Application Note: SYV379
High Efficiency, 60V Input, 3A
Asynchronous Step Down Regulator
General Description
Features
•
The SYV379 develops a high efficiency, current mode
adaptive constant off time controlled, asynchronous
step-down DC/DC converter capable of delivering 3A
output current. The SYV379 operates over a wide input
voltage range from 4.5V to 60V and integrates main
switch with very low RDS(ON) to minimize the
conduction loss. The switching frequency is adjustable
from 100kHz to 500kHz using an external resistor. And
the device features cycle-by-cycle peak current
limitation.
•
•
•
•
•
•
•
•
•
Ordering Information
Low RDS(ON) for Internal N-channel Power
FET(TOP):150mΩ
4.5-60V Input Voltage Range
3A Output Current Capability
Adjustable Switching Frequency Range:
100kHz to 500kHz
Internal Soft-start Limits the Inrush Current
Hic-cup Mode Output Short Circuit Protection
EN ON/OFF Control with Accurate Threshold
Cycle-by-cycle Peak Current Limit
0.8V±1% Reference Voltage Accuracy
Compact Package: SO8E
SYV379 □(□□)□
Temperature Code
Package Code
Optional Spec Code
Ordering Number
SYV379FCC
Package type
SO8E
Applications
•
•
•
•
Note
--
Non-isolated Telecommunication Buck
Regulator
Secondary High Voltage Post Regulator
Automotive Systems
Electric Bicycle
Typical Applications
Efficiency vs. Output Current
(IOUT=0~3A, fsw=200kHz,L=15µH/PCMB104T-150MS)
100
CBS
LX
IN
CIN
RPG
ON/
OFF
VOUT
EN
R1
CFF
COUT
Efficiency (%)
L1
BS
VIN
90
80
70
60
VIN=7V, VOUT=5V
VIN=12V, VOUT=5V
VIN=24V, VOUT=5V
VIN=48V, VOUT=5V
FB
PG
50
R2
FS
RFS
GND
40
0.001
0.01
0.1
1
3
Output Current (A)
Figure1. Schematic Diagram
AN_SYV379 Rev. 0.9
© 2020 Silergy Corp.
Figure2. Efficiency vs. Output Current
Silergy Corp. Confidential- Prepared for Customer Use Only
1
All Rights Reserved.
SYV379
Pinout (top view)
IN
1
EN
2
FS
3
GND
4
8
LX
7
BS
6
PG
5
FB
Exposed
Pad
(SO8E)
Top Mark: DHAxyz (Device code: DHA; x=year code, y=week code, z= lot number code)
Pin Name
Pin Number
Pin Description
IN
1
Input pin. Decouple this pin to the GND pin with at least a 1μF ceramic capacitor.
EN
2
Enable control. Pulled high to turn on. Do not leave it floating.
Frequency programming pin. Connect a resistor to ground to program a switching
FS
3
frequency between 100kHz to 500kHz. The switching frequency equals to:
fsw(kHz)=105/RFS(kΩ)
GND
4
Ground pin
Output feedback pin. Connect this pin to the center point of the output resistor
FB
5
divider (as shown in Figure 1) to program the output voltage:
VOUT=0.8×(1+R1/R2).
Power good Indicator. Open-drain output when the output voltage is within 90%
PG
6
to120% of the regulation point.
Boot-strap pin. Supply high side gate driver. Connect a 0.1μF ceramic capacitor
BS
7
between the BS pin and the LX pin.
LX
8
Inductor pin. Connect this pin to the switching node of the inductor.
Exposed
Exposed pad must be connected to the GND pin. Connect to system ground plane
/
Pad
on application board for optimal thermal performance.
Block Diagram
IN
Current Sense
Comp
Internal
Power
Input
UVLO
Current Limitation
VCC
BS
Power FET
VCC
LX
EN
Enable
Threshold
OFF Timer
FS
PWM Control
&
Protection
Logic
OTP
SCP
PG
Internal
SST
VREF
FB
GND
EA
Figure3. Block Diagram
AN_SYV379 Rev. 0.9
© 2020 Silergy Corp.
Silergy Corp. Confidential- Prepared for Customer Use Only
2
All Rights Reserved.
SYV379
Absolute Maximum Ratings (Note 1)
Supply Input Voltage ------------------------------------------------------------------------------------------------ -0.3V to 66V
BS-LX Voltage ------------------------------------------------------------------------------------------------------- -0.3V to 6V
EN, FS, FB, PG, LX Voltage ------------------------------------------------------------------------------ -0.3V to VIN + 0.3V
Power Dissipation, PD @ TA = 25°C, SO8E -------------------------------------------------------------------------------2.38W
Package Thermal Resistance (Note 2)
θ JA ------------------------------------------------------------------------------------------------------------------ 42°C/W
θ JC ------------------------------------------------------------------------------------------------------------------- 4°C/W
Junction Temperature Range ------------------------------------------------------------------------------------ -40°C to 150°C
Lead Temperature (Soldering, 10 sec.) ---------------------------------------------------------------------------------- 260°C
Storage Temperature Range ------------------------------------------------------------------------------------- -65°C to 150°C
Dynamic LX voltage in 10 ns duration ------------------------------------------------------------------ VIN + 3V to GND-5V
Recommended Operating Conditions (Note 3)
Supply Input Voltage ------------------------------------------------------------------------------------------------- 4.5V to 60V
Junction Temperature Range ------------------------------------------------------------------------------------ -40°C to 125°C
Ambient Temperature Range -------------------------------------------------------------------------------------- -40°C to 85°C
AN_SYV379 Rev. 0.9
© 2020 Silergy Corp.
Silergy Corp. Confidential- Prepared for Customer Use Only
3
All Rights Reserved.
SYV379
Electrical Characteristics
(VIN =24V, VOUT = 5V, L =6.8μH, COUT = 22μF, TA = 25°C, IOUT =1A unless otherwise specified)
Parameter
Input Voltage Range
Input UVLO Threshold
Input UVLO Hysteresis
Quiescent Current
Shutdown Current
Feedback Reference Voltage
FB Input Current
Top FET RON
EN Rising Threshold
EN Falling Threshold
EN Leakage Current
Min ON Time
Min OFF Time
Soft-start Time
Switching Frequency Program
Range
Switching Frequency Setting
Accuracy
Power Good Threshold
Power Good Delay
Power Good Output Low
PG High Leakage Current
Top FET Current Limit
Output Under Voltage
Protection Threshold
Output UVP Delay
Symbol
VIN
VUVLO
VHYS
IQ
ISHDN
VREF
IFB
RDS(ON)
VEN,R
VEN,F
IEN
tON,MIN
tOFF,MIN
tSS
Test Conditions
fSW,RNG
RFS=200k~1M
100
fSW
ROSC=200k
400
VFB falling, PG from high to low
VFB rising, PG from low to high
VFB rising, PG from high to low
VFB falling, PG from low to high
High to low
Low to high
IPG=2mA
87
91
115
111
VPG
tPG_F
tPG_R
VPG,L
VFB=VREF×105%
VEN=0V
VFB=3.3V
Min
4.5
3.9
0.19
70
2
792
-50
120
1
0.8
-1
Typ
Max
60
4.5
0.35
130
16
808
50
180
1.2
1
1
Unit
V
V
V
µA
µA
mV
nA
mΩ
V
V
µA
ns
ns
ms
500
kHz
500
600
kHz
90
95
120
115
20
200
94
98
123
118
%VREF
%VREF
%VREF
%VREF
µs
µs
V
µA
A
%VREF
4.2
0.27
100
6
800
150
1.1
0.9
150
250
2
ILMT,RNG
3.8
4.5
0.3
1
5
VUVP
45
50
55
tUVP,DLY
10
µs
UVP Hiccup ON Time
tUVP,ON
3
ms
UVP Hiccup OFF Time
Thermal Shutdown
Temperature
Thermal Shutdown Hysteresis
tUVP,OFF
20
ms
TSD
150
˚C
THYS
15
˚C
Note 1: Stresses beyond “Absolute Maximum Ratings” may cause permanent damage to the device. These are for
stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the
operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect
device reliability.
Note 2: θ JA is measured in the natural convection at TA = 25°C on a two-layer Silergy demo board.
Note 3: The device is not guaranteed to function outside its operating conditions.
AN_SYV379 Rev. 0.9
© 2020 Silergy Corp.
Silergy Corp. Confidential- Prepared for Customer Use Only
4
All Rights Reserved.
SYV379
Typical Performance Characteristics
Efficiency vs. Output Current
Load Regulation
(IOUT=0~3A, fsw=200kHz,L=15µH/PCMB104T-150MS)
100
5.035
Output Voltage (V)
Efficiency (%)
VIN=7V, VOUT=5V
VIN=12V, VOUT=5V
VIN=24V, VOUT=5V
VIN=48V, VOUT=5V
5.030
90
80
70
60
VIN=7V, VOUT=5V
VIN=12V, VOUT=5V
VIN=24V, VOUT=5V
VIN=48V, VOUT=5V
50
40
0.001
5.025
5.020
5.015
5.010
5.005
5.000
0.01
0.1
1
Output Current (A)
0.5
1.0
1.5
2.0
2.5
Output Ripple
(VIN=24V, VOUT=5V, IOUT=3A)
50mV/div
VLX
20V/div
IL
0.5A/div
∆VOUT
50mV/div
VLX
20V/div
IL
2A/div
Time (2µs/div)
Startup from VIN
Shutdown from VIN
(VIN=24V, VOUT=5V, IOUT=0A)
(VIN=24V, VOUT=5V, IOUT=0A)
20V/div
VIN
VOUT
5V/div
20V/div
5V/div
VLX
20V/div
VLX
20V/div
IL
1A/div
IL
1A/div
Time (2ms/div)
AN_SYV379 Rev. 0.9
© 2020 Silergy Corp.
3.0
Output Current (A)
Output Ripple
Time (20ms/div)
VOUT
0
(VIN=24V, VOUT=5V, IOUT=0A)
∆VOUT
VIN
3
Time (20ms/div)
Silergy Corp. Confidential- Prepared for Customer Use Only
5
All Rights Reserved.
SYV379
VIN
VOUT
Startup from VIN
Shutdown from VIN
(VIN=24V, VOUT=5V, IOUT=3A)
(VIN=24V, VOUT=5V, IOUT=3A)
20V/div
VIN
5V/div
VOUT
20V/div
5V/div
VLX
20V/div
VLX
20V/div
IL
2A/div
IL
2A/div
VEN
VOUT
Time (2ms/div)
Time (20ms/div)
Startup from Enable
Shutdown from Enable
(VIN=24V, VOUT=5V, IOUT=0A)
(VIN=24V, VOUT=5V, IOUT=0A)
5V/div
5V/div
VEN
5V/div
VOUT
5V/div
VLX
20V/div
VLX
20V/div
IL
1A/div
IL
1A/div
Time (2ms/div)
Time (1s/div)
Startup from Enable
Shutdown from Enable
(VIN=24V, VOUT=5V, IOUT=3A)
(VIN=24V, VOUT=5V, IOUT=3A)
VEN
5V/div
VEN
5V/div
VOUT
5V/div
VOUT
5V/div
VLX
20V/div
VLX
20V/div
IL
2A/div
IL
2A/div
Time (2ms/div)
AN_SYV379 Rev. 0.9
© 2020 Silergy Corp.
Time (2ms/div)
Silergy Corp. Confidential- Prepared for Customer Use Only
6
All Rights Reserved.
SYV379
Short Circuit Protection
Short Circuit Protection
(VIN=24V, VOUT=5V, IOUT=0A - Short)
(VIN=24V, VOUT=5V, IOUT=3A - Short)
VOUT
5V/div
VOUT
5V/div
IL
2A/div
IL
2A/div
Time (10ms/div)
Time (10ms/div)
Load transient
(VIN=24V, VOUT=5V, IOUT=0.2A–2A)
∆VOUT
IL
500mV/div
2A/div
Time (200µs/div)
AN_SYV379 Rev. 0.9
© 2020 Silergy Corp.
Silergy Corp. Confidential- Prepared for Customer Use Only
7
All Rights Reserved.
SYV379
Operation
The SYV379 is a high efficiency asynchronous step
down DC/DC regulator capable of delivering 3A
output current. The device adopts current mode
adaptive constant OFF time control. The SYV379
operates over a wide input voltage range from 4.5V
to 60V and integrates main switch with very low
RDS(ON) to minimize the conduction loss.
The switching frequency is adjustable from 100kHz
to 500kHz using an external resistor. And the device
features cycle-by-cycle peak current limitation.
Applications Information
Because of the high integration in the SYV379, the
application circuit based on this IC is rather simple.
Only the input capacitor CIN, the output capacitor
COUT, the output inductor L1 and the feedback
resistors (R1 and R2) need to be selected for the target
applications.
Feedback Resistor Dividers R1 and R2:
Choose R1 and R2 to program the proper output
voltage. To minimize the power consumption under
light load, it is desirable to choose large resistance
values for both R1 and R2. A value of between 10kΩ
and 1MΩ is highly recommended for both resistors.
If VOUT is 5V, R1=105kΩ is chosen, then using the
following equation, R2 can be calculated to be 20kΩ:
VFB
R2 =
R1 , VFB is typical 0.8V.
VOUT -VFB
Output Capacitor COUT:
The output capacitor is selected to handle the output
ripple noise requirements. Both steady state ripple
and transient requirements must be taken into
consideration when selecting this capacitor. For the
best performance, it is recommended to use an X5R
or better grade ceramic capacitor greater than 22μF
capacitance.
Output Inductor L:
There are several considerations in choosing this
inductor.
1) Choose the inductance to provide the desired
ripple current. It is suggested to choose the ripple
current to be about 40% of the maximum output
current. The inductance is calculated as:
L=
GND
fSW IOUT,MAX 40%
Where fsw is the switching frequency and the
IOUT,MAX is the maximum load current.
The SYV379 regulator is quite tolerant of different
ripple current amplitude. Consequently, the final
choice of inductance can be slightly off the
calculation value without significantly impacting the
performance.
2) The saturation current rating of the inductor must
be selected to be greater than the peak inductor
current under full load conditions.
ISAT, MIN IOUT, MAX +
VOUT
FB
VOUT (1 − VOUT /VIN,MAX )
VOUT(1-VOUT/VIN,MAX)
2 fSW L
R1
3)
R2
Input Capacitor CIN:
The ripple current through the input capacitor is
calculated as:
ICIN, RMS =IOUT D(1-D)
To minimize the potential noise problem, a typical
X5R or better grade ceramic capacitor should be
placed really close to the IN and the GND pins. Care
should be taken to minimize the loop area formed by
CIN, and the IN/GND pins. In this case, a 1μF low
ESR ceramic capacitor is recommended.
AN_SYV379 Rev. 0.9
© 2020 Silergy Corp.
The DCR of the inductor and the core loss at the
switching frequency must be low enough to
achieve the desired efficiency requirement. It is
desirable to choose an inductor with
DCR