Nuvoton
Bus Termination Regulator
W83312SN
W83312SN
-Table of Content1.
GENERAL DESCRIPTION .............................................................................................................. 1
2.
FEATURES ...................................................................................................................................... 1
3.
BLOCK DIAGRAM ........................................................................................................................... 2
4.
PIN CONFIGURATION AND TYPICAL APPLICATION CIRCUIT .................................................. 2
5.
PIN DESCRIPTION .......................................................................................................................... 3
6.
FUNCTIONAL DESCRIPTION ........................................................................................................ 4
7.
ELECTRICAL CHARACTERISTIC .................................................................................................. 7
8.
TYPICAL OPERATING WAVEFORMS ........................................................................................... 9
9.
PACKAGE DIMENSION ................................................................................................................ 22
10. ORDERING INFORMATION.......................................................................................................... 23
11. TOP MARKING SPECIFICATION ................................................................................................. 23
12. REVISION HISTORY ..................................................................................................................... 24
-I-
Publication Date: Mar., 2010
Revision A5
W83312SN
1. GENERAL DESCRIPTION
The W83312SN is a linear regulator which provides a power achieves peak 3.0Amp bidirectional sinking and sourcing capability for a high speed bus terminator application. The
chip simply implements a stable power supply which tracks half of input power
dynamically for bus terminator with a single chip. The W83312SN is promoted with small
footprint 8-SOP 150mil power package. With W83312SN design, a high integration, high
performance, and cost-effective solution are promoted.
2. FEATURES
2.1.
2.2.
2.3.
General
z
Memory Termination Regulator for DDR1, DDR2, DDR3 and Low Power DDR3
z
Sink and Source 3A Peak Current
z
Integrated Power MOSFET
z
Adjustable V OUT by External Resistors
z
Low External Component Count
z
Low Output Voltage Offset
z
Current Limit Protection
z
Over Temperature Protection
z
-40°C to 85°C Ambient Operating Temperature Range
Package
z
SOP-8 150mil with Exposed Pad Package
z
Lead Free (ROHS Compliant) and Halogen Free
Applications
z
Desktop PCs, Notebooks, and Workstations
z
Graphics Card Memory Termination
z
Set Top Boxes, Digital TVs and Printers
z
Active Termination Buses
z
DDR1, DDR2 and DDR3 Memory Systems
-1-
Publication Date: Mar., 2010
Revision A5
W83312SN
3. BLOCK DIAGRAM
VIN
VCNTL
Current Limit
Protection
Control
VREF
VOUT
Logic
GND
Thermal
Shutdown
4. PIN CONFIGURATION AND TYPICAL APPLICATION CIRCUIT
VIN
1
8
NC
GND
2
7
NC
VREF
3
6
VCNTL
VOUT
4
5
NC
W83312SN
(Top View)
-2-
Publication Date: Mar., 2010
Revision A5
W83312SN
VDDQ=2.5V/1.8V/1.5V
VCNTL=3.3V/5V
C CNTL
C IN
R1
VIN
VCNTL
VREF
Enable
C SS
R2
VTT = VDDQ x R2 / (R1+R2)
VOUT
GND
C OUT
Typical Application Circuits
5. PIN DESCRIPTION
SYMBOL
VIN
PIN
1
I/O
FUNCTION
I
Main power input pin which supplies current to output pin.
For lower power dissipation consideration, using VDDQ
(Supply voltage for DRAM) as power source is
recommended.
Internal reference voltage source. Generally, VREF tracks
VDDQ/2 for DDR application.
VREF
3
I
Using voltage dividing resistors and capacitor as low pass
filter for noise immunity and output voltage soft start is
recommended.
If using an N-MOSFET as shutdown function, please make
sure the sinking current capability can pull down VREF under
0.2V.
VOUT
4
O
Voltage output pin which is regulated to track VREF voltage.
VCNTL
6
I
Power for internal control logic circuitry. A ceramic
decoupling capacitor with 1uF is required.
GND
2
NC
5, 7, 8
Ground. Connect to negative terminal of the output capacitor.
No connection.
-3-
Publication Date: Mar., 2010
Revision A5
W83312SN
6. FUNCTIONAL DESCRIPTION
6.1 VTT Sink/Source Regulator
The W83312SN is a sink/source tracking Double Data Rate (DDR) termination regulator
specifically designed for low input voltage, low cost and low external component count
systems where space is a key application parameter. The W83312SN integrates a high
performance, low dropout linear regulator that is capable of both sinking and sourcing current.
6.2 General Regulator
The W83312SN could also serves as a general linear regulator. The W83312SN accepts an
external reference voltage at VREF pin and provides output voltage regulated to this reference
voltage as shown in Fig.6-1, where
VOUT=VEXT x R2/ (R1+R2)
VIN
VCNTL=3.3V/5V
VEXT
C CNTL
R1
C IN
R2
C SS
VIN
VCNTL
VREF
VOUT = VEXT x R2 / (R1+R2)
VOUT
GND
C OUT
Fig. 6-1
The W83312SN supports wide VREF voltage input range, making it versatile and idea for
many types of low power LDO applications. The dropout voltage is the input voltage minus
output voltage that produces 2% decrease in output voltage, where
VIN MIN =V DROPOUT + VOUT
The output voltage range depends on VCNTL voltage and output loading which means higher
VCNTL voltage can support higher output voltage and higher output loading.
Fig.6-2 and Table 6-1 show that the relationships among VOUT, V DROPOUT and IOUT when
VCNTL=5V. For example, if VOUT=3.4V, the maximum output loading is 1.5A with 0.25V
dropout voltage and the minimum VIN is 3.65V. The Max column in the table means the
minimum dropout voltage needed in worst conditions. Choose suitable VIN voltage to obtain
better efficiency.
VCNTL=5V
Parameter
Dropout
Voltage
-4-
Typ.
Max
IOUT=1A, 0.6V≦ VOUT ≦3.4V
Conditions
0.15
0.3
IOUT=1.5A, 0.6V≦ VOUT ≦3.4V
0.25
0.5
IOUT=2A, 0.6V≦ VOUT ≦3.2V
0.35
0.7
IOUT=2.5A, 0,8V≦ VOUT ≦3V
0.5
1
Unit
V
Publication Date: Mar., 2010
Revision A5
W83312SN
VOUT vs. Dropout Voltage, VCNTL=5V
0.6
Dropout Voltage (V)
0.5
IOUT=1A
IOUT=2A
0.4
IOUT=1.5A
IOUT=2.5A
0.3
0.2
0.1
0
0.6 0.8
1
1.2 1.4 1.6 1.8
2
2.2 2.4 2.6 2.8
3
3.2 3.4
Table 6-1
VOUT (V)
Fig.show
6-2 that the relationships among VOUT, V DROPOUT and IOUT when
Fig.6-3 and Table 6-2
VCNTL=3.3V.
VOUT vs. Dropout Voltage, VCNTL=3.3V
0.6
Dropout Voltage (V)
0.5
IOUT=1A
IOUT=1.5A
IOUT=2A
IOUT=2.5A
VCNTL=3.3V
Parameter
Conditions
Typ.
Max
IOUT=1A, 0.6V≦ VOUT ≦1.8V
0.35
0.7
IOUT=1.5A, 0.6V≦ VOUT ≦1.6V
0.35
0.7
IOUT=2A, 0.6V≦ VOUT≦ 1.6V
0.6
1.2
IOUT=2.5A, 0.8V≦ VOUT≦ 1.4V
0.45
0.9
Unit
0.4
0.3
Dropout
Voltage
0.2
0.1
0
0.6
0.8
1
1.2
1.4
1.6
1.8
VOUT (V)
V
Table 6-2
Fig. 6-3
6.3 Shutdown Function
When the external reference voltage at VREF pin is under shutdown threshold, the internal
regulator will be turned off and VOUT is at High-Z state.
6.4 Over Current Protection
The W83312SN provides a current limit circuitry, which monitors the output current and
controls NMOS’s gate voltage to limit the output current at 3.5A, typically.
6.5 Over Temperature Protection
The W83312SN monitors its junction temperature. If the device junction temperature exceeds
its threshold value, typically 165°C, the VOUT is shut off. The shutdown is a non-latch
protection.
6.6 Thermal Design
Since the W83312SN is a linear regulator, the VOUT current flows in both source and sink
directions, thereby dissipating power from the device. When the device is sourcing current, the
-5-
Publication Date: Mar., 2010
Revision A5
W83312SN
voltage difference between VIN and VOUT times I OUT current becomes the power dissipation
as shown in below equation.
P DISS_SOURCE = (VIN-VOUT) x I OUT_SOURCE
In this case, if VIN is connected to an alternative power supply lower than the VDDQ voltage,
overall power loss can be reduced. For the sink phase, VOUT voltage is applied across the
internal LDO regulator and the power dissipation, P DISS_SINK can be calculated by below
equation.
P DISS_SINK = VOUT x I OUT_SINK
Because the device does not sink and source current at the same time and the I OUT current
may vary rapidly with time, the actual power dissipation should be the time average of the
above dissipations over the thermal relaxation duration of the system. Another source of
power consumption is the current used for the internal current control circuitry form VCNTL
supply and the VIN supply. This can be estimate as 10mW or less during normal operating
conditions. The power must be effectively dissipated from the package.
Maximum power dissipation allowed by the package is calculated by below equation.
P PKG = [ T J(MAX) – T A(MAX) ] / θ
JA
, where
z
T J(MAX) is +125°C
z
T A(MAX) is the maximum ambient temperature in the system
z
θ
JA
is the thermal resistance form junction to ambient
6.7 Input Capacitor
Depending on the trace impedance between the VIN bulk power supply to the device, a
transient increase of source current is supplied mostly by the charge from the VIN input
capacitor. Use a 100uF (or greater) capacitor to supply this transient charge. Provide more
input capacitance as more output capacitance is used at VOUT.
6.8 Output Capacitor
For stable operation, the total capacitance of the VOUT terminal must be greater than 100uF.
Attach two or more capacitors in parallel to minimize the effect of equivalent series resistance
(ESR) and equivalent series inductance (ESL).
6.9 Layout Consideration
Consider the following points before starting the W83312SN layout design. Fig. 6-4 shows the
suggestion of minimum land pattern. Fig. 6-5 shows the recommended PCB layout. Using
“dog bone” copper patterns on the top layer can increase efficiency of heat dissipating.
z
The input bypass capacitor for VIN should be placed as close as possible to the pin with
short and wide connections.
z
The output capacitor for VOUT should be placed close to the pin with short and wide
connection in order to avoid ESR and/or ESL trace inductance.
z
In order to effectively remove heat from the package, properly prepare the thermal land.
Apply solder directly to the package’s thermal pad. The wide traces of component and the
side copper connected to the thermal land pad help to dissipate heat. The thermal land
connected to the ground plane could also be used to help dissipation.
-6-
Publication Date: Mar., 2010
Revision A5
W83312SN
75
VCNTL
Ground
C CNTL
For heat
dissipatin
130
219
Ground
95
Unit: mil
(Not to scale)
C IN
C OUT
VIN
VOUT
24
50
Fig. 6-4
7.
7.1
Fig. 6-5
ELECTRICAL CHARACTERISTIC
Absolute Maximum Ratings (Note1)
RATING
UNIT
Input Voltage
ITEM
VIN
SYMBOL
-0.3 to 7
V
Control Logic Input Voltage
VCNTL
-0.3 to 7
V
Reference Voltage
VREF
-0.3 to 5
V
±2
kV
Machine Mode
±200
V
Latch-Up
±100
mA
-65 to 150
°C
Human Body Mode
Electrostatic discharge protection
(Note2)
Storage Temperature Range
7.2
Thermal Information
ITEM
Power Dissipation, P D @ T A =25°C
RATING
UNIT
Internal Limited
W
75
°C/W
Package Thermal Resistance, ESOP8, θ JA
7.3
Recommended Operating Conditions
ITEM
SYMBOL
MIN
MAX
1.2
5.5
3
5.5
0.6
3.3
Sourcing
0
2.5
Sinking
0
2.5
Sourcing
0
3.0
Sinking
0
3.0
VIN
Input Voltage
VCNTL
VREF
Continuous Output Current
Peak Output Current
-7-
UNIT
V
V
A
A
Publication Date: Mar., 2010
Revision A5
W83312SN
Operating Temperature Range
Junction Temperature Range
(Note3)
-40
85
°C
-40
125
°C
Electrical Characteristics
7.4
Typicals and limits appearing in normal type apply for Tj = 25°C. Limits appearing in Boldface type apply
over the entire junction temperature range for operation, -40 ° C to 85 ° C (Note4). VCNTL= 3.3V/5V,
VIN=2.5V/1.8V/1.5V, VREF=1.25V/0.9V/0.75V, C OUT =100uF, all voltage outputs unloaded (unless
otherwise noted).
PARAMETER
SYMBOL
TEST CONDITION
MIN
TYP
MAX
I OUT =0A, VCNTL=3.3V
0.5
0.7
I OUT =0A, VCNTL=5V
0.7
1
I OUT =0A, VCNTL=3.3V
0.3
0.5
I OUT =0A, VCNTL=5V
0.3
0.5
VREF < 0.2V, VCNTL=3.3V
60
90
VREF < 0.2V, VCNTL=5V
60
90
UNITS
Input
VCNTL Operating Current
VIN Operating Current
VCNTL Quiescent Current in
Shutdown Mode
VIN Quiescent Current in
Shutdown Mode
VREF Leakage Current
I CNTL
I VIN
I SD_CNTL
mA
mA
uA
I SD_VIN
VREF < 0.2V
-1
0
1
uA
I IH
VREF=3.3V
-1
0
1
I IL
VREF=0V
-1
0
1
I OUT =0A
-5
5
I OUT =0 → +2.5A (Note5)
-20
20
I OUT =0 → -2.5A (Note5)
-20
20
In any VIN
±3
±3.5
±4.5
A
150
165
175
°C
uA
Output (DDR1 / DDR2 / DDR3)
Output Offset Voltage (VREFVOUT)
V OS
Load Regulation (VREF-VOUT)
∆V L
mV
mV
Protection
Current Limit
Thermal Shutdown Temperature
Thermal Shutdown Hysteresis
I LIM
T SD
3.3V < VCNTL < 5V
∆T SD
3.3V < VCNTL < 5V
(Note6)
°C
30
VREF Shutdown Mode
Shutdown Threshold
V IH
Enable
V IL
Disable
0.6
V
0.2
Note1. Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the
device. These are stress ratings only and functional operation of the device at these or any other
conditions beyond those indicated under recommended operating conditions is not implied. Exposure to
absolute maximum rated conditions for extended periods may affect device reliability.
Note2. Devices are ESD sensitive. Handling precaution recommended.
Note3. At elevated temperatures, devices must be de-rated based on thermal resistance. The device in the
ESOP-8 package must be de-rated at θ JA =75˚C/W junction to ambient with minimum PCB footprint.
-8-
Publication Date: Mar., 2010
Revision A5
W83312SN
Note4. Limits are 100% production tested at 25˚C. Limits over operating temperature range are guaranteed
through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate
average outgoing quality level.
Note5. VOUT load regulation is tested by using a 10ms period and 50% duty cycle current pulse.
Note6. The maximum allowable power dissipation is a function of the maximum junction temperature, T J(MAX) ,
the junction to ambient thermal resistance, θ JA , and the ambient temperature, T A . exceeding the
maximum allowable power dissipation will cause excessive die temperature and the regulator will go into
thermal shutdown. Ensured by design, no production tested.
8. TYPICAL OPERATING WAVEFORMS
VIN=2.5V, VCNTL=3.3V, VOUT=1.25V @ 3A Sourcing
VIN=2.5V, VCNTL=5V, VOUT=1.25V @ 3A Sourcing
VIN=2.5V, VCNTL=3.3V, VOUT=1.25V @ 2.5A Sourcing
VIN=2.5V, VCNTL=5V, VOUT=1.25V @ 2.5A Sourcing
-9-
Publication Date: Mar., 2010
Revision A5
W83312SN
VIN=1.8V, VCNTL=3.3V, VOUT=0.9V @ 3A Sourcing
VIN=1.8V, VCNTL=3.3V, VOUT=0.9V @ 2.5A Sourcing
VIN=1.8V, VCNTL=5V, VOUT=0.9V @ 3A Sourcing
VIN=1.8V, VCNTL=5V, VOUT=0.9V @ 2.5A Sourcing
VIN=1.5V, VCNTL=3.3V, VOUT=0.75V @ 3A Sourcing
VIN=1.5V, VCNTL=3.3V, VOUT=0.75V @ 2.5A Sourcing
-10-
Publication Date: Mar., 2010
Revision A5
W83312SN
VIN=1.5V, VCNTL=5V, VOUT=0.75V @ 3A Sourcing
VIN=1.2V, VCNTL=3.3V, VOUT=0.6V @ 3A Sourcing
VIN=1.5V, VCNTL=5V, VOUT=0.75V @ 2.5A Sourcing
VIN=1.2V, VCNTL=3.3V, VOUT=0.6V @ 2.5A Sourcing
-11-
Publication Date: Mar., 2010
Revision A5
W83312SN
VIN=1.2V, VCNTL=5V, VOUT=0.6V @ 3A Sourcing
VIN=1.2V, VCNTL=5V, VOUT=0.6V @ 2.5A Sourcing
VIN=2.5V, VCNTL=3.3V, VOUT=1.25V @ 3A Sinking
VIN=2.5V, VCNTL=3.3V, VOUT=1.25V @ 2.5A Sinking
VIN=2.5V, VCNTL=5V, VOUT=1.25V @ 3A Sinking
VIN=2.5V, VCNTL=5V, VOUT=1.25V @ 2.5A Sinking
-12-
Publication Date: Mar., 2010
Revision A5
W83312SN
VIN=1.8V, VCNT3O.9V @ 3A Sinking
VIN=1.8V, VCNTL=5V, VOUT=0.9V @ 3A Sinking
VIN=1.5V, VCNTL=3.3V, VOUT=0.75V @ 3A Sinking
VIN=1.8V, VCNTL=3.3V, VOUT=0.9V @ 2.5A Sinking
VIN=1.8V, VCNTL=5V, VOUT=0.9V @ 2.5A Sinking
VIN=1.5V, VCNTL=3.3V, VOUT=0.75V @ 2.5A Sinking
-13-
Publication Date: Mar., 2010
Revision A5
W83312SN
VIN=1.5V, VCNTL=5V, VOUT=0.75V @ 3A Sinking
VIN=1.5V, VCNTL=5V, VOUT=0.75V @ 2.5A Sinking
VIN=1.2V, VCNTL=3.3V, VOUT=0.6V @ 3A Sinking
VIN=1.2V, VCNTL=3.3V, VOUT=0.6V @ 2.5A Sinking
VIN=1.2V, VCNTL=5V, VOUT=0.6V @ 3A Sinking
VIN=1.2V, VCNTL=5V, VOUT=0.6V @ 2.5A Sinking
-14-
Publication Date: Mar., 2010
Revision A5
W83312SN
VIN=2.5V, VCNTL=3.3V, VOUT=1.25V, VOUT short to GND
VIN=2.5V, VCNTL=5V, VOUT=1.25V, VOUT short to GND
VIN=2.5V, VCNTL=3.3V, VOUT=1.25V, VOUT short to VIN
VIN=2.5V, VCNTL=5V, VOUT=1.25V, VOUT short to VIN
-15-
Publication Date: Mar., 2010
Revision A5
W83312SN
VIN=1.8V, VCNTL=3.3V, VOUT=0.9V, VOUT short to GND
VIN=1.8V, VCNTL=5V, VOUT=0.9V, VOUT short to GND
VIN=1.8V, VCNTL=3.3V, VOUT=0.9V, VOUT short to VIN
VIN=1.8V, VCNTL=5V, VOUT=0.9V, VOUT short to VIN
VIN=1.5V, VCNTL=3.3V, VOUT=0.75V, VOUT short to GND
VIN=1.5V, VCNTL=5V, VOUT=0.75V, VOUT short to GND
-16-
Publication Date: Mar., 2010
Revision A5
W83312SN
VIN=1.5V, VCNTL=3.3V, VOUT=0.75V, VOUT short to VIN
VIN=1.5V, VCNTL=5V, VOUT=0.75V, VOUT short to VIN
VIN=1.2V, VCNTL=3.3V, VOUT=0.6V, VOUT short to GND
VIN=1.2V, VCNTL=5V, VOUT=0.6V, VOUT short to GND
VIN=1.2V, VCNTL=3.3V, VOUT=0.6V, VOUT short to VIN
VIN=1.2V, VCNTL=5V, VOUT=0.6V, VOUT short to VIN
-17-
Publication Date: Mar., 2010
Revision A5
W83312SN
VCNTL Current vs. Temperature
590
570
570
550
550
VCNTL Current (uA)
VCNTL Current (uA)
VCNTL Current vs. Temperature
590
530
510
490
470
450
DDR1 @ VCNTL=3.3V
DDR1 @ VCNTL=5V
430
-20
0
20
40
60
510
490
470
450
DDR2 @ VCNTL=3.3V
DDR2 @ VCNTL=5V
430
410
-40
530
80
100 120
410
-40
-20
0
Temperature (°C)
590
570
570
550
550
530
510
490
470
DDR3 @ VCNTL=3.3V
430
410
-20
0
20
40
60
60
80
100 120
530
510
490
470
450
430
DDR3 @ VCNTL=5V
-40
40
VCNTL Current vs. Temperature
VCNTL Current (uA)
VCNTL Current (uA)
VCNTL Current vs. Temperature
590
450
20
Temperature (°C)
80
100 120
Temperature (°C)
-18-
LP DDR @ VCNTL=3.3V
LP DDR @ VCNTL=5V
410
-40 -20
0
20 40 60 80
Temperature (°C)
100 120
Publication Date: Mar., 2010
Revision A5
W83312SN
VIN Current vs. Temperature
VIN Current vs. Temperature
220
320
DDR1 @ VCNTL=3.3V
DDR1 @ VCNTL=5V
280
260
240
220
DDR2 @ VCNTL=3.3V
DDR2 @ VCNTL=5V
210
VIN Current (uA)
VIN Current (uA)
300
200
200
190
180
170
160
180
-40
-20
0
20
40
60
80
150
100 120
-40
Temperature (°C)
VIN Current vs. Temperature
0
20 40 60 80
Temperature (°C)
100 120
VIN Current vs. Temperature
160
190
DDR3 @ VCNTL=3.3V
DDR3 @ VCNTL=5V
150
VIN Current (uA)
180
VIN Current (uA)
-20
170
160
150
140
130
120
140
130
-40
-20
0
20
40
60
80
LP DDR @ VCNTL=3.3V
LP DDR @ VCNTL=5V
110
100 120
-40
-20
0
Temperature (°C)
Turn On/Off Threshold vs. Temperature
20 40 60 80
Temperature (°C)
100 120
VCNTL Shutdown Current vs. Temperature
0.5
70
0.45
Voltage (V)
0.3
0.25
0.2
Turn On @ VCNTL=3.3V
Turn On @ VCNTL=5V
Turn Off @ VCNTL=3.3V
Turn Off @ VCNTL=5V
0.15
0.1
0.05
VCNTL Current (uA)
0.4
0.35
65
60
55
VCNTL=3.3V
50
VCNTL=5V
0
45
-40
-20
0
20 40 60 80
Temperature (°C)
100 120
-40
-19-
-20
0
20 40 60 80
Temperature (°C)
100 120
Publication Date: Mar., 2010
Revision A5
W83312SN
DDR1 Current Limit vs. Temperature
5
Source @ VCNTL=3.3V
Source @ VCNTL=5V
Sink @ VCNTL=3.3V
Sink @ VCNTL=5V
4
Source @ VCNTL=3.3V
Source @ VCNTL=5V
Sink @ VCNTL=3.3V
Sink @ VCNTL=5V
4.5
Current (A)
4.5
Current (A)
DDR2 Current Limit vs. Temperature
5
3.5
3
4
3.5
3
2.5
2.5
2
2
-40 -20
0
20
40
60
80
-40 -20
100 120
0
Temperature (°C)
5
5
Source @ VCNTL=3.3V
Source @ VCNTL=5V
Sink @ VCNTL=3.3V
Sink @ VCNTL=5V
4.5
Current (A)
Current (A)
4
40
60
80
100 120
LP DDR Current Limit vs. Temperature
DDR3 Current Limit vs. Temperature
4.5
20
Temperature (°C)
3.5
3
4
Source @ VCNTL=3.3V
Source @ VCNTL=5V
Sink @ VCNTL=3.3V
Sink @ VCNTL=5V
3.5
3
2.5
2.5
2
2
-40 -20
0
20
40
60
80
-40 -20
100 120
0
20
40
60
80
100 120
Temperature (°C)
Temperature (°C)
-20-
Publication Date: Mar., 2010
Revision A5
W83312SN
Normalized VOFFSET vs. Temperature
5.00
4.00
3.00
VOFFSET (mV)
VOFFSET (mV)
Normalized VOFFSET vs. Temperature
5.00
4.00
3.00
2.00
1.00
0.00
-1.00
-2.00
-3.00
-4.00
-5.00
DDR1 @ VCNTL=3.3V
DDR1 @ VCNTL=5V
-40
-20
0
20
40
60
80
2.00
1.00
0.00
-1.00
-2.00
-3.00
DDR2 @ VCNTL=3.3V
DDR2 @ VCNTL=5V
-4.00
-5.00
100 120
-40
Temperature (°C)
20
40
60
80
100
120
Normalized VOFFSET vs. Temperature
5.00
4.00
VOFFSET (mV)
VOFFSET (mV)
0
Temperature (°C)
Normalized VOFFSET vs. Temperature
5.00
4.00
3.00
2.00
1.00
0.00
-1.00
-2.00
-3.00
-4.00
-5.00
-20
DDR3 @ VCNTL=3.3V
DDR3 @ VCNTL=5V
-40 -20
0
20
40
60
80
3.00
2.00
1.00
0.00
-1.00
-2.00
-3.00
LP DDR @ VCNTL=3.3V
LP DDR @ VCNTL=5V
-4.00
-5.00
100 120
-40 -20
Temperature (°C)
-21-
0
20 40 60 80 100 120
Temperature (°C)
Publication Date: Mar., 2010
Revision A5
W83312SN
9. PACKAGE DIMENSION
SOP8-EP (150mil)
-22-
Publication Date: Mar., 2010
Revision A5
W83312SN
¾
TAPING SPECIFICATION
Note: W83312SN L/F size is D1-3 & E1-3 dimension
SOP8-EP Package
10. ORDERING INFORMATION
Part Number
Supplied as
Production Flow
T Shape: 2,500 units/T&R
Commercial, -40°C to +85°C
Package Type
W83312SN
8PIN SOP8-EP (Green Package)
11. TOP MARKING SPECIFICATION
W83312SN
752ABBX
1st Line: Nuvoton logo
2nd Line: W83312SN (Part number)
3rd line: Tracking code
z
752: packages assembled in Year 2007, week 52
z
A: assembly house ID
z
BB: Internal use only
z
X: the IC version (A means A; B means B & C means C…etc.)
-23-
Publication Date: Mar., 2010
Revision A5
W83312SN
12. REVISION HISTORY
VERSION
DATE
PAGE
A1
11/28/2008
All
A2
12/29/2008
4, 5, 7
DESCRIPTION
New Create
Update the linear regulator chart &
VIN Recommended Range
1. Updated operating temperature range
A3
8/1/2009
All
2. Updated 6.2 General Regulator
3. Updated Typical Operating Waveforms
A4
1/29/2010
6
A5
3/31/2010
6,20
Correct Typo, add PCB Layout Suggestion
1. Add suggestion land pattern
2. Update the SOP8-EP package outline
Important Notice
Nuvoton products are not designed, intended, authorized or warranted for use as components
in systems or equipment intended for surgical implantation, atomic energy control
instruments, airplane or spaceship instruments, transportation instruments, traffic signal
instruments, combustion control instruments, or for other applications intended to support or
sustain life. Further more, Nuvoton products are not intended for applications wherein failure
of Nuvoton products could result or lead to a situation wherein personal injury, death or
severe property or environmental damage could occur.
Nuvoton customers using or selling these products for use in such applications do so at their
own risk and agree to fully indemnify Nuvoton for any damages resulting from such improper
use or sales.
-24-
Publication Date: Mar., 2010
Revision A5