0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IQS620-0-DNR

IQS620-0-DNR

  • 厂商:

    AZOTEQ

  • 封装:

    -

  • 描述:

    HALL EFFECT, CAPACITIVE AND INDU

  • 详情介绍
  • 数据手册
  • 价格&库存
IQS620-0-DNR 数据手册
IQ Switch ProxFusion® Series IQS620A Datasheet Combination sensor with dual channel capacitive proximity/touch, Hall-effect and inductive sensing The IQS620A ProxFusion® IC is a multifunctional capacitive, Hall-effect & inductive sensor designed for applications where any or all of the technologies may be required. The IQS620A is an ultra-low power solution designed for short or long term activations through any of the sensing channels. The IQS620A is fully I2C compatible and can be configured to output main trigger events on GPIOs. Features  Unique combination of sensing technologies:  Capacitive sensing           RoHS & Reach Compliant Hall-effect sensing Inductive sensing Capacitive sensing   Full auto-tuning with adjustable sensitivity 2pF to 200pF external capacitive load capability DFN(3x3)-10 Enhanced temperature stability Hall-effect sensing     Representations only, not actual marking On-chip Hall-effect measurement plates Dual direction Hall switch sensor UI 2 level detection (widely variable) Detection range 10mT – 200mT  Low power consumption:          Inductive sensing   2 level adjustable detection and hysteresis External sense coil required (PCB trace) Multiple integrated UI options based on years of experience in sensing on fixed and mobile platforms:  WLCSP-9 Proximity wake-up; Touch; SAR; Hysteresis  Automatic Tuning Implementation (ATI) – performance enhancement (10bit)  Minimal external components Standard I2C interface Supply voltage:  IQS620A: 1.8V (-2%) to 3.3V Low profile packages:    Optional RDY signal for event mode operation Applications  Mobile electronics (phones/tablets)  SAR safety requirements for laptops, tablets and phones  Wearable devices  White goods and appliances 130µA (100Hz response, 1ch inductive) 105µA (100Hz response, 2ch Hall) 90µA (100Hz response, 3ch capacitive) 75µA (100Hz response, 1ch cap. SAR) 46µA (20Hz response, 1ch inductive) 38µA (20Hz response, 2ch Hall) 32µA (20Hz response, 3ch capacitive) 27µA (20Hz response, 1ch cap. SAR) 2.5µA (4Hz response, 1ch cap. wake-up)     DFN(3x3)-10 (3 x 3 x 0.8mm) – 10 pin WLCSP-9 (1.53 x 1.07 x 0.34mm) – 9 pin Human Interface Devices Proximity activated backlighting Applications with long-term activation Aftermarket automotive1 1 Available Packages TA -20°C to +85°C 1 DFN(3x3)-10 IQS620AzDNR WLCSP-9 IQS620AzCSR The part is not automotive qualified. Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 1 of 94 September 2020 IQ Switch ProxFusion® Series Table of Contents IQS620A DATASHEET .................................................................................................................................................. 1 1 INTRODUCTION .................................................................................................................................................. 5 1.1 1.2 1.3 1.4 1.5 2 CAPACITIVE SENSING ........................................................................................................................................12 2.1 2.2 2.3 2.4 2.5 3 DEVICE MAIN OSCILLATOR ...................................................................................................................................... 31 DEVICE MODES .................................................................................................................................................... 31 SYSTEM RESET ..................................................................................................................................................... 32 COMMUNICATION ............................................................................................................................................33 7.1 7.2 7.3 7.4 7.5 7.6 7.7 8 INTRODUCTION TO TEMPERATURE MONITORING ......................................................................................................... 28 CHANNEL SPECIFICATIONS ...................................................................................................................................... 28 HARDWARE CONFIGURATION .................................................................................................................................. 28 SOFTWARE CONFIGURATION ................................................................................................................................... 29 SENSOR DATA OUTPUT AND FLAGS ........................................................................................................................... 30 DEVICE CLOCK, POWER MANAGEMENT AND MODE OPERATION ......................................................................31 6.1 6.2 6.3 7 INTRODUCTION TO INDUCTIVE SENSING..................................................................................................................... 24 CHANNEL SPECIFICATIONS ...................................................................................................................................... 24 HARDWARE CONFIGURATION .................................................................................................................................. 25 SOFTWARE CONFIGURATION ................................................................................................................................... 26 SENSOR DATA OUTPUT AND FLAGS ........................................................................................................................... 27 TEMPERATURE MONITORING ...........................................................................................................................28 5.1 5.2 5.3 5.4 5.5 6 INTRODUCTION TO HALL-EFFECT SENSING ................................................................................................................. 20 CHANNEL SPECIFICATIONS ...................................................................................................................................... 20 HARDWARE CONFIGURATION .................................................................................................................................. 21 SOFTWARE CONFIGURATION ................................................................................................................................... 22 SENSOR DATA OUTPUT AND FLAGS ........................................................................................................................... 23 INDUCTIVE SENSING ..........................................................................................................................................24 4.1 4.2 4.3 4.4 4.5 5 INTRODUCTION TO PROXSENSE®.............................................................................................................................. 12 CHANNEL SPECIFICATIONS ...................................................................................................................................... 13 HARDWARE CONFIGURATION .................................................................................................................................. 14 SOFTWARE CONFIGURATION ................................................................................................................................... 15 SENSOR DATA OUTPUT AND FLAGS ........................................................................................................................... 18 HALL-EFFECT SENSING .......................................................................................................................................20 3.1 3.2 3.3 3.4 3.5 4 PROXFUSION® ....................................................................................................................................................... 5 PACKAGING AND PIN-OUT ....................................................................................................................................... 6 REFERENCE SCHEMATIC ........................................................................................................................................... 8 SENSOR CHANNEL COMBINATIONS ........................................................................................................................... 10 PROXFUSION® SENSITIVITY ..................................................................................................................................... 11 I2C MODULE SPECIFICATION.................................................................................................................................... 33 I2C READ ............................................................................................................................................................ 33 I2C WRITE .......................................................................................................................................................... 33 STOP-BIT DISABLE OPTION ...................................................................................................................................... 34 DEVICE ADDRESS AND SUB-ADDRESSES ..................................................................................................................... 35 ADDITIONAL OTP OPTIONS .................................................................................................................................... 35 RECOMMENDED COMMUNICATION AND RUNTIME FLOW DIAGRAM ................................................................................ 37 MEMORY MAP ..................................................................................................................................................38 8.2 8.3 8.4 DEVICE INFORMATION DATA .................................................................................................................................. 41 FLAGS AND USER INTERFACE DATA ........................................................................................................................... 42 CHANNEL COUNTS (RAW DATA)............................................................................................................................... 47 Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 2 of 94 September 2020 IQ Switch ProxFusion® Series 8.5 8.6 8.7 8.8 8.9 8.10 8.11 8.12 8.13 8.14 8.15 9 ELECTRICAL CHARACTERISTICS ..........................................................................................................................76 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 10 DFN(3X3)-10 PACKAGE AND FOOTPRINT SPECIFICATIONS............................................................................................ 84 WLCSP-9 PACKAGE AND FOOTPRINT SPECIFICATION ................................................................................................... 85 DEVICE MARKING AND ORDERING INFORMATION ........................................................................................................ 86 ORDERING INFORMATION: ...............................................................................................................................87 11.1 11.2 12 ABSOLUTE MAXIMUM SPECIFICATIONS ..................................................................................................................... 76 VOLTAGE REGULATION SPECIFICATIONS ..................................................................................................................... 76 RESET CONDITIONS ............................................................................................................................................... 76 I2C MODULE SPECIFICATIONS .................................................................................................................................. 77 I2C MODULE OUTPUT LOGIC FALL TIME LIMITS ............................................................................................................ 78 I2C MODULE SLEW RATES ....................................................................................................................................... 79 I2C PINS (SCL & SDA) INPUT/OUTPUT LOGIC LEVELS .................................................................................................. 80 GENERAL PURPOSE DIGITAL OUTPUT PINS (GPIO0 & GPIO3) LOGIC LEVELS .................................................................... 80 CURRENT CONSUMPTIONS ..................................................................................................................................... 81 START-UP TIMING SPECIFICATIONS ........................................................................................................................... 83 PACKAGE INFORMATION ..................................................................................................................................84 10.1 10.2 10.3 11 LTA VALUES (FILTERED DATA) ................................................................................................................................. 47 PROXFUSION SENSOR SETTINGS BLOCK 0................................................................................................................... 48 PROXFUSION SENSOR SETTINGS BLOCK 1................................................................................................................... 52 PROXFUSION UI SETTINGS ..................................................................................................................................... 55 SINGLE CHANNEL SAR UI SETTINGS ......................................................................................................................... 56 HYSTERESIS UI SETTINGS........................................................................................................................................ 59 TWO CHANNEL SAR PROXIMITY / TOUCH / DEEP TOUCH UI SETTINGS ............................................................................. 61 HALL-EFFECT SENSOR SETTINGS ............................................................................................................................... 63 HALL-EFFECT SWITCH UI SETTINGS ........................................................................................................................... 65 TEMPERATURE UI SETTINGS ................................................................................................................................... 66 DEVICE AND POWER MODE SETTINGS ....................................................................................................................... 69 TAPE AND REEL SPECIFICATION ................................................................................................................................ 88 MSL LEVEL ......................................................................................................................................................... 90 DATASHEET REVISIONS .....................................................................................................................................91 12.1 12.2 REVISION HISTORY ................................................................................................................................................ 91 ERRATA .............................................................................................................................................................. 92 APPENDIX A. CONTACT INFORMATION .....................................................................................................................93 APPENDIX B: HALL ATI ...............................................................................................................................................94 Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 3 of 94 September 2020 IQ Switch ProxFusion® Series List of abbreviations AC – Alternating Current ACK – I2C Acknowledge condition ATI – Automatic Tuning Implementation BOD – Brown Out Detection CS – Sampling Capacitor DSP – Digital Signal Processing ESD – Electrostatic Discharge FOSC – Main Clock Frequency Oscillator GND – Ground GPIO – General Purpose Input Output 2 IC – Inter-Integrated Circuit IC – Integrated Circuit LP – Low Power LPOSC – Low Power Oscillator LTA – Long Term Average LTX – Inductive Transmitting electrode MCU – Microcontroller unit MSL – Moisture Sensitive Level MOV – Movement MOQ – Minimum Order Quantity NACK – I2C Not Acknowledge condition NC – Not Connect NP – Normal Power OTP – One Time Programmable PMU – Power Management Unit POR – Power On Reset PWM – Pulse Width Modulation QRD – Quick Release Detection RDY – Ready Interrupt Signal RX – Receiving electrode SAR – Specific Absorption Rate SCL – I2C Clock SDA – I2C Data SR – I2C Slew rate THR – Threshold UI – User Interface ULP – Ultra Low Power Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 4 of 94 September 2020 IQ Switch ProxFusion® Series 1 Introduction 1.1 ProxFusion® The ProxFusion® sensor series provides all of the proven ProxSense® engine capabilities with additional sensors types. A combined sensor solution is available within a single platform. VREG VDDHI VREG Nonvolatile memory Temperature circuit Digital output GPIO / PWM / Inductive HALL effect plates VDDHI VREG VDDHI VDDHI VDDHI Internal regulator (VREG) VREG VSS VREG Reset circuit Analog ProxFusion Engine Capacitive,HALL,Inductive VREG RX0 RX1 Figure 1.1 Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved 16 MHz MCU VDDHI I2C HW SDA SCL MCU (Master) RDY Analog - Capacitive offset calibration (ATI) IQS620(A) IQS620A functional block diagram IQS620A datasheet revision 3.00 Shortcut to memory map Page 5 of 94 September 2020 IQ Switch ProxFusion® Series 1.2 1.2.1 Packaging and Pin-Out DFN(3x3)-10 Pin 1 marking 1 GPIO0/RDY 2 VDDHI 3 VREG 4 GPIO3/LTX 5 IQS620A 1 i z WWYY SDA 10 VSS 9 NC 8 SCL 7 RX1 6 RX0 Landing pad = VSS Figure 1.2 IQS620A pin-out (DFN(3x3)-10 package top view; markings may differ) Table 1.1 DFN(3x3)-10 pin-out description IQS620A in DFN(3x3)-10 Pin 1 2 Name Type Function SDA GPIO0 / RDY VDDHI VREG Digital input / output Digital output Open drain active low logic Supply input Voltage regulator output 5 GPIO3 / LTX Digital output / Analogue transmitter electrode 6 RX0 Analogue receiving electrode 7 RX1 Analogue receiving electrode 8 9 10 SCL NC VSS Digital input / output Not connect Supply input 3 4 Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved (I2C SDA Data signal) SAR activation output (higher priority) RDY (I2C Ready interrupt signal; lower priority) Supply: IQS620A: 1.8V(-2%) – 3.3V Regulates the system’s internal voltage Requires external capacitors to ground PWM signal output (higher priority) / Connect to inductive sensor’s transmitting coil (lower priority) Connect to conductive area intended for sensor receiving Connect to conductive area intended for sensor receiving SCL (I2C Clock signal) Not connect Common ground reference IQS620A datasheet revision 3.00 Shortcut to memory map Page 6 of 94 September 2020 IQ Switch ProxFusion® Series 1.2.2 WLCSP-9 Pin 1 Marking Figure 1.3 1 2 3 A SCL GPIO3/ LTX GPIO0/ RDY B RX1 RX0 SDA C VSS VREG VDDHI IQS620A pin-out (WLCSP-9 package top view; markings may differ) Table 1.2 WLCSP-9 pin-out description IQS620A in WLCSP-9 Pin Name Type A1 A2 SCL GPIO3 / LTX Digital input / output Digital output / Analogue transmitter electrode A3 B1 GPIO0 / RDY RX1 Digital output Open drain active low logic Analogue receiving electrode B2 RX0 Analogue receiving electrode B3 C1 C2 SDA VSS VREG Digital input / output Supply input Voltage regulator output C3 VDDHI Supply input Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved Function SCL (I2C Clock signal) PWM signal output (higher priority) / Connect to inductive sensor’s transmitting coil (lower priority) SAR activation output (higher priority) RDY (I2C Ready interrupt signal; lower priority) Connect to conductive area intended for sensor receiving Connect to conductive area intended for sensor receiving SDA (I2C Data signal) Common ground reference Regulates the system’s internal voltage Requires external capacitors to ground Supply: IQS620A: 1.8V(-2%) – 3.3V IQS620A datasheet revision 3.00 Shortcut to memory map Page 7 of 94 September 2020 IQ Switch ProxFusion® Series 1.3 Reference schematic Figure 1.4 Figure 1.5 IQS620A DFN(3x3)-10 reference schematic IQS620A WLCSP-9 reference schematic Please note: − − − − C1, C2 and C3 should be placed as close as possible to the IQS620A package and should terminate using the shortest possible path to the IQS GND connection pin. R4 & R5 are recommend 0603 ESD protection resistors but also aid in sensor RF immunity. The values can be increased up to 4kΩ for severe RF noise environments. C4 & C5 are optional loading capacitors and should only be used if intended to de-sensitize sensors or match one sensor’s capacitive load with another electrode implementation. VR1 & VR2 are optional TVS diodes for ESD clamping and noise suppression. Ensure the correct layout principles are followed when placed and routed. Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 8 of 94 September 2020 IQ Switch ProxFusion® Series 1.3.2 Recommended VREG and VDDHI capacitor ratio For supplies with low in-line resistance and high current output capability is it recommended to ensure CVREG > 2CVDDHI. This is to prevent a known ESD risk. Known risk: The IQS620A will not recover from ESD events if the following conditions are met: > > VDDHI source is present with low impedance path and high current sourcing capability CVDDHI > CVREG With these conditions met, the source keeps VDDHI above the BODVDDHI level during the ESD event but drains the VREG capacitor during sleep mode causing a unique sleep-mode BOD event keeping the IC in reset. This only recovers when forcing a POR on VDDHI. For supplies with a high in-line resistance (such as battery with high series resistance) it is recommended to ensure CVDDHI > CVREG to prevent an unexpected dip on VDDHI when the sensor wakes from sleep-mode and re-charging the VREG capacitor. Table 1.3 CVREG minimum and recommended CVDDHI capacitor values Report rate minimum (Slowest sampling rate allowed) 15.625Hz (64ms) 7.8Hz (128ms) 6.25Hz (160ms) 3.9Hz (256ms) Recommended for general design 2.2µF 2.2µF 3.3µF 3.9µF 4.7µF CVDDHI recommended † 1µF 1µF 1.5µF 1.5µF 2.2µF Suitable for Hall-effect No No No No Yes CVREG minimum* For applications that requires Hall-effect channel conversions a minimum CVREG = 4.7µF is mandatory to ensure stable regulation during Hall-effect plate sampling. * Based on sleep mode current consumption of “Isleep” with starting voltage “VREG” minimum voltage and discharge voltage > BODVREG maximum at the end of the sleep period † Based on CVREG > 2CVDDHI Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 9 of 94 September 2020 IQ Switch ProxFusion® Series 1.4 Sensor channel combinations The table below summarizes the IQS620A’s sensor and channel associations. Capacitive Table 1.4 Sensor - channel allocation Sensor / UI type CH0 CH1 CH2 Self capacitive ͦ ͦ ͦ SAR UI 1CH self (2 level + movement) • Main • Movement SAR UI 2CH self (3 level) • • Hall-effect Inductive CH4 CH5 • Positive • Negative • • Hysteresis UI Hall-effect switch UI Inductive resonant tank ͦ ͦ ͦ Inductive mutually coupled coils ͦ ͦ ͦ Hysteresis UI Temperature CH3 Temperature monitoring • • Key: o - Optional implementation • - Fixed use for UI Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 10 of 94 September 2020 IQ Switch ProxFusion® Series 1.5 ProxFusion® Sensitivity The measurement circuitry uses a temperature stable internal sample capacitor (CS) and internal regulated voltage (VREG). Internal regulation provides for more accurate measurements. The Automatic Tuning Implementation (ATI) is a sophisticated technology implemented on the ProxFusion® device series. It allows for optimal performance of the devices for a wide range of sense electrode capacitances, without modification or addition of external components. The ATI functionality ensures that sensor sensitivity is not affected by external influences such as temperate, parasitic capacitance and ground reference changes. The ATI process adjusts three values (Coarse multiplier, Fine multiplier, Compensation) using two parameters (ATI base and ATI target) as inputs. A 10-bit compensation value ensures that an accurate target is reached. The base value influences the overall sensitivity of the channel and establishes a base count for the ATI algorithm. A rough estimation of sensitivity can be approximated using the relation: 𝑇𝑎𝑟𝑔𝑒𝑡 𝐵𝑎𝑠𝑒 As seen from this equation, the sensitivity can be increased by either increasing the Target value or decreasing the Base value. A lower base value will typically result in lower multipliers and more compensation would be required. It should, however, be noted that a higher sensitivity will yield a higher noise susceptibility. Refer to Appendix B for more information regarding Hall-effect ATI. 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∝ Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 11 of 94 September 2020 IQ Switch ProxFusion® Series 2 Capacitive sensing Introduction to ProxSense® 2.1 Building on the previous successes from the ProxSense® range of capacitive sensors, the same fundamental sensor engine has been implemented in the ProxFusion® series. The capacitive sensing capabilities of the IQS620A include: • • • • • • Self-capacitive sensing. Maximum of 3 capacitive channels to be individually configured. o Individual sensitivity setups o Alternative ATI modes Discreet button UI: o Fully configurable 2 level threshold setups for prox & touch activation levels. o Customizable filter halt time Single channel SAR UI: o For passing the SAR qualification o Movement sensing to distinguish between stationary in-contact objects and human interference o Quick release detection feature (fully configurable) o GPIO output of SAR activation (on GPIO0) for driving e.g. WWAN module directly o Up to three triggers levels (proximity, touch and deep touch) for dynamic power reduction o All triggers offer never time-out capability Two Channel SAR UI: o For passing the SAR qualification latest requirements (EN50566) o Up to three dedicated triggers levels per sensor for dynamic power reduction o All triggers offer never time-out capability Hysteresis UI: o 4 Optional prox and touch activation hysteresis selections. o Fully configurable 2 level threshold setups for prox & touch activation levels. o Customizable filter halt time Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 12 of 94 September 2020 IQ Switch ProxFusion® Series 2.2 Channel specifications The IQS620A provides a maximum of 3 channels available to be configured for capacitive sensing. Each channel can be setup separately according to the channel’s associated settings registers. There are three distinct capacitive user interfaces available to be used. a) Self capacitive proximity/touch UI b) SAR UIs c) Hysteresis UI When the single channel SAR UI is activated (ProxFusion Settings4: bit7-6): • Channel 0 is used for the main capacitive sensing channel for SAR detection and release detection. • Channel 1 is used for capacitive movement detection. When the two channel SAR UI is active (ProxFusion Settings4: bit7-6): • Channel 0 & 1 is used for the first or main SAR antenna sensor (Rx0) • Channel 2 is used for a second SAR antenna sensor (Rx1) Table 2.1 Capacitive sensing - channel allocation Mode CH0 CH1 CH2 Self capacitive ͦ ͦ ͦ Single SAR UI self • Main • Movement Two channel SAR UI self • • Hysteresis UI CH3 CH4 CH5 • • Key: o - Optional implementation • - Fixed use for UI Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 13 of 94 September 2020 IQ Switch ProxFusion® Series 2.3 Hardware configuration In the table below are multiple options of configuring sensing (Rx) electrodes to realize different implementations (combinations not shown). Table 2.2 Capacitive sensing - hardware description Self capacitive configuration 1 button 2 buttons Single SAR antenna Two SAR antenna Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved RX1 RX0 RX1 RX0 RX1 RX0 RX1 RX0 IQS620A datasheet revision 3.00 Shortcut to memory map Page 14 of 94 September 2020 IQ Switch ProxFusion® Series 2.4 Software configuration 2.4.1 Registers to configure for capacitive sensing: Table 2.3 Address Name Capacitive sensing settings registers Description Recommended setting ProxFusion Settings 0 Sensor mode and configuration of each channel. Sensor mode should be set to capacitive mode An appropriate RX should be chosen 0x43 0x44 0x45 ProxFusion Settings 1 Channel settings for the ProxSense sensors Full ATI is recommended for fully automated sensor tuning. 0x46 0x47 0x48 ProxFusion Settings 2 ATI settings for ProxSense sensors ATI target should be more than ATI base to achieve an ATI 0x49 0x4A 0x4B ProxFusion Settings 3 Additional Global settings for ProxSense sensors None ProxFusion Settings 4 UI enable command and filter settings Choose Normal 2 Channel, Single SAR or 3 level dual SAR UI ProxFusion Settings 5 Advance sensor settings None 0x40 0x41 0x42 0x50 0x51 2.4.2 Registers to configure for the standard UI (proximity / touch): Please note: If the standard UI (proximity / touch) is used then the single SAR UI (proximity / touch / movement) cannot be used and the special SAR registers should not be configured or used. Initializing inactive UI registers can corrupt other active UI’s. Table 2.4 Address Name standard UI settings registers Description 0x60 0x62 0x64 Proximity threshold 0x61 0x63 0x65 Touch threshold Touch Thresholds for all capacitive channels ProxFusion standard UI Halt timeout setting for all capacitive channels 0x66 2.4.3 Proximity Thresholds for all capacitive channels (except for single channel SAR active on channel 0) halt time Registers to configure for the two channel SAR UI (proximity / touch / deep touch): Please note: If the two channel SAR UI is used then the special SAR UI registers (proximity, movement, release detection) cannot be used and the settings registers should be used as shown in the table below. Initializing inactive UI registers can corrupt other active UI’s. Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 15 of 94 September 2020 IQ Switch ProxFusion® Series Table 2.5 Address 0x50 0x80 0x60 0x61 0x63 0x81 0x82 0x83 0x66 Name Two channel SAR UI settings registers Description ProxFusion settings 4 Two channel SAR UI enable command (bit7-6). Hysteresis settings Disable Hysteresis for proximity and touch thresholds CH0 Proximity threshold SAR Antenna 1 proximity threshold CH0 Touch threshold SAR Antenna 1 touch threshold CH1 Touch threshold SAR Antenna 1 deep touch threshold CH2 filter halt threshold SAR Antenna 2 proximity threshold CH2 proximity threshold SAR Antenna 2 touch threshold CH2 touch threshold SAR Antenna 2 deep touch threshold ProxFusion standard UI Halt timeout setting for all capacitive channels. Set to 0xFF for no halt time time-out as required by SAR applications Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 16 of 94 September 2020 IQ Switch ProxFusion® Series 2.4.4 Registers to configure for the single channel SAR UI: Please note: If the single SAR UI is used then the discreet button UI cannot be used and the ProxFusion discrete UI settings registers should not be configured or used. Initializing inactive UI registers can corrupt other active UI’s. Table 2.6 Address Name ProxFusion settings 4 0x50 Description Single channel SAR UI (prox / touch / movement) enable command (bit7-6). SAR UI Settings 0 0x70 Filter settings for movement and QRD, SAR activation output to GPIO0 (RDY signal disabled) 0x71 0x72 0x73 0x74 SAR UI Settings 0 LTA halt timeout and movement threshold settings Quick release threshold Threshold setting to trigger a quick release based on the Quick Ch0 release count values in register 0xF2 & 0xF3. Filter halt threshold Ch0 Threshold value for channel 0 LTA filter halt SAR Proximity threshold Proximity threshold used for SAR activations on channel 0 Ch0 Quick release halt time 0x75 2.4.5 Single channel SAR UI settings registers Halt timeout setting for channel 0 LTA after a quick release trigger with zero movement Registers to configure for the Hysteresis UI: Please note: Only channel 2 can be used with the Hysteresis UI. Please setup channel 2 accordingly if required. The Hysteresis UI can be used simultaneously with the discrete button UI or SAR UI. Table 2.7 Address Hysteresis UI settings registers Name Description 0x50 ProxFusion settings 4 Hysteresis UI enable command (bit6). 0x80 Hysteresis UI settings Hysteresis selection options for prox and touch activations Hysteresis UI filter halt UI filter halt threshold value to halt the LTA value from following 0x81 0x82 0x83 2.4.6 threshold Hysteresis UI prox Threshold setting to trigger a prox activation on channel 2 data. threshold Hysteresis UI touch Threshold value to trigger a touch activation on channel 2 data. threshold Example code: Example code for an Arduino Uno can be downloaded at: www.azoteq.com//images/stories/software/IQS62x_Demo.zip Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 17 of 94 September 2020 IQ Switch ProxFusion® Series 2.5 Sensor data output and flags The following registers should be monitored by the master to detect capacitive sensor output and SAR activations. a) The Global events register (0x11) will show the IQS620A’s main events. Bit0 is dedicated to the ProxSense activations and two other bits (bit7 & bit1) is provided to show the state of the single channel SAR UI. SINGLE_SAR_ACTIVE (bit7) will be constantly active during SAR detection. SAR event (bit1) will toggle upon each SAR qualified event or change of SAR status. Bit3 is dedicated to the Hysteresis UI activations (for ch2 data only). Global Events (0x11) Bit Number 7 6 5 4 3 2 1 0 Data Access R R R R R R R R Name SINGLE SAR ACTIVE PMU EVENT SYS EVENT TEMP EVENT HYSTERESIS UI EVENT HALL EVENT SINGLE SAR EVENT PROX SENSE EVENT b) The ProxFusion UI flags (0x12) and SAR UI flags (0x13) provide more detail regarding the outputs. A prox and touch output bit for each channel 0 to 2 is provided in the ProxFusion UI flags register. c) The SAR UI Flags (0x13) register will show detail regarding the state of the SAR output as well as Quick release toggles, movement activations and the state of the filter (halted or not). The SAR UI can also be used with the inductive sensing capabilities and is explained in section 4. Inductive sensing. ProxFusion UI flags (0x12) Bit Number 7 6 5 4 3 2 1 0 Data Access - R R R - R R R Name - CH2_T CH1_T CH0_T - CH2_P CH1_P CH0_P SAR UI flags (0x13) Bit Number 7 6 5 4 3 2 1 0 Data Access - - - R - R R R Name - - - SAR ACTIVE - QUICK RELEASE MOVEMENT FHALT Hysteresis UI flags (0x13) Bit Number 7 6 5 4 3 2 1 0 Data Access R R R - - - - - Name Signed output TOUCH PROX - - - - - d) When the “Two channel SAR UI” is chosen for proximity, touch and deep touch on two channels, the ProxFusion UI flags and Hysteresis UI flags are defined as shown below: Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 18 of 94 September 2020 IQ Switch ProxFusion® Series Two channel SAR UI flags (0x12) Bit Number 7 6 5 4 3 2 1 0 Data Access - R R R - R R R Name - - ANT 1 DEEP TOUCH ANT 1 TOUCH - ANT 2 PROX - ANT 1 PROX Two channel SAR UI flags 2 (0x13) Bit Number 7 6 5 4 3 2 1 0 Data Access R R R R - R R R Name - ANT 2 DEEP TOUCH ANT 2 TOUCH - - - - - Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 19 of 94 September 2020 IQ Switch ProxFusion® Series 3 Hall-effect sensing 3.1 Introduction to Hall-effect sensing The IQS620A has an internal Hall-effect sensing plate (on chip). No external sensing hardware is required for Hall-effect sensing. The Hall-effect sensor measures the generated voltage difference across the plate, which can be modelled as a Wheatstone bridge. The voltage difference is converted to a current using an operational amplifier in order to be measured by the same ProxSense® sensor engine. Advanced digital signal processing is performed to provide sensible output data. • • • • 3.2 Two threshold levels are provided (prox & touch). Hall-effect output can be linearized through a selectable inverse calculator option. North/South field direction indication provided. Differential Hall-Effect sensing: o Removes common mode disturbances o North-South field indication Channel specifications Channels 4 and 5 are dedicated to Hall-effect sensing. Channel 4 performs the positive direction measurements and channel 5 will handle all measurements in the negative direction. These two channels are used in conjunction to acquire differential Hall-effect data and will always be used as input data to the Hall-effect UI’s. There are two distinct Hall-effect user interfaces available: a) General Hall-effect sensing b) Hall-effect switch UI Table 3.1 Mode CH0 Hall-effect sensor – channel allocation CH1 CH2 CH3 CH4 CH5 • Positive • Negative Hall-effect switch UI Smart cover Slide switch Key: o - Optional implementation • - Fixed use for UI Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 20 of 94 September 2020 IQ Switch ProxFusion® Series 3.3 Hardware configuration Rudimentary hardware configurations Axially polarized magnet (linear movement or magnet presence detection) Hall-effect push switch Smart cover Bar magnet (linear movement and magnet field detection) Slide switch Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 21 of 94 September 2020 IQ Switch ProxFusion® Series 3.4 Software configuration 3.4.1 Registers to configure for Hall-effect sensing: Table 3.2 Address Name Hall-effect settings 0 Hall-effect sensing settings registers Description Recommended setting Charge frequency divider and Charge frequency adjusts the ATI mode settings conversion rate of the Hall-effect channels. Faster conversions 0x90 consume less current. Full ATI is recommended for fully automated sensor tuning. 0x91 0xA0 0xA1 0xA2 3.4.2 Hall-effect settings 1 ATI base and target ATI target should be more than selections ATI base to achieve an ATI Hall-effect switch UI Various settings for the Hall- None settings effect switch UI Hall-effect switch UI Proximity Threshold for UI Less than touch threshold Touch Threshold for UI None proximity threshold Hall-effect switch UI touch threshold Example code: Example code for an Arduino Uno can be downloaded at: www.azoteq.com//images/stories/software/IQS62x_Demo.zip Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 22 of 94 September 2020 IQ Switch ProxFusion® Series 3.5 Sensor data output and flags The following registers can be monitored by the master to detect Hall-effect related events. a) One bit in the Global events (0x11) register is dedicated to the Hall-effect output. Bit2 HALL_EVENT will be toggled for any Hall-effect UI detections. Global events (0x11) Bit Number 7 6 5 4 3 2 1 0 Data Access R R R R R R R R Name SAR ACTIVE PMU EVENT SYS EVENT TEMP EVENT HYSTERESIS UI EVENT HALL EVENT SAR EVENT PROX SENSE EVENT b) The Hall-effect UI flags (0x16) register provides the standard two-level activation output (prox = HALL_POUT & touch = HALL_TOUT) as well as a HALL_N/S bit to indicate the magnet polarity orientation. Hall-effect UI flags (0x16) Bit Number 7 6 5 4 3 2 1 0 Data Access - - - - - R R R Name - - - - - HALL TOUT HALL POUT HALL N/S c) The Hall-effect UI output (0x17 & 0x18) registers provide a 16-bit value of the Hall-effect amplitude detected by the sensor. Hall-effect UI Output (0x17 - 0x18) Bit Number 7 6 5 4 3 2 1 0 Data Access R R R R R R R R Name Hall-effect UI output low byte Bit Number 15 14 13 12 11 10 9 8 Data Access R R R R R R R R Name Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved Hall-effect UI output high byte IQS620A datasheet revision 3.00 Shortcut to memory map Page 23 of 94 September 2020 IQ Switch ProxFusion® Series 4 Inductive sensing 4.1 Introduction to inductive sensing The IQS620A provides inductive sensing capabilities in order to detect the presence of metal/metal-type objects. Prox and touch thresholds are widely adjustable and individual hysteresis settings are definable for each using the Hysteresis UI. 4.2 Channel specifications The IQS620A requires both Rx sensing pins as well as the Tx pin for inductive sensing. Channels 0, 1 and/or 2 can be setup for inductive sensing although only channel 2 can be used for the Hysteresis UI which is attractive as an inductive data processing UI. The Hysteresis UI provides superior options for prox and touch activation with filter halt and hysteresis settings. a) Hysteresis UI (Dedicated to CH2) Table 4.1 Inductive sensor – channel allocation Mode CH0 CH1 CH2 Inductive resonant tank ͦ ͦ ͦ Inductive mutually coupled coils ͦ ͦ ͦ Hysteresis UI CH3 CH4 CH5 • Key: o • - Optional implementation - Fixed use for UI Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 24 of 94 September 2020 IQ Switch ProxFusion® Series 4.3 Hardware configuration Rudimentary hardware configuration. Please refer to application note AZD115 for design details. Table 4.2 Inductive hardware description Inductive resonant tank Connection diagram iewer does not support full S G . FPCBA 2-layer coil and target example Inductive mutually coupled coils Connection diagram iewer does not support full S G . Coil examples Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 25 of 94 September 2020 IQ Switch ProxFusion® Series 4.4 Software configuration 4.4.1 Registers to configure for inductive sensing: Please note: If the discreet button UI is used then the SAR UI cannot be used, and the SAR registers should not be configured or used. Initializing inactive UI registers can corrupt other active UI’s. Table 4.3 Address Inductive sensing settings registers Name ProxFusion Settings 0 Description Recommended setting Sensor mode and Sensor mode should be set to configuration of channel 2. inductive mode 0x42 Both RX0 and RX1 should be active on channel 2 ProxFusion Settings 1 0x45 ProxFusion Settings 2 0x48 ProxFusion Settings 3 0x4B Full ATI is recommended for fully inductive sensor automated sensor tuning. ATI settings for the inductive ATI target should be more than sensor ATI base to achieve an ATI Additional settings for the None inductive sensor ProxFusion Settings 4 0x50 4.4.2 Channel 2 settings for the UI enable command and filter Enable the Hysteresis UI filter settings according to application Registers to configure for the Hysteresis UI: Please note: Only channel 2 can be used with the Hysteresis UI. Please setup channel 2 accordingly if required. The Hysteresis UI can be used simultaneously with the discrete button UI or SAR UI. Table 4.4 Address Name Hysteresis UI settings registers Description 0x50 ProxFusion settings 4 Hysteresis UI enable command 0x80 Hysteresis UI Settings Hysteresis settings for the Hysteresis UI prox and touch output Hysteresis UI filter halt Threshold setting to trigger a filter halt for sensor data on channel 2 0x81 0x82 0x83 threshold Hysteresis UI proximity Proximity threshold used for sensor data on channel 2 threshold Hysteresis UI touch Touch threshold used for sensor data on channel 2 threshold Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 26 of 94 September 2020 IQ Switch ProxFusion® Series 4.5 Sensor data output and flags The following registers can be monitored by the master to detect inductive sensor related events. a) Global events (0x11) to prompt for inductive sensor activation. Bit0 PROXSENSE_EVENT will indicate the detection of a metal object on any of the channels 0, 1 or 2 using the discreet mutual inductive sensing UI permitted that the specific channel is setup for inductive sensing. b) Bit3 denoted as HYSTERESIS_UI_EVENT will indicate the detection of a metal object using the hysteresis UI on an inductive sensing channel permitted that the hysteresis UI is activated. Global events (0x11) Bit Number 7 6 5 4 3 2 1 0 Data Access R R R R R R R R Name SAR ACTIVE PMU EVENT SYS EVENT TEMP EVENT HYSTERESIS UI EVENT HALL EVENT SAR EVENT PROX SENSE EVENT c) The Hysteresis UI flags (0x13) register provides the classic prox/touch two level activation outputs as well as a bit to distinguish whether the current counts are above or below the LTA. Hysteresis UI flags (0x13) Bit Number 7 6 5 4 3 2 1 0 Data Access R R R - - - - - Name Signed output TOUCH PROX - - - - - d) Hysteresis UI output (0x14 & 0x15) registers will provide a combined 16-bit value to acquire the magnitude of the inductive sensed object. Hysteresis UI output (0x14 - 0x15) Bit Number 7 6 5 4 3 2 1 0 Data Access R R R R R R R R Name Hysteresis UI output low byte Bit Number 15 14 13 12 11 10 9 8 Data Access R R R R R R R R Name Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved Hysteresis UI output high byte IQS620A datasheet revision 3.00 Shortcut to memory map Page 27 of 94 September 2020 IQ Switch ProxFusion® Series 5 5.1 Temperature monitoring Introduction to temperature monitoring The IQS620A provides temperature monitoring capabilities which can be used for temperature change detection in order to ensure the integrity of other sensing technology. The use of the temperature sensor is primarily to reseed other sensor channels to account for sudden changes in environmental conditions. The IQS620A uses a linearly proportional to absolute temperature sensor for temperature data. The temperature output data is given by, 𝑎. 219 𝑇= +𝑐 𝑏. 𝐶𝐻3 Where 𝑎, 𝑏 and 𝑐 are constants that can be determined to provide a required output data as a function of device temperature. Additionally, the channel setup must be calculated during a testing process. The IQS620AT part(s) have been calibrated during production and will use OTP stored values calculated for that specific part for parameters 𝑎, 𝑏 and 𝑐 as well as a 4-bit value used for the fine multiplier setup of channel 3 (default always uses the lowest course multiplier). Table 5.1 Temperature calibration setting registers and ranges Parameter Name Description 𝒂 𝑴𝒖𝒍𝒕𝒊𝒑𝒍𝒊𝒆𝒓 IQS620 Register IQS620A Range Register Range Higher nibble 1 – 16 0xC2 1 – 256 Lower nibble 1 – 16 0xC3 1 – 256 0 – 255 0xC4 0 – 255 0xC2 5.2 𝒃 𝑫𝒊𝒗𝒊𝒅𝒆𝒓 𝒄 𝑶𝒇𝒇𝒔𝒆𝒕 0xC3 Channel specifications The IQS620A requires only external passive components to do temperature monitoring (no additional circuitry/components required). The temperature UI will be executed using data from channel 3. Mode Table 5.2 Temperature sensor – channel allocation CH0 CH1 Temperature monitoring CH2 CH3 CH4 CH5 • Key: o - Optional implementation • - Fixed use for UI Please note that channels 4 and 5, for Hall-effect sensing, needs to be active in order for the temperature monitoring UI to execute correctly on version 0 and 1 software versions. For version 2 & 3 devices Hall-effect channels 4 & 5 may be disabled regardless. 5.3 Hardware configuration No additional hardware required. Temperature monitoring is realized on-chip. Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 28 of 94 September 2020 IQ Switch ProxFusion® Series 5.4 Software configuration 5.4.1 Registers to configure for temperature monitoring For IQS620 only: Table 5.3 Address 0xC0 Temperature monitoring settings registers Name Description Recommended setting Temperature UI settings Channel reseed settings Reseed enable should be set Multipliers channel 3 Temperature sensor channel multiplier selection Dependent on calibration step 0xC2 Temperature calibration data 0 4-bit Multiplier (𝑎+1) and 4-bit divider (𝑏+1) calibration values Requires sample calibration 0xC3 Temperature calibration data 1 8-bit Offset (𝑐) calibration value Requires sample calibration 0xC1 For IQS620AX: Table 5.4 Address 0xC0 Temperature monitoring settings registers Name Description Recommended setting Temperature UI settings Channel reseed settings Reseed enable should be set Multipliers channel 3 Temperature sensor channel multiplier selection Dependent on calibration step 8-bit Multiplier calibration value Requires sample calibration 0xC2 Temperature UI calibration multiplier 8-bit Divider (𝑏+1) calibration value Requires sample calibration 0xC3 Temperature calibration UI divider Temperature UI offset 8-bit Offset value Requires sample calibration 0xC1 0xC4 Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved (𝑐) (𝑎+1) Defined during fabrication IQS620AT samples Defined during fabrication IQS620AT samples calibration IQS620A datasheet revision 3.00 Shortcut to memory map Defined during fabrication IQS620AT samples Defined during fabrication IQS620AT samples for for for for Page 29 of 94 September 2020 IQ Switch ProxFusion® Series 5.5 Sensor data output and flags The following registers can be monitored by the master to detect temperature related events. e) Global events (0x11) to prompt for temperature trip activation. Bit4 denoted as TEMP_EVENT will indicate the detection of a temperature event. Global events (0x11) Bit Number 7 6 5 4 3 2 1 0 Data Access R R R R R R R R Name SAR ACTIVE PMU EVENT SYS EVENT TEMP EVENT HYSTERESIS UI EVENT HALL EVENT SAR EVENT PROX SENSE EVENT f) The Temperature UI flags (0x19) register provides a temperature trip activation output bit if the condition of a temperature reseed threshold is tripped. Temperature UI flags (0x19) Bit Number 7 6 5 4 3 2 1 0 Data Access R - - - - - - - Name Temp trip - - - - - - - g) Temperature UI output (0x1A & 0x1B) registers will provide a combined (big-endian) 16bit output value for the measured internal IC temperature. Please note: • For the IQS620AT part(s) (Device version 1 & 2: HW number 0x02 = 0x82): o The calibration was done so that the UI output is offset by a decimal value of +100 in order to be able to calculate and represent absolute temperatures below 0C in the controller arithmetic and temperature UI capabilities. o Example: Temperature UI output = 20’D → 20C or 90’D → -10C • For the IQS620AT part(s) (Device version 3: HW number 0x02 = 0x92): o The calibration was done so that the UI output is offset by a decimal value of +40 in order to be able to calculate and represent absolute temperatures below 0C in the controller arithmetic and temperature UI capabilities. o Example: Temperature UI output = 60’D → 20C or 30’D → -10C Temperature UI output (0x1A – 0x1B) Bit Number Data Access Name Bit Number Data Access Name 7 6 5 4 3 2 1 0 R R R R R R R R Temperature output low byte 15 14 13 12 11 10 9 8 R R R R R R R R Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved Temperature output high byte IQS620A datasheet revision 3.00 Shortcut to memory map Page 30 of 94 September 2020 IQ Switch ProxFusion® Series 6 Device clock, power management and mode operation 6.1 Device main oscillator The IQS620A has a 16MHz main oscillator (default enabled) to clock all system functionality. An option exists to reduce the main oscillator to 4MHz. This will result in charge transfer frequencies to be one-quarter of the default implementations. System timers are adjusted so that timeouts and report rates remain the same if possible. To set this option this: o o 6.2 As a software setting – Set the System_Settings: bit4 = 1, via an I2C command. As a permanent setting – Set the OTP option in OTP Bank 0: bit2 = 1, using IQS620A PC software. Device modes The IQS620A supports the following modes of operation; • • • • Normal mode (Fixed report rate) Low power mode (Reduced report rate) Ultra-low power mode (Only channel 0 is sensed for a prox) Halt mode (Suspended/disabled) Note: Auto modes must be disabled to enter or exit halt mode. The device will automatically switch between the different operating modes by default. However, this Auto mode feature may be disabled by setting the DSBL_AUTO_MODE bit (Power_mode_settings 0xD2: bit5) to confine device operation to a specific power mode. The POWER_MODE bits (Power_mode_settings 0xD2: bit4-3) can then be used to specify the desired mode of operation. 6.2.1 Normal mode Normal mode is the fully active sensing mode to function at a fixed report rate specified in the Normal mode report rate (0xD3) register. This 8-bit value is adjustable from 0ms – 255ms in intervals of 1ms. Note: The device’s low power oscillator has an accuracy of 4ms. 6.2.2 Low power mode Low power mode is a reduced sensing mode where all channels are sensed but at a reduced oscillator speed. The sample rate can be specified in the Low Power mode report rate (0xD4) register. The 8-bit value is adjustable from 0ms – 255ms in intervals of 1ms. Reduced report rates also reduce the current consumed by the sensor. Note: The device’s low power oscillator has an accuracy of 4ms. 6.2.3 Ultra-low power mode Ultra-low power mode is a reduced sensing mode where only channel 0 is sensed at the ultra low power report rate. Channels 1 to 5 are only updated (sensed and processed according to each channels setup) during a normal power update cycle. This NP update cycle rate can be set as a fraction of the configured ULP mode report rate. There are 8 NP segment fraction options available (Power_mode_settings: bit2-0) ranging from the fastest, ½ ULP rate to the slowest rate of 1/256 of the ULP rate. This ensures that channels 1 to 5’s LTA values track any slow changes in sensor counts (typically seen over a long period for varying environmental conditions). To enable use of the ultra-low power mode set the EN_ULP_MODE bit (Power_mode_settings: bit6). The sample rate can be specified in the Ultra-Low Power mode report rate (0xD5) register. The 8-bit value is adjustable from 0ms – 4sec in increments of 16ms for each decimal integer. IQS620A wake up (return to normal mode) will occur on prox detection of channel 0. Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 31 of 94 September 2020 IQ Switch ProxFusion® Series 6.2.4 Halt mode Halt mode will suspend all sensing and will place the device in a dormant or sleep state. The device requires an I2C command from a master to explicitly change the power mode out of the halt state before any sensor functionality can continue. 6.2.5 Mode time The mode time defines the time period in normal or low power modes before automatically moving to a slower mode (or finally ULP mode if applicable) if no activations are registered in this time. This time is set in the Auto Mode Timer (0xD6) register. The 8-bit value is adjustable from 0ms – 2 min in intervals of 500ms. 6.3 System reset The IQS620A device monitor’s system resets and events. a) Every device power-on and reset event will set the Show Reset bit (System flags 0x10: bit7) and the master should explicitly clear this bit by setting the ACK_RESET (bit6) in System Settings. b) The system events will also be indicated with the Global events register’s SYS_EVENT bit (Global events 0x11: bit5) if any system event occur such as a reset. This event will continuously trigger until the reset has been acknowledged. Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 32 of 94 September 2020 IQ Switch ProxFusion® Series 7 Communication I2C module specification 7.1 The device supports a standard two wire I2C interface with the addition of an RDY (ready interrupt) line. The communications interface of the IQS620A supports the following: • • • • Standard-mode I2C protocol compliant for speed up to 100kbits/s. Faster speeds possible up to 400kbits/s but without Fast-mode minimum fall time fulfilment. Streaming data as well as event mode. The master may address the device at any time. If the IQS620A is not in a communication window, the device will return an ACK after which clock stretching may be induced until a communication window is entered. Additional communication checks are included in the main loop in order to reduce the average clock stretching time. The provided interrupt line (RDY) is an open-drain active low implementation and indicates a communication window. • I2C Read 7.2 To read from the device a current address read can be performed. This assumes that the addresscommand is already setup as desired. Current Address Read Start Control byte S Addr + READ Data n Data n+1 ACK Stop ACK Figure 7.1 NACK S Current Address Read If the address-command must first be specified, then a random read must be performed. In this case, a WRITE is initially performed to setup the address-command, and then a repeated start is used to initiate the READ section. Random Read Start Control byte S Addr + WRITE Addresscommand ACK ACK Figure 7.2 7.3 Start Control byte S Addr + READ Data n ACK Stop NACK S Random Read I2C Write To write settings to the device a Data Write is performed. Here the Address-Command is always required, followed by the relevant data bytes to write to the device. Data Write Start Control byte S Addr + WRITE AddressCommand Data n ACK ACK Figure 7.3 Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved Data n+1 ACK Stop ACK S I2C Data Write IQS620A datasheet revision 3.00 Shortcut to memory map Page 33 of 94 September 2020 IQ Switch ProxFusion® Series 7.4 Stop-bit disable option The IQS620A parts offer: • an additional I2C settings register (0xDA) specifically added for stop-bit disable functionality, • as well as a RDY timeout period register (0xD9) in order to set the required timeout period for termination of any communication windows (RDY = Low) if no I2C activity is present on SDA and SCL pins. Customers using an MCU with a binary serial-encoder peripheral which is not fully I2C compatible (but provide some crude serial communication functions) can use this option to configure the IQS620A so that any auto generated stop command from the serial peripheral can be ignored by the IQS620A I2C hardware. This will restrict the IQS620A from immediately exiting a communication window until all required communication has been completed and a stop command can correctly be transmitted. Please refer to the figures below for serial data transmission examples. Please note: 1. Stop-bit disable and enable must be performed at the beginning and end of a communication window. The first and last I2C register to be written to ensure no unwanted communication window termination. 2. Leaving the Stop-bit disabled will result in successful reading of registers but will not execute any commands written over I2C in a communication window being terminated after an RDY timeout and with no IQS recognised stop command. 3. The default RDY timeout period for IQS620A is purposefully long (10.24ms) for slow responding MCU hardware architectures. Please set this register according to your requirements/preference. 4. These options are only available on IQS620A parts and not for IQS620. Stop-bit Disable Communication window open Start Control byte RDY = ↓LOW S Addr + WRITE AddressCommand ACK 0xDA Figure 7.4 Disable stop-bit ACK 0x81 ACK Ignored stop Continue with reads / writes S … I2C Stop-bit Disable Stop-bit Enable Reads / Writes Finished Start Control byte … S Addr + WRITE AddressCommand ACK Figure 7.5 Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved 0xDA Enable stop-bit ACK 0x01 ACK Stop Communication window closed S RDY = ↑HIGH I2C Stop-bit Enable IQS620A datasheet revision 3.00 Shortcut to memory map Page 34 of 94 September 2020 IQ Switch ProxFusion® Series 7.5 Device address and sub-addresses The default device address is 0x44 = DEFAULT_ADDR. Alternative sub-address options are definable in the following one-time programmable bits: OTP Bank0 (bit3; 0; bit1; bit0) = SUB_ADDR_0 to SUB_ADDR_7 a) b) c) d) e) f) g) h) 7.6 Default address: Sub-address: Sub-address: Sub-address: Sub-address: Sub-address: Sub-address: Sub-address: 0x44 = DEFAULT_ADDR (0x44) 0x45 = DEFAULT_ADDR (0x44) 0x46 = DEFAULT_ADDR (0x44) 0x47 = DEFAULT_ADDR (0x44) 0x4C = DEFAULT_ADDR (0x44) 0x4D = DEFAULT_ADDR (0x44) 0x4E = DEFAULT_ADDR (0x44) 0x4F = DEFAULT_ADDR (0x44) OR OR OR OR OR OR OR OR SUB_ADDR_0 (0000b) SUB_ADDR_1 (0001b) SUB_ADDR_2 (0010b) SUB_ADDR_3 (0011b) SUB_ADDR_4 (1000b) SUB_ADDR_5 (1001b) SUB_ADDR_6 (1010b) SUB_ADDR_7 (1011b) Additional OTP options 7.6.1 Device version 0 (Software number 0x04 = D’04) All one-time-programmable device options are located in OTP bank0. OTP bank0 Bit Number 7 6 5 4 3 2 Name Internal use COMMS ATI Internal use Internal use SUB ADDRESS (bit3) 4MHz 1 0 SUB ADDRESS (bit1-0) Bit definitions: • • • • • Bit 7: Internal use o Do not set. Leave bit cleared. Bit 6: Communication mode during ATI o 0: No streaming events are generated during ATI o 1: Communication continue as setup regardless of ATI state. Bit 5,4: Internal use o Do not configure Bit 2: Main Clock frequency selection o 0: Run FOSC at 16MHz o 1: Run FOSC at 4MHz Bit 3,1,0: I2C sub-address o I2C address = 0x44 OR SUB_ADDR Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 35 of 94 September 2020 IQ Switch ProxFusion® Series 7.6.2 Device version 1 (Software number 0x08 = D’08) All one-time-programmable device options are located in OTP bank0. OTP bank0 Bit Number 7 6 5 4 3 2 Name Internal use COMMS ATI Internal use Internal use SUB ADDRESS (bit3) 4MHz 1 0 SUB ADDRESS (bit1-0) Bit definitions: • • • • • 7.6.3 Bit 7: Internal use o Do not set. Leave bit cleared. Bit 6: Communication mode during ATI o 0: No streaming events are generated during ATI o 1: Communication continue as setup regardless of ATI state. Bit 5,4: Internal use o Do not configure Bit 2: Main Clock frequency selection o 0: Run FOSC at 16MHz o 1: Run FOSC at 4MHz Bit 3,1,0: I2C sub-address o I2C address = 0x44 OR SUB_ADDR Device version 2 & 3 (Software number 0x0D = D’13) All one-time-programmable device options are located in OTP bank0. OTP bank0 Bit Number 7 6 5 4 3 2 Name Disable Hall COMMS ATI Internal use Internal use SUB ADDRESS (bit3) 4MHz 1 0 SUB ADDRESS (bit1-0) Bit definitions: • • • • • Bit 7: Disable Hall o 0: All sensors are active. o 1: Hall-effect sensors are disabled permanently. Use this option for 1.8V rated supplies requiring up to 5% tolerance (absolute minimum VDDHI >= 1.71V). Bit 6: Communication mode during ATI o 0: No streaming events are generated during ATI o 1: Communication continue as setup regardless of ATI state. Bit 5,4: Internal use o Do not configure Bit 2: Main Clock frequency selection o 0: Run FOSC at 16MHz o 1: Run FOSC at 4MHz Bit 3,1,0: I2C sub-address o I2C address = 0x44 OR SUB_ADDR Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 36 of 94 September 2020 IQ Switch ProxFusion® Series 7.7 Recommended communication and runtime flow diagram The following is a basic master program flow diagram to communicate and handle the device. It addresses possible device events such as output events, ATI and system events (resets). POR Clear Show_Reset Reset occured Show Reset? Setup & Initialization ATI No Yes IN ATI? Yes Runtime Global Event? No System Event? Yes Valid event? No Yes Retrieve event data Figure 7.6 Master command structure and runtime event handling flow diagram It is recommended that the master verifies the status of the System_Flags0 bits to identify events and resets. Detecting either one of these should prompt the master to the next steps of handling the IQS620A. Streaming mode communication is used for detail sensor evaluation during prototyping and/or development phases. Event mode communication is recommended for runtime use of the IQS620A. This reduces the communication on the I2C bus and report only triggered events. Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 37 of 94 September 2020 IQ Switch ProxFusion® Series 8 Memory map Table 8.1 Full Address IQS620A Memory map index Item Name Data Access Product number Read-Only Software number Read-Only 0x02 Hardware number Read-Only 0x10 System flags Read-Only 0x11 Global events Read-Only 0x12 ProxFusion UI flags Read-Only 0x13 SAR and Hysteresis UI flags Read-Only 0x14 Hysteresis UI output 0 Read-Only Hysteresis UI output 1 Read-Only Hall-effect UI flags Read-Only 0x17 Hall-effect UI output 0 Read-Only 0x18 Hall-effect UI output 1 Read-Only 0x19 Temperature UI flags Read-Only 0x1A Temperature UI output 0 Read-Only 0x1B Temperature UI output 1 Read-Only 0x20 Channel 0 counts low Read-Only 0x21 Channel 0 counts high Read-Only 0x22 Channel 1 counts low Read-Only 0x23 Channel 1 counts high Read-Only 0x24 Channel 2 counts low Read-Only Channel 2 counts high Read-Only Channel 3 counts low Read-Only 0x27 Channel 3 counts high Read-Only 0x28 Channel 4 counts low Read-Only 0x29 Channel 4 counts high Read-Only 0x2A Channel 5 counts low Read-Only 0x2B Channel 5 counts high Read-Only 0x30 Channel 0 LTA low Read-Write 0x31 Channel 0 LTA high Read-Write Channel 1 LTA low Read-Write Channel 1 LTA high Read-Write 0x34 Channel 2 LTA low Read-Write 0x35 Channel 2 LTA high Read-Write Group Name 0x00 0x01 0x15 0x16 0x25 0x26 0x32 0x33 Device information data Flags and user interface data Channel counts (raw data) LTA values (filtered data) Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 38 of 94 September 2020 IQ Switch ProxFusion® Series 0x40 ProxFusion settings 0_0 Read-Write 0x41 ProxFusion settings 0_1 Read-Write 0x42 ProxFusion settings 0_2 Read-Write 0x43 ProxFusion settings 1_0 Read-Write 0x44 ProxFusion settings 1_1 Read-Write ProxFusion settings 1_2 Read-Write ProxFusion settings 2_0 Read-Write 0x47 ProxFusion settings 2_1 Read-Write 0x48 ProxFusion settings 2_2 Read-Write 0x49 ProxFusion settings 3_0 Read-Write 0x4A ProxFusion settings 3_1 Read-Write 0x4B ProxFusion settings 3_2 Read-Write 0x50 ProxFusion settings 4 Read-Write 0x51 ProxFusion settings 5 Read-Write 0x52 Compensation Ch0 Read-Write Compensation Ch1 Read-Write Compensation Ch2 Read-Write 0x55 Multipliers Ch0 Read-Write 0x56 Multipliers Ch1 Read-Write 0x57 Multipliers Ch2 Read-Write 0x60 Prox threshold Ch0 Read-Write 0x61 Touch threshold Ch0 Read-Write 0x62 Prox threshold Ch1 Read-Write Touch threshold Ch1 Read-Write 0x64 Prox threshold Ch2 Read-Write 0x65 Touch threshold Ch2 Read-Write 0x66 ProxFusion discrete UI halt time Read-Write 0x70 SAR UI settings 0 Read-Write 0x71 SAR UI settings 1 Read-Write QRD threshold Ch0 Read-Write Filter halt threshold Ch0 Read-Write 0x74 Prox threshold Ch0 Read-Write 0x75 Quick release detection halt time Read-Write 0x80 Hysteresis UI settings Read-Write Hysteresis UI filter halt threshold Read-Write Hysteresis UI prox threshold Read-Write Hysteresis UI touch threshold Read-Write 0x45 0x46 0x53 0x54 0x63 0x72 0x73 0x81 0x82 ProxFusion sensor settings block 0 ProxFusion sensor settings block 1 ProxFusion UI settings SAR UI settings Hysteresis UI settings 0x83 Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 39 of 94 September 2020 IQ Switch ProxFusion® Series 0x90 Hall-effect settings 0 Read-Write Hall-effect settings 1 Read-Write Compensation Ch4 and Ch5 Read-Write 0x93 Multipliers Ch4 and Ch5 Read-Write 0xA0 Hall-effect switch UI settings Read-Write Hall-effect switch UI prox threshold Read-Write 0xA2 Hall-effect switch UI touch threshold Read-Write 0xC0 Temperature UI settings Read-Write 0xC1 Multipliers Ch3 Read-Write 0x91 0x92 0xA1 0xC2 Hall-effect sensor settings Hall-effect switch UI settings Temperature UI settings 0xC3 Temp calibration data0 Temp calibration data1 Temp calibration multiplier* Temp calibration divider* Read-Write Read-Write 0xC4 Temperature calibration offset* Read-Write 0xD0 System settings Read-Write 0xD1 Active channels Read-Write 0xD2 Power mode settings Read-Write 0xD3 Normal mode report rate Read-Write 0xD4 Low power mode report rate Read-Write Ultra-low power mode report rate Read-Write Auto mode time Read-Write 0xD7 Global event mask Read-Write 0xD8 PWM duty cycle Read-Write 0xD9 RDY Timeout period* Read-Write 0xDA I2C settings* Read-Write 0xDB Channel reseed enable* Read-Write 0xD5 0xD6 Device and power mode settings * Only available for IQS620A v1 & v2 The full memory map is summarized above. Registers are explained individually in the latter part of this section. Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 40 of 94 September 2020 IQ Switch ProxFusion® Series 8.2 8.2.1 Device Information Data Product number Product number (0x00) Bit Number 7 6 5 4 3 2 1 0 Data Access R R R R R R R R Name Device Product Number Bit definitions: • Bit 7-0: Device Product Number o 0x4 = D’65: IQS620(A) product number (all versions) 8.2.2 Software number Software number (0x01) Bit Number 7 6 5 4 3 2 1 0 Data Access R R R R R R R R Name Device Software Number Bit definitions: • Bit 7-0: Device Software Number o 0x04 = D’04: IQS620 version 0 firmware (pre-production) o 0x08 = D’08: IQS620A version 1 firmware (production) o 0x0D = D’13: IQS620A version 2 firmware (update) 8.2.3 Hardware number Hardware number (0x02) Bit Number 7 6 5 4 3 2 1 0 Data Access R R R R R R R R Name Device Hardware Number Bit definitions: • Bit 7-0: Device Hardware Number o 0x82 = D’ 30: IQS620 version 0 hardware number o 0x82 = D’ 30: IQS620A version 1 & 2 hardware number o 0x92 = D’ 46: IQS620A version 3 hardware number Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 41 of 94 September 2020 IQ Switch ProxFusion® Series 8.3 8.3.1 Flags and user interface data System flags System flags (0x10) Bit Number 7 6 5 4 3 2 1 0 Data Access R - - R R R R R Name SHOW RESET - - IN ATI EVENT NP SEG ACTIVE POWER MODE Bit definitions: • Bit 7: Reset Indicator o 0: No reset event o 1: A device reset has occurred and needs to be acknowledged. • Bit 4-3: Active power-mode indicator o 00: Normal Mode o 10: Ultra-Low Power Mode o 01: Low Power Mode o 11: Halt Mode • Bit 2: ATI busy indicator o 0: No CH’s are in ATI o 1: One or more CH’s are in ATI • Bit 1: Global Event Indicator o 0: No new event to service o 1: An event has occurred and should be serviced • Bit 0: Normal power segment indicator o 0: Not performing a normal power update o 1: Busy performing a normal power update 8.3.2 Global events Global events (0x11) Bit Number 7 6 5 4 3 2 1 0 Data Access R R R R R R R R Name SAR ACTIVE PMU EVENT SYS EVENT TEMP EVENT HYSTERESIS UI EVENT HALL EVENT SAR EVENT PROX SENSE EVENT Bit definitions: • Bit 7: SAR activation state o 0: SAR output inactive o 1: SAR output active • Bit 6: Power management unit event flag o 0: No event to report o 1: A PMU event occurred • Bit 5: System event flag o 0: No event to report o 1: A system event has occurred • Bit 4: Temperature event flag o 0: No event to report o 1: A temperature event has occurred and should be handled • Bit 4: Hysteresis UI event flag o 0: No event to report o 1: A hysteresis UI event has occurred and should be handled Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 42 of 94 September 2020 IQ Switch ProxFusion® Series • • • 8.3.3 Bit 2: Hall-effect event flag o 0: No event to report o 1: A Hall-effect event has occurred and should be handled Bit 1: Single channel SAR event flag o 0: No event to report o 1: A single channel SAR event has occurred and should be handled Bit 0: ProxSense event flag o 0: No event to report o 1: A capacitive event has occurred and should be handled ProxFusion UI flags ProxFusion UI flags (0x12) Bit Number 7 6 5 4 3 2 1 0 Data Access - R R R - R R R Name - CH2_T CH1_T CH0_T - CH2_P CH1_P CH0_P Bit definitions: • Bit 6: Ch2 touch indicator o 0: Delta below touch threshold • Bit 5: Ch1 touch indicator o 0: Delta below touch threshold • Bit 4: Ch0 touch indicator o 0: Delta below touch threshold • Bit 2: Ch2 proximity indicator o 0: Delta below prox threshold • Bit 1: Ch1 proximity indicator o 0: Delta below prox threshold • Bit 0: Ch0 proximity indicator o 0: Delta below prox threshold 8.3.4 o 1: Delta above touch threshold o 1: Delta above touch threshold o 1: Delta above touch threshold o 1: Delta above prox threshold o 1: Delta above prox threshold o 1: Delta above prox threshold Single channel SAR UI flags Single channel SAR UI flags (0x13) Bit Number 7 6 5 4 3 2 1 0 Data Access - - - R - R R R Name - - - SAR ACTIVE - QRD MOVEMENT FHALT Bit definitions: • Bit 4: SAR Standoff Active o 0: Delta below SAR prox THR • Bit 2: Quick Release Detection (QRD) indicator o 0: Quick release not detected • Bit 1: Movement indicator o 0: Movement not detected • Bit 0: Filter Halt indicator Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved o 1: Delta above SAR prox THR o 1: Quick release detected o 1: Movement detected IQS620A datasheet revision 3.00 Shortcut to memory map Page 43 of 94 September 2020 IQ Switch ProxFusion® Series o 8.3.5 0: Delta below filter halt THR o 1: Delta above filter halt THR Hysteresis UI flags Hysteresis UI flags (0x13) Bit Number 7 6 5 4 3 2 1 0 Data Access R R R - - - - - Name Signed output TOUCH PROX - - - - - Bit definitions: • Bit 7: Delta directional signed output o 0: Counts < LTA. Delta positive • Bit 6: Hysteresis UI touch indicator o 0: Delta below touch threshold • Bit 5: Hysteresis proximity indicator o 0: Delta below prox threshold 8.3.6 o 1: Counts > LTA. Delta negative o 1: Delta above touch threshold o 1: Delta above prox threshold Hysteresis UI output Hysteresis UI output (0x14 - 0x15) Bit Number 7 6 5 4 3 2 1 0 Data Access R R R R R R R R Name Hysteresis UI Output Low Byte Bit Number 15 14 13 12 11 10 9 8 Data Access R R R R R R R R Name Hysteresis UI Output High Byte Bit definitions: • Bit 15-0: Hysteresis UI output value Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 44 of 94 September 2020 IQ Switch ProxFusion® Series 8.3.7 Hall-effect UI flags Hall-effect UI flags (0x16) Bit Number 7 6 5 4 3 2 1 0 Data Access - - - - - R R R Name - - - - - TOUCH PROX HALL N/S Bit definitions: • Bit 2: Hall-effect touch indicator o 0: Count delta below touch threshold • Bit 1: Hall-effect proximity indicator o 0: Count delta below prox threshold • Bit 0: Hall-effect North South Field indication o 0: North field direction present o 1: Count delta above touch threshold o 1: Count delta above prox threshold o 1: South field direction present Please note: Only for IQS620AXzCSR (CS = WLCSP-9) a flip chip process is used thus: o 0: South field direction present o 1: North field direction present 8.3.8 Hall-effect UI output Hall-effect UI output (0x17/0x18) Bit Number 7 6 5 4 3 2 1 0 Data Access R R R R R R R R Name Hall-effect UI Output Low Byte Bit Number 15 14 13 12 11 10 9 8 Data Access R R R R R R R R Name Hall-effect UI Output High Byte Bit definitions: • Bit 15-0: Hall-effect UI output o 0 – 8 000: Hall-effect UI output value Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 45 of 94 September 2020 IQ Switch ProxFusion® Series 8.3.9 Temperature UI flags Temperature UI flags (0x19) Bit Number 7 6 5 4 3 2 1 0 Data Access R - - - - - - - Name Temp trip - - - - - - - Bit definitions: • Bit 7: Temperature trip indicator o 0: No event to report o 1: Temperature event occurred 8.3.10 Temperature UI output Temperature UI output (0x1A – 0x1B) Bit Number 7 6 5 4 3 2 1 0 Data Access R R R R R R R R Name Temperature output low byte Bit Number 15 14 13 12 11 10 9 8 Data Access R R R R R R R R Name Temperature output high byte Bit definitions: • Bit 15-0: Temperature UI output o IQS620A: Temperature output value (relative/unitless; uncalibrated) o IQS620AT (Device version 1 & 2: HW number 0x02 = 0x82): ▪ Temperature output value -100 = Device die temperature (°C) o IQS620AT (Device version 3: HW number 0x02 = 0x92): ▪ Temperature output value -40 = Device die temperature (°C) Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 46 of 94 September 2020 IQ Switch ProxFusion® Series 8.4 Channel counts (raw data) Channel counts Ch0/1/2/3 (0x20/0x21 - 0x2A/0x2B) Bit Number 7 6 5 4 3 2 1 0 Data Access R R R R R R R R Name Channel Data Low Byte Bit Number 15 14 13 12 11 10 9 8 Data Access R R R R R R R R Name Channel Data High Byte Bit definitions: • Bit 15-0: Channel counts o AC filtered or raw value counts of ProxFusion sensor channels 8.5 LTA values (filtered data) LTA Ch0/1/2 (0x30/0x31 - 0x34/0x35) Bit Number 7 6 5 4 3 2 1 0 Data Access R/W R/W R/W R/W R/W R/W R/W R/W Name LTA Low Byte Bit Number 15 14 13 12 11 10 9 8 Data Access R/W R/W R/W R/W R/W R/W R/W R/W Name LTA High Byte Bit definitions: • Bit 15-0: LTA filter value output o Long term average value of channels Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 47 of 94 September 2020 IQ Switch ProxFusion® Series 8.6 8.6.1 ProxFusion sensor settings block 0 ProxFusion settings 0 Capacitive sensing ProxFusion settings 0_0/1/2 (0x40-0x42) Bit Number 7 6 5 4 3 2 1 0 Data Access R/W R/W - - - - R/W R/W Internal use Internal use - RX Select - - - - Name Fixed value Capacitive sensor mode 0 0 Bit definitions: • Bit 7-6: Sensor Mode o 00: Capacitive sensing mode • Bit 1-0: RX Select o 00: RX0 and RX1 is disabled o 01: RX0 is enabled o o 10: RX1 is enabled 11: RX0 and RX1 is enabled Inductive sensing ProxFusion settings 0_0/1/2 (0x40-0x42) Bit Number 7 6 5 4 3 2 1 0 Data Access R/W R/W - R/W - - R/W R/W Internal use Multiplier range - - - - Name Fixed value Inductive sensor mode 1 0 RX Select 1 1 Bit definitions: • Bit 7-6: Sensor Mode o 10: Inductive sensor mode • Bit 4: Multiplier range o 0: Large o 1: Small • Bit 1-0: RX Select o 11: RX0 and RX1 is enabled (Fixed selection for inductive sensing) Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 48 of 94 September 2020 IQ Switch ProxFusion® Series 8.6.2 ProxFusion settings 1 Capacitive sensing ProxFusion settings 1_0/1/2 (0x43 - 0x45) Bit Number 7 6 5 4 3 2 1 0 Data Access - R/W R/W R/W - - R/W R/W Name - CSz CHARGE FREQ Default - AUTO ATI MODE 0x67 0 1 1 0 0 1 1 1 Bit definitions: • Bit 6: CS size o 0: CS capacitor size is 15 pF o 1: CS capacitor size is 60 pF • Bit 5-4: Charge frequency divider o 00: 1/2 o 10: 1/8 o 01: 1/4 o 11: 1/16 • Bit 1-0: Auto ATI Mode o 00: ATI disabled o 01: Partial ATI (all multipliers are fixed) o 10: Semi-Partial ATI (only coarse multipliers are fixed) o 11: Full-ATI Inductive sensing ProxFusion settings 1_0/1/2 (0x43 - 0x45) Bit Number 7 6 5 4 3 2 1 0 Data Access - R/W R/W R/W - - R/W R/W Name - CSz CHARGE FREQ Default - AUTO ATI MODE 0x67 0 1 1 0 0 1 1 1 Bit definitions: • Bit 6: CS size o 0: CS capacitor size is 15 pF o 1: CS capacitor size is 60 pF • Bit 5-4: Charge frequency divider o 00: 1/2 o 10: 1/8 o 01: 1/4 o 11: 1/16 • Bit 1-0: Auto ATI Mode o 00: ATI disabled o 01: Partial ATI (all multipliers are fixed) o 10: Semi-Partial ATI (only coarse multipliers are fixed) o 11: Full-ATI Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 49 of 94 September 2020 IQ Switch ProxFusion® Series 8.6.3 ProxFusion settings 2 Capacitive sensing ProxFusion settings 2_0/1/2 (0x46 - 0x48) Bit Number 7 6 5 4 3 2 1 0 Data Access R/W R/W R/W R/W R/W R/W R/W R/W 0 0 Name Default ATI_BASE ATI_TARGET (x32) 0xD0 1 1 0 1 0 Bit definitions: • Bit 7-6: Auto ATI base value o 00: 75 o 01: 100 • Bit 5-0: Auto ATI Target o ATI Target is 6-bit value x 32 0 o o 10: 150 11: 200 Inductive sensing ProxFusion settings 2_0/1/2 (0x46 - 0x48) Bit Number 7 6 5 4 3 2 1 0 Data Access R/W R/W R/W R/W R/W R/W R/W R/W 0 0 Name Default ATI_BASE ATI_TARGET (x32) 0xD0 1 1 0 1 Bit definitions: • Bit 7-6: Auto ATI base value o 00: 75 o 01: 100 • Bit 5-0: Auto ATI Target o ATI Target is 6-bit value x 32 Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved 0 0 o o 10: 150 11: 200 IQS620A datasheet revision 3.00 Shortcut to memory map Page 50 of 94 September 2020 IQ Switch ProxFusion® Series 8.6.4 ProxFusion settings 3 Capacitive sensing ProxFusion settings 3_0/1/2 (0x49 - 0x4B) Bit Number 7 6 5 4 3 2 1 0 Data Access R/W R/W R/W - R/W - - - - - - 1 1 0 Name UP_LENGTH CS DIV Default 0 0 0 Internal UP LEN use EN 0x06 0 0 Bit definitions: • Bit 7-6: Up length select (requires UP_LENGTH_EN = 1 for use) o 00: Up length = 0010 o 10: Up length = 1010 o 01: Up length = 0110 o 11: Up length = 1110 • Bit 5: CS divider o 0: Normal CS cap size o 1: CS cap size 5 times smaller • Bit 3: Up length select enable o 0: Up length select is disabled o 1: Up length select is enabled (value in bit 7-6 is used) Inductive sensing ProxFusion settings 3_0/1/2 (0x49 - 0x4B) Bit Number 7 6 5 4 3 2 1 0 Data Access - - R/W - R/W - - - CS DIV Internal use - - - - 0 1 1 0 Name Default - 0x06 0 0 Bit definitions: • Bit 5: CS divider o 0: Normal CS cap size Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved 0 0 o 1: CS cap size 5 times smaller IQS620A datasheet revision 3.00 Shortcut to memory map Page 51 of 94 September 2020 IQ Switch ProxFusion® Series 8.7 8.7.1 ProxFusion sensor settings block 1 ProxFusion settings 4 Capacitive sensing ProxFusion settings 4 (0x50) Bit Number 7 6 5 4 3 2 1 0 Data Access R/W R/W R/W R/W R/W R/W R/W R/W TWO SIDED EN ACF DISABLE 0 0 Name Default SAR UIs LTA BETA ACF BETA 0x00 0 0 0 0 0 0 Bit definitions: • Bit 7-6: SAR UIs o 00: Three channel discreet UI (multi-purpose sensing possibilities). o 01: Two channel SAR proximity / touch / deep touch. o 10: Single channel SAR (ch0) & Movement (ch1) UI enabled. o : Same as ‘ 0’ with hysteresis features on unused channel 2. • Bit 5: Two-sided detection o 0: Bidirectional detection disabled o 1: Bidirectional detection enabled • Bit 4: Disable AC filter o 0: AC filter enabled o 1: AC filter disabled • Bit 3-2: Long term average beta value o 00: 7 o 01: 8 o 10: 9 • Bit 1-0: AC filter beta value o 00: 1 o 01: 2 o 10: 3 Inductive sensing o 11: 10 o 11: 4 ProxFusion settings 4 (0x50) Bit Number 7 6 5 4 3 2 1 0 Data Access R/W R/W R/W R/W R/W R/W R/W R/W TWO SIDED EN ACF DISABLE 0x20 1 0 Name Fixed UI selection 0 0 LTA BETA 0 0 ACF BETA 0 1 Bit definitions: • Bit 7-6: UI selection o 00: Two channel proximity / touch UI (multi-purpose) o 01: Hysteresis options available on dedicated channel o 10: Single channel SAR proximity / touch / movement UI is enabled o 11: Single channel SAR with hysteresis on dedicated channel. • Bit 5: Two-sided detection o 0: Bidirectional detection disabled Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 52 of 94 September 2020 IQ Switch ProxFusion® Series • • • 8.7.2 o 1: Bidirectional detection enabled Bit 4: Disable AC filter o 0: AC filter enabled Bit 3-2: Long term average beta value o 00: 7 o 01: 8 Bit 1-0: AC filter beta value o 00: 1 o 01: 2 ProxFusion settings 5 o 1: AC filter disabled o 10: 9 o 11: 10 o 10: 3 o 11: 4 IQS620A software number 0x08 = D’08 (Device version 1): ProxFusion settings 5 (0x51) Bit Number 7 6 5 4 3 2 1 0 Data Access R/W - - - - - - - Name Disable Ch1 auto 0 0 1 Default Internal use 0x01 0 0 0 0 0 Bit definitions: • Bit7: Disable Ch1 auto o 0: Ch1 is automatically enabled and disabled when SAR UI is active o 1: Ch1 is manually enabled or disabled when SAR UI is active • Bit 6-0: Internal use IQS620A software number 0x0D = D’13 (Device version 2 & 3): ProxFusion settings 5 (0x51) Bit Number 7 6 5 4 3 2 1 0 Data Access R/W - - - - - - - Name Disable Ch1 auto Default 0 Internal use 0 0 Disable fast debounce 0x01 0 Internal use 0 0 0 1 Bit definitions: • Bit7: Disable Ch1 auto o 0: Ch1 is automatically enabled and disabled when SAR UI is active o 1: Ch1 is manually enabled or disabled when SAR UI is active • Bit 6-5: Internal use • Bit 4: Disable fast debounce o 0: Fast debounce active in NP & LP modes o 1: Fast debounce inactive in NP & LP modes • Bit 3-0: Internal use Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 53 of 94 September 2020 IQ Switch ProxFusion® Series 8.7.3 Compensation Compensation Ch0/1/2 (0x52 - 0x54) Bit Number 7 6 5 4 3 2 1 0 Data Access R/W R/W R/W R/W R/W R/W R/W R/W Name Compensation (7-0) Bit definitions: • Bit 7-0: Compensation (7-0) o Lower 8-bits of the Compensation value. 8.7.4 Multipliers Multipliers Ch0/1/2 (0x55-0x57) Bit Number 7 6 5 4 3 2 1 0 Data Access R/W R/W R/W R/W R/W R/W R/W R/W Name Compensation (9-8) Multiplier coarse Multiplier fine Bit definitions: • Bit 7-6: Compensation (9-8) o Upper 2-bits of the Compensation value. • Bit 5-4: Multiplier coarse o 0-3: Coarse multiplier selection • Bit 3-0: Multiplier fine o 0-15: Fine multiplier selection Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 54 of 94 September 2020 IQ Switch ProxFusion® Series 8.8 8.8.1 ProxFusion UI settings Prox threshold Ch0/1/2 Prox threshold Ch0/1/2 (0x60/0x62/0x64) Bit Number 7 6 5 4 3 2 1 0 Data Access R/W R/W R/W R/W R/W R/W R/W R/W 1 1 0 Name Default Prox threshold value 0x 6 = D’22 0 0 0 1 0 Bit definitions: • Bit 7-0: Prox threshold = Prox threshold value o 0-255: Prox threshold o Ch0 Prox threshold ignored when SAR UI is active. Use SAR prox threshold 0x74 8.8.2 Touch threshold Ch0/1/2 Touch threshold Ch0/1/2 (0x61/0x63/0x65) Bit Number 7 6 5 4 3 2 1 0 Data Access R/W R/W R/W R/W R/W R/W R/W R/W 1 0 1 Name Default Touch threshold value 0x25 = D’37 0 0 1 0 0 Bit definitions: • Bit 7-0: Touch threshold = Touch threshold value * LTA/ 256 o 0-255*LTA/256: Touch threshold 8.8.3 ProxFusion discrete UI halt time ProxFusion discrete UI halt time (0x66) Bit Number 7 6 5 4 3 2 1 0 Data Access R/W R/W R/W R/W R/W R/W R/W R/W 0 0 0 Name Default ProxFusion discrete UI halt time 0x28 = D’40 = 20sec 0 0 1 0 1 Bit definitions: • Bit 7-0: Halt time in 500ms increments (decimal value x 500ms) o 0-127sec: ProxFusion discrete UI halt time o 0xFF = 255: Never halt Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 55 of 94 September 2020 IQ Switch ProxFusion® Series 8.9 8.9.1 Single channel SAR UI settings Single channel SAR UI settings 0 SAR UI settings 0 (0x70) Bit Number 7 6 5 4 3 2 1 0 Data Access R/W R/W R/W R/W R/W R/W R/W R/W Name Fast mov beta Default SAR to GPIO0 QRD Beta Slow mov beta 0x16 0 0 0 1 0 1 1 0 Bit definitions: • Bit 7: Fast movement detection filter beta o 0: beta = 0 o 1: beta = 3 • Bit 6-4: Quick Release Detection Beta o 0-7: Quick Release Detection filter beta value • Bit 3: SAR Standoff State to GPIO0 o 0: SAR standoff state to GPIO0 not active. RDY on GPIO0 o 1: SAR standoff state to GPIO0 active. No RDY signal. For IQS620 use recommended schematic as shown in Figure 8.2 or contact Azoteq for more information. • Bit 2-0: Slow movement detection filter beta o 0-7: Slow movement filter beta value relative to fast beta For use with IQS620 (pre-production version 0): Figure 8.1 Recommended analog circuit when using GPIO0 output to drive a digital input (only required for IQS620). R4 and C3 Component values should be “select on test”. For use with IQS620A (production version 1, 2 & 3): There is no need for any additional analog circuitry for the IQS620A part except for the standard pull-up resistor as indicated in the schematic reference design. GPIO0/RDY pin is configured as an open drain active low logic I/O. Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 56 of 94 September 2020 IQ Switch ProxFusion® Series 8.9.2 Single channel SAR UI settings 1 SAR UI settings 1 (0x71) Bit Number 7 6 5 4 3 2 1 0 Data Access R/W R/W R/W R/W R/W R/W R/W R/W Name LTA halt timeout in no prox Movement detection threshold 0x25 Default 1sec 0 0 D’5 1 0 0 1 0 1 Bit definitions: • Bit 7-4: LTA halt timeout in no prox o 0-15: LTA halt timeout in no prox in 500ms increments (decimal value * 500ms) • Bit 3-0: Movement Detection Threshold o 0-15: Movement threshold = Movement threshold Value 8.9.3 Quick release detection threshold Quick release detection threshold (0x72) Bit Number 7 6 5 4 3 2 1 0 Data Access R/W R/W R/W R/W R/W R/W R/W R/W 1 0 1 Name Default QRD Threshold value 0x05 0 0 0 0 0 Bit definitions: • Bit 7-0: 0-255: QRD threshold = QRD threshold value o With ProxFusion settings 5 (0x51): bit 7 = 0: QRD threshold of 0 will prevent the system from entering movement detection timeout mode o With ProxFusion settings 5 (0x51): bit 7 = 1: QRD threshold of 0 will immediately on SAR proximity enter movement detection timeout mode. Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 57 of 94 September 2020 IQ Switch ProxFusion® Series 8.9.4 Single channel SAR filter halt threshold SAR filter halt threshold (0x73) Bit Number 7 6 5 4 3 2 1 0 Data Access R/W R/W R/W R/W R/W R/W R/W R/W 1 1 0 Name Default SAR filter halt threshold value 0x 6 = D’22 0 0 0 1 0 Bit definitions: • Bit 7-0: SAR filter halt threshold = SAR filter halt threshold value o 0: Always halt o 1-255: SAR filter halt threshold 8.9.5 Single channel SAR prox threshold SAR prox threshold Ch0 (0x74) Bit Number 7 6 5 4 3 2 1 0 Data Access R/W R/W R/W R/W R/W R/W R/W R/W 1 0 1 Name Default SAR prox threshold value 0x25 = D’37 0 0 1 0 0 Bit definitions: • Bit 7-0: SAR prox threshold Ch0 = SAR prox threshold value o 0-255: SAR prox threshold Ch0 8.9.6 Quick release detection halt time Quick release detection halt time (0x75) Bit Number 7 6 5 4 3 2 1 0 Data Access R/W R/W R/W R/W R/W R/W R/W R/W 0 0 Name Default LTA halt timeout after a QRD (decimal value x 500ms) 0x28 = D’40 = 20sec 0 0 1 0 1 0 Bit definitions: • Bit 7-0: LTA halt timeout after a Quick release detection with no movement afterwards (decimal value x 500ms) o 0x00 - 0xFE = 0 - 127 seconds: QRD halt timeout o 0xFF = 255 = Never time-out Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 58 of 94 September 2020 IQ Switch ProxFusion® Series 8.10 Hysteresis UI settings 8.10.1 Hysteresis UI settings Hysteresis UI settings (0x80) Bit Number 7 6 5 4 3 2 1 0 Data Access - - R/W R/W - - R/W R/W Name - - - - Hysteresis P 0 0 1 Default Hysteresis T 0xA2 1 0 1 0 Bit definitions: • Bit 5-4: Touch hysteresis o 00: Disabled o 01: 1/4 of threshold • Bit 1-0: Prox hysteresis o 00: Disabled o 01: 1/4 of threshold o o 10: 1/8 of threshold 11: 1/16 of threshold o o 10: 1/8 of threshold 11: 1/16 of threshold 0 8.10.2 Hysteresis UI filter halt threshold Hysteresis UI filter halt threshold (0x81) Bit Number 7 6 5 4 3 2 1 0 Data Access R/W R/W R/W R/W R/W R/W R/W R/W 0 1 0 Name Default Hysteresis UI filter halt threshold value 0x0A = D’ 0 0 0 0 0 1 Bit definitions: • Bit 7-0: Hysteresis UI filter halt threshold. o 0: Always halt o 1-254: Hysteresis UI filter halt threshold 8.10.3 Hysteresis UI prox threshold Hysteresis UI prox threshold (0x82) Bit Number 7 6 5 4 3 2 1 0 Data Access R/W R/W R/W R/W R/W R/W R/W R/W 1 0 Name Hysteresis UI prox threshold value 0x 6 = D’22 Default 0 0 0 1 0 1 Bit definitions: • Bit 7-0: Hysteresis UI prox threshold o 0-255: Hysteresis UI prox threshold Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 59 of 94 September 2020 IQ Switch ProxFusion® Series 8.10.4 Hysteresis UI touch threshold Hysteresis UI touch threshold (0x83) Bit Number 7 6 5 4 3 2 1 0 Data Access R/W R/W R/W R/W R/W R/W R/W R/W 0 1 Name Default Hysteresis UI touch threshold value 0x25 = D’37 * 4 = 148 0 0 1 0 0 1 Bit definitions: • Bit 7-0: Hysteresis UI touch threshold = Hysteresis UI touch threshold value * 4 o 0-1020: Hysteresis UI touch threshold Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 60 of 94 September 2020 IQ Switch ProxFusion® Series 8.11 Two channel SAR proximity / touch / deep touch UI settings When implementing multiple threshold trigger thresholds, be sure. 8.11.1 2 Channel SAR UI settings Hysteresis UI settings (0x80) Bit Number 7 6 5 4 3 2 1 0 Data Access - - R/W R/W - - R/W R/W Name - - Hysteresis T - - Hysteresis P Fixed Value - - 00 - - 00 Bit definitions: • Bit 5-4: Touch hysteresis o 00: Disabled • Bit 1-0: Prox hysteresis o 00: Disabled 8.11.2 SAR Antenna 1 (pin Cx0) proximity threshold SAR Antenna 1 proximity threshold (0x60) Bit Number 7 6 5 4 3 2 1 0 Data Access R/W R/W R/W R/W R/W R/W R/W R/W Name SAR antenna 1 proximity threshold value Bit definitions: • Bit 7-0: SAR antenna 1 proximity threshold o 0-255: SAR antenna 1 proximity threshold 8.11.3 SAR Antenna 1 (pin Cx0) touch threshold SAR Antenna 1 touch threshold (0x61) Bit Number 7 6 5 4 3 2 1 0 Data Access R/W R/W R/W R/W R/W R/W R/W R/W Name SAR antenna 1 touch threshold value Bit definitions: • Bit 7-0: Touch threshold = Touch threshold value * LTA/ 256 o 0-255*LTA/256: SAR antenna 1 touch threshold 8.11.4 SAR Antenna 1 (pin Cx0) deep touch threshold Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 61 of 94 September 2020 IQ Switch ProxFusion® Series SAR Antenna 1 deep touch threshold (0x63) Bit Number 7 6 5 4 3 2 1 0 Data Access R/W R/W R/W R/W R/W R/W R/W R/W Name SAR antenna 1 deep touch threshold value Bit definitions: • Bit 7-0: Deep touch threshold = Deep touch threshold value * LTA/ 256 o 0-255*LTA/256: SAR antenna 1 deep touch threshold 8.11.5 SAR antenna 2 (pin Cx1) proximity threshold SAR antenna 2 proximity threshold (0x81) Bit Number 7 6 5 4 3 2 1 0 Data Access R/W R/W R/W R/W R/W R/W R/W R/W Name SAR antenna 2 proximity threshold value Bit definitions: • Bit 7-0: SAR antenna 2 proximity threshold. o 0-255: SAR antenna 2 proximity threshold 8.11.6 SAR antenna 2 (pin Cx1) touch threshold SAR antenna 2 touch threshold (0x82) Bit Number 7 6 5 4 3 2 1 0 Data Access R/W R/W R/W R/W R/W R/W R/W R/W Name SAR antenna 2 touch threshold value Bit definitions: • Bit 7-0 SAR antenna 2 touch threshold o 0-255: SAR antenna 2 touch threshold 8.11.7 SAR antenna 2 (pin Cx1) deep touch threshold SAR antenna 2 deep touch threshold (0x83) Bit Number 7 6 5 4 3 2 1 0 Data Access R/W R/W R/W R/W R/W R/W R/W R/W Name SAR antenna 2 deep touch threshold value Bit definitions: • Bit 7-0: SAR antenna 2 touch threshold = SAR antenna 2 deep touch threshold value * 4 o 0-1020: SAR antenna 2 deep touch threshold Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 62 of 94 September 2020 IQ Switch ProxFusion® Series 8.12 Hall-effect sensor settings 8.12.1 Hall-effect settings 0 Hall-effect settings 0 (0x90) Bit Number 7 6 5 4 3 2 1 0 Data Access - - R/W R/W - - R/W R/W Name - - CHARGE FREQ Default reserved AUTO ATI MODE 0x03 0 0 0 0 0 0 1 1 Bit definitions: • Bit 5-4: Charge frequency divider o 00: 1/2 o 10: 1/8 o 01: 1/4 o 11: 1/16 • Bit 1-0: Auto ATI Mode o 00: ATI disabled o 01: Partial ATI (all multipliers are fixed) o 10: Semi-Partial ATI (only coarse multipliers are fixed) o 11: Full-ATI 8.12.2 Hall-effect settings 1 Hall-effect settings 1 (0x91) Bit Number 7 6 5 4 3 2 1 0 Data Access R/W R/W R/W R/W R/W R/W R/W R/W 0 0 Name Default ATI_BASE ATI_TARGET (x32) 0x50 0 1 0 1 Bit definitions: • Bit 7-6: Auto ATI base value o 00: 75 o 01: 100 • Bit 5-0: Auto ATI Target o ATI Target is 6-bit value x 32 Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved 0 0 o o 10: 150 11: 200 IQS620A datasheet revision 3.00 Shortcut to memory map Page 63 of 94 September 2020 IQ Switch ProxFusion® Series 8.12.3 Compensation Ch4 & 5 Compensation Ch4 & 5 (0x92) Bit Number 7 6 5 4 3 2 1 0 Data Access R/W R/W R/W R/W R/W R/W R/W R/W Name Compensation (7-0) Bit definitions: • Bit 7-0: Compensation (7-0) o 7-0: Lower 8-bits of the Compensation value. 8.12.4 Multipliers Ch4 & 5 Multipliers Ch4 & 5 (0x93) Bit Number 7 6 5 4 3 2 1 0 Data Access R/W R/W R/W R/W R/W R/W R/W R/W Name Compensation (9-8) Multipliers coarse Multipliers fine Bit definitions: • • • Bit 7-6: Compensation (9-8) o 0-3: Upper 2-bits of the Compensation value. Bit 5-4: Multipliers coarse o 0-3: Coarse multiplier selection Bit 3-0: Multipliers fine o 0-15: Fine multiplier selection Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 64 of 94 September 2020 IQ Switch ProxFusion® Series 8.13 Hall-effect switch UI settings 8.13.1 Hall-effect switch UI settings Hall-effect switch UI settings (0xA0) Bit Number 7 6 5 4 3 2 1 0 Data Access - R/W R/W R/W - R/W R/W R/W Name - Lin Mode - Swap Dir 0 0 Default Hysteresis T Hysteresis P 0x00 0 0 0 0 Bit definitions: • Bit 6: Linearize Output o 0: Disabled • Bit 5-4: Touch Hysteresis o 00: Disabled o 01: 1/4 of threshold • Bit 2: Swap field direction indication o 0: Disabled • Bit 1-0: Proximity Hysteresis o 00: Disabled o 01: 1/4 of threshold 8.13.2 Hall-effect switch UI prox threshold 0 o 1: Enabled o o 10: 1/8 of threshold 11: 1/16 of threshold o 1: Enabled o o 10: 1/8 of threshold 11: 1/16 of threshold 0 Hall-effect switch UI prox threshold (0xA1) Bit Number 7 6 5 4 3 2 1 0 Data Access R/W R/W R/W R/W R/W R/W R/W R/W 0 0 1 Name Default Prox threshold value 0x 9 = D’25 0 0 0 1 1 Bit definitions: • Bit 7-0: Hall-effect switch UI prox threshold = Prox threshold value o 0 – 255: Hall-effect switch UI prox threshold 8.13.3 Hall-effect switch UI touch threshold Hall-effect switch UI touch threshold (0xA2) Bit Number Data Access Name Default 7 6 5 4 3 2 1 0 R/W R/W R/W R/W R/W R/W R/W R/W 0 0 0 Touch threshold value 0x 9 =D’25 0 0 0 0 0 Bit definitions: • Bit 7-0: Hall-effect switch UI touch threshold = Touch threshold value * 4 o 0 – 1020: Hall-effect switch UI touch Threshold Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 65 of 94 September 2020 IQ Switch ProxFusion® Series 8.14 Temperature UI settings Please note for IQS620A: The temperature calibration multiplier and divider values have been increased to 8-bit and thus uses individual full byte registers located at addresses 0xC2 & 0xC3. The Temperature calibration offset have resultantly moved to address 0xC4. 8.14.1 Temperature UI settings Temperature UI settings (0xC0) Bit Number 7 6 5 4 3 2 1 0 Data Access - R/W R/W R/W R/W R/W R/W R/W Name - Reseed in prox Reseed enable Default Reseed threshold value 0x00 0 0 0 0 0 0 0 0 Bit definitions: • Bit 6: Reseed in prox o 0: Reseed cannot occur during a prox o 1: Reseed can occur during a prox • Bit 5: Reseed enable o 0: Disabled o 1: Enabled • Bit 4-0: Reseed threshold o 0 - 32: Reseed threshold = Reseed threshold value 8.14.2 Multipliers Ch3 Multipliers Ch3 (0xC1) Bit Number 7 6 5 4 3 2 1 0 Data Access - - R/W R/W R/W R/W R/W R/W Name - - Multiplier coarse Default Multiplier fine 0x00 0 0 0 0 Bit definitions: • Bit 5-4: Multiplier coarse o 0-3: Coarse multiplier selection Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved 0 • 0 0 0 Bit 3-0: Multiplier fine o 0-15: Fine multiplier selection IQS620A datasheet revision 3.00 Shortcut to memory map Page 66 of 94 September 2020 IQ Switch ProxFusion® Series For IQS620 only: 8.14.3 Temperature calibration data0 Temperature calibration data0 (0xC2) Bit Number 7 6 5 4 3 2 1 0 Data Access R/W R/W Name Temperature multiplier value Temperature divider value Default 0x00 0 0 0 0 0 0 0 0 Bit definitions: • Bit 7-4: Temperature multiplier value +1 • Bit 3-0: Temperature divider value + 1 o 1 – 16: Temperature multiplier o 1 – 16: Temperature divider Please note: Do not use the value 0xFF (0xF? or 0x?F) as this will result in overflow(s). 8.14.4 Temperature calibration data1 Temperature calibration data1 (0xC3) Bit Number 7 6 5 4 3 2 1 0 Data Access R/W R/W R/W R/W R/W R/W R/W R/W 0 0 0 Name Default Temperature offset value 0x00 0 0 0 0 0 Bit definitions: • Bit 7-0: Temperature offset constant = Temperature offset value o 0 – 255: Temperature offset constant Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 67 of 94 September 2020 IQ Switch ProxFusion® Series For IQS620A: 8.14.5 Temperature calibration multiplier Temperature calibration multiplier (0xC2) Bit Number 7 6 5 4 3 2 1 0 Data Access R/W R/W R/W R/W R/W R/W R/W R/W 0 0 0 Name Default Temperature multiplier value 0x00 0 0 0 0 0 Bit definitions: • Bit 7-0: Temperature calibration multiplier = Temperature multiplier value + 1 o 1 – 256: Temperature calibration multiplier Please note: Do not use the value 0xFF (D’255) as this will result in an overflow (255 + 1 = 256) 8.14.6 Temperature calibration divider Temperature calibration divider (0xC3) Bit Number 7 6 5 4 3 2 1 0 Data Access R/W R/W R/W R/W R/W R/W R/W R/W 0 0 0 Name Default Temperature divider value 0x00 0 0 0 0 0 Bit definitions: • Bit 7-0: Temperature calibration divider = Temperature divider value + 1 o 1 – 256: Temperature calibration divider Please note: Do not use the value 0xFF (D’255) as this will result in an overflow (255 + 1 = 256) 8.14.7 Temperature calibration offset Temperature calibration offset (0xC4) Bit Number 7 6 5 4 3 2 1 0 Data Access R/W R/W R/W R/W R/W R/W R/W R/W 0 0 0 Name Default Temperature offset value 0x00 0 0 0 0 0 Bit definitions: • Bit 7-0: Temperature offset constant = Temperature offset value o 0 – 255: Temperature offset constant Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 68 of 94 September 2020 IQ Switch ProxFusion® Series 8.15 Device and power mode settings 8.15.1 System settings System settings (0xD0) Bit Number 7 6 5 4 3 2 1 0 Data Access W=1 W=1 R/W R/W R/W R/W W=1 W=1 Name SOFT RESET ACK RESET EVENT MODE 4MHz ATI BAND REDO ATI RESEED 0 0 0 0 0 0 0 Default COMMS ATI 0x08 1 Bit definitions: • Bit 7: Software Reset (Set only, will clear when done) o 1: Causes the device to perform a WDT reset • Bit 6: ACK Reset (Set only, will clear when done) o 1: Acknowledge that a reset has occurred. This event will trigger until acknowledged. • Bit 5: Event mode enable o 0: Event mode disabled. Default streaming mode communication. o 1: Event mode communication enabled. • Bit 4: Main clock frequency selection o 0: Run FOSC at 16MHz o 1: Run FOSC at 4MHz ▪ Note: Do not configure main clock frequency selection and command a re-ATI in the same communication window. First configure the main oscillator and issue an I2C stop to let the selection first take effect. Then command a re-ATI in a following/subsequent communication window to prevent ATI execution errors. • Bit 3: Communications during ATI o 0: No communications are generated during ATI o 1: Communication continue as setup regardless of ATI state. • Bit 2: Re-ATI Band selection o 0: Re-ATI when outside 1/8 of ATI target o 1: Re-ATI when outside 1/16 of ATI target • Bit 1: Redo ATI on all channels (Set only, will clear when done) o 1: Redo the ATI on all channels ▪ Note: See usage warning above with bit 4: Main clock frequency selection. • Bit 0: Reseed all Long-Term-Average (LTA) filters (Set only, will clear when done) o 1: Reseed all channels (irrespective of the channel reseed enable byte (0xDB) for IQS620A) Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 69 of 94 September 2020 IQ Switch ProxFusion® Series 8.15.2 Active channels Active channels (0xD1) Bit Number 7 6 5 4 3 2 1 0 Data Access - - R/W R/W R/W R/W R/W R/W Name - - Ch5 Ch4 Ch3 Ch2 Ch1 Ch0 1 1 1 1 Default 0x3F 0 0 1 1 Bit definitions: • Bit 5: Ch5 (note: Ch4 & 5 must both be enabled for Hall-effect UI to be functional) o 0: Channel is disabled o 1: Channel is enabled • Bit 4: Ch4 (note: Ch4 & 5 must both be enabled for Hall-effect UI to be functional) o 0: Channel is disabled o 1: Channel is enabled • Bit 3: Ch3 (note: Ch3 must be enabled for temperature UI to be functional o 0: Channel is disabled o 1: Channel is enabled • Bit 2: Ch2 (note: Ch2 must be enabled for Hysteresis UI to be functional) o 0: Channel is disabled o 1: Channel is enabled • Bit 1: Ch1 (note: Ch0 and Ch1 must both be enabled for SAR UI to be functional) o 0: Channel is disabled o 1: Channel is enabled • Bit 0: Ch0 (note: Ch0 and Ch1 must both be enabled for SAR UI to be functional) o 0: Channel is disabled o 1: Channel is enabled Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 70 of 94 September 2020 IQ Switch ProxFusion® Series 8.15.3 Power mode settings Power mode settings (0xD2) Bit Number 7 6 5 4 3 2 1 0 Data Access R/W R/W R/W R/W R/W R/W R/W R/W Name PWM OUT EN ULP MODE DSBL AUTO MODE Default POWER MODE NP SEG RATE 0x03 0 0 0 0 0 0 1 1 Bit definitions: • Bit 7: PWM output activation o 0: PWM output inactive on GPIO3 (LTX available for use) o 1: PWM output active on GPIO3 (LTX disabled; no inductive sensing possible) ▪ Please note: IQS620A will stay in normal power mode when the PWM output is active. • Bit 6: Allow auto ultra-low power mode switching o 0: ULP is disabled during auto-mode switching o 1: ULP is enabled during auto-mode switching • Bit 5: Disable auto mode switching o 0: Auto mode switching is enabled o 1: Auto mode switching is disabled • Bit 4-3: Manually select power mode (note: bit 5 must be set for static power modes) o 00: Normal Power mode. The device runs at the normal power rate, all enabled channels and UIs will execute. o 01: Low Power mode. The device runs at the low power rate, all enabled channels and UIs will execute. o 10: Ultra-Low Power mode. The device runs at the ultra-low power rate, Ch0 is run as wake-up channel. The other channels execute at the NP-segment rate. o 11: Halt Mode. No conversions are performed; the device must be removed from this mode using an I2C command. • Bit 2-0: Normal power update rate o 000: ½ ULP rate o 100: 1/32 ULP rate o 001: ¼ ULP rate o 101: 1/64 ULP rate o 010: ⅛ ULP rate o 110: 1/128 ULP rate 1 o 011: /16 ULP rate o 111: 1/256 ULP rate Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 71 of 94 September 2020 IQ Switch ProxFusion® Series 8.15.4 Normal power mode report rate Normal power mode report rate (0xD3) Bit Number 7 6 5 4 3 2 1 0 Data Access R/W R/W R/W R/W R/W R/W R/W R/W 0 0 Name Default Normal power mode report rate in ms 0x 0 = D’ 6 = 6ms 0 0 0 1 0 0 Bit definitions: • Bit 7-0: Normal power mode report rate in ms (note: LPOSC timer has +- 4ms accuracy) o 0-255ms: Normal mode report rate Please note: Report rates faster than 4ms may not be reached due to conversion time required according to channel setup and communication speed. 8.15.5 Low power mode report rate Low power mode report rate (0xD4) Bit Number 7 6 5 4 3 2 1 0 Data Access R/W R/W R/W R/W R/W R/W R/W R/W 0 0 Name Default Low power mode report rate in ms 0x30 = D’48 = 48ms 0 0 1 1 0 0 Bit definitions: • Bit 7-0: Low power mode report rate in ms (note: LPOSC timer has +- 4ms accuracy) o 0-255ms: Low-power mode report rate Please note: Report rates faster than 4ms may not be reached due to conversion time required according to channel setup and communication speed. 8.15.6 Ultra-low power mode report rate Ultra-low power mode report rate (0xD5) Bit Number 7 6 5 4 3 2 1 0 Data Access R/W R/W R/W R/W R/W R/W R/W R/W 0 0 Name Default Ultra-low power mode report rate value * 16ms 0x08 = D’08 * 6 = 28ms 0 0 0 0 1 0 Bit definitions: • Bit 7-0: Ultra-low power mode report rate = Ultra-low power mode report rate value *16ms o 0-4080ms: Ultra-low power mode report rate Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 72 of 94 September 2020 IQ Switch ProxFusion® Series 8.15.7 Auto mode timer Auto mode timer (0xD6) Bit Number 7 6 5 4 3 2 1 0 Data Access R/W R/W R/W R/W R/W R/W R/W R/W 1 0 0 Name Default Auto mode timer value * 500ms 0x 4 = D’20 * 500 = 0sec 0 0 0 1 0 Bit definitions: • Bit 7-0: Auto modes switching time = Auto mode timer value * 500ms o 0-127.5s: Auto mode switching time Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 73 of 94 September 2020 IQ Switch ProxFusion® Series 8.15.8 Global event mask Global event mask (0xD7) Bit Number 7 6 5 4 3 2 1 0 Data Access R/W R/W R/W R/W R/W R/W R/W R/W Name SAR ACTIVE PMU EVENT SYS EVENT TEMP EVENT HYSTERESIS UI EVENT HALL EVENT SAR EVENT PROX SENSE EVENT 0 0 0 Default 0x00 0 0 0 0 0 Bit definitions: • Bit 7: SAR activation state mask o 0: Event is allowed • Bit 6: Power management unit event mask o 0: Event is allowed • Bit 5: System event mask o 0: Event is allowed • Bit 4: Temperature event mask o 0: Event is allowed • Bit 3: Hysteresis UI event mask o 0: Event is allowed • Bit 2: Hall-effect event mask o 0: Event is allowed • Bit 1: SAR event mask o 0: Event is allowed • Bit 0: ProxSense event mask o 0: Event is allowed o 1: Event is masked o 1: Event is masked o 1: Event is masked o 1: Event is masked o 1: Event is masked o 1: Event is masked o 1: Event is masked o 1: Event is masked 8.15.9 PWM duty cycle PWM duty cycle (0xD8) Bit Number 7 6 5 4 3 2 1 0 Data Access R/W R/W R/W R/W R/W R/W R/W R/W 0 0 0 Name Default PWM duty cycle value 0x00 0 0 0 0 0 Bit definitions: • Bit 7-0: PWM duty cycle (%) = (PWM duty cycle value + 1) / 256 * 100 o 0.4 – 100%: PWM duty cycle of the fixed 1kHz PWM output available on GPIO3 o Requires the activation of PWM OUT bit in Power mode settings 0xD2: bit7 Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 74 of 94 September 2020 IQ Switch ProxFusion® Series For the IQS620A only: 8.15.10 RDY timeout period RDY timeout period (0xD9) Bit Number s 6 5 4 3 2 1 0 Data Access R/W R/W R/W R/W R/W R/W R/W R/W 0 0 Name Default RDY timeout period value 0x20 = D’32 * 0.32ms = 0.24ms 0 0 1 0 0 0 Bit definitions: • Bit 7-0: RDY timeout period = RDY timeout period value * 0.32ms o 0 – 81.6ms: RDY timeout period 8.15.11 I2C settings I2C settings (0xDA) Bit Number 7 6 5 4 3 2 1 0 Data Access R/W - - - - - - R/W Name STOP DISABLE Default Reserved 1 0x01 0 0 0 0 0 0 0 1 Bit definitions: • Bit 7: Stop disable o 0: Stop enabled: Stop bit will exit the communication window. o 1: Stop disabled: Stop bit will not exit the communication window. No start within the RDY timeout period (0xD9) will exit the communication window. • Bit 6 – 1: Reserved • Bit 0: Reserved o Do not configure, leave cleared. o Must always be set (bit 0 = 1). 8.15.12 Channel reseed enable Channel reseed enable (0xDB) Bit Number 7 6 5 4 3 2 1 0 Data Access - - - - - R/W R/W R/W Name - - - - - Ch2 Ch1 Ch0 0 1 1 1 Default 0x07 0 0 0 0 Bit definitions: • Bit 2-0: Channel reseed enable bit o 0: Channel reseed disabled o 1: Channel reseed enabled o Please note: This byte enables/disables only auto reseed commands upon either: - ProxFusion discrete UI halt timeout (0x66) - Quick release detection halt timeout (0x75) Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 75 of 94 September 2020 IQ Switch ProxFusion® Series 9 9.1 Electrical characteristics Absolute Maximum Specifications The following absolute maximum parameters are specified for the device: Exceeding these maximum specifications may cause damage to the device. Table 9.1 Absolute maximum specification Parameter Absolute maximum Operating temperature -20°C to 85°C Supply Voltage (VDDHI – GND) +3.6V Maximum pin voltage VDDHI + 0.5V (may not exceed VDDHI max) Maximum continuous current (for specific pins) 10mA Minimum pin voltage GND - 0.5V Minimum power-on slope 100V/s ESD protection ±8kV (Human body model) 9.2 Voltage regulation specifications Table 9.2 DESCRIPTION Supply voltage Internal voltage regulator 9.3 Internal voltage regulator operating conditions CHIPSET PARAMETER MIN TYPICAL MAX VDDHI 1.764 - 3.6 VREG 1.61 1.66 1.71 IQS620A UNIT V Reset conditions Table 9.3 DESCRIPTION Device reset specifications Conditions PARAMETER MIN MAX UNIT Power On Reset DDHI Slope ≥ 00 /s1 PORVDDHI 0.302 1.70 V VDDHI Brown Out Detect DDHI Slope ≥ 00 /s1 BODVDDHI N/A 1.60 V VREG Brown Out Detect DDHI Slope ≥ 00 /s1 BODVREG N/A 1.583 V 1 Applicable to full “operating temperature” range 2 For a power cycle, ensure lowering VDDHI below the minimum PORVDDHI value before ramping VDDHI past the maximum PORVDDHI value 3 In Figure 1.4 & Figure 1.5 capacitors C2 & C3 should be chosen to comply with this specification Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 76 of 94 September 2020 IQ Switch ProxFusion® Series 9.4 I2C module specifications Specified over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted). Table 9.4 I2C module specifications TEST CONDITIONS PARAMETER fSYS fSCL tHD,STA System clock frequency SCL clock frequency Hold time (repeated) START tSU,STA Setup time for a repeated START tHD,DAT tSU,DAT tSU,STO Data hold time Data setup time Setup time for STOP tSP Pulse duration suppressed by input filter tLOW Clock low time-out of spikes MIN TYP MAX 16 fSCL = 100 kHz fSCL > 100 kHz fSCL = 100 kHz fSCL > 100 kHz fSCL = 100 kHz fSCL > 100 kHz N/A N/A Figure 9.1 Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved VDDHI 1.8V - 3V 1.8V - 3V 1.8V - 3V 1.8V - 3V 1.8V - 3V 1.8V - 3V 1.8V - 3V 1.8V - 3V 0 400 4.0 0.6 4.7 0.6 0 250 4.0 0.6 No pulse suppression filter TBD UNIT MHz kHz µs µs ns ns µs ns ms I2C mode timing IQS620A datasheet revision 3.00 Shortcut to memory map Page 77 of 94 September 2020 IQ Switch ProxFusion® Series 9.5 I2C module output logic fall time limits Table 9.5 DESCRIPTION VDDHI (V) I2C module output logic fall time specifications Temp (°C) -20 1.8 +25 +85 SDA & SCL minimum fall times -20 3.3 +25 +85 -20 1.8 +25 +85 SDA & SCL maximum fall times -20 3.3 +25 +85 Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved Pull-up resistor (Ω) CLOAD (pF) 7000 885 7000 885 7000 885 7000 885 7000 885 7000 885 420 420 420 420 420 420 770 770 770 885 770 770 50 400 50 400 50 400 50 400 50 400 50 400 50 400 50 400 50 400 50 400 50 400 50 400 SYMBOL MIN TF_min 11.80 28.70 11.80 30.70 11.80 33.80 7.90 18.60 7.80 19.70 7.90 21.50 TF_max IQS620A datasheet revision 3.00 Shortcut to memory map MAX 42.50 65.10 43.40 69.70 45.30 77.30 20.20 32.80 19.90 34.30 20.00 36.80 UNIT ns Page 78 of 94 September 2020 IQ Switch ProxFusion® Series 9.6 I2C module slew rates Table 9.6 DESCRIPTION SDA & SCL slew rates for the minimum allowed bus capacitance SDA & SCL slew rates for the maximum allowed bus capacitance Table 9.7 DESCRIPTION SDA & SCL slew rates for the minimum allowed bus capacitance SDA & SCL slew rates for the maximum allowed bus capacitance I2C module fastest falling slew rates and matching rising slew rates VDDHI (V) Conditions Fall time (ns) 1.8 CBUS = 50pF RPU = 7kΩ TA = -20°C 11.80 3.3 CBUS = 50pF RPU = 7kΩ TA = -20°C 7.90 1.8 CBUS = 400pF RPU = 885Ω TA = -20°C 28.70 3.3 CBUS = 400pF RPU = 885Ω TA = -20°C 18.60 Rise time (ns) 296.55 296.55 299.94 299.94 SYMBOL SR UNIT SRFALL 61.02 SRRISE 2.43 SRFALL 167.09 SRRISE 4.45 SRFALL 25.09 SRRISE 2.40 SRFALL 70.97 SRRISE 4.40 V⁄ µs I2C module slowest falling slew rates and matching rising slew rates VDDHI (V) Conditions 1.8 CBUS = 50pF RPU = 420Ω TA = +85°C 45.30 3.3 CBUS = 50pF RPU = 770Ω TA = -20°C 20.20 1.8 CBUS = 400pF RPU = 420Ω TA = +85°C 77.30 3.3 CBUS = 400pF RPU = 770Ω TA = +85°C 36.80 Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved Fall time (ns) Rise time (ns) 17.79 32.62 142.34 260.96 IQS620A datasheet revision 3.00 Shortcut to memory map SYMBOL SR SRFALL 15.89 SRRISE 40.47 SRFALL 65.35 SRRISE 40.47 SRFALL 9.31 SRRISE 5.06 SRFALL 35.87 SRRISE 5.06 UNIT V⁄ µs Page 79 of 94 September 2020 IQ Switch ProxFusion® Series 9.7 I2C pins (SCL & SDA) input/output logic levels Table 9.8 DESCRIPTION I2C pins (SCL & SDA) input and output logic level boundaries Conditions Input low level voltage Input high level voltage Vin_LOW 400kHz I2C clock frequency Output low level voltage Output high level voltage Figure 9.2 9.8 SYMBOL Vin_HIGH Temperature MIN -20°C +25°C +85°C -20°C +25°C +85°C 32.12 TYP MAX UNIT 34.84 39.39 71.51 % of VDDHI 68.18 66.06 Vout_LOW -20°C – +85°C 0 Vout_HIGH -20°C – +85°C 100 Calculated input buffer trigger levels for I2C pins at 400kHz clock frequency for 1.8V and 3.3V VDDHI power supplies General purpose digital output pins (GPIO0 & GPIO3) logic levels DESCRIPTION SYMBOL Temperature Output low level voltage Output high level voltage Vout_LOW Vout_HIGH -20°C – +85°C -20°C – +85°C Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved MIN IQS620A datasheet revision 3.00 Shortcut to memory map TYP 0 100 MAX UNIT % of VDDHI Page 80 of 94 September 2020 IQ Switch ProxFusion® Series 9.9 Current consumptions 9.9.1 IC subsystems Table 9.9 IC subsystem current consumption Description PARAMETER TYPICAL MAX UNIT Core active Core sleep IACTIVE ISLEEP 339 0.63 377 1 µA µA Table 9.10 Power mode NP mode LP mode ULP mode 9.9.2 IC subsystem typical timing Core active Core sleep Total Unit 5 5 1.75 5 43 128 10 48 129.75 ms ms ms Capacitive sensing alone Table 9.11 Power mode Capacitive sensing current consumption Supply voltage Report rate TYPICAL UNIT VDD = 1.8V VDD = 3.3V VDD = 1.8V VDD = 3.3V VDD = 1.8V VDD = 3.3V 10ms 10ms 48ms 48ms 128ms 128ms 90.18 91.00 32.97 32.80 11.69 11.35 A NP mode LP mode ULP mode -These measurements where done on the default setup of the IC Table 9.12 Supply voltage Charging frequency ATI target Report rate TYPICAL UNIT VDD = 1.8V VDD = 3.3V 2MHz 2MHz 192 192 256ms 256ms 2.23 2.57 A Power mode ULP mode Single capacitive wake-up channel current consumption -These measurements where done with enhanced settings for minimum current consumption for a single touch channel 9.9.3 Capacitive sensing with SAR UI active Table 9.13 Power mode NP mode LP mode ULP mode Capacitive sensing and SAR UI current consumption Supply voltage Report rate TYPICAL UNIT VDD = 1.8V VDD = 3.3V VDD = 1.8V VDD = 3.3V VDD = 1.8V VDD = 3.3V 10ms 10ms 48ms 48ms 128ms 128ms 75.34 75.43 27.76 27.37 11.72 11.25 A -These measurements where done on the default setup of the IC Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 81 of 94 September 2020 IQ Switch ProxFusion® Series 9.9.4 Temperature monitoring alone Table 9.14 Power mode NP mode LP mode ULP mode Temperature monitoring current consumption Supply voltage Report rate TYPICAL UNIT VDD = 1.8V VDD = 3.3V VDD = 1.8V VDD = 3.3V VDD = 1.8V VDD = 3.3V 10ms 10ms 48ms 48ms 128ms 128ms 68.87 69.08 24.60 24.10 22.67 22.12 A -These measurements where done on the default setup of the IC 9.9.5 Hall-effect sensing alone Table 9.15 Power mode NP mode LP mode ULP mode Hall-effect current consumption Supply voltage Report rate TYPICAL UNIT VDD = 1.8V VDD = 3.3V VDD = 1.8V VDD = 3.3V VDD = 1.8V VDD = 3.3V 10ms 10ms 48ms 48ms 128ms 128ms 104.82 104.42 38.11 37.44 N/A (1) N/A (1) A -These measurements where done on the default setup of the IC (1) –It is not advised to use the IQS620A in ULP without capacitive sensing. This is due to the Hall-effect sensor being disabled in ULP. 9.9.6 Inductive sensing alone Table 9.16 Power mode NP mode LP mode ULP mode Inductive sensing current consumption Supply voltage Report rate TYPICAL UNIT VDD = 2.0V VDD = 3.3V VDD = 2.0V VDD = 3.3V VDD = 2.0V VDD = 3.3V 10ms 10ms 48ms 48ms 128ms 128ms 116.50 (1) 130.10 (1) 41.34 (1) 46.31 (1) N/A (2) N/A (2) A -These measurements where done on the default setup of the IC (1) –Measurements where conducted with a recommended inductive coil layout. (2) –It is not advised to use the IQS620A in ULP without capacitive sensing. This is due to the Inductive sensor UI channel being disabled in ULP. 9.9.7 Halt mode Table 9.17 Halt mode current consumption Power mode Conditions Report rate TYPICAL UNIT Halt mode Halt mode VDD = 1.8V VDD = 3.3V None 1.6 1.9 µA Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 82 of 94 September 2020 IQ Switch ProxFusion® Series 9.10 Start-up timing specifications VDDHI POR Internal reset I/O pins RDY Full sensing mode Cx0 tinit tATI ttest_mode tstabilize tcomms1 Figure 9.3 Table 9.18 Timing tinit ttest_mode tcomms1 (16 MHz) tcomms1 (4 MHz) tATI (1 6MHz) tATI (4 MHz) tcomms2 (event mode enabled – system event) tstabilize (16 MHz) tstabilize (4 MHz) tfull_sensing_mode (16 MHz) tfull_sensing_mode (4 MHz) Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved tcomms2 IQS620A start-up timing diagram Timing values for IQS620A start-up timing diagram Min Typical Max 6ms 5ms until I2C stop bit until I2C stop bit 10ms (time-out) 40ms (time-out) 110ms (default settings) 420ms (default settings) Time-out value defined in register 0xD9 (x4 for 4 MHz mode) until I2C stop bit 40ms 120ms 70ms (default settings) 140ms (default settings) 201ms (from POR) 611ms (from POR) IQS620A datasheet revision 3.00 Shortcut to memory map Page 83 of 94 September 2020 IQ Switch ProxFusion® Series 10 Package information 10.1 DFN(3x3)-10 package and footprint specifications Table 10.1 DFN(3x3)-10 Package dimensions (bottom) 3 ±0.1 0.5 0.25 n/a 3 ±0.1 0.4 2.4 1.65 F A B C D F L P Q D B L [mm] Q Dimension A C P Table 10.2 DFN(3x3)-10 Package dimensions (side) Dimension [mm] G H I 0.05 0.65 0.7-0.8 Figure 10.1 DFN(3x3)-10 Package dimensions (bottom view). Note that the saddle needs to be connected to common GND on the PCB. Figure 10.2 DFN(3x3)-10 Package dimensions (side view) Table 10.3 DFN(3x3)-10 Landing pad dimensions Dimension [mm] A B C D E F 2.4 1.65 0.8 0.5 0.3 3.2 Package outline C E A D B F Figure 10.3 DFN(3x3)-10 Landing pad dimensions (top view) Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 84 of 94 September 2020 IQ Switch ProxFusion® Series 10.2 WLCSP-9 package and footprint specification Figure 10.4 IQS620A WLCSP-9 package dimensions Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 85 of 94 September 2020 IQ Switch ProxFusion® Series 10.3 Device marking and ordering information 10.3.1 Device marking: The devices can be identified from the top-side marking on the device package as shown below: DFN(3x3)-10 IQS620A = Device name X = Additional option (‘Blank’ = Default, T = temperature calibrated) IQS620A vi z PWWYY v = Product version mark (0 – Pre-production, 1 – Production, 2 – FW update, 3 – HW update) Or i = Industrial temperature range z = Configuration (I2C address: 0 = 44H, 1 = 45H) 1 IQS620AX v i z PWWYY P = Packaging house ( ,2…) WWYY = Date code (week, year) ● = Pin A indicator WLCSP-9 620A = device name (IQS620A) X = Additional option (T = temperature calibrated) z = Configuration (I2C address: 0 = 44H, 1 = 45H) 1 620A Xzvp ppxx ● v = Product version mark (0 – Pre-production, 1 – Production, 2 – FW update, 3 – HW update) ppp = Product code xx = batch code (AA, AB …. ZZ) ● = Pin A indicator 1 Other sub-address configurations are available on special request, see section 7.5. Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 86 of 94 September 2020 IQ Switch ProxFusion® Series 11 Ordering information: IQS620A X z pp b Device name Additional option Configuration (I2C address) Package type Bulk packaging 0 IQS620A0DNR 1 IQS620A1DNR DN 0 IQS620A IQS620AT0DNR T R 1 IQS620AT1DNR 0 IQS620A0CSR CS 1 IQS620A1CSR X – Additional option ‘Blank’: Default device option T: Temperature calibrated (only used in order code for temperature calibrated DN parts; Any CS parts are temperature calibrated by default) z – Configuration (I2C address) 0: 44H default address 1: 45H sub-address pp – Package type DN: DFN(3x3)-10 CS: WLCSP-9 b – Bulk packaging R: Reel (3k/reel, MOQ=1 reel) Example: • • • • T 0 DN R IQS620AT0DNR - Temperature calibrated - configuration is default (44H default I2C address) - DFN(3x3)-10 package - packaged in reels of 3k (must be ordered in multiples of 3k) Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 87 of 94 September 2020 IQ Switch ProxFusion® Series 11.1 Tape and reel specification 11.1.1 DFN(3x3)-10 3” diameter reel, W = 12mm (width) IQS620A 1 i z PWWYY Figure 11.1 IQS620A DFN(3x3)-10 tape & reel specification Copyright © Azoteq (Pty) Ltd 2020 All Rights Reserved IQS620A datasheet revision 3.00 Shortcut to memory map Page 88 of 94 September 2020 IQ Switch ProxFusion® Series 11.1.2 WLCSP-9 Side A 7” diameter reel, W = 8mm (width) W +0.5 Ø13.0 -0.2 Ø60.0 +/-1.0 See detail “A” Detail “A” Side B Ø178.0 +/-1.0 Property Typical value Test Method/Standard Tensile strength > 200 kg/cm2 ASTM D 638 Elongation >= 30% ASTM D 638 Flexural modulus > 1.0 kg/cm2 ASTM D 790 Vicat softening 98° C ASTM D 1525 Specific gravity 1.05 g/cc ASTM D 792 Surface resistivity (Antistatic)
IQS620-0-DNR
PDF文档中的物料型号为:STM32F103C8T6 器件简介:STM32F103C8T6是一款基于ARM Cortex-M3内核的32位微控制器,适用于多种嵌入式应用。

引脚分配:该芯片共有48个引脚,包括电源引脚、地引脚、I/O引脚等,详细分配请参考数据手册。

参数特性:工作电压2.05V-3.6V,工作频率72MHz,内置64KB Flash和20KB RAM。

功能详解:具备多种外设接口,如I2C、SPI、UART等,并支持多种通信协议。

应用信息:适用于工业控制、消费电子、医疗设备等领域。

封装信息:采用LQFP48封装,尺寸为7x7mm。
IQS620-0-DNR 价格&库存

很抱歉,暂时无法提供与“IQS620-0-DNR”相匹配的价格&库存,您可以联系我们找货

免费人工找货