0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LZ9-J0WW00-0235

LZ9-J0WW00-0235

  • 厂商:

    AMSOSRAM(艾迈斯半导体)

  • 封装:

    Module

  • 描述:

    LED EMITTER WHT 1430LM 1CH MCPCB

  • 数据手册
  • 价格&库存
LZ9-J0WW00-0235 数据手册
High Luminous Efficacy Warm White LED Emitter LZ9-00WW00 Key Features  High Luminous Efficacy, Warm White LED  Can dissipate up to 20W  Ultra-small foot print – 7.0mm x 7.0mm  Surface mount ceramic package with integrated glass lens  Low Thermal Resistance (1.3°C/W)  Very high Luminous Flux density  JEDEC Level 1 for Moisture Sensitivity Level  Autoclave complaint (JEDEC JESD22-A102-C)  Lead (Pb) free and RoHS compliant  Reflow solderable (up to 6 cycles)  Emitter available on MCPCB (optional)  Full suite of TIR secondary optics family available Part Number Options Base part number Part number Description LZ9-00WW00-xxxx 9-die emitter CRI 80 minimum LZ9-J0WW00-xxxx 9-die emitter CRI 80 minimum on Star MCPCB in 1x9 electrical configuration LZ9-M0WW00-xxxx 9-die emitter CRI 80 minimum on Star MCPCB in 3x3 electrical configuration COPYRIGHT © 2014 LED ENGIN. ALL RIGHTS RESERVED. LZ9-00WW00 (1.7-02/23/14) 4 LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com Bin Kit Option Codes 2700K CRI 80 Minimum Kit number suffix Min flux Bin Color Bin Ranges Description 0027 X 8A1, 8A2, 8B1, 8B2, 8A4, 8A3, 8B4, 8B3, 8D1, 8D2, 8C1, 8C2, 8D4, 8D3, 8C4, 8C3 full distribution flux; 2700K ANSI CCT bin 0227 X 8A2, 8B1, 8A3, 8B4, 8D2, 8C1, 8D3, 8C4 0427 X 8A3, 8B4, 8D2, 8C1 full distribution flux; 2700K ANSI CCT half bin full distribution flux; 2700K ANSI CCT quarter bin 3000K-3500K CRI 80 Minimum Kit number suffix Min flux Bin Color Bin Ranges Description 0030 X 7A1, 7A2, 7B1, 7B2, 7A4, 7A3, 7B4, 7B3, 7D1, 7D2, 7C1, 7C2, 7D4, 7D3, 7C4, 7C3 full distribution flux; 3000K ANSI CCT bin 0230 X 7A2, 7B1, 7A3, 7B4, 7D2, 7C1, 7D3, 7C4 0430 X 7A3, 7B4, 7D2, 7C1 0035 X 6A1, 6A2, 6B1, 6B2, 6A4, 6A3, 6B4, 6B3, 6D1, 6D2, 6C1, 6C2, 6D4, 6D3, 6C4, 6C3 0235 X 6A2, 6B1, 6A3, 6B4, 6D2, 6C1, 6D3, 6C4 0435 X 6A3, 6B4, 6D2, 6C1 full distribution flux; 3000K ANSI CCT half bin full distribution flux; 3000K ANSI CCT quarter bin full distribution flux; 3500K ANSI CCT bin full distribution flux; 3500K ANSI CCT half bin full distribution flux; 3500K ANSI CCT quarter bin COPYRIGHT © 2014 LED ENGIN. ALL RIGHTS RESERVED. 2 LZ9-00WW00 (1.7-02/23/14) 4 LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com Warm White Chromaticity Groups Standard Chromaticity Groups plotted on excerpt from the CIE 1931 (2°) x-y Chromaticity Diagram. Coordinates are listed below in the table. COPYRIGHT © 2014 LED ENGIN. ALL RIGHTS RESERVED. 3 LZ9-00WW00 (1.7-02/23/14) 4 LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com Warm White Bin Coordinates Bin code 6A1 6A4 6D1 6D4 7A1 7A4 7D1 7D4 8A1 8A4 8D1 8D4 CIEx 0.3889 0.3915 0.3981 0.3953 0.3889 0.3953 0.3981 0.4048 0.4017 0.3953 0.4017 0.4048 0.4116 0.4082 0.4017 0.4082 0.4116 0.4183 0.4147 0.4082 0.4147 0.4183 0.4242 0.4203 0.4147 0.4203 0.4242 0.43 0.4259 0.4203 0.4259 0.43 0.4359 0.4316 0.4259 0.4316 0.4359 0.4418 0.4373 0.4316 0.4373 0.4418 0.4475 0.4428 0.4373 0.4428 0.4475 0.4532 0.4483 0.4428 0.4483 0.4532 0.4589 0.4538 0.4483 0.4538 0.4589 0.4646 0.4593 0.4538 CIEy 0.369 0.3768 0.38 0.372 0.369 0.372 0.38 0.3832 0.3751 0.372 0.3751 0.3832 0.3865 0.3782 0.3751 0.3782 0.3865 0.3898 0.3814 0.3782 0.3814 0.3898 0.3919 0.3833 0.3814 0.3833 0.3919 0.3939 0.3853 0.3833 0.3853 0.3939 0.396 0.3873 0.3853 0.3873 0.396 0.3981 0.3893 0.3873 0.3893 0.3981 0.3994 0.3906 0.3893 0.3906 0.3994 0.4008 0.3919 0.3906 0.3919 0.4008 0.4021 0.3931 0.3919 0.3931 0.4021 0.4034 0.3944 0.3931 Bin code 6A2 6A3 6D2 6D3 7A2 7A3 7D2 7D3 8A2 8A3 8D2 8D3 CIEx 0.3915 0.3941 0.401 0.3981 0.3915 0.3981 0.401 0.408 0.4048 0.3981 0.4048 0.408 0.415 0.4116 0.4048 0.4116 0.415 0.4221 0.4183 0.4116 0.4183 0.4221 0.4281 0.4242 0.4183 0.4242 0.4281 0.4342 0.43 0.4242 0.43 0.4342 0.4403 0.4359 0.43 0.4359 0.4403 0.4465 0.4418 0.4359 0.4418 0.4465 0.4523 0.4475 0.4418 0.4475 0.4523 0.4582 0.4532 0.4475 0.4532 0.4582 0.4641 0.4589 0.4532 0.4589 0.4641 0.47 0.4646 0.4589 CIEy 0.3768 0.3848 0.3882 0.38 0.3768 0.38 0.3882 0.3916 0.3832 0.38 0.3832 0.3916 0.395 0.3865 0.3832 0.3865 0.395 0.3984 0.3898 0.3865 0.3898 0.3984 0.4006 0.3919 0.3898 0.3919 0.4006 0.4028 0.3939 0.3919 0.3939 0.4028 0.4049 0.396 0.3939 0.396 0.4049 0.4071 0.3981 0.396 0.3981 0.4071 0.4085 0.3994 0.3981 0.3994 0.4085 0.4099 0.4008 0.3994 0.4008 0.4099 0.4112 0.4021 0.4008 0.4021 0.4112 0.4126 0.4034 0.4021 Bin code 6B1 6B4 6C1 6C4 7B1 7B4 7C1 7C4 8B1 8B4 8C1 8C4 COPYRIGHT © 2014 LED ENGIN. ALL RIGHTS RESERVED. 4 CIEx 0.3941 0.3968 0.404 0.401 0.3941 0.401 0.404 0.4113 0.408 0.401 0.408 0.4113 0.4186 0.415 0.408 0.415 0.4186 0.4259 0.4221 0.415 0.4221 0.4259 0.4322 0.4281 0.4221 0.4281 0.4322 0.4385 0.4342 0.4281 0.4342 0.4385 0.4449 0.4403 0.4342 0.4403 0.4449 0.4513 0.4465 0.4403 0.4465 0.4513 0.4573 0.4523 0.4465 0.4523 0.4573 0.4634 0.4582 0.4523 0.4582 0.4634 0.4695 0.4641 0.4582 0.4641 0.4695 0.4756 0.47 0.4641 CIEy 0.3848 0.393 0.3966 0.3882 0.3848 0.3882 0.3966 0.4001 0.3916 0.3882 0.3916 0.4001 0.4037 0.395 0.3916 0.395 0.4037 0.4073 0.3984 0.395 0.3984 0.4073 0.4096 0.4006 0.3984 0.4006 0.4096 0.4119 0.4028 0.4006 0.4028 0.4119 0.4141 0.4049 0.4028 0.4049 0.4141 0.4164 0.4071 0.4049 0.4071 0.4164 0.4178 0.4085 0.4071 0.4085 0.4178 0.4193 0.4099 0.4085 0.4099 0.4193 0.4207 0.4112 0.4099 0.4112 0.4207 0.4221 0.4126 0.4112 Bin code 6B2 6B3 6C2 6C3 7B2 7B3 7C2 7C3 8B2 8B3 8C2 8C3 CIEx 0.3968 0.3996 0.4071 0.404 0.3968 0.404 0.4071 0.4146 0.4113 0.404 0.4113 0.4146 0.4222 0.4186 0.4113 0.4186 0.4222 0.4299 0.4259 0.4186 0.4259 0.4299 0.4364 0.4322 0.4259 0.4322 0.4364 0.443 0.4385 0.4322 0.4385 0.443 0.4496 0.4449 0.4385 0.4449 0.4496 0.4562 0.4513 0.4449 0.4513 0.4562 0.4624 0.4573 0.4513 0.4573 0.4624 0.4687 0.4634 0.4573 0.4634 0.4687 0.475 0.4695 0.4634 0.4695 0.475 0.4813 0.4756 0.4695 CIEy 0.393 0.4015 0.4052 0.3966 0.393 0.3966 0.4052 0.4089 0.4001 0.3966 0.4001 0.4089 0.4127 0.4037 0.4001 0.4037 0.4127 0.4165 0.4073 0.4037 0.4073 0.4165 0.4188 0.4096 0.4073 0.4096 0.4188 0.4212 0.4119 0.4096 0.4119 0.4212 0.4236 0.4141 0.4119 0.4141 0.4236 0.426 0.4164 0.4141 0.4164 0.426 0.4274 0.4178 0.4164 0.4178 0.4274 0.4289 0.4193 0.4178 0.4193 0.4289 0.4304 0.4207 0.4193 0.4207 0.4304 0.4319 0.4221 0.4207 LZ9-00WW00 (1.7-02/23/14) 4 LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com Luminous Flux Bins Table 1: Bin Code Minimum Luminous Flux (Φv) @ IF = 700mA [1,2] (lm) Maximum Luminous Flux (Φv) @ IF = 700mA [1,2] (lm) X 1085 1357 Y 1357 1696 Notes for Table 1: 1. Luminous flux performance guaranteed within published operating conditions. LED Engin maintains a tolerance of ± 10% on flux measurements. Forward Voltage Range per String Table 2: Bin Code Minimum Forward Voltage (VF) @ IF = 700mA [1,2] (V) Maximum Forward Voltage (VF) @ IF = 700mA [1,2] (V) 0 9.0 10.8 Notes for Table 2: 1. LED Engin maintains a tolerance of ± 0.04V for forward voltage measurements. 2. Forward Voltage per string of 3 LED dies connected in series. COPYRIGHT © 2014 LED ENGIN. ALL RIGHTS RESERVED. 5 LZ9-00WW00 (1.7-02/23/14) 4 LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com Absolute Maximum Ratings Table 3: Parameter Symbol Value Unit DC Forward Current at Tjmax=135°C [1] DC Forward Current at Tjmax=150°C [1] Peak Pulsed Forward Current [2] Reverse Voltage Storage Temperature Junction Temperature Soldering Temperature [4] Allowable Reflow Cycles IF IF IFP VR Tstg TJ Tsol 800 700 1000 See Note 3 -40 ~ +150 150 260 6 mA mA mA V °C °C °C Autoclave Conditions [5] 121°C at 2 ATM, 100% RH for 168 hours ESD Sensitivity [6] > 8,000 V HBM Class 3B JESD22-A114-D Notes for Table 3: 1. Maximum DC forward current (per die) is determined by the overall thermal resistance and ambient temperature. Follow the curves in Figure 10 for current de-rating. 2: Pulse forward current conditions: Pulse Width ≤ 10msec and Duty Cycle ≤ 10%. 3. LEDs are not designed to be reverse biased. 4. Solder conditions per JEDEC 020c. See Reflow Soldering Profile Figure 3. 5. Autoclave Conditions per JEDEC JESD22-A102-C. 6. LED Engin recommends taking reasonable precautions towards possible ESD damages and handling the LZ9-00Wx00 in an electrostatic protected area (EPA). An EPA may be adequately protected by ESD controls as outlined in ANSI/ESD S6.1. Optical Characteristics @ TC = 25°C Table 4: Typical Parameter Symbol Luminous Flux (@ IF = 700mA) [1] Luminous Efficacy (@ IF =350mA) Color Rendering Index (CRI) Viewing Angle [2] Total Included Angle [3] Φv 2700K 3000K – 3500K 1350 79 1430 85 Unit lm lm/W 82 110 110 135 110 120 Notes for Table 4: 110 120 1. Luminous flux typical value is for all 9 LED dies operating concurrently at rated current. 2. Viewing Angle is the off axis angle from emitter centerline where the luminous intensity is ½ of the peak value. 120 3. Ra 2Θ½ Θ0.9 Degrees Degrees Total Included Angle is the total angle that includes 90% of the total luminous flux. Electrical Characteristics @ TC = 25°C Table 5: Parameter Symbol Typical Unit Forward Voltage per String (@ IF = 700mA) VF 9.7 V Temperature Coefficient of Forward Voltage (per String) ΔVF/ΔTJ -6.0 mV/°C Thermal Resistance (Junction to Case) RΘJ-C 1.3 °C/W COPYRIGHT © 2014 LED ENGIN. ALL RIGHTS RESERVED. 6 LZ9-00WW00 (1.7-02/23/14) 4 LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com IPC/JEDEC Moisture Sensitivity Level Table 6 - IPC/JEDEC J-STD-20 MSL Classification: Soak Requirements Floor Life Standard Accelerated Level Time Conditions Time (hrs) Conditions Time (hrs) Conditions 1 Unlimited ≤ 30°C/ 85% RH 168 +5/-0 85°C/ 85% RH n/a n/a Notes for Table 6: 1. The standard soak time is the sum of the default value of 24 hours for the semiconductor manufacturer’s exposure time (MET) between bake and bag and the floor life of maximum time allowed out of the bag at the end user of distributor’s facility. Average Lumen Maintenance Projections Lumen maintenance generally describes the ability of a lamp to retain its output over time. The useful lifetime for solid state lighting devices (Power LEDs) is also defined as Lumen Maintenance, with the percentage of the original light output remaining at a defined time period. Based on accelerated lifetime testing, LED Engin projects that the LZ Series will deliver, on average, 70% Lumen Maintenance at 65,000 hours of operation at a forward current of 700 mA per die. This projection is based on constant current operation with junction temperature maintained at or below 120°C. COPYRIGHT © 2014 LED ENGIN. ALL RIGHTS RESERVED. 7 LZ9-00WW00 (1.7-02/23/14) 4 LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com Mechanical Dimensions (mm) Emitter pin layout Emitter channel Ch1 - Emitter pin 23, 24 Ch1 Die Color E White B White Ch1 + 17, 18 A White Ch2 - 2, 3 G White I White Ch2 Ch2 + 14, 15 C White Ch3 - 5, 6 D White H White F White Ch3 Ch3+ 11, 12 NC pins: 1, 4, 7, 8, 9, 10, 13, 16, 19, 20, 21, 22 DNC pins: none Notes: NC = Not internally Connected (Electrically isolated) DNC = Do Not Connect (Electrically Non isolated) Figure 1: Package outline drawing. Notes for Figure 1: 1. Index mark indicates case temperature measurement point. 2. Unless otherwise noted, the tolerance = ± 0.20 mm. Recommended Solder Pad Layout (mm) Figure 2a: Recommended solder pad layout for anode, cathode, and thermal pad. Note for Figure 2a: 1. Unless otherwise noted, the tolerance = ± 0.20 mm. 2. LED Engin recommends the use of pedestal MCPCB’s which allow the emitter thermal slug to be soldered directly to the metal core of the MCPCB. Such MCPCB technologies eliminate the high thermal resistance dielectric layer that standard MCPCB technologies use in between the emitter thermal slug and the metal core of the MCPCB, thus lowering the overall system thermal resistance. 3. LED Engin recommends x-ray sample monitoring for solder voids underneath the emitter thermal slug. The total area covered by solder voids should be less than 20% of the total emitter thermal slug area. Excessive solder voids will increase the emitter to MCPCB thermal resistance and may lead to higher failure rates due to thermal over stress. COPYRIGHT © 2014 LED ENGIN. ALL RIGHTS RESERVED. 8 LZ9-00WW00 (1.7-02/23/14) 4 LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com Recommended Solder Mask Layout (mm) Figure 2b: Recommended solder mask opening (hatched area) for anode, cathode, and thermal pad. Note for Figure 2b: 1. Unless otherwise noted, the tolerance = ± 0.20 mm. Recommended 8mil Stencil Apertures Layout (mm) Figure 2c: Recommended 8mil stencil apertures layout for anode, cathode, and thermal pad. Note for Figure 2c: 1. Unless otherwise noted, the tolerance = ± 0.20 mm. COPYRIGHT © 2014 LED ENGIN. ALL RIGHTS RESERVED. 9 LZ9-00WW00 (1.7-02/23/14) 4 LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com Reflow Soldering Profile Figure 3: Reflow soldering profile for lead free soldering. Typical Radiation Pattern 100 90 Relative Intensity (%) 80 70 60 50 40 30 20 10 0 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 Angular Displacement (Degrees) Figure 4: Typical representative spatial radiation pattern. COPYRIGHT © 2014 LED ENGIN. ALL RIGHTS RESERVED. 10 LZ9-00WW00 (1.7-02/23/14) 4 LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com Typical Relative Spectral Power Distribution 1.0 Relative Spectral Power 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 380 430 480 530 580 630 680 730 780 830 Wavelength (nm) Figure 5: Typical relative spectral power vs. wavelength @ TC = 25°C, 3000K CRI 80 Typical Chromaticity Coordinate Shift over Temperature 0.02 0.015 Cx 0.01 Cy Cx, Cy 0.005 3E-17 -0.005 -0.01 -0.015 -0.02 0 10 20 30 40 50 60 70 80 90 100 Case Temperature (°C) Figure 6: Typical dominant wavelength shift vs. Case temperature. COPYRIGHT © 2014 LED ENGIN. ALL RIGHTS RESERVED. 11 LZ9-00WW00 (1.7-02/23/14) 4 LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com Typical Relative Light Output 140% Relatiive Light Output 120% 100% 80% 60% 40% 20% 0% 0 200 400 600 800 1000 IF - Forward Current (mA) Figure 7: Typical relative light output vs. forward current @ T C = 25°C Typical Normalized Radiant Flux over Temperature Relatiive Light Output (%) 110 100 90 80 70 60 0 10 20 30 40 50 60 70 80 90 100 Case Temperature (°C) Figure 8: Typical relative light output vs. case temperature. COPYRIGHT © 2014 LED ENGIN. ALL RIGHTS RESERVED. 12 LZ9-00WW00 (1.7-02/23/14) 4 LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com Typical Forward Voltage Characteristics per String 1200 IF - Forward Current (mA) 1000 800 600 400 200 0 6.0 7.0 8.0 9.0 10.0 11.0 VF - Forward Voltage (V) 1 Figure 9: Typical forward current vs. forward voltage @ TC = 25°C. Note for Figure 9: 1. Forward Voltage per string of 3 LED dies connected in series. Current De-rating 1000 IF - Maximum Current (mA) 800 700 (Rated) 600 400 R J-A = 4°C/W R J-A = 5°C/W R J-A = 6°C/W 200 0 0 25 50 75 100 125 150 Maximum Ambient Temperature (°C) Figure 10: Maximum forward current vs. ambient temperature based on T J(MAX) = 150°C. Notes for Figure 10: 1. Maximum current assumes that all 9 LED dice are operating concurrently at the same current. 2. RΘJ-C [Junction to Case Thermal Resistance] for the LZ9-00Wx00 is typically 1.3°C/W. 3. RΘJ-A [Junction to Ambient Thermal Resistance] = RΘJ-C + RΘC-A [Case to Ambient Thermal Resistance]. COPYRIGHT © 2014 LED ENGIN. ALL RIGHTS RESERVED. 13 LZ9-00WW00 (1.7-02/23/14) 4 LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com Emitter Tape and Reel Specifications (mm) Figure 11: Emitter carrier tape specifications (mm). Figure 12: Emitter Reel specifications (mm). COPYRIGHT © 2014 LED ENGIN. ALL RIGHTS RESERVED. 14 LZ9-00WW00 (1.7-02/23/14) 4 LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com LZ9 MCPCB Family Emitter + MCPCB Typical Vf Typical If Thermal Resistance (V) (mA) (oC/W) Part number Type of MCPCB Diameter (mm) LZ9-Jxxxxx 1-channel 19.9 1.3 + 0.2 = 1.5 29.1 700 LZ9-Mxxxxx 3-channel 19.9 1.3 + 0.2 = 1.5 9.7/ ch 700/ ch Mechanical Mounting of MCPCB   MCPCB bending should be avoided as it will cause mechanical stress on the emitter, which could lead to substrate cracking and subsequently LED dies cracking. To avoid MCPCB bending: o Special attention needs to be paid to the flatness of the heat sink surface and the torque on the screws. o Care must be taken when securing the board to the heat sink. This can be done by tightening three M3 screws (or #4-40) in steps and not all the way through at once. Using fewer than three screws will increase the likelihood of board bending. o It is recommended to always use plastics washers in combinations with the three screws. o If non-taped holes are used with self-tapping screws, it is advised to back out the screws slightly after tightening (with controlled torque) and then re-tighten the screws again. Thermal interface material    To properly transfer heat from LED emitter to heat sink, a thermally conductive material is required when mounting the MCPCB on to the heat sink. There are several varieties of such material: thermal paste, thermal pads, phase change materials and thermal epoxies. An example of such material is Electrolube EHTC. It is critical to verify the material’s thermal resistance to be sufficient for the selected emitter and its operating conditions. Wire soldering   o To ease soldering wire to MCPCB process, it is advised to preheat the MCPCB on a hot plate of 125-150 C. Subsequently, apply the solder and additional heat from the solder iron will initiate a good solder reflow. It is recommended to use a solder iron of more than 60W. It is advised to use lead-free, no-clean solder. For example: SN-96.5 AG-3.0 CU 0.5 #58/275 from Kester (pn: 24-7068-7601) COPYRIGHT © 2014 LED ENGIN. ALL RIGHTS RESERVED. 15 LZ9-00WW00 (1.7-02/23/14) 4 LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com LZ9-Jxxxxx 1 channel, Standard Star MCPCB (1x9) Dimensions (mm) Notes: • Unless otherwise noted, the tolerance = ± 0.2 mm. • Slots in MCPCB are for M3 or #4-40 mounting screws.  LED Engin recommends plastic washers to electrically insulate screws from solder pads and electrical traces.  LED Engin recommends using thermal interface material when attaching the MCPCB to a heatsink.  The thermal resistance of the MCPCB is: RΘC-B 0.2°C/W. This low thermal resistance is possible by utilizing a copper based MCPCB with pedestal design. The emitter thermal slug is in direct contact with the copper core. There are several vendors that offer similar solutions, some of them are: Rayben, Bergquist, SinkPad, Bridge-Semiconductor. Components used MCPCB: ESD chips: Jumpers: MHE-301 copper BZX585-C47 CRCW06030000Z0 (Rayben) (NXP, for 9 LED die) (Vishay) Pad layout Ch. 1 MCPCB Pad 1 2 String/die Function 1/ABCDEF GHI Cathode Anode + COPYRIGHT © 2014 LED ENGIN. ALL RIGHTS RESERVED. 16 LZ9-00WW00 (1.7-02/23/14) 4 LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com LZ9-Mxxxxx 3 channel, Standard Star MCPCB (3x3) Dimensions (mm) Notes: • Unless otherwise noted, the tolerance = ± 0.2 mm. • Slots in MCPCB are for M3 or #4-40 mounting screws.  LED Engin recommends plastic washers to electrically insulate screws from solder pads and electrical traces.  LED Engin recommends using thermal interface material when attaching the MCPCB to a heatsink.  The thermal resistance of the MCPCB is: RΘC-B 0.2°C/W. This low thermal resistance is possible by utilizing a copper based MCPCB with pedestal design. The emitter thermal slug is in direct contact with the copper core. There are several vendors that offer similar solutions, some of them are: Rayben, Bergquist, SinkPad, Bridge-Semiconductor. Components used MCPCB: ESD chips: MHE-301 copper BZX884-C18 (Rayben) (NXP, for 3 LED die) Pad layout Ch. 1 2 3 MCPCB Pad 4 3 5 2 6 1 String/die 1/ABE 2/CGI 3/DFH Function Cathode Anode + Cathode Anode + Cathode Anode + COPYRIGHT © 2014 LED ENGIN. ALL RIGHTS RESERVED. 17 LZ9-00WW00 (1.7-02/23/14) 4 LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com LZ9 secondary TIR optics family LLxx-3T06-H Optical Specification degrees degrees Optical 4 efficiency % LLSP-3T06-H 17 36 90 5.4 LLNF-3T06-H 26 49 90 2.2 LLFL-3T06-H 39 83 90 1.2 Part number 1 Beam angle 2 Field angle 3 On-axis 5 intensity cd/lm Notes: 1. Lenses can also be ordered without the holder. Replace –H with –O for this option. 2. Beam angle is defined as the full width at 50% of the max intensity (FWHM). 3. Field angle is defined as the full width at 10% of the max intensity. 4. Optical efficiency is defined as the ratio between the incoming flux and the outgoing flux. 5. On-axis intensity is defined as the ratio between the total input lumen and the intensity in the optical center of the lens. COPYRIGHT © 2014 LED ENGIN. ALL RIGHTS RESERVED. 18 LZ9-00WW00 (1.7-02/23/14) 4 LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com Typical Relative Intensity over Angle 100% LZ9 emitter LLSP-3T06-H 80% Relative Intensity LLNF-3T06-H LLFL-3T06-H 60% 40% 20% 0% -90 -60 -30 0 30 60 90 Angle (degrees) General Characteristics Symbol Value Rating Unit Height from Seating Plane 19.2 Typical mm Diameter 38.9 Typical mm Mechanical Material Lens PMMA Holder Polycarbonate Optical 1 Transmission (>90%) λ 410-1100 Min-Max. nm Storage Temperature Tstg -40 ~ +110 Min-Max. °C Operating Temperature Tsol -40 ~ +110 Min-Max. °C Environmental Notes: 1. It is not recommended to use a UV emitter with this lens due to lower transmission at wavelengths < 410nm. COPYRIGHT © 2014 LED ENGIN. ALL RIGHTS RESERVED. 19 LZ9-00WW00 (1.7-02/23/14) 4 LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com Mechanical Dimensions Lens with Holder Lens COPYRIGHT © 2014 LED ENGIN. ALL RIGHTS RESERVED. 20 LZ9-00WW00 (1.7-02/23/14) 4 LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com Company Information LED Engin, based in California’s Silicon Valley, develops, manufactures, and sells advanced LED emitters, optics and light engines to create uncompromised lighting experiences for a wide range of entertainment, architectural, general lighting and specialty applications. LuxiGen™ multi-die emitter and secondary lens combinations reliably deliver industry-leading flux density, upwards of 5000 quality lumens to a target, in a wide spectrum of colors including whites, tunable whites, multi-color and UV LEDs in a unique patented compact ceramic package. Our LuxiTuneTM series of tunable white lighting modules leverage our LuxiGen emitters and lenses to deliver quality, control, freedom and high density tunable white light solutions for a broad range of new recessed and downlighting applications. The small size, yet remarkably powerful beam output and superior in-source color mixing, allows for a previously unobtainable freedom of design wherever high-flux density, directional light is required. LED Engin is committed to providing products that conserve natural resources and reduce greenhouse emissions. LED Engin reserves the right to make changes to improve performance without notice. COPYRIGHT © 2014 LED ENGIN. ALL RIGHTS RESERVED. 21 LZ9-00WW00 (1.7-02/23/14) 4 LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com
LZ9-J0WW00-0235 价格&库存

很抱歉,暂时无法提供与“LZ9-J0WW00-0235”相匹配的价格&库存,您可以联系我们找货

免费人工找货