an input or output pin is in the used or un-used condition. This logic
function is always active. An output is determined to be in the un-used condition when it is in the disabled unpowered
condition, as determined by the power management registers. An input is determined to be in the un-used condition
when all internal switches connected to that input are in the “open” condition.
11.7. GENERAL PURPOSE I/O
The CSb/GPIO pin can be configured in two ways, chip select for SPI interface and general purpose GPIO.
Therefore, the general-purpose configuration is only available in the 2-Wire interface mode, which is configured by
setting GPIOSEL[2:0] address (0x08) to 001 – 101. “000” configures the pin to be a chip select for SPI mode. The
CSb/GPIO pin is not available in the SPI interface mode. When the pin is configured as an input, it can be used as
chip select signal for SPI interface or for jack detect. When the pin is configured as output, it can be used for
signaling analog mute, temperature alert, PLL frequency output, and PLL frequency lock. The CSb/GPIO pin can
also output the master clock through a PLL or directly. The path also included a divider for different clocks needed in
the system. Note that SCLKEN must be enabled when using the Jack Detect function.
NAU8812 Datasheet Rev2.9
Page 39 of 110
Jun, 2018
Addr
D8
D7
D6
0x08
0
0
0
0x07
0
0
0
D5
D4
D3
GPIOPLL[1:0]
0
D2
GPIOPL
0
D1
D0
0x000
GPIOSEL[2:0]
SMPLR[2:0]
Default
SCLKEN
0x000
Table 19: General Purpose Control
11.7.1. Slow Timer Clock
An internal Slow Timer Clock is supplied to automatically control features that happen over a relatively long period of
time, or time-spans. This enables the NAU8812 to implement long time-span features without any host/processor
management or intervention.
The Slow Timer Clock supports two features automatic time out for the zero-crossing holdoff of PGA volume
changes, and timing for debouncing of the mechanical jack detection feature. If either feature is required, the Slow
Timer Clock must be enabled. The Slow Timer Clock is initialized in the disabled state.
The Slow Timer Clock rate is derived from MCLK using an integer divider that is compensated for the sample rate as
indicated by the register address (0x07). If the sample rate register value precisely matches the actual sample rate,
then the internal Slow Timer Clock rate will be a constant value of 128ms. If the actual sample rate is, for example,
44.1kHz and the sample rate selected in register 0x07 is 48kHz, the rate of the Slow Timer Clock will be
approximately 10% slower in direct proportion of the actual vs. indicated sample rate. This scale of difference should
not be important in relation to the dedicated end uses of the Slow Timer Clock.
11.7.2. Jack Detect
Jack detect is a specific GPIO function. Jack detect is only available in 2-Wire mode only. Jack detect is selected by
setting GPIOSEL[2:0] address (0x08) to “001”. The GPIOPL[3] bit address (0x08) inverts the CSb/GPIO pin when set
to 1. The table below shows all the combinations for jack insert detects.
The CSb/GPIO pin has an internal de-bounce circuit so that when the jack detect feature is enabled it does not toggle
multiple times due to input glitches. Slow clock mode must be enabled when using jack insert detect by setting
SCLKEN[0] address (0x07).
GPIOPL
CSb/GPIO
NSPKEN/
PSPKEN
MOUTEN
Speaker
Enabled
MONO output
Enabled
0
0
1
X
Yes
No
0
1
X
1
No
Yes
1
0
X
1
No
Yes
1
1
1
X
Yes
No
Table 20: Jack Insert Detect mode
NAU8812 Datasheet Rev2.9
Page 40 of 110
Jun, 2018
Bit(s)
Addr
Parameter
Programmable Range
0 - CSb Input
1 - Jack Detect
2 - Temperature OK
3 - AMUTE Active
4 - PLL Frequency Output
5 - PLL Lock (0- Locked, 1 – Not Locked)
6 - HIGH
7 - LOW
GPIOSEL[2:0]
0x08
GPIO select
GPIOPL[3]
0x08
GPIO polarity
GPIOPLL[4:5]
0x08
GPIO PLL divider
PSPKEN[5]
0x03
Speaker positive terminal enable
NSPKEN[6]
0x03
Speaker negative terminal enable
MOUTEN[7]
0x03
MONO Output enable
SCLKEN[0]
0x07
Slow clock enable
0 – Non- Inverted
1 – Inverted
0 - Divide by 1
1 - Divide by 2
2 - Divide by 3
3 - Divide by 4
0 – Muted
1 – Enabled
0 – Muted
1 – Enabled
0 – Muted
1 – Enabled
Period 2
21
* MCLK
Table 21: Jack Insert Detect controls
11.7.3. Thermal Shutdown
The device contains an on-chip temperature sensor that senses the temperature inside the package. By enabling the
temperature sensor interrupt in GPIOSEL[2:0] address (0x08), an interrupt will be generated if the temperature
reaches a threshold of approximately 125°C. This facilitates control of the temperature should the device get close to
the junction temperature. Note that there is no filtering associated with this temperature alarm since the package has
an intrinsic thermal time constant. The thermal temperature is enabled by setting TSEN[1] address (0x31).
Bit(s)
Addr
Parameter
TSEN[1]
0x31
Temperature Sense Enable
Programmable Range
0: Thermal Shutdown Disable
1: Thermal Shutdown Enable
Table 22: Thermal Shutdown
NAU8812 Datasheet Rev2.9
Page 41 of 110
Jun, 2018
11.8.
CLOCK GENERATION BLOCK
ADCOS[3]
(0x0E)
f1
MCLK
MCLKSEL[7:5]
(0x06)
fPLL
PLLMCLK[4]
(0x24)
PLL1
R=f2/f1
f2
IMCLK
f/N
f/4
f/N
f/N
ADC
DAC
f/2
DACOS[3]
(0x0A)
CLKM[8]
(0x06)
PLL BLOCK
BCLKSEL[4:2]
(0x06)
GPIO1
/CSb
IMCLK/
256
CLKIOEN[0]
(0x06)
f/N
…
IMCLK/
N
Digital Audio
Interface
FS
BCLK
GPIO1PLL[5:4]
(0x08)
GPIO1SEL[2:0]
(0x08)
Figure 21: PLL and Clock Select Circuit
The NAU8812 has two basic clock modes that support the ADC and DAC data converters. It can accept external
clocks in the slave mode, or in the master mode, it can generate the required clocks from an external reference
frequency using an internal PLL (Phase Locked Loop). The internal PLL is a fractional type scaling PLL, and
therefore, a very wide range of external reference frequencies can be used to create accurate audio sample rates.
Separate from this ADC and DAC clock subsystem, audio data are clocked to and from the NAU8812 by means of
the control logic described in the Digital Audio Interfaces section. The Frame Sync (FS) and Bit Clock (BCLK) pins in
the Digital Audio Interface manage the audio bit rate and audio sample rate for this data flow.
It is important to understand that the Digital Audio Interface does not determine the sampling rate for the ADC and
DAC data converters, and instead, this rate is derived exclusively from the Internal Master Clock (IMCLK). It is
therefore a requirement that the Digital Audio Interface and data converters be operated synchronously, and that the
FS, BCLK, and IMCLK signals are all derived from a common reference frequency. If these three clocks signals are
not synchronous, audio quality will be reduced.
The IMCLK is always exactly 256 times the sampling rate of the data converters. IMCLK is output from the Master
Clock Prescaler. The prescaler reduces by an integer division factor the input frequency input clock. The source of
this input frequency clock is either the external MCLK pin, or the output from the internal PLL Block.
NAU8812 Datasheet Rev2.9
Page 42 of 110
Jun, 2018
Addr
D8
D7
D6
D5
D4
0x01
DCBUFEN
0
AUXEN
PLLEN
MICBIASEN
0x06
CLKM
0x07
0
0
0
0
0
0x24
0
0
0
0
PLLMCLK
0x25
0
0
0
MCLKSEL[2:0]
D3
D2
D1
ABIASEN IOBUFEN
BCLKSEL[2:0]
Default
REFIMP
0
SMPLR[2:0]
D0
CLKIOEN
0x140
SCLKEN
0x000
PLLN[3:0]
PLLK[23:18]
0x008
0x00C
0x26
PLLK[17:9]
0x093
0x27
PLLK[8:0]
0x0E9
Table 23: Registers associated with PLL
In Master Mode, the IMCLK signal is used to generate FS and BCLK signals that are driven onto the FS and BCLK
pins and input to the Digital Audio Interface. FS is always IMCLK/256 and the duty cycle of FS is automatically
adjusted to be correct for the mode selected in the Digital Audio Interface. The frequency of BCLK may optionally be
divided to optimize the bit clock rate for the application scenario.
In Slave Mode, there is no connection between IMCLK and the FS and BCLK pins. In this mode, FS and BLCK are
strictly input pins, and it is the responsibility of the system designer to insure that FS, BCLK, and IMCLK are
synchronous and scaled appropriately for the application.
11.8.1. Phase Locked Loop (PLL) General description
The PLL may be optionally used to multiply an external input clock reference frequency by a high resolution fractional
number. To enable the use of the widest possible range of external reference clocks, the PLL block includes an
optional divide-by-two prescaler for the input clock, a fixed divide-by-four scaler on the PLL output, and an additional
programmable integer divider that is the Master Clock Prescaler.
The high resolution fraction for the PLL is the ratio of the desired PLL oscillator frequency (f2), and the reference
frequency at the PLL input (f1). This can be represented as R = f2/f1, with R in the form of a decimal number:
xy.abcdefgh.
To program the NAU8812, this value is separated into an integer portion (“xy”), and a fractional
portion, “abcdefgh”. The fractional portion of the multiplier is a value that when represented as a 24-bit binary
number (stored in three 9-bit registers on the NAU8812), very closely matches the exact desired multiplier factor.
To keep the PLL within its optimal operating range, the integer portion of the decimal number (“xy”), must be any of
the following decimal values: 6, 7, 8, 9, 10, 11, or 12. The input and output dividers outside of the PLL are often
helpful to scale frequencies as needed to keep the “xy” value within the required range. Also, the optimum PLL
oscillator frequency is in the range between 90MHz and 100MHz, and thus, it is best to keep f2 within this range.
NAU8812 Datasheet Rev2.9
Page 43 of 110
Jun, 2018
In summary, for any given design, choose:
Equations
Description
IMCLK = (256) * (desired codec
sample rate)
IMCLK = desired Master Clock
f2 = (4 * P * IMCLK)
where P is the Master Clock divider
integer value;
optimal f2: 90MHz< f2 300 uA
161k/595k < 100 uA
40uA
ABIASEN[3]
600uA
0x01
MICBIASEN[4]
500 uA
PLLEN[5]
2.5mA Clocks Applied
DCBUFEN[8]
80uA
ADCEN[0]
x64 - ADCOS= 0 => 2.0mA
x128 - ADCOS= 1 => 3.0mA
PGAEN[2]
0x02
400uA
BSTEN[4]
200 uA
DACEN[0]
X64 (DACOS=0)=>1.6mA
x128(DACOS=1)=>1.7mA
SPKMXEN[2]
400uA
MOUTMXEN[3]
200uA
0x03
NSPKEN[6]
1mA from VDDSPK + 100uA (VDDA = 5V mode)
PSPKEN[5]
1mA from VDDSPK + 100uA (VDDA = 5V mode)
MOUTEN[7]
100uA
Table 33: VDDA 3.3V Supply Current
NAU8812 Datasheet Rev2.9
Page 61 of 110
Jun, 2018
12. REGISTER DESCRIPTION
Register
Address
Register Bits
Register Names
DEC HEX
0
0
Default
D8
D7
D6
D5
D4
Software Reset
D3
D2
D1
D0
RESET (SOFTWARE)
000
POWER MANAGEMENT
1
01 Power Management 1 DCBUFEN
0
AUXEN
PLLEN
MICBIASEN
ABIASEN
IOBUFEN
2
02 Power Management 2
0
0
0
0
BSTEN
0
PGAEN
3
03 Power Management 3
0
MOUTEN
NSPKEN
PSPKEN
0
REFIMP
MOUTMXEN SPKMXEN
000
0
ADCEN
000
0
DACEN
000
AUDIO CONTROL
4
04 Audio Interface
5
05 Companding
BCLKP
FSP
0
0
WLEN[1:0]
6
06 Clock Control 1
CLKM
7
07 Clock Control 2
0
0
0
8
08 GPIO CTRL
0
0
0
GPIOPLL[1:0]
GPIOPL
10
0A DAC CTRL
0
0
DACMT
DEEMP[1:0]
DACOS
11
0B DAC Volume
0
14
0E ADC CTRL
15
0F ADC Volume
0
AIFMT[1:0]
0
DACPHS
DACCM[1:0]
MCLKSEL[2:0]
ADCPHS
ADCCM[1:0]
BCLKSEL[2:0]
0
0
0
SMPLR[2:0]
0
050
ADDAP
000
CLKIOEN
140
SCLKEN
000
GPIOSEL[2:0]
AUTOMT
0
000
DACPL
DACGAIN
HPFEN
HPFAM
HPF[2:0]
0FF
ADCOS
0
000
0
0
ADCPL
ADCGAIN
100
0FF
DIGITAL TO ANALOG (DAC) LIMITER
24
18 DAC Limiter 1
DACLIMEN
25
19 DAC Limiter 2
0
DACLIMDCY[3:0]
0
DACLIMTHL[2:0]
DACLIMATK[3:0]
032
DACLIMBST[3:0]
000
NOTCH FILTER
27
1B Notch Filter High
NFCU
NFCEN
NFCA0[13:7]
000
28
1C Notch Filter Low
NFCU
0
NFCA0[6:0]
000
29
1D Notch Filter High
NFCU
0
NFCA1[13:7]
000
30
1E Notch Filter Low
NFCU
0
NFCA1[6:0]
000
ALC CONTROL
32
20 ALC CTRL 1
ALCEN
33
21 ALC CTRL 2
ALCZC
ALCHT[3:0]
ALCSL[3:0]
00B
34
22 ALC CTRL 3
ALCM
ALCDCY[3:0]
ALCATK[3:0]
032
35
23 Noise Gate
0
0
0
0
0
ALCMXGAIN[2:0]
0
0
ALCMNGAIN[2:0]
ALCNEN
038
ALCNTH[2:0]
000
PLL CONTROL
36
24 PLL N CTRL
0
0
0
37
25 PLL K 1
0
0
0
38
26 PLL K 2
39
27 PLL K 3
0
PLLMCLK
PLLN[3:0]
008
PLLK[23:18]
00C
PLLK[17:9]
093
PLLK[8:0]
0E9
INPUT, OUTPUT & MIXER CONTROL
40
28 Attenuation CTRL
44
2C Input CTRL
0
0
MICBIASV
NAU8812 Datasheet Rev2.9
0
0
0
0
MOUTATT
SPKATT
0
000
0
0
0
AUXM
AUXPGA
NMICPGA
PMICPGA
003
Page 62 of 110
Jun, 2018
Register
Address
Register Bits
Register Names
DEC HEX
Default
D8
D7
D6
PGAMT
45
2D PGA Gain
0
PGAZC
47
2F ADC Boost
PGABST
0
49
31 Output CTRL
0
0
50
32 Mixer CTRL
0
54
36 SPKOUT Volume
0
56
38 MONO Mixer Control
0
0
MOUTMT
D5
D4
D3
D2
D1
D0
PGAGAIN[5:0]
PMICBSTGAIN
0
0
0
0
0
0
AUXSPK
0
SPKZC
SPKMT
010
AUXBSTGAIN
100
MOUTBST
SPKBST
TSEN
AOUTIMP
002
0
0
BYPSPK
DACSPK
001
SPKGAIN[5:0]
0
0
0
AUXMOUT
039
BYPMOUT
DACMOUT
001
LOW POWER CONTROL
58
3A Power Management 4
LPIPBST
LPADC
LPSPKD
LPDAC
MICBIASM
TRIMREG
IBADJ
000
PCM TIME SLOT & ADCOUT IMPEDANCE OPTION CONTROL
59
3B Time Slot
60
3C ADCOUT Drive
TSLOT[8:0]
PCMTSEN
TRI
PCM8BIT
PUDOEN
000
PUDPE
PUDPS
LOUTR
PCMB
TSLOT[9:8]
020
REGISTER ID
62
3E Silicon Revision
0
1
1
1
0
1
1
1
0
0EE
63
3F 2-Wire ID
0
0
0
0
1
1
0
1
0
01A
64
40 Additional ID
0
1
1
0
0
1
0
1
0
0CA
65
41 Reserved
1
0
0
1
0
0
1
0
0
124
69
45 High Voltage CTRL
0
0
0
0
MOUTMT
0
HVOPU
0
HVOP
001
70
46 ALC Enhancements 1
0
71
47 ALC Enhancements 2
PKLIMEN
73
49 Additional IF CTRL
SPIEN
0
ALCPKSEL ALCNGSEL
FSERRVAL[1:0]
LPSPKA
0
000
000
NFDLY
0
PLLLOCKP DACOS256
000
MANVREFH MANVREFM MANVREFL
000
4B Power/Tie-off CTRL
76
4C ALC P2P Detector
P2PDET (READ ONLY)
000
77
4D ALC Peak Detector
PDET (READ ONLY)
000
78
4E Control and Status
0
0
AMTCTRL
HVDET
NSGATE
AMUTE
DMUTE
0
FTDEC
000
79
4F Output tie-off CTRL
MANOUTEN
SBUFH
SBUFL
SNSPK
SPSPK
SMOUT
0
0
0
000
Page 63 of 110
0
DACINMT
75
NAU8812 Datasheet Rev2.9
0
FSERFLSH FSERRENA
ALCGAINL (READ ONLY)
0
Jun, 2018
12.1. SOFTWARE RESET
Addr
D8
D7
D6
D5
0x00
D4
D3
D2
D1
D0
Default
0x000
RESET (SOFTWARE)
This is device Reset register. Performing a write instruction to this register with any data will reset all the bits in the
register map to default.
12.2. POWER MANAGEMENT REGISTERS
12.2.1. Power Management 1
Addr
D8
D7
D6
D5
D4
0x01
DCBUFEN
0
AUXEN
PLLEN
D3
D2
D1
MICBIASEN ABIASEN IOBUFEN
D0
Default
REFIMP[1:0]
0x000
Name
Buffer for DC
level shifting
Enable
AUX input
buffer enable
PLL enable
Microphone
Bias
Enable
Analogue
amplifier
bias control
Unused
input/output tie off
buffer enable
Bit
DCBUFEN[8]
AUXEN[6]
PLLEN[5]
MICBIASEN[4]
ABIASEN[3]
IOBUFEN[2]
0
Disable
Disable
Disable
Disable
Disable
Disable
1
Enable
(required for
1.5x gain)
Enable
Enable
Enable
Enable
Enable
The DCBUFEN[8] address (0x01) is a dedicated buffer for DC level shifting output stages when in 1.5x gain boost
configuration. There are three different reference impedance selections to choose from as follows:
VREF REFERENCE
IMPEDANCE SELECTION
(“R” refers to “R” as shown in Figure3)
REFIMP[1]
REFIMP[0]
Mode
NAU8812 Datasheet Rev2.9
0
0
Disable
0
1
R = 80 kΩ
1
0
R = 300 kΩ
1
1
R = 3 kΩ
Page 64 of 110
Jun, 2018
12.2.2. Power Management 2
Addr
D8
D7
D6
D5
D4
D3
D2
D1
D0
Default
0x02
0
0
0
0
BSTEN
0
PGAEN
0
ADCEN
0x000
Name
Input Boost
Enable
MIC(+/-)
PGA Enable
ADC Enable
Bit
BSTEN[4]
PGAEN[2]
ADCEN[0]
0
Stage Disable
Disable
Disable
1
Stage Enable
Enable
Enable
12.2.3. Power Management 3
Addr
D8
0x03
0
D7
D6
D5
D4
MOUTEN NSPKEN PSPKEN
D3
0
D2
D1
D0
Default
0
DACEN
0x000
MOUTMXEN SPKMXEN
Name
MOUT
Enable
SPKOUTEnable
SPKOUT+
Enable
MONO Mixer
Enable
Speaker Mixer
Enable
DAC
Enable
Bit
MOUTEN[7]
NSPKEN[6]
PSPKEN[5]
MOUTMXEN[3]
SPKMXEN[2]
DACEN[0]
0
Disable
Disable
Disable
Disable
Disable
Disable
1
Enable
Enable
Enable
Enable
Enable
Enable
12.3. AUDIO CONTROL REGISTERS
12.3.1. Audio Interface Control
Addr
D8
D7
0x04
BCLKP
FSP
D6
D5
D4
WLEN[1:0]
D3
AIFMT[1:0]
D2
D1
DACPHS ADCPHS
D0
Default
0
0x050
The following table explains the PCM control register bits.
Name
BCLK
Polarity
Frame Clock
Polarity
DAC Data ‘right’ or ‘left’
phases of FRAME clock
ADC Data ‘right’ or ‘left’
phases of FRAME clock
Bit
BCLKP[8]
FSP[7]
DACPHS[2]
ADCPHS[1]
0
Normal
Normal
DAC data appear in ‘left’ phase of
FRAME
ADC data appear in ‘left’ phase of
FRAME
1
Inverted
Inverted
DAC data appears in ‘right’ phase of
FRAME
ADC data appears in ‘right’ phase of
FRAME
There are three different CODEC modes to choose from as follows:
NAU8812 Datasheet Rev2.9
Page 65 of 110
Jun, 2018
Word Length Selection
Audio Data Format Select
WLEN[6]
WLEN[5]
Bits
AIFMT[4]
AIFMT[3]
Format
0
0
16
0
0
Right Justified
0
1
20
0
1
Left Justified
1
0
24
1
0
IS
1
1
32
1
1
PCM A
2
12.3.2. Audio Interface Companding Control
Addr
D8
D7
D6
D5
0x05
0
0
0
CMB8
D4
D3
DACCM[1:0]
D2
D1
ADCCM[1:0]
D0
Default
ADDAP
0x000
The NAU8812 provides a Digital Loopback ADDAP[0] address (0x05) bit. Setting ADDAP[0] bit to HIGH enables the
loopback so that the ADC data can be fed directly into the DAC input.
Companding Mode 8-bit
word enable
DAC Companding Selection
ADC Companding Select
CMB8[5]
Mode
DACCM[4]
DACCM[3]
Mode
ADCCM[2]
ADCCM[1]
Mode
0
normal operation
0
0
Disabled
0
0
Disabled
1
8-bit operation
0
1
Reserved
0
1
Reserved
1
0
µ-Law
1
0
µ-Law
1
1
A-Law
1
1
A-Law
DAC audio data input option to route
directly to ADC data stream
ADDAP[0]
0
1
NAU8812 Datasheet Rev2.9
Mode
Normal Operation
ADC output data stream
routed to DAC input data
path
Page 66 of 110
Jun, 2018
12.3.3. Clock Control Register
Addr
D8
0x06
CLKM
D7
D6
D5
D4
D3
MCLKSEL[2:0]
D2
BCLKSEL[2:0]
Master Clock Selection
MCLKSEL
[7]
MCLKSEL
[6]
MCLKSEL
[5]
0
0
0
0
0
1
0
1
0
0
1
1
0
D1
D0
Default
0
CLKIOEN
0x140
Bit Clock Select
BCLKSEL
[4]
BCLKSEL
[3]
BCLKSEL
[2]
0
0
0
0
0
1
÷2
0
1
0
÷1
(BCLK=MCLK)
÷2
(BCLK=MCLK/2)
÷4
1
÷3
0
1
1
÷8
0
÷4
1
0
0
÷ 16
1
0
1
÷ 32
Mode
÷1
÷ 1.5
Mode
1
0
1
÷6
1
1
0
÷8
1
1
0
Reserved
1
1
1
÷ 12
1
1
1
Reserved
Name
Source of Internal Clock master
clock source selection control
Enables chip master mode to
drive FS and BCLK outputs
Bit
CLKM[8]
CLKIOEN[0]
0
MCLK (PLL Bypassed)
MCLK pin used as master clock
1
MCLK (PLL Output)
Internal PLL oscillator output
used as master clock
Slave Mode
(FS and BCLK are inputs)
Master Mode
(FS and BCLK are driven as
outputs by internally generated
clocks)
NAU8812 Datasheet Rev2.9
Page 67 of 110
Jun, 2018
12.3.4. Audio Sample Rate Control Register
Addr
D8
D7
D6
D5
D4
0x07
0
0
0
0
0
D3
D2
SMPLR[2:0]
D1
D0
Default
SCLKEN
0x000
The Audio sample rate configures the coefficients for the internal digital filters
Sample Rate Selection
SMPLR[3]
SMPLR[2]
SMPLR[1]
Mode (Hz)
0
0
0
48 k
0
0
1
32 k
0
1
0
24 k
0
1
1
16 k
1
0
0
12 k
1
0
1
8k
1
1
0
Reserved
1
1
1
Reserved
NAU8812 provides a slow clock to be used for both the jack insert detect debounce circuit and the zero cross
timeout.
Bit
0
1
NAU8812 Datasheet Rev2.9
Slow Clock Enable
SCLKEN[0]
MCLK
21
PLL Output (Period 2
Page 68 of 110
* MCLK)
Jun, 2018
12.3.5. GPIO Control Register
Addr
D8
D7
D6
0x08
0
0
0
D5
D4
GPIOPLL[4:5]
D3
D2
D1
GPIOPL
D0
Default
0x000
GPIOSEL[2:0]
General Purpose I/O Selection
GPIOSEL
[2]
GPIOSEL
[1]
GPIOSEL
[0]
0
0
0
CSb Input
0
0
1
Jack Insert Detect
0
1
0
Temperature OK
0
1
1
AMUTE Active
1
0
0
PLL CLK Output
1
0
1
PLL Lock
1
1
0
1
1
1
1
0
Mode (Hz)
PLL Output Clock Divider
GPIO Polarity
GPIOPLL[5]
GPIOPLL[4]
Mode
Bit
GPIOPL[3]
0
0
÷1
0
Normal
0
1
÷2
1
Inverted
1
0
÷3
1
1
÷4
12.3.6. DAC Control Register
Addr
D8
D7
D6
0x0A
0
0
DACMT
D5
D4
DEEMP[1:0]
D3
D2
D1
D0
Default
DACOS
AUTOMT
0
DACPL
0x000
Name
Soft Mute Enable
Over Sample Rate
Auto Mute enable
Polarity Invert
Bit
DACMT[6]
DACOS[3]
AUTOMT[2]
DACPL[0]
0
Disable
64x
(Lowest power)
Disable
Normal
1
Enable
128x
(best SNR)
Enable
DAC Output
Inverted
NAU8812 Datasheet Rev2.9
Page 69 of 110
Jun, 2018
De-emphasis
DEEMP[5]
DEEMP[4]
Mode
0
0
No de-emphasis
0
1
32kHz sample rate
1
0
44.1kHz sample rate
1
1
48kHz sample rate
12.3.7. DAC Gain Control Register
Addr
D8
0x0B
0
D7
D6
D5
D4
D3
D2
D1
D0
Default
0x0FF
DACGAIN
DAC Gain
DACGAIN[7:0]
Mode (dB)
B7
B6
B5
B4
B3
B2
B1
B0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
Digital
Mute
-127.0
0
0
0
0
0
0
1
0
-126.5
0
0
0
0
0
0
1
1
-126.0
DAC Gain Range -127dB to 0dB @ 0.5 increments
1
1
1
1
1
1
0
0
-1.5
1
1
1
1
1
1
0
1
-1.0
1
1
1
1
1
1
1
0
-0.5
1
1
1
1
1
1
1
1
0.0
12.3.8. ADC Control Register
Addr
D8
D7
0x0E
HPFEN
HPFAM
D6
D5
D4
HPF[2:0]
D3
D2
D1
D0
Default
ADCOS
0
0
ADCPL
0x100
Name
High Pass Filter
Enable
Audio or Application
Mode
Over Sample
Rate
ADC Polarity
Bit
HPFEN[8]
HPFAM[7]
ADCOS[3]
ADCPL[0]
0
Disable
Audio (1 order, fc ~ 3.7 Hz)
64x (Lowest power)
Normal
128x (best SNR)
Inverted
1
Enable
st
nd
Application (2
NAU8812 Datasheet Rev2.9
order, fc = HPF)
Page 70 of 110
Jun, 2018
High Pass Filter
fs ( kHz)
SMPLR=101
SMPLR=100
SMPLR=011
SMPLR=010
SMPLR=001
SMPLR=000
HPF[6]
HPF[5]
HPF[4]
B2
B1
B0
8
11.025
12
16
22.05
24
32
44.1
48
0
0
0
82
113
122
82
113
122
82
113
122
0
0
1
102
141
153
102
141
153
102
141
153
0
1
0
131
180
156
131
180
156
131
180
156
0
1
1
163
225
245
163
225
245
163
225
245
1
0
0
204
281
306
204
281
306
204
281
306
1
0
1
261
360
392
261
360
392
261
360
392
1
1
0
327
450
490
327
450
490
327
450
490
1
1
1
408
563
612
408
563
612
408
563
612
12.3.9. ADC Gain Control Register
Addr
D8
0x0F
0
D7
D6
D5
D4
D3
D2
D1
D0
Default
0x0FF
ADCGAIN
ADC Gain
ADCGAIN[7:0]
Mode (dB)
B7
B6
B5
B4
B3
B2
B1
B0
0
0
0
0
0
0
0
0
Unused
0
0
0
0
0
0
0
1
-127.0
0
0
0
0
0
0
1
0
-126.5
0
0
0
0
0
0
1
1
-126.0
ADC Gain Range -127dB to 0dB @ 0.5 increments
1
1
1
1
1
1
0
0
-1.5
1
1
1
1
1
1
0
1
-1.0
1
1
1
1
1
1
1
0
-0.5
1
1
1
1
1
1
1
1
0.0
NAU8812 Datasheet Rev2.9
Page 71 of 110
Jun, 2018
12.4.
DIGITAL TO ANALOG CONVERTER (DAC) LIMITER REGISTERS
Addr
D8
0x18
DACLIMEN
D7
0x19
0
D6
D5
D4
D3
DACLIMDCY[3:0]
0
DACLIMTHL[2:0]
DAC Limiter Decay time (per 6dB gain change) for 44.1
kHz sampling. Note that these will scale with sample
rate
D2
D1
D0
Default
DACLIMATK[3:0]
0x032
DACLIMBST[3:0]
0x000
DAC Limiter Attack time (per 6dB gain change) for 44.1
kHz sampling. Note that these will scale with sample rate
DACLIMDCY[3:0]
DACLIMATK[3:0]
B3
B2
B1
B0
Decay Time
B3
B2
B1
B0
Attack Time
0
0
0
0
544.0 us
0
0
0
0
68 us
0
0
0
1
1.1 ms
0
0
0
1
136 us
0
0
1
0
2.2 ms
0
0
1
0
272 us
0
0
1
1
4.4 ms
0
0
1
1
544 us
0
1
0
0
8.7 ms
0
1
0
0
1.1 ms
0
1
0
1
17.4 ms
0
1
0
1
2.2 ms
0
1
1
0
35.0 ms
0
1
1
0
4.4 ms
0
1
1
1
69.6 ms
0
1
1
1
8.7 ms
1
0
0
0
139.0 ms
1
0
0
0
17.4 ms
1
0
0
1
278.5 ms
1
0
0
1
35 ms
1
0
1
0
557.0 ms
1
0
1
0
69.6 ms
1
0
1
1
1
0
1
1
To
1
1
To
1.1 s
1
1
NAU8812 Datasheet Rev2.9
1
Page 72 of 110
1
139 ms
1
1
Jun, 2018
DAC Limiter volume Boost (can be used as a
stand alone volume Boost when
DACLIMEN=0)
DACLIMBST[3:0]
Boost
(dB)
B3
B2
B1
B0
DAC Limiter Programmable signal threshold level
(determines level at which the limiter starts to operate)
DACLIMTHL[3:0]
B2
B1
B0
Threshold
(dB)
0
0
0
-1
0
0
0
0
0
0
0
1
-2
0
0
0
1
+1
0
1
0
-3
0
0
1
0
+2
0
1
1
-4
0
0
1
1
+3
1
0
0
-5
0
1
0
0
+4
1
0
1
0
1
0
1
+5
0
1
1
0
+6
To
1
-6
1
1
DAC Digital Limiter
0
1
1
1
+7
1
0
0
0
+8
1
0
0
1
+9
1
0
1
0
+10
Bit
DACLIMEN[8]
1
0
1
1
+11
0
Disabled
1
1
0
0
+12
1
Enabled
1
1
0
1
1
1
1
1
To
Reserved
12.5. NOTCH FILTER REGISTERS
Addr
D8
D7
D6
D5
D4
D3
D2
D1
D0
Default
0x1B
NFCU
NFCEN
NFCA0[13:7]
0x000
0x1C
NFCU
0
NFCA0[6:0]
0x000
0x1D
NFCU
0
NFCA1[13:7]
0x000
0x1E
NFCU
0
NFCA1[6:0]
0x000
The Notch Filter is enabled by setting NFCEN[7] address (0x1B) bit to HIGH. The coefficients, A0 and A1, should be
converted to 2’s complement numbers to determine the register values. A0 and A1 are represented by the register
bits NFCA0[13:0] and NFCA1[13:0]. Since there are four register of coefficients, a Notch Filter Update bit is provided
so that the coefficients can be updated simultaneously. NFCU[8] is provided in all registers of the Notch Filter
coefficients but only one bit needs to be toggled for LOW - HIGH - LOW for an update. If any of the NFCU[8] bits are
left HIGH then the Notch Filter coefficients will continuously update. An example of how to calculate is provided in
the Notch Filter section.
NAU8812 Datasheet Rev2.9
Page 73 of 110
Jun, 2018
Name
A0
A1
Coefficient
2πfb
1 − tan
2fs
2πfb
1 + tan
2fs
Notation
Register Value (DEC)
13
2πf
− (1 + A0 ) x cos c
fs
fc = center frequency (Hz)
fb = -3dB bandwidth (Hz)
fs = sample frequency (Hz)
NFCA0 = -A0 x 2
12
NFCA1 = -A1 x 2
(then convert to 2’s
complement)
12.6. AUTOMATIC LEVEL CONTROL REGISTER
12.6.1. ALC1 REGISTER
Addr
D8
D7
D6
0x20
ALCEN
0
0
D5
D4
D3
ALCMXGAIN[2:0]
B2
B1
B0
0
0
0
0
0
1
0
1
0
D1
D0
ALCMNGAIN[2:0]
Maximum Gain
ALCMXGAIN[2:0]
D2
0x038
Minimum Gain
Mode
ALCMNGAIN[2:0]
Mode
B2
B1
B0
-6.75dB
0
0
0
-12dB
-0.75dB
0
0
1
-6dB
0
+5.25dB
0
1
0
0dB
1
1
+11.25dB
0
1
1
+6dB
1
0
0
+17.25dB
1
0
0
+12dB
1
0
1
+23.25dB
1
0
1
+18dB
1
1
0
+29.25dB
1
1
0
+24dB
1
1
1
+35.25dB
1
1
1
+30dB
Name
ALC Enable
Bit
ALCEN[8]
0
Disabled (PGA gain set by PGAGAIN
register bits)
1
Enabled
NAU8812 Datasheet Rev2.9
Default
(ALC controls PGA gain)
Page 74 of 110
Jun, 2018
12.6.2. ALC2 REGISTER
Addr
D8
0x21
ALCZC
D7
D6
D5
D4
D3
D2
ALCHT[3:0]
ALC HOLD TIME before gain is increased.
ALCHT[3:0]
D1
D0
Default
0x00B
ALCSL[3:0]
ALC TARGET – sets signal level at ADC input
ALCSL[3:0]
B7
B6
B5
B4
ALC Hold
Time (sec)
B3
B2
B1
B0
ALC Target
Level (dB)
0
0
0
0
0
0
0
0
0
-28.5 fs
0
0
0
1
2 ms
0
0
0
1
-27 fs
0
0
1
0
4 ms
0
0
1
0
25.5 fs
ALC Target Level Range
-28.5dB to -6dB @ 1.5dB increments
Time Doubles with every increment
1
0
0
0
256 ms
1
0
1
1
-12 fs
1
0
0
1
512 ms
1
1
0
0
-10.5 fs
1
0
1
0
1
1
0
1
-9 fs
1
1
1
1
1s
To
1
1
1
0
-7.5 fs
1
1
1
1
-6 fs
Name
ALC Zero Crossing
Detect
Bit
ALCZC[8]
0
Disabled
1
Enabled
It is recommended that zero crossing should not be used in conjunction with the ALC or Limiter functions
NAU8812 Datasheet Rev2.9
Page 75 of 110
Jun, 2018
12.6.3. ALC3 REGISTER
Addr
D8
0x22
ALCM
D7
D6
D5
D4
D3
D2
ALCDCY[3:0]
D1
D0
Default
0x032
ALCATK[3:0]
ALC DECAY TIME
ALCDCY[3:0]
ALCM = 0 (Normal Mode)
ALCM = 1 (Limiter Mode)
B3
B2
B1
B0
Per Step
Per 6dB
90% of
Range
Per Step
Per 6dB
90% of
Range
0
0
0
0
500 us
4 ms
28.78 ms
125 us
1 ms
7.2 ms
0
0
0
1
1 ms
8 ms
57.56 ms
250 us
2 ms
14.4 ms
0
0
1
0
2 ms
16 ms
115 ms
500 us
4 ms
28.8 ms
Time doubles with every increment
1
0
0
0
128 ms
1s
7.37 s
32 ms
256 ms
1.8 s
1
0
0
1
256 ms
2s
14.7 s
64 ms
512 ms
3.7 s
1
0
1
0
512 ms
4s
29.5 s
128 ms
1s
7.37 s
To
1
1
1
1
ALC ATTACK TIME
ALCATK[3:0]
ALCM = 0 (Normal Mode)
ALCM = 1 (Limiter Mode)
B3
B2
B1
B0
Per Step
Per 6dB
90% of
Range
Per Step
Per 6dB
90% of
Range
0
0
0
0
125 us
1 ms
7.2 ms
31 us
248 us
1.8 ms
0
0
0
1
250 us
2 ms
14.4 ms
62 us
496 us
3.6 ms
0
0
1
0
500 us
4 ms
28.85 ms
124 us
992 us
7.15 ms
Time doubles with every increment
1
0
0
0
26.5 ms
256 ms
1.53 s
7.9 ms
63.2 ms
455.8 ms
1
0
0
1
53 ms
512 ms
3.06 s
15.87 ms
127 ms
916 ms
1
0
1
0
128 ms
1s
7.89 s
31.7ms
254 ms
1.83 s
To
1
1
1
1
NAU8812 Datasheet Rev2.9
Page 76 of 110
Jun, 2018
12.7. NOISE GAIN CONTROL REGISTER
Addr
D8
D7
D6
D5
D4
D3
0x23
0
0
0
0
0
ALCNEN
Noise Gate Enable
Bit
ALCNEN[3]
0
Disabled
1
Enabled
D2
D1
ALCNTH[2:0]
D0
Default
0x000
Noise Gate Threshold
ALCNTH[2:0]
Mode
NAU8812 Datasheet Rev2.9
B2
B1
B0
0
0
0
-39 dB
0
0
1
-45 dB
0
1
0
-51 dB
0
1
1
-57 dB
1
0
0
-63 dB
1
0
1
-69 dB
1
1
0
-75 dB
1
1
1
-81 dB
Page 77 of 110
Jun, 2018
12.8. PHASE LOCK LOOP (PLL) REGISTERS
12.8.1. PLL Control Registers
Addr
D8
D7
D6
D5
D4
0x24
0
0
0
0
PLLMCLK
D3
D2
D1
D0
0x008
PLLN[3:0]
PLL Integer
Default
PLL Clock
PLLN[3:0]
B3
B2
B1
B0
0
0
0
1
Bit
Frequency
Ratio
PLLMCLK[4]
0
MCLK not divided
1
Divide MCLK by 2 before input
PLL
Not Valid
To
0
1
0
0
0
1
0
1
5
0
1
1
0
6
0
1
1
1
7
1
0
0
0
8
1
0
0
1
9
1
0
1
0
10
1
0
1
1
11
1
1
0
0
12
1
1
0
1
13
1
1
1
0
1
1
1
1
Not Valid
12.8.2. Phase Lock Loop Control (PLL) Registers
Addr
D8
D7
D6
0x25
0
0
0
D5
D4
D3
D2
PLLK[23:18]
D1
D0
Default
0x00C
0x26
PLLK[17:9]
0x093
0x27
PLLK[8:0]
0x0E9
Fractional (K) part of PLLK1 – PLLK3 input/output frequency ratio
NAU8812 Datasheet Rev2.9
Page 78 of 110
Jun, 2018
12.9.
INPUT, OUTPUT, AND MIXERS CONTROL REGISTER
12.9.1.
Attenuation Control Register
Addr
D8
D7
D6
D5
D4
D3
0x28
0
0
0
0
0
0
D2
D1
MOUTATT SPKATT
D0
Default
0
0x000
D0
Default
Attenuation Control
Attenuation control for bypass path (output of
input boost stage) to speaker mixer and MONO
mixer input
Name
Bit
MOUTATT[2]
SPKATT[1]
0
0 dB
0 dB
1
-10 dB
-10 dB
12.9.2. Input Signal Control Register
Addr
0x2C
D8
D7
D6
D5
D4
D3
0
0
0
AUXM
MICBIASV
D2
D1
AUXPGA NMICPGA PMICPGA
0x003
Auxiliary Input mode
AUX amplifier output to
input PGA signal source
MICN to input PGA
negative terminal
Input PGA amplifier
positive terminal to
MIC+ or VREF
Bit
AUXM[3]
AUXPGA[2]
NMICPGA[1]
PMICPGA[0]
0
Inverting Buffer
AUX not connected to
input PGA
MICN not connected to
input PGA
Input PGA Positive
terminal to VREF
1
Mixer (Internal Resistor
bypassed)
AUX to input PGA
Negative terminal
MICN to input PGA
Negative terminal.
Input PGA Positive
terminal to MICP
through variable resistor
Microphone Bias Voltage Control
MICBIASV[8:7]
Address (0x2C)
MICBIASM[4] = 0
Address (0x28)
MICBIASM[4] = 1
Address (0x28)
0
0
0.9* VDDA
0.85* VDDA
0
1
0.65* VDDA
0.60* VDDA
1
0
0.75* VDDA
0.70* VDDA
1
1
0.50* VDDA
0.50* VDDA
NAU8812 Datasheet Rev2.9
Page 79 of 110
Jun, 2018
12.9.3. PGA Gain Control Register
Addr
D8
D7
D6
0x2D
0
PGAZC
PGAMT
D5
D4
D3
D2
PGAGAIN[5:0]
D1
D0
Default
0x010
Programmable Gain Amplifier Gain
PGAGAIN[5:0]
B5
B4
B3
B2
B1
B0
Gain
0
0
0
0
0
0
-12.00 dB
0
0
0
0
0
1
-11.25 dB
0
0
0
0
1
0
-10.50 dB
:::
:::
:::
:::
:::
:::
:::
0
0
1
1
1
1
-0.75 dB
0
1
0
0
0
0
0 dB
0
1
0
0
0
1
+0.75 dB
PGA Gain Range -12dB to +35.25dB @ 0.75
increment
:::
:::
:::
:::
:::
:::
:::
1
1
1
1
0
1
33.75
1
1
1
1
1
0
34.50
1
1
1
1
1
1
35.25
PGA Zero Cross Enable
Mute Control for PGA
Bit
PGAZC[7]
PGAMT[6]
0
Update gain when gain
register changes
Normal Mode
1
Update gain on 1st zero
cross after gain register
write
PGA Muted
NAU8812 Datasheet Rev2.9
Page 80 of 110
Jun, 2018
12.9.4. ADC Boost Control Registers
Addr
D8
D7
0x2F
PGABST
0
D6
D5
D4
D3
PMICBSTGAIN
MIC+ pin to the input Boost Stage
(NB, when using this path set
PMICPGA=0):
PMICBSTGAIN[2:0]
B1
B0
0
0
0
0
0
1
Path
Disconnected
-12
0
1
0
0
1
1
0
1
D1
D0
Default
0x100
AUXBSTGAIN
Auxiliary to Input Boost Stage
AUXBSTGAIN[2:0]
Gain (dB)
B2
D2
0
Gain (dB)
B2
B1
B0
0
0
0
0
0
1
Path
Disconnected
-12
-9
0
1
0
-9
1
-6
0
1
1
-6
0
-3
1
0
0
-3
0
1
0
1
0
1
0
1
1
0
+3
1
1
0
+3
1
1
1
+6
1
1
1
+6
Name
Input Boost
Bit
PGABST[8]
0
PGA output has +0dB gain through input Boost stage
1
PGA output has +20dB gain through input Boost stage
12.9.5. Output Register
Addr
D8
D7
D6
D5
D4
0x31
0
0
0
0
0
D3
D2
MOUTBST SPKBST
D1
D0
Default
TSEN
AOUTIMP
0x002
MONO Output Boost Stage
Speaker Output Boost
Stage
Thermal Shutdown
Analog Output Resistance
Bit
MOUTBST[3]
SPKBST[2]
TSEN[1]
AOUTIMP[0]
0
(1.0 x VREF) Gain Boost
(1.0 x VREF) Gain Boost
Disabled
~1kΩ
1
(1.5 x VREF) Gain Boost
(1.5 x VREF) Gain Boost
Enabled
~30 kΩ
NAU8812 Datasheet Rev2.9
Page 81 of 110
Jun, 2018
12.9.6. Speaker Mixer Control Register
Addr
D8
D7
D6
D5
D4
D3
D2
0x32
0
0
0
AUXSPK
0
0
0
D1
D0
BYPSPK DACSPK
Auxiliary to Speaker Mixer
Bypass path (output of
Boost stage) to Speaker
Mixer
DAC to Speaker Mixer
Bit
AUXSPK[5]
BYPSPK[1]
DACSPK[0]
0
Disconnected
Disconnected
Disconnected
1
Connected
Connected
Connected
Default
0x001
12.9.7. Speaker Gain Control Register
Addr
D8
D7
D6
0x36
0
SPKZC
SPKMT
D5
D4
D3
D2
D1
SPKGAIN[5:0]
D0
Default
0x039
Speaker Gain
SPKGAIN[5:0]
B5
B4
B3
B2
B1
B0
Gain (dB)
0
0
0
0
0
0
-57.0
0
0
0
0
0
1
-56.0
0
0
0
0
1
0
-55.0
:::
:::
:::
:::
:::
:::
:::
1
1
1
0
0
0
-1.0
1
1
1
0
0
1
0.0
1
1
1
0
1
0
+1.0
Speaker Gain Range -57 dB to +6 dB @ +1
increment
:::
:::
:::
:::
:::
:::
:::
1
1
1
1
0
1
+4.0
1
1
1
1
1
0
+5.0
1
1
1
1
1
1
+6.0
Speaker Gain Control Zero Cross
Speaker Output
Bit
SPKZC[7]
SPKMT[6]
0
Change Gain on Zero Cross
ONLY
Speaker Enabled
1
Change Gain Immediately
Speaker Muted
NAU8812 Datasheet Rev2.9
Page 82 of 110
Jun, 2018
12.9.8. MONO Mixer Control Register
Addr
D8
D7
D6
D5
D4
D3
0x38
0
0
MOUTMXMT
0
0
0
D2
D1
D0
Default
AUXMOUT BYPMOUT DACMOUT 0x001
MOUT Mute
Auxiliary to
MONO Mixer
Bypass path (output of Boost
Stage) to MONO Mixer
DAC to
MONO Mixer
Bit
MOUTMXMT[6]
AUXMOUT[2]
BYPMOUT[1]
DACMOUT[0]
0
Not Muted
Disconnected
Disconnected
Disconnected
1
Muted
Connected
Connected
Connected
During mute, the MONO output will output VREF that can be used as a DC reference for a headphone out.
12.9.9. Trimming Register
Addr
D8
D7
D6
0x3A
LPIPBST
LPADC
LPSPKD
B1
D5
D4
D3
LPDAC MICBIASM
D2
TRIMREG[3:2]
D1
D0
Default
0x000
IBADJ[1:0]
Trim Output Regulator (V)
Adjust Master Bias of the Analog Portion
TRIMREG[3:2]
IBADJ[1:0]
Default Current Consumption
B0
0
0
1.800
0
1
1.610
25% Current Increase from Default
1
0
1.400
14% Current Decrease from Default
1
1
1.218
25% Current Decrease from Default
Trim regulator bits can be used only when VDDD 0.546*fs
-60
dB
Group Delay
21/fs
ADC High Pass Filter
High Pass Filter
Corner Frequency
-3dB
3.7
-0.5dB
10.4
-0.1dB
21.6
Hz
DAC Filter
+/- 0.035dB
0
0.454*fs
Passband
-6dB
0.5*fs
Passband Ripple
+/-0.035
Stopband
Stopband
Attenuation
dB
0.546*fs
f > 0.546*fs
-55
Group Delay
dB
29/fs
Table 57 Digital Filter Characteristics
TERMINOLOGY
1. Stop Band Attenuation (dB) – the degree to which the frequency spectrum is attenuated (outside audio band)
2. Pass-band Ripple – any variation of the frequency response in the pass-band region
3. Note that this delay applies only to the filters and does not include
NAU8812 Datasheet Rev2.9
Page 101 of 110
Jun, 2018
Figure 52: DAC Filter Frequency Response
Figure 53: ADC Filter Frequency Response
Figure 54: DAC Filter Ripple
Figure 55: ADC Filter Ripple
NAU8812 Datasheet Rev2.9
Page 102 of 110
Jun, 2018
16. TYPICAL APPLICATION
C9
4.7uF
VREF
C8
1uF
28
2
27
3
26
AUX
C10
1uF
VDDSPK
MIC C7
1uF
R2
1.2k ohm
1
MIC +
R1
1.2k ohm
MICBIAS
C6
4.7uF
NC
VDDA
VDDA
VSSA
VSSA
25
5
24
VSSSPK
6
23
VSSSPK
22
SPKOUT +
7
8
NAU8812
MONO AUDIO
CODEC
SSOP 28-Pin
C3
4.7uF
21
20
10
19
11
18
12
17
DACIN
13
16
FS
14
15
VSSD
VSS
VSS
9
VDDB
C2
4.7uF
C4
4.7uF
4
VDDB
C1
4.7uF
VDDSPK
SPKOUT -
VDDC
VDDC
VDDSPK
MOUT
C5
1uF
MODE
SDIO
SCLK
VSS
ADCOUT
CSb/GPIO
MCLK
BCLK
Figure 56: Application Diagram 28-Pin SSOP
NAU8812 Datasheet Rev2.9
Page 103 of 110
Jun, 2018
C8
1uF
VSS
C4
4.7 uF
25
SPKOUT -
VDDSPK
26
27
AUX
VREF
C10
1uF
29
32
NC
30
M IC +
MICBIAS
C6
4.7uF
M IC -
R1
1.2 k ohm
31
R2
1.2 k ohm
C9
4. 7uF
28
C7
1uF
VDDSPK
VDDSPK
1
24
2
23
VSSSPK
VDDA
VDDA
VSSA
VSSA
C11
10nF
VDDL
22
SPKOUT+
21
MOUT
20
NC
6
19
MODE
7
18
SO
8
17
3
NAU8812
MONO AUDIO
CODEC
QFN32- Pin
4
5
VDDC
VDDC
VSSSPK
C5
1uF
16
200 Ohm
SDIO
33PF
33PF 200 Ohm
SCLK
14
15
CSb/GP IO
12
13
BCLK
MCLK
VSSD
VSS
11
VSSD
FS
C3
4.7uF
DACIN
C2
4.7uF
9
C1
4.7uF
ADCOUT
VDDB
10
VDDB
Figure 57: Application Diagram for 32-Pin QFN
Note 1: All non-polar capacitors are assumed to be low ESR type parts, such as with MLC construction or similar. If
capacitors are not low ESR, additional 0.1uF and/or 0.01uF capacitors may be necessary in parallel with the
bulk 4.7uF capacitors on the supply rails.
Note 2: Load resistors to ground on outputs may be helpful in some applications to insure a DC path for the output
capacitors to charge/discharge to the desired levels. If the output load is always present and the output load
provides a suitable DC path to ground, then the additional load resistors may not be necessary. If needed,
such load resistors are typically a high value, but a value dependent upon the application requirements.
Note 3: To minimize pops and clicks, large polarized output capacitors should be a low leakage type.
Note 4: Depending on the microphone device and PGA gain settings, common mode rejection can be improved by
choosing the resistors on each node of the microphone such that the impedance presented to any noise on
either microphone wire is equal.
Note 5: SO and SDIO add low pass filter to prevent glitch; corner frequency for the low pass filter is 8MHz to 33MHz.
NAU8812 Datasheet Rev2.9
Page 104 of 110
Jun, 2018
17. PACKAGE SPECIFICATION
17.1. 28 Pin SSOP
D
28
15
DTEAIL A
HE E
1
14
b
A2 A
SEATING PLANE
θ
Y
e
b
SYMBOL
A
A1
A2
b
c
D
E
HE
e
L
L1
Y
θ
A1
DIMENSION IN MM
MIN.
NOM
MAX.
2.00
0.05
1.65
0.22
0.09
10.05
5.00
7.40
0.55
0
NAU8812 Datasheet Rev2.9
SEATING PLANE
L
L1
DETAIL A
DIMENSION IN INCH
MIN.
NOM
MAX.
0.079
0.002
1.85 0.065 0.069 0.073
0.015
0.38 0.009
0.010
0.25 0.004
10.20 10.35 0.395 0.401 0.407
5.30 5.60 0.197 0.209 0.220
7.80 8.20 0.291 0.307 0.323
0.0256
0.65
0.95 0.021 0.030 0.037
0.75
0.050
1.25
0.004
0.10
8
0
8
1.75
Page 105 of 110
Jun, 2018
32-Pin QFN
32
25
1
24
8
17
9
16
25
32
24
1
17
8
16
NAU8812 Datasheet Rev2.9
9
Page 106 of 110
Jun, 2018
18. ORDERING INFORMATION
Part
Number
NAU8812RG
NAU8812YG
19.
Dimension
Package
5x5 mm
10.2x7.8 mm
SSOP-28
QFN-32
Package
Material
Green
Green
NAU8812 _ _
Package Material:
G
=
Pb-free Package
Package Type:
R
= 28-Pin SSOP Package
Y
= 32-Pin QFN Package
NAU8812 Datasheet Rev2.9
Page 107 of 110
Jun, 2018
20. REVISION HISTORY
VERSION
DATE
1.0
September 2009
PAGE
DESCRIPTION
Preliminary release
Updated Figure numbers
13 - 15
1.1
November 2009
36
Figure 19 updated
38
Figure 20 updated
69
Description of CLKM and CLKIOEN is updated
108
Updated type on the VERSION
3
13 - 15
1.2
December 2009
The word SPKBST was updated with VDDSPK
Note Added
Electrical Specification table format updated
66
Register 0x05 description updated
67
Register 0x06 description updated
1.3
January 2010
46 - 48
1.4
January 2010
107
Package description updated
1.5
February 2010
22
Figure 7 updated
14
Speaker THD for 2-stage updated
1.6
1.7
March 2010
April 2010
63, 87
Bit-8 of register 0x46 deleted from the document.
63, 87
Default value of register 0x47 updated
4
Block diagram updated
44
Table 24 updated
62
Table 34 updated
63, 86
2.0
2.1
January 2011
October 2013
Control interface description updated
Register 0x41 Reserved updated
47
Removed trailing clock cycle from SPI timing diagram
63
Corrected Register 0x38 Register name
79
Improved description of Mic Bias set up
97
Added System Clock Timing Diagram
15
Corrected Digital I/O voltages from DCVDD to DBVDD
93
Corrected 2 wire timing diagram
An additional remark of VDDSPK boost mode
13 – 15
2.2
Jan 2014
Modify Figure29 Byte Write Sequence
50
Modify Figure30 2-Wire Read Sequence
2.7
March 2016
37
Add Important Notice
2.8
June 2016
46
Revise f1 equation from * to /
NAU8812 Datasheet Rev2.9
Page 108 of 110
Jun, 2018
2.9
June 2018
NAU8812 Datasheet Rev2.9
87
Silicon Revision ID changed
108
Package infromation
30
ALC description
106
Low pass filter added for I2C
Page 109 of 110
Jun, 2018
Important Notice
Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction or
failure of which may cause loss of human life, bodily injury or severe property damage. Such applications are
deemed, “Insecure Usage”.
Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy control
instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or safety systems
designed for vehicular use, traffic signal instruments, all types of safety devices, and other applications
intended to support or sustain life.
All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay claims to Nuvoton
as a result of customer’s Insecure Usage, customer shall indemnify the damages and liabilities thus incurred
by Nuvoton.
NAU8812 Datasheet Rev2.9
Page 110 of 110
Jun, 2018