0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
CT75MR

CT75MR

  • 厂商:

    SENSYLINK(申矽凌)

  • 封装:

    SOP8_150MIL

  • 描述:

    带数字接口的±0.5℃数字温度传感器,1.75V~5.5V,SOP-8

  • 数据手册
  • 价格&库存
CT75MR 数据手册
CT75 SENSYLINK ±0.5oC Digital Temperature Sensor with Digital Interface SENSYLINK Microelectronics (CT75) Digital Temperature Sensor CT75 is a Digital Temperature Sensor with±0.5°C Accuracy Compatible with SMBus, I2C and 2-wire Interface. It is ideally used in HVAC, Thermal management and Portable Devices etc. Apr. 2020 Rev. 2.3 SENSYLINK Microelectronics Co., LTD 1 CT75 SENSYLINK ±0.5oC Digital Temperature Sensor with Digital Interface Table of Contents DESCRIPTION ......................................................................................................................................................... 4 FEATURES............................................................................................................................................................... 4 APPLICATIONS ....................................................................................................................................................... 4 PIN CONFIGURATIONS (TOP VIEW) ..................................................................................................................... 4 TYPICAL APPLICATION ......................................................................................................................................... 4 PIN DESCRIPTION .................................................................................................................................................. 5 FUNCTION BLOCK ................................................................................................................................................. 5 ORDERING INFORMATION .................................................................................................................................... 6 ABSOLUTE MAXIMUM RATINGS (NOTE 2).......................................................................................................... 7 RECOMMENDED OPERATING CONDITIONS....................................................................................................... 7 ELECTRICAL CHARACTERISTICS (NOTE 3) ....................................................................................................... 8 CHARACTERISTICS (VCC=3.0V/5.0V) ................................................................................................................11 1 FUNCTION DESCRIPTIONS ..........................................................................................................................12 1.1 DIGITAL OUTPUT OF TEMPERATURE DATA ...................................................................................................12 1.2 TEMPERATURE HIGHER THAN 128 ...............................................................................................................12 1.3 REGISTER M AP ..........................................................................................................................................13 1.4 REGISTER DESCRIPTION .............................................................................................................................13 1.4.1 Temp_Data, Temperature Data ......................................................................................................13 1.4.2 Config, Configuration Setup register ............................................................................................13 1.4.3 Low_Temp_Set, Setup Low Temperature Limitation register ....................................................15 1.4.4 High_Temp_Set, Setup High Temperature Limitation register ..................................................15 1.5 SMBUS DIGITAL INTERFACE .......................................................................................................................16 1.5.1 Slave Address .................................................................................................................................16 1.5.2 Timeout ............................................................................................................................................16 1.5.3 SMBus Protocol ..............................................................................................................................17 2 1.5.4 Compatible with I C ........................................................................................................................17 1.5.5 General Call .....................................................................................................................................17 1.5.6 High-Speed (Hs) Mode ....................................................................................................................17 1.6 ALERT OUTPUT ........................................................................................................................................18 1.6.1 Comparator mode (ALTM = 0) .......................................................................................................18 1.6.2 Interrupt mode (ALTM = 1) .............................................................................................................18 1.6.3 SMBus Alert Response Address (ARA) ........................................................................................19 2 APPLICATION INFORMATION......................................................................................................................21 2.1 HOW TO IMPROVE TEMPERATURE ACCURACY..............................................................................................21 2.1.1 Noise between VCC and GND ........................................................................................................21 2.1.2 Thermal Response Time ................................................................................................................21 2.2 PCB LAYOUT .............................................................................................................................................22 2.2.1 Device placement ............................................................................................................................22 2.2.2 Cin, Pull-up resistor ........................................................................................................................22 2.3 STANDALONE THERMOSTAT ........................................................................................................................23 PACKAGE OUTLINE DIMENSIONS (SOP-8) .......................................................................................................24 PACKAGE OUTLINE DIMENSIONS (MSOP-8) ....................................................................................................25 PACKAGE OUTLINE DIMENSIONS (DFN3X3-8).................................................................................................26 REVISION HISTORY ..............................................................................................................................................27 Apr. 2020 Rev. 2.3 SENSYLINK Microelectronics Co., LTD 2 CT75 SENSYLINK ±0.5oC Digital Temperature Sensor with Digital Interface Figures and Tables Figure 1. Typical Application of CT75 ......................... 4 Figure 2. CT75 function block ..................................... 5 2 Figure 3. SMBus/I CTimingDiagram ........................... 9 2 Figure 4. SMBus/I C Write Word (2-Bytes) Timing Diagram .............................................................. 9 2 Figure 5. SMBus/I C Read Word (2-Bytes) Timing Diagram ............................................................ 10 Figure 6. SMBus ALERT Response Diagram ........... 10 Figure 7. Temperature Accuracy vs. Temperature ... 11 Figure 8. Shutdown Current vs. Temperature........... 11 Figure 9. Shutdown Current vs. Supply Voltage ....... 11 Figure 10. Temperature Error Distribution ................ 11 Figure 11 ALERT pin output in comparator mode .... 18 Figure 12 ALERT pin output in interrupt mode ......... 19 Figure 13 ALERT pin in SMBus Alert Response (ARA) .......................................................................... 20 Table 1. 12-bit Temperature Data (EM bit = 0) ..........12 Table 2. 13-bit Temperature Data (EM bit = 1) ..........12 Table 3. Register Map ...............................................13 Apr. 2020 Rev. 2.3 SENSYLINK Microelectronics Co., LTD 3 CT75 SENSYLINK ±0.5oC Digital Temperature Sensor with Digital Interface Description Features     o CT75 is a digital temperature sensor with ±0.5 C accuracy. Temperature data can be read out directly via 2 digital interface (compatible with SMBus, I C or 2-wire) by MCU, Bluetooth Chip or SoC chip. 2 CT75 supports I C communication with speed up to 400 o kHz. Each chip is specially calibrated for ±0.5 C(Max.) o o accuracy over 0 C to 50 C range in factory before shipment to customers. There is no need for re-calibration anymore o for ±0.5 C accuracy.        It includes a high precision band-gap circuit, a 12-bit o analog to digital converter that can offer 0.0625 C resolution, a calibration unit with non-volatile memory, and a digital interface block. It has ALERT logic output pin with open drain structure, which is selectable for active low or high by programming. ALERT response is compatible with SMBus ALERT Response Address (ARA).  Operation Voltage: 1.75V to 5.5V Average Quiescent Current: 3.0uA (Typ.) (1Con/s) Shutdown Current: 1.0uA (Typ.) Temperature Accuracy without calibration: o o o Maximum:±0.5 C from 0 C to 50 C o o o Maximum:±1 C from -20 C to 85 C o o o Maximum:±1.5 C from -40 C to 125 C o 12 bit ADC for 0.0625 C resolution Compatible industry LM75 with performance improved 2 Compatible with SMBus, 2-wire and I C interface Programmable Over/Under Temperature Programmable Active Low or High for ALERT pin Support SMBus ALERT Response Address(ARA) Generate 32 different slave address by setup A0, A1, A2 pin o o Temperature Range: -40 C to 125 C Applications   CT75 can also be used as standalone thermostat. Available Package: SOP-8/MSOP-8 and DFN3x3-8. Smart HVAC System Thermal Management PIN Configurations (Top View) SDA VCC SDA VCC SCL A0 SCL A0 ALERT A1 ALERT A1 GND A2 GND A2 SOP-8/MSOP-8(Package Code M/MM) DFN3x3-8(package Code DN) Typical Application VCC Rpu=10k for each resistor CIN 0.1uF VCC A0 SCL A1 SDA A2 ALERT to MCU I/O GND Figure 1. Typical Application of CT75 Apr. 2020 Rev. 2.3 SENSYLINK Microelectronics Co., LTD 4 CT75 SENSYLINK ±0.5oC Digital Temperature Sensor with Digital Interface Pin Description PIN No. PIN Name Description 1 SDA Digital interface data input or output pin, need a pull-up resistor to VCC. 2 SCL Digital interface clock input pin, need a pull-up resistor to VCC. 3 ALERT 4 GND 5 A2 6 A1 7 A0 8 VCC To Indicate ALERT of over or under Temperature programmed by setting THIGH/TLOW register, it is open drain output with programmable active low or high. Need a pull-up resistor to VCC in application. Ground pin. Address selection pins, the chip can be defined total 32 different slave address by connecting these pins to GND, VCC, SCL or SDA pin respectively. Do not leave this pins open. See 1.5.1 Slave Address for detail. Power supply input pin, using 0.1uF low ESR ceramic capacitor to ground Function Block VCC Regulator SDA SCL Amplifer& ADC Digital Logic & Interface ALERT A0 Local TSensor VREF Calibration Memory A1 A2 GND Figure 2. CT75 function block Apr. 2020 Rev. 2.3 SENSYLINK Microelectronics Co., LTD 5 CT75 SENSYLINK ±0.5oC Digital Temperature Sensor with Digital Interface Ordering Information CT75 X X Order PN Accuracy CT75MR ±0.5 C CT75MB ±0.5 C CT75MMR ±0.5 C CT75MMB ±0.5 C CT75DNR ±0.5 C Package Type Packing M : SOP-8 MM : MSOP-8 DN : DFN3x3-8 R : Tape & Reel B : Tube Green 1 o Halogen free o Halogen free o Halogen free o Halogen free o Halogen free Marking Packing Note 1 ID 75 SOP-8 Tape & Reel YWWAXX 75 SOP-8 Tube YWWAXX 75 MSOP-8 Tape & Reel YWWAXX 75 MSOP-8 Tube YWWAXX 75 DFN3x3-8 Tape & Reel YWWAXX Package MPQ Operation Temperature 4,000 -40 C~+125 C o o o o o o o o o o 10,000 -40 C~+125 C 3,000 -40 C~+125 C 32,000 -40 C~+125 C 3,000 -40 C~+125 C Notes 1 1. Based on ROHS Y2012 spec, Halogen free covers lead free. So most package types Sensylink offers only states halogen free, instead of lead free. st nd 2. Marking ID includes 2 rows of characters. In general, the 1 row of characters are part number, and the 2 row of characters are date code plus production information. 1) Generally, date code is represented by 3 numbers. The number stands for year and work week information. e.g. 501stands for the first work week of year 2015;621 stands for the 21st work week of year 2016. 2) Right after the date code information, the next 2-3 numbers or letters are specified to stands for supplier or production location information. Apr. 2020 Rev. 2.3 SENSYLINK Microelectronics Co., LTD 6 CT75 SENSYLINK ±0.5oC Digital Temperature Sensor with Digital Interface Absolute Maximum Ratings (Note 2) Parameter Symbol Value Unit VCC to GND -0.3 to 5.5 V VSDA/VSCL/VA0/VA1/VA2 to GND -0.3 to 5.5 V VALERT to GND -0.3 to 5.5 V Storage temperature Range TSTG -65 to 150 ºC Lead Temperature (Soldering, 10 Seconds) TLEAD 260 ºC ESD MM ESDMM 400 V ESD HBM ESDHBM 4000 V ESD CDM ESDCDM 1000 V Supply Voltage SDA, SCL, A0, A1, A2 Voltage ALERT Voltage Note 2 1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at the "Absolute Maximum Ratings" conditions or any other conditions beyond those indicated under "Recommended Operating Conditions" is not recommended. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability. Recommended Operating Conditions Parameter Symbol Value Unit Supply Voltage VCC 1.75 ~ 5.5 V Ambient Operation Temperature Range TA -40 ~ +125 °C Apr. 2020 Rev. 2.3 SENSYLINK Microelectronics Co., LTD 7 CT75 SENSYLINK ±0.5oC Digital Temperature Sensor with Digital Interface Electrical Characteristics (Note 3) o Test Conditions: CIN = 0.1uF, VCC = 3.3V,TA = -40 to 125 C unless otherwise specified. All limits are 100% tested o at TA=25 C. Parameter Supply Voltage Symbol VCC Test Conditions Min 1.75 o Temperature Accuracy TAC TA = 0 to 50 C o TA = -20 to 85 C o TA = -40 to 125 C Max 5.5 0.5 o -1 -1.5 1 1.5 o 3.0 4.5 uA 1.0 3.0 uA 0.5 1.0 V uA 0.0625 IAOC Unit V -0.5 Temperature Resolution Average Operating Current Typ VIN = 3.3V, 1.0 con/s C C o C o C Open Drain Output Voltage Open Drain Leakage VOL IODL STB bit = 1, force SDA/SCL to VCC or GND ALERT pin, sink 5mA ALERT pin Conversion time tCON From active to finish completely 30 ms Logic Input Capacitance CIL SDA, SCL pin 3.0 pF Logic Input High Voltage VIH SDA, SCL pin 0.7*VCC VCC+0.3 V Logic Input Low Voltage Logic Input Current Logic Output Sink Current VIL IINL IOLS SDA, SCL pin SDA, SCL pin SDA, ALERT pin, forced 0.2V -0.3 -1.0 0.3*VCC 1.0 V uA mA Fast Mode 1 400 kHz High Speed Mode 0.001 3 MHz Shutdown Current ISHUTDOWN 0 -1.0 Digital Interface SCL frequency Timeout of detecting clock low period time Clock low period time Clock high period time Bus free time Hold time after Start condition Repeated Start condition setup time Stop condition setup time Data Hold time Data Setup time Clock/Data fall time Clock/Data rise time fCLK 5.0 tTOUT SMBus Communication tLOW tHIGH tBUF Fast Mode Fast Mode Between Stop and Start condition tHD:STA tSU:STA tSU:STO tHD:DAT tSU:DAT tF tSR 30 ms 1300 600 1200 600 600 600 100 100 300 1000 ns ns ns ns ns ns ns ns ns ns Note 3: 1. All devices are 100% production tested at TA = +25°C; All specifications over the automotive temperature range is guaranteed by design, not production tested. Apr. 2020 Rev. 2.3 SENSYLINK Microelectronics Co., LTD 8 CT75 SENSYLINK ±0.5oC Digital Temperature Sensor with Digital Interface tF SCL VIH tLOW tHIGH VIL tR tHD:DAT tHD:STA tSU:STA tSU:DAT tSU:STO SDA VIH tBUF VIL P S P S 2 Figure 3. SMBus/I C Timing Diagram SCL 1 8 9 1 8 9 ... SDA A6 1 A5 0 A4 0 A3 1 A2 0 A1 0 A0 0 R/W 0 R7 R6 R5 R4 R3 R2 R1 ... R0 ACK ACK S Byte 1 Slave Address (0x90h) Byte 2 Register Address (0x00h to 0x03h) 1 SCL(cont) ... SDA(cont) ... D15 8 D14 D13 D12 D11 D10 D9 9 D8 10 D7 17 D6 D5 D4 D3 ACK D2 D1 18 D0 NACK P Byte 3, Byte 4 Data to be written into Register (address pointed in Byte2) 2 Figure 4. SMBus/I C Write Word (2-Bytes) Timing Diagram Apr. 2020 Rev. 2.3 SENSYLINK Microelectronics Co., LTD 9 CT75 SENSYLINK ±0.5oC Digital Temperature Sensor with Digital Interface SCL 1 8 9 1 8 9 ... SDA A6 1 A5 0 A4 0 A3 1 A2 0 A1 0 A0 0 R/W 0 R7 R6 R5 R4 R3 R2 R1 ... R0 ACK ACK S P Byte 1 Slave Address (0x90h) Byte 2 Register Address (0x00h to 0x03h) 1 SCL (cont) 8 9 1 8 9 ... SDA (cont) A6 1 ... A5 0 A4 0 A3 1 A2 0 A1 0 A0 0 R/W 1 D7 D6 D5 D4 D3 D2 D1 D0 ACK ACK S Byte 4 (1st Byte) Data to be read out (Register address pointed in Byte2) Byte 3 Slave Address (0x91h) 1 8 9 SCL (cont) ... SDA (cont) D7 ... D6 D5 D4 D3 D2 D1 D0 NACK P Byte 5 (2st Byte) Data to be read out (Register address pointed in Byte2) 2 Figure 5. SMBus/I C Read Word (2-Bytes) Timing Diagram SCL 1 8 9 1 8 9 SDA A6 0 A5 0 A4 0 A3 1 A2 1 A1 0 A0 0 R/W 1 1 0 x x x x x ACK ALT NACK S P Byte 1 SMBus Alert Response Address (0x19h) Byte 2 Device Slave Address (10xx, xxxALT) Figure 6. SMBus ALERT Response Diagram Apr. 2020 Rev. 2.3 SENSYLINK Microelectronics Co., LTD 10 CT75 SENSYLINK ±0.5oC Digital Temperature Sensor with Digital Interface Characteristics (VCC=3.0V/5.0V) + 2.0 +5.0 1# 2# 3# 4# 5# 6# 7# 8# 9# 10# 11# 12# 13# 14# 15# 16# 17# 18# UL LL upper limit o Temperature Accuracy ( C) + 1.0 + 0.5 0.0 -0.5 -1.0 lower limit -1.5 -2.0 -60 +4.5 o Ta = 25 C, Shutdown Mode +4.0 Shutdown Current (uA) + 1.5 +3.5 +3.0 +2.5 +2.0 +1.5 +1.0 +0.5 0.0 -40 -20 0 20 40 60 80 100 120 140 1 o Ambient Temperature ( C) 2 3 4 5 6 Supply Voltage (V) Figure 9. Shutdown Current vs. Supply Voltage Figure 7. Temperature Accuracy vs. Temperature +4.0 In Shutdown Mode VCC=1.8V VCC=3.3V VCC=5.0V +3.5 Shutdown Current (uA) +3.0 +2.5 +2.0 +1.5 +1.0 +0.5 0.0 -40 -20 0 20 40 60 80 100 120 140 o Ambient Temperature ( C) Figure 10. Temperature Error Distribution Figure 8. Shutdown Current vs. Temperature Apr. 2020 Rev. 2.3 SENSYLINK Microelectronics Co., LTD 11 CT75 SENSYLINK ±0.5oC Digital Temperature Sensor with Digital Interface 1 Function Descriptions The chip can sense temperature and convert it into digital data by a 12-bit ADC. Also the chip supports programmable high-/low-limit temperature settings. If the measured temperature meets or exceeds the high-limit temperature, ALERT pin will be asserted (be set low or high, depending on POL bit of configuration register).Once the measured temperature goes below the low-limit temperature (programmable by user), ALERT pin will be released (comparator mode). 1.1 Digital Output of Temperature Data The temperature measurement data is stored in read only temperature register. The temperature register is in 12-bit binary format (set EM bit as '0') or 13-bit binary format (set EM bit as '1') with 2-Bytes. This 2-Bytes st nd temperature data must be read at the same time in each reading cycle, 1 -Byte is MSB followed by 2 -Byte, the LSB. The relationship between temperature data in Celsius degree and binary data is shown as below tables. Table 1. 12-bit Temperature Data (EM bit = 0) Temperature (°C) 12-bit Digital Output (HEX) 12-bit Digital Output (BIN) +128.000 0x7FF0 0 1 1 1, 1 1 1 1, 1 1 1 1 (0 0 0 0) +127.9375 0x7FF0 0 1 1 1, 1 1 1 1, 1 1 1 1 (0 0 0 0) +100.000 0x6400 0 1 1 0, 0 1 0 0, 0 0 0 0 (0 0 0 0) +25.000 0x1900 0 0 0 1, 1 0 0 1, 0 0 0 0 (0 0 0 0) +0.250 0x0040 0 0 0 0, 0 0 0 0, 0 1 0 0 (0 0 0 0) 0.000 0x0000 0 0 0 0, 0 0 0 0, 0 0 0 0 (0 0 0 0) -0.0625 0xFFF0 1 1 1 1, 1 1 1 1, 1 1 1 1 (0 0 0 0) -0.250 0xFFC0 1 1 1 1, 1 1 1 1, 1 1 0 0 (0 0 0 0) -25.000 0xE700 1 1 1 0, 0 1 1 1, 0 0 0 0 (0 0 0 0) Table 2. 13-bit Temperature Data (EM bit = 1) +150.000 13-bit Digital Output (HEX) 0x4B01 8-bit Digital Output (BIN) st (MSB) 1 Byte 0 1 0 0, 1 0 1 1 5-bit Digital Output (BIN) nd (LSB) 2 Byte 0 0 0 0, 0 (0 0 1) +128.000 0x4001 0 1 0 0, 0 0 0 0 0 0 0 0, 0 (0 0 1) +127.9375 0x3FF9 0 0 1 1, 1 1 1 1 1 1 1 1, 1 (0 0 1) +100.000 0x3201 0 0 1 1, 0 0 1 0 0 0 0 0, 0 (0 0 1) +25.000 0x0C81 0 0 0 0, 1 1 0 0 1 0 0 0, 0 (0 0 1) +0.250 0x0021 0 0 0 0, 0 0 0 0 0 0 1 0, 0 (0 0 1) 0.000 0x0001 0 0 0 0, 0 0 0 0 0 0 0 0, 0 (0 0 1) -0.0625 0xFFF9 1 1 1 1, 1 1 1 1 1 1 1 1, 1 (0 0 1) -0.250 0xFFE1 1 1 1 1, 1 1 1 1 1 1 1 0, 0 (0 0 1) -25.000 0xF381 1 1 1 1, 0 0 1 1 1 0 0 0, 0 (0 0 1) Temperature (°C) 1.2 Temperature Higher than 128 When temperature is higher than 128° C, it can be expressed in binary register data by setting EM bit as '1', shown as above Table 2. In extended format, the resolution of AD converter does not change, but '+128' bit is st added. For example, 12-bit format for 100° C is 0x6400, in which 0x64 is from 1 Byte, and 0x00 is from 2 st 13-bit format for 100° C is 0x3201, in which 0x32 is from 1 Byte, and 0x01 is from 2 nd nd Byte. Byte. The default for EM bit is '0' after Power-on reset. Apr. 2020 Rev. 2.3 SENSYLINK Microelectronics Co., LTD 12 CT75 SENSYLINK ±0.5oC Digital Temperature Sensor with Digital Interface 1.3 Register Map st nd The chip has 4 registers assigned address from 0x00 to 0x03, and there are 2 Bytes (1 Byte and 2 Byte), total 16 bits for each register, shown as below table. Table 3. Register Map Register Address 0x00Note 4 0x01 0x02 Note 4 0x03 Note 4 Register Name Attrib Default ution Data Temp_MSB (1st Byte) Temp_LSB (2nd Byte) Config_MSB (1st Byte) Config_LSB (2nd Byte) Low_Temp_Set_MSB (1st Byte) Low_Temp_Set_LSB (2nd Byte) High_Temp_Set_MSB (1st Byte) High_Temp_Set_LSB (2nd Byte) BIT 7 6 5 4 3 2 1 0 R/O N/A Temp_Data[11:4] R/O N/A Temp_Data[3:0] R/W 0x00 OS CR1 CR0 F1 F0 POL ALTM SD R/W 0x00 0 0 AL EM 0 0 0 0 R/W 0x4B Low_Temp_Setup_Data[11:4] R/W 0x00 Low_Temp_Setup_Data[3:0] R/W 0x50 High_Temp_Setup_Data[11:4] R/W 0x00 High_Temp_Setup_Data[3:0] Note 4, if set EM as '1', Temp data is expressed in 13-bit format, 1st Byte, 8 bits data [12:5] is used as MSB, and 2nd Byte, 5 bits data [4:0] in left justified is used as LSB. 1.4 Register Description 1.4.1 Temp_Data, Temperature Data Register Address: 0x00 Register Attribution: Read only Default Data: N/A BIT (1st Byte) Name: Temp_MSB (1st Byte) Temperature Data (oC) [12-bit] 12-bit format Temperature Data (oC) [13-bit] 13-bit format 7 6 5 SIGN T11 (SIGN) (T12) 64 T10 (128) (T11) 32 T9 (64) (T10) BIT (2nd Byte) Name: Temp_LSB (2ndByte) Temperature Data (oC) [12-bit] 12-bit format Temperature Data (oC) [13-bit] 7 6 5 0.5 T3 (1) 0.25 T2 (0.5) 0.125 T1 (0.25) 13-bit format (T4) (T3) (T2) 4 3 Temp_Data[11:4] 16 8 T8 T7 (32) (16) (T9) (T8) 4 3 Temp_Data[3:0] 0.0625 0 T0 0 (0.125) (0.0625) (T1) (T0) 2 1 0 4 T6 (8) (T7) 2 T5 (4) (T6) 1 T4 (2) (T5) 2 1 0 0 0 0 0 0 0 0 0 (1) (0) (0) (1) 1.4.2 Config, Configuration Setup register Register Address: 0x01 Register Attribution: Read/Write st Default Data: 0x00 for 1 Byte, 0x20 for 2 nd Byte after POR. If user used only 1-Byte, it is ok to read/write 1st Byte command via digital interface; the only 1 Byte (MSB) will be accessed. BIT st 1 Byte 2nd Byte 7 OS 0 6 CR1 0 Reserved 0 0 5 CR0 0 AL 1 4 F1 0 EM 0 Apr. 2020 Rev. 2.3 3 F0 0 0 2 1 POL ALTM 0 0 Reserved 0 0 0 SD 0 0 SENSYLINK Microelectronics Co., LTD 13 CT75 SENSYLINK ±0.5oC Digital Temperature Sensor with Digital Interface OS, One shot Conversion bit When the device is in shutdown mode, setting this bit as ‘1’ will trigger a single time temperature conversion. During the conversion, the OS bit reads as ‘0’. The device returns to shutdown mode once it completes the single conversion. This feature is used for reducing power consumption when continuous temperature monitoring is not necessary. CR1, CR0, Conversion Rate Selection bits These 2 bits allow user to setup different conversion rate for temperature. The default is 00 after POR, meaning the conversion rate is 8Hz, i.e. 8 times conversion every second. CR1 0 0 1 1 CR0 0 1 0 1 Conversion Rate / Conversion Time 8.0Hz / 0.125s (default) 4.0Hz / 0.25s 1.0Hz / 1.0s 0.25Hz / 4.0s F1, F0, Fault Queue bits These 2 bits are used to setup the number of fault conditions to trigger alert. The default is 00 after POR, which means one time fault. This feature is used to prevent a false alert, which is immune to certain noise in application. F1 F0 Fault Queue Number 0 0 1 1 0 1 0 1 1 (default) 2 4 6 POL, Alert Output Polarity bit This bit allows user to setup the polarity of ALERT pin for output. The default is 0 after POR, meaning ALERT pin is active low. When POL bit is set as ‘1’, the ALERT pin becomes active high and the state of ALERT pin is inverted. ALTM, Alert Operation Mode bit This bit allows user to select ALERT pin operation mode: Comparator Mode or Interrupt Mode. The default is 0 after POR to select Comparator Mode. For detail information, see ALERT output section. SD, Shutdown bit This bit allows user to shut down the chip and to make the chip enter into standby mode once writing ‘1’. The default value is ‘0’, which sets the chip to be in Normal working mode. During shutdown mode, the temperature data is kept as those of last time, no anymore update, and all function blocks are turned-off except interface. Set this bit as '0' can allow the chip be out of shutdown mode. In shutdown mode, the operation current is about 1.0uA in typical. Apr. 2020 Rev. 2.3 SENSYLINK Microelectronics Co., LTD 14 CT75 SENSYLINK ±0.5oC Digital Temperature Sensor with Digital Interface EM, Extended Mode bit This bit allows user to select 12-bit (EM = 0) or 13-bit (EM = 1) temperature data. When EM bit is set as ‘1’, o the temperature resolution is still 0.0625 C resolution. However, the expression range is extended from 255 to +255. AL, Alert Status bit The AL bit indicates the Alert status with read-only attribution. In addition, this bit is always read as the inversion of POL bit. When the POL bit equals 0, the AL bit reads as 1 until the measured temperature equals or exceeds Temperature (HIGH) for the programmed number of consecutive faults, causing the AL bit to read as 0. The AL bit continues to read as 0 until the temperature falls below Temperature (LOW) for the programmed number of consecutive faults, when it again reads as 1. Vice versa, when the POL bit is '1', the AL bit reads as 0 until the temperature equals or exceeds Temperature (HIGH). And the AL bit is set as 0 again once the temperature falls below Temperature (LOW). The status of the TM bit does not affect the status of the AL bit. 1.4.3 Low_Temp_Set, Setup Low Temperature Limitation register Register Address: 0x02 Register Attribution: Read/Write st Default Data: 0x4B (1 Byte) 0x00 (2 BIT st 1 Byte 2 nd Byte BIT 12-bit 13-bit Default 12-bit 13-bit Default 7 L11 (L12) 0 L3 (L4) 0 nd Byte) after POR. 6 L10 (L11) 1 L2 (L3) 0 5 L9 (L10) 0 L1 (L2) 0 4 L8 (L9) 0 L0 (L1) 0 3 L7 (L8) 1 0 (L0) 0 2 L6 (L7) 0 0 (0) 0 1 L5 (L6) 1 0 (0) 0 0 L4 (L5) 1 0 (0) 0 The high-/low- limit temperature data is determined by High_Temp_Set register [0x03] and Low_Temp_Set register [0x02] with same format as Temp_Data register [0x00], which could be in 12-bit or 13-bit binary format. The chip compares Temp_Data [0x00] register and High_Temp_Set register [0x03]/Low_Temp_Set register [0x02] in each conversion cycle, which will affect ALT pin output. The default value is 0x4B00 with o 12-bit binary format, which means 75 C. For other low-limit temperature data chip, please contact our sales. 1.4.4 High_Temp_Set, Setup High Temperature Limitation register Register Address: 0x03 Register Attribution: Read/Write st Default Data: 0x50 (1 Byte) 0x00 (2 BIT st 1 Byte 2 nd Byte BIT 12-bit 13-bit Default 12-bit 13-bit Default 7 H11 (H12) 0 H3 (H4) 0 nd Byte) after POR. 6 H10 (H11) 1 H2 (H3) 0 5 H9 (H10) 0 H1 (H2) 0 Apr. 2020 Rev. 2.3 4 H8 (H9) 1 H0 (H1) 0 3 H7 (H8) 0 0 (H0) 0 2 H6 (H7) 0 0 (0) 0 1 H5 (H6) 0 0 (0) 0 0 H4 (H5) 0 0 (0) 0 SENSYLINK Microelectronics Co., LTD 15 CT75 SENSYLINK ±0.5oC Digital Temperature Sensor with Digital Interface The high-/low- limit temperature data is determined by High_Temp_Set register [0x03] and Low_Temp_Set register [0x02] with same format as Temp_Data register [0x00], which could be in 12-bit or 13-bit binary format. The chip compares Temp_Data [0x00] register and High_Temp_Set register [0x03]/Low_Temp_Set register [0x02] in each conversion cycle, which will affect ALT pin output. The default value is 0x5000 with o 12-bit binary format, which means 80 C. For other low-limit temperature data chip, please contact our sales. 1.5 SMBus Digital Interface 1.5.1 Slave Address 2 The SMBus or I C slave address of this device can be configured 32 different addresses by setting [A2], [A1] and [A0] pin. See below table for detail, which permit connecting total 32 devices in one SMBus. No. A2 A1 A0 R/W Slave Address in Hex [R/W] 1 GND GND GND 1/0 0x91/0x90 2 GND GND VCC 1/0 0x93/0x92 3 GND VCC GND 1/0 0x95/0x94 4 GND VCC VCC 1/0 0x97/0x96 5 VCC GND GND 1/0 0x99/0x98 6 VCC GND VCC 1/0 0x9B/0x9A 7 VCC VCC GND 1/0 0x9D/0x9C 8 VCC VCC VCC 1/0 0x9F/0x9E 9 GND GND SDA 1/0 0x81/0x80 10 GND GND SCL 1/0 0x83/0x82 11 GND VCC SDA 1/0 0x85/0x84 12 GND VCC SCL 1/0 0x87/0x86 13 VCC GND SDA 1/0 0x89/0x88 14 VCC GND SCL 1/0 0x8B/0x8A 15 VCC VCC SDA 1/0 0x8D/0x8C 16 VCC VCC SCL 1/0 0x8F/0x8E 17 GND SDA SDA 1/0 0xA1/0xA0 18 GND SDA SCL 1/0 0xA3/0xA2 19 GND SCL SDA 1/0 0xA5/0xA4 20 GND SCL SCL 1/0 0xA7/0xA6 21 VCC SDA SDA 1/0 0xA9/0xA8 22 VCC SDA SCL 1/0 0xAB/0xAA 23 VCC SCL SDA 1/0 0xAD/0xAC 24 VCC SCL SCL 1/0 0xAF/0xAE 25 GND SDA GND 1/0 0xB1/0xB0 26 GND SDA VCC 1/0 0xB3/0xB2 27 GND SCL GND 1/0 0xB5/0xB4 28 GND SCL VCC 1/0 0xB7/0xB6 29 VCC SDA GND 1/0 0xB9/0xB8 30 VCC SDA VCC 1/0 0xBB/0xBA 31 VCC SCL GND 1/0 0xBD/0xBC 32 VCC SCL VCC 1/0 0xBF/0xBE 1.5.2 Timeout The chip supports SMBus timeout. If the data (SDA PIN) or clock (SCL PIN) is held low for longer than 30ms (Typ.), the chip will reset its SMBus protocol and be ready for a new transmission. Apr. 2020 Rev. 2.3 SENSYLINK Microelectronics Co., LTD 16 CT75 SENSYLINK ±0.5oC Digital Temperature Sensor with Digital Interface 1.5.3 SMBus Protocol The chip supports four standard SMBus protocols Send Byte, Read Byte, Write Byte and Receive Byte, shown as below tables. Write Byte S Slave Add R/W ACK Reg Add ACK Reg Data ACK 0x80 to 0xBE 0 0 0x00 to 0x03 0 XXh 0 P Read Byte S Slave Add R/W 0x80 to 0xBE 0 ACK Reg Add 0 0x00 to 0x03 0 ACK S Slave Add R/W 0x80 to 0xBE 1 ACK Reg Data NACK P 0 XXh1 1 Send Byte S Slave Add R/W ACK Reg Add ACK 0x80 to 0xBE 0 0 XXh 0 Slave Add R/W ACK Reg Add NACK 0x80 to 0xBE 1 0 XXh 1 P Receive Byte S P Here S means SMBus Start to communication; P, means communication STOP. Slave Add, means the chip's slave address. Reg Add, means pointed register address. Reg Data, means data to be written into register or read from register. For this chip, each register includes 2 Bytes, so generally reading or writing operation is based on 1 Word (2-Bytes).Also it is permitted to read 1 byte for read/write, then the 1st byte will be accessed in first. 2 1.5.4 Compatible with I C 2 2 The chip is compatible with both SMBus and I C. The major difference between SMbus and I C are shown 2 as below. For more information, refer to SMBus specification v2.0 and I C specification v2.1. 2 1). Besides DC specification difference, this chip supports I C fast mode (400kHz) and standard mode (100kHz), which can cover SMBus maximum frequency 100kHz. For SMBus protocol, the minimum 2 frequency is 10 kHz. There is no such limitation for I C. 2). For SMBus protocol, the communication will be reset if holding clock or data low with duration over 2 30ms (Typ.). There is no timeout for I C. 2 3). ARA (Alert Response Address) general call is only valid interrupt in SMBus, not valid in I C. 1.5.5 General Call The CT75 device responds to a two-wire general-call address (0000 000) if the eighth bit is 0. The device acknowledges the general-call address and responds to commands in the second byte. If the second byte is 0000 0110, the CT75 internal registers are reset to power-up values. 1.5.6 High-Speed (Hs) Mode 2 If the master needs to run at frequencies above 400 kHz in I C, the master device must issue an Hs-mode master code (0000 1xxx) as the first byte after a START condition to switch the bus to high-speed operation. After the Hs-mode master code has been issued, the master transmits a slave address to initiate a datatransfer operation. The bus continues to operate in Hs-mode until a STOP condition occurs on the bus. Apr. 2020 Rev. 2.3 SENSYLINK Microelectronics Co., LTD 17 CT75 SENSYLINK ±0.5oC Digital Temperature Sensor with Digital Interface Upon receiving the STOP condition, the CT75 device will return to fast-mode operation. below is the example for reading operation in high speed mode. S 1.6 Hs-mode Slave Add R/W code 0x08 to 0x80 to 0 0x0F 0xBE ACK Reg Add 0 0x00 0x03 to ACK Sr Slave Add 0 0x80 0xBE to R/W ACK Reg Data NACK P 1 0 XXh 1 ALERT Output ALERT pin is output with open drain, which can be set active low or active high by setting POL bit. In addition, this pin is triggered when the measured temperature equals or exceeds the high-limitation temperature setup in the registers of High_Temp_Set. There are two types of ALERT output mode: comparator mode and interrupt mode. 1.6.1 Comparator mode (ALTM = 0) Below Figure shows the mechanism of the ALERT output in comparator mode. In this mode, the ALERT pin will becomes active if the monitored temperature equals or exceeds the value setup in High_Temp_Set [0x03] register for a consecutive number of faults according to setup by F1 and F0 bits. The ALERT pin keeps active until the temperature falls below the value setup in Low_Temp_Set [0x02] register. Measured temperature THIGH Limitation THERM_HYS TLOW Limitation ALERT PIN (Comparator Mode) POL = 0 ALERT PIN (Comparator Mode) POL = 1 Figure 11 ALERT pin output in comparator mode 1.6.2 Interrupt mode (ALTM = 1) Below Figure shows the mechanism of the ALERT pin output in interrupt mode. In this mode, the ALERT pin becomes active when the temperature equals or exceeds the value setup in High_Temp_Set [0x03] register for a consecutive number of faults according to setup by F1 and F0 bits. The ALERT pin keeps active until a read operation of any register happens or the chip responds to SMBus Alert Response Address (ARA) successfully. When ALERT pin is cleared, it will become active again only when the temperature falls below the value setup in Low_Temp_Set [0x02] register, and keeps active until being cleared by reading register or responding to SMBus ARA, ALERT pin is also cleared by setting the chip in shutdown mode. Apr. 2020 Rev. 2.3 SENSYLINK Microelectronics Co., LTD 18 CT75 SENSYLINK ±0.5oC Digital Temperature Sensor with Digital Interface Measured temperature THIGH Limitation THERM_HYS TLOW Limitation ALERT PIN (Interrupt Mode) POL = 0 ALERT PIN (Interrupt Mode) POL = 1 Reading Register to SMBus ARA Figure 12 ALERT pin output in interrupt mode 1.6.3 SMBus Alert Response Address (ARA) The chip supports the SMBus alert function feature. When the chip operates in interrupt mode (ALTM=1), it can be connected as SMBus alert signal, used as a processer interrupt or as SMBus ALERT. When the master detects that the ALERT pin is asserted, it will send Alert Response Address (ARA) to general address (0001, 1001b). All devices with active interrupts will respond with client address. If the alert pin is active, the device acknowledges the SMBus command by returning the slave address from SDA line. If more devices than one on the bus respond SMBus ARA, arbitration during the slave address portion of SMBus ARA determines which device clears the alert trigger. The device with the highest priority (lowest address) wins the arbitration. If the chip wins the arbitration, ALERT pin is released after completion of SMBus ARA command. If the chip loses the arbitration, it will keep ALERT pin active. See System Management Bus (SMBus) Specification for more detail. Below Figure shows the mechanism of the ALERT output SMBus Alert mode. S Slave Add R/W ACK Reg Add ACK 0001,100 1 0 100x,xxxS 1 P Here Reg Add presented the chip real actual address setup by user. S bit indicates if the alert condition is caused by the temperature exceeding T(HIGH) or falling below T(LOW). The S bit is '1' if the temperature is greater than T(HIGH), or '0' if the temperature is less than T(LOW). Apr. 2020 Rev. 2.3 SENSYLINK Microelectronics Co., LTD 19 CT75 SENSYLINK ±0.5oC Digital Temperature Sensor with Digital Interface Measured temperature THIGH Limitation THERM_HYS TLOW Limitation ALERT pin active ALERT pin (Interrupt Mode) POL=0 ALERT pin inactive ALERT pin (Interrupt Mode) POL=1 Reading register or SMBus ARA Figure 13 ALERT pin in SMBus Alert Response (ARA) Apr. 2020 Rev. 2.3 SENSYLINK Microelectronics Co., LTD 20 CT75 SENSYLINK ±0.5oC Digital Temperature Sensor with Digital Interface 2 Application Information 2.1 How to Improve Temperature Accuracy The temperature measurement of the chip is based on semiconductor physics principle --Forward voltage of diode is a function of temperature. The formula is shown as below. VF  kT  I F  ln  q  IS  Here, VF -- forward voltage IF -- forward current IS -- reverse saturation current k -- Boltzmann constant T -- Temperature in K q -- Electric charge constant To cover wide temperature range, i.e. -40 oC to 125oC, a very small voltage variation is corresponding to every degree C temperature change. Sensylink has applied many ways to improve measurement accuracy in chip circuits design, such as compensation, trimming etc. In real system design, however, some factors that can increase measurement error need to be considered. Most issues that usually occur are highlighted as below. 2.1.1 Noise between VCC and GND It is very necessary to place a low ESR ceramic cap (CIN) between VCC and GND pin to filter digital noise, although suppression noise circuit has been built inside the chip. This filter cap should be placed as close as possible to the chip. The recommended capacitance is 0.1uF. 2.1.2 Thermal Response Time It is very necessary to wait enough time for obvious temperature changing of target due to o o thermal time constant, e.g. food temperature could change from -20 C to 20 C when taken out of refrigerator, which could take over ten minutes to reach thermal equilibrium eventually. Enough time is still needed for the target to reach thermal equilibrium, even forcing temperature transient into target object. For this chip, the temperature step response changing from room temperature o to oil bath of 125 C is shown as below. (Based on SOP-8 package) Room Temperature o 26.8 C Target Temperature o 125.0 C Apr. 2020 Rev. 2.3 Change ratio 63% 80% 90% 100% Delta T o 61.9 C o 78.5 C o 88.4 C o 98.2 C Time (s) 2.3 3.8 5.6 20.0 SENSYLINK Microelectronics Co., LTD 21 CT75 SENSYLINK ±0.5oC Digital Temperature Sensor with Digital Interface 150 140 o From room temperature to 125 C oil bath 130 120 o Temperature ( C) 110 100 90 80 70 60 50 40 30 20 10 3.8 7.8 11.8 15.8 19.8 23.8 Time(s) Vice versa, it will take longer time, about 150s, when the chip temperature is back to room o temperature, once taking the chip out of oil bath of 125 C. See below plot. 150 140 o From 125 C oil bath to room temperature 130 120 o Temperature ( C) 110 100 90 80 70 60 50 40 30 20 10 -20 0 20 40 60 80 100 120 140 160 Time(s) 2.2 PCB Layout Cautions below are important to improve temperature measurement accuracy in PCB layout design. 2.2.1 Device placement It is better to place the chip away from any thermal source (e.g. power device in board), highspeed digital bus (e.g. memory bus), coil device (e.g. inductors) and wireless antenna (e.g. Bluetooth, WiFi, and RF). It is recommended to place the chip close to the remote diode. 2.2.2 Cin, Pull-up resistor It is better to place Cin as close as possible to VCC and GND pins of the chip. The recommended Cin value is 0.1uF with low ESR ceramic cap although using multi caps, such as Apr. 2020 Rev. 2.3 SENSYLINK Microelectronics Co., LTD 22 CT75 SENSYLINK ±0.5oC Digital Temperature Sensor with Digital Interface 1.0uF plus 0.1uF or 0.01uF, is ok, which can suppress digital noise with different frequency range. User has to put a pull-up resistor with 4.7k to 10k for SDA and SCL pins respectively. It is ok to use smaller resistors such as 2k-3k in real application, if multi slave devices are used in the same bus. 2.3 Standalone Thermostat CT75 can also be used as standalone thermostat shown as below. It does not need external MCU to setup High/Low limitation temperature via SMBus/I2C communication. The trigger temperature and hysteresis temperature can be setup in factory before shipping to customer. For example, o o Trigger temperate is 55 C, and Hysteresis temperature is 5 C. o Which means when the chip temperature equals or exceeds 55 C, the ALERT pin will be set low. o And once the temperature of the chip drops below 50 C (55 - 5), the ALERT pin will be released back to high (pulled by Rpu to VCC). Please contact Sensylink sales for specific Trigger, Hysteresis temperature you want. VCC CIN 0.1uF Rpu=4.7k - 10k A0 A1 VCC A2 SCL ALERT SDA GND Apr. 2020 Rev. 2.3 SENSYLINK Microelectronics Co., LTD 23 CT75 SENSYLINK ±0.5oC Digital Temperature Sensor with Digital Interface Package Outline Dimensions (SOP-8) SOP-8 Unit (mm) θ Symbol A A1 A2 b c D E E1 e L θ Dimensions in Millimeters Min. Max. 1.350 1.750 0.100 0.250 1.250 1.650 0.33 0.51 0.17 0.25 4.700 5.100 5.800 6.200 3.700 4.100 1.270(BSC) 0.400 1.270 0° 8° Apr. 2020 Rev. 2.3 Dimensions in Inches Min. Max. 0.053 0.069 0.004 0.010 0.049 0.065 0.013 0.020 0.007 0.010 0.185 0.201 0.228 0.244 0.146 0.161 0.050(BSC) 0.016 0.050 0° 8° SENSYLINK Microelectronics Co., LTD 24 CT75 SENSYLINK ±0.5oC Digital Temperature Sensor with Digital Interface Package Outline Dimensions (MSOP-8) MSOP-8 Unit (mm) c L E E1 θ A2 A b e D A1 Symbol A A1 A2 b c D E E1 e L θ Dimensions in Millimeters Min. Max. 0.820 1.100 0.020 0.150 0.750 0.950 0.250 0.380 0.090 0.250 2.900 3.100 2.900 3.100 4.700 5.100 0.650(BSC) 0.400 0.800 0° 8° Apr. 2020 Rev. 2.3 Dimensions in Inches Min. Max. 0.032 0.043 0.001 0.006 0.030 0.037 0.010 0.015 0.004 0.010 0.114 0.122 0.114 0.122 0.185 0.201 0.026(BSC) 0.016 0.031 0° 8° SENSYLINK Microelectronics Co., LTD 25 CT75 SENSYLINK ±0.5oC Digital Temperature Sensor with Digital Interface Package Outline Dimensions (DFN3x3-8) DFN3x3-8 D Unit (mm) e N8 K N5 L E E1 D1 N4 b N1 Bottom View A1 A A3 Top View 0.08 Side View Symbol A A1 A3 D E D1 E1 k b e L Dimensions in Millimeters Min. Max. 0.700 0.800 0.000 0.050 0.203REF. 2.900 3.100 2.900 3.100 2.200 2.600 1.400 1.800 0.250MIN. 0.250 0.350 0.650TYP. 0.200 0.400 Apr. 2020 Rev. 2.3 Dimensions in Inches Min. Max. 0.028 0.031 0.000 0.002 0.008REF 0.114 0.122 0.114 0.122 0.087 0.102 0.055 0.071 0.010REF 0.010 0.014 0.026TYP 0.008 0.016 SENSYLINK Microelectronics Co., LTD 26 CT75 SENSYLINK ±0.5oC Digital Temperature Sensor with Digital Interface Revision History Version Date Change Content Ver1.0 2017/05 Initial Ver1.1 2017/10 update characteristics plots Ver1.2 2018/01 Add DFN package Ver1.3 2018/07 Update register description Ver1.4 2018/11 Update Sensylink Logo Ver1.5 2018/12 Update ordering information Ver1.6 2019/01 Update shutdown current Ver1.7 2019/02 Update timeout description Ver1.8 2019/03 Update voltage range Ver1.9 2019/06 Update Slave Address Ver2.0 2019/09 Update Time Out Ver2.1 2019/10 Update Hold Time Ver2.2 2019/12 Update Current Ver2.3 2020/04 Update Packing Outline Dimensions Apr. 2020 Rev. 2.3 SENSYLINK Microelectronics Co., LTD 27 CT75 SENSYLINK ±0.5oC Digital Temperature Sensor with Digital Interface SENSYLINK SENSYLINK Microelectronics Co., Ltd www.sensylink.com IMPORTANT NOTICE SENSYLINK Microelectronics Co., Ltd reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described here in or to discontinue any product or service. Customers should obtain the latest relevant information before placing orders and should verify the latest and complete information. SENSYLINK Microelectronics does not assume any responsibility for use of any product, nor does SENSYLINK Microelectronics any liability arising out of the application or use of this document or any product or circuit described herein. SENSYLINK Microelectronics assumes no liability for applications assistance or the design of Customers’ products. Customers are responsible for their products and applications using SENSYLINK Microelectronics components. SENSYLINK Microelectronics does not convey any license under its patent or trademark rights nor the other rights. SENSYLINK Microelectronics Co., Ltd©2020. Apr. 2020 Rev. 2.3 SENSYLINK Microelectronics Co., LTD 28
CT75MR 价格&库存

很抱歉,暂时无法提供与“CT75MR”相匹配的价格&库存,您可以联系我们找货

免费人工找货