Single Supply Quad Operational Amplifiers
The 324 series are low−cost, quad operational amplifiers with true
differential inputs. They have several distinct advantages
overstandard operational amplifier types in single supply applications .
Thequad amplifier can operate at supply voltages as low as 3.0 V
or ashigh as 32 V with quiescent currents about one−fifth of
thoseassociated with the MC1741 (on a per amplifier basis). The
commonmode input range includes the negative supply, thereby
eliminating thenecessity for external biasing components in many
applications. Theoutput voltage range also includes the negative
power supply voltage.
Features
•
•
•
•
•
•
•
•
•
Short Circuited Protected Outputs
True Differential Input Stage
Single Supply Operation: 3.0 V to 32 V
Low Input Bias Currents: 100 nA Maximum (324)
Four Amplifiers Per Package
Internally Compensated
Common Mode Range Extends to Negative Supply
Industry Standard Pinouts
ESD Clamps on the Inputs Increase Ruggedness without Affecting
Device Operation
PIN CONNECTIONS
Out 1
1
14
2
13
Inputs 1
3
VCC
4
*
)
5
6
Inputs 4
12
11
4
Inputs 2
Out 2
*
1
)
)
2
*
3
)
*
VEE, GND
10
Inputs 3
9
8
7
Out 4
Out 3
(Top View)
1/12
Rev.2.6-2018
224
324
2902
MAXIMUM RATINGS (TA = + 25°C, unless otherwise noted.)
Symbol
Value
VCC
VCC, VEE
32
±16
Input Differential Voltage Range (Note 1)
VIDR
±32
Vdc
Input Common Mode Voltage Range (Note 2)
VICR
−0.3 to 32
Vdc
Output Short Circuit Duration
tSC
Continuous
Junction Temperature
TJ
150
°C
RJA
118
156
190
°C/W
Storage Temperature Range
Tstg
−65 to +150
°C
ESD Protection at any Pin
Human Body Model
Machine Model
Vesd
Rating
Power Supply Voltages
Single Supply
Split Supplies
Thermal Resistance, Junction−to−Air (Note 3)
Unit
Vdc
Case 646
Case 751A
Case 948G
V
2000
200
Operating Ambient Temperature Range
°C
TA
224
324
−40 to +85
2902
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality
should not be assumed, damage may occur and reliability may be affected.
1. Split Power Supplies.
2. For supply voltages less than 32 V, the absolute maximum input voltage is equal to the supply voltage.
3. All RJA measurements made on evaluation board with 1 oz. copper traces of minimum pad size. All device outputs were active.
2/12
Rev.2.6-2018
224
324
2902
ELECTRICAL CHARACTERISTICS (VCC = 5.0 V, VEE = GND, TA = 25°C, unless otherwise noted.)
224
Characteristics
Input Offset Voltage
Symbol
Min
Typ
2902
324
Max
Min
Typ
Max
Min
Typ
Max
VIO
Unit
mV
VCC = 5.0 V to 30 V
VICR = 0 V to
VCC −1.7 V,
VO = 1.4 V, RS = 0
TA = 25°C
−
2.0
5.0
−
2.0
7.0
−
2.0
7.0
TA = Thigh (Note 5)
−
−
7.0
−
−
9.0
−
−
10
TA = Tlow (Note 5)
−
−
7.0
−
−
9.0
−
−
10
VIO/T
−
7.0
−
−
7.0
−
−
7.0
−
V/°C
Input Offset Current
TA = Thigh to Tlow
(Note 5)
IIO
−
−
3.0
−
30
100
−
−
5.0
−
50
150
−
−
5.0
−
50
200
nA
Average Temperature
Coefficient of Input
Offset Current
IIO/T
−
10
−
−
10
−
−
10
−
pA/°C
IIB
−
−
−90
−
−150
−300
−
−
−90
−
−250
−500
−
−
−90
−
−250
−500
nA
Average Temperature
Coefficient of Input
Offset Voltage
TA = Thigh to Tlow
(Notes 5 and 7)
TA = Thigh to Tlow
(Notes 5 and 7)
Input Bias Current
TA = Thigh to Tlow
(Note 5)
Input Common Mode
Voltage Range
(Note 6)
VICR
V
VCC = 30 V
TA = +25°C
0
−
28.3
0
−
28.3
0
−
28.3
TA = Thigh to Tlow
(Note 5)
0
−
28
0
−
28
0
−
28
−
−
VCC
−
−
VCC
−
−
VCC
Differential Input
Voltage Range
VIDR
Large Signal Open
Loop Voltage Gain
AVOL
V
V/mV
RL = 2.0 k,
VCC = 15 V,
for Large VO Swing
50
100
−
25
100
−
25
100
−
TA = Thigh to Tlow
(Note 5)
25
−
−
15
−
−
15
−
−
CS
−
−120
−
−
−120
−
−
−120
−
dB
Common Mode
Rejection,
RS ≤ 10 k
CMR
70
85
−
65
70
−
50
70
−
dB
Power Supply
Rejection
PSR
65
100
−
65
100
−
50
100
−
dB
Channel Separation
10 kHz ≤ f ≤ 20 kHz,
Input Referenced
4. The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of
the common mode voltage range is VCC −1.7 V, but either or both inputs can go to +32 V without damage, independent of the magnitude
of VCC.
5. Guaranteed by design.
3/12
Rev.2.6-2018
224
324
2902
ELECTRICAL CHARACTERISTICS (VCC = 5.0 V, VEE = GND, TA = 25°C, unless otherwise noted.)
224
Characteristics
Output Voltage −
High Limit
Symbol
Min
Typ
324
Max
Min
Typ
2902
Max
Min
Typ
Max
VOH
V
VCC = 5.0 V, RL =
2.0 k, TA = 25°C
3.3
3.5
−
3.3
3.5
−
3.3
3.5
−
VCC = 30 V
RL = 2.0 k
(TA = Thigh to Tlow)
(Note 8)
26
−
−
26
−
−
26
−
−
VCC = 30 V
RL = 10 k
(TA = Thigh to Tlow)
(Note 8)
27
28
−
27
28
−
27
28
−
−
5.0
20
−
5.0
20
−
5.0
100
Output Voltage −
Low Limit,
VCC = 5.0 V,
RL = 10 k,
TA = Thigh to Tlow
(Note 8)
VOL
Output Source Current
(VID = +1.0 V,
VCC = 15 V)
IO +
Unit
mV
mA
TA = 25°C
20
40
−
20
40
−
20
40
−
TA = Thigh to Tlow
(Note 8)
10
20
−
10
20
−
10
20
−
10
20
−
10
20
−
10
20
−
TA = Thigh to Tlow
(Note 8)
5.0
8.0
−
5.0
8.0
−
5.0
8.0
−
(VID = −1.0 V,
VO = 200 mV,
TA = 25°C)
12
50
−
12
50
−
−
−
−
A
−
40
60
−
40
60
−
40
60
mA
Output Sink Current
(VID = −1.0 V,
VCC = 15 V)
TA = 25°C
IO −
Output Short Circuit
to Ground
(Note 9)
ISC
Power Supply Current
(TA = Thigh to Tlow)
(Note 8)
ICC
mA
mA
VCC = 30 V
VO = 0 V, RL = ∞
−
−
3.0
−
−
3.0
−
−
3.0
VCC = 5.0 V,
VO = 0 V, RL = ∞
−
−
1.2
−
−
1.2
−
−
1.2
6. The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of
the common mode voltage range is VCC −1.7 V, but either or both inputs can go to +32 V without damage, independent of the magnitude
of VCC.
4/12
Rev.2.6-2018
224
324
2902
Output
Bias Circuitry
Common to Four
Amplifiers
VCC
Q15
Q16
Q22
Q14
Q13
40 k
Q19
5.0 pF
Q12
Q24
25
Q23
+
Q20
Q18
Inputs
Q11
Q9
-
Q21
Q17
Q6
Q2
Q25
Q7
Q5
Q1
Q8
Q3
Q4
2.4 k
Q10
Q26
2.0 k
VEE/GND
Figure 1. Representative Circuit Diagram
(One−Fourth of Circuit Shown)
5/12
Rev.2.6-2018
224
324
2902
CIRCUIT DESCRIPTION
3.0 V to VCC(max)
VCC = 15 Vdc
RL = 2.0 k
TA = 25°C
1.0 V/DIV
The 324 series is made using four internally
compensated, two−stage operational amplifiers. The first
stage of each consists of differential input devices Q20 and
Q18 with input buffer transistors Q21 and Q17 and the
differential to single ended converter Q3 and Q4. The first
stage performs not only the first stage gain function but also
performs the level shifting and transconductance reduction
functions. By reducing the transconductance, a smaller
compensation capacitor (only 5.0 pF) can be employed, thus
saving chip area. The transconductance reduction is
accomplished by splitting the collectors of Q20 and Q18.
Another feature of this input stage is that the input common
mode range can include the negative supply or ground, in
single supply operation, without saturating either the input
devices or the differential to single−ended converter. The
second stage consists of a standard current source load
amplifier stage.
5.0 s/DIV
Figure 2. Large Signal Voltage Follower Response
Each amplifier is biased from an internal−voltage
regulator which has a low temperature coefficient thus
giving each amplifier good temperature characteristics as
well as excellent power supply rejection.
VCC
VCC
1
1
1.5 V to VCC(max)
2
2
3
3
1.5 V to VEE(max)
4
4
VEE
Single Supply
Split Supplies
VEE/GND
Figure 3.
70
70
Phase Margin
60
50
50
40
40
30
30
Gain Margin
20
10
10
0
20
PHASE MARGIN (°)
GAIN MARGIN (dB)
60
1.0
1000
10
100
LOAD CAPACITANCE (pF)
0
10000
Figure 4. Gain and Phase Margin
6/12
Rev.2.6-2018
224
324
2902
20
120
A VOL, LARGE-SIGNAL
OPEN LOOP VOLTAGE GAIN (dB)
± V , INPUT VOLTAGE (V)
I
18
16
14
12
10
Negative
8.0
Positive
6.0
4.0
2.0
0
80
60
40
20
0
-20
0
2.0
4.0
6.0
8.0
10
12
14
16
18
20
1.0
10
100
1.0 k
10 k
1.0 M
100 k
± VCC/VEE, POWER SUPPLY VOLTAGES (V)
f, FREQUENCY (Hz)
Figure 5. Input Voltage Range
Figure 6. Open Loop Frequency
14
550
RL = 2.0 k
VCC = 15 V
VEE = GND
Gain = -100
RI = 1.0 k
RF = 100 k
12
10
8.0
VO , OUTPUT VOLTAGE (mV)
VOR , OUTPUT VOLTAGE RANGE (V pp )
VCC = 15 V
VEE = GND
TA = 25°C
100
6.
04.
02.
500
Input
450
Output
400
350
300
250
VCC = 30 V
VEE = GND
TA = 25°C
CL = 50 pF
200
0
1.0
10
100
0
1000
0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
f, FREQUENCY (kHz)
t, TIME (s)
Figure 7. Large−Signal Frequency Response
Figure 8. Small−Signal Voltage Follower
Pulse Response (Noninverting)
0
8.0
TA = 25°C
RL = R
42.
I IB , INPUT BIAS CURRENT (nA)
I CC , POWER SUPPLY CURRENT (mA)
2.
11.
81.
51.
20.
90.
60.
30
0
5.0
10
15
20
25
VCC, POWER SUPPLY VOLTAGE (V)
30
35
Figure 9. Power Supply Current versus
Power Supply Voltage
90
80
70
0
2.0
4.0
6.0 8.0
10
12
14 16
VCC, POWER SUPPLY VOLTAGE (V)
18
20
Figure 10. Input Bias Current versus
Power Supply Voltage
7/12
Rev.2.6-2018
224
324
2902
50 k
R1
5.0 k
VCC
VCC
R2
10 k
1/4
XL1403
2.5 V
1/4
R
Hysteresis
VOH
R1
-
a R1
1/4
eo
324
+
b R1
1/4
VO
Vref
+
Vin
324
-
1/4
1
CR
e2
C
VO
324
+
VinH =
R
Figure 14. Comparator with Hysteresis
R
-
100 k
C
C
R
1/4
-
324
+
100 k
1/4
1/4
324
+
Vref
Bandpass
Output
R2
R3
Vref
R1
-
R1 = QR
R1
R2 =
TBP
Vref =
1
V
2 CC
C1 = 10C
For:fo=1.0 kHz
For:Q= 10
For:TBP= 1
For:TN= 1
C1
1/4
Notch Output
324
+
Vref
1
fo =2 RC
R3 = TN R2
-
324
+
Vref
VinH
Vref
R1
(VOH - VOL)
R1 + R2
R
R2
VinL
R1
(VOH - Vref) + Vref
R1 + R2
H=
Figure 13. High Impedance Differential Amplifier
C1
VOL
R1
(VOL - Vref) + Vref
VinL =
R1 + R2
eo = C (1 + a + b) (e2 - e1)
Vin
For: fo = 1.0 kHz
R = 16 k
C = 0.01 F
Figure 12. Wien Bridge Oscillator
324
-
R1
C
R2
1
CR
1/4
R
R
R1
R2
Figure 11. Voltage Reference
+
1
fo = 2 RC
1
Vref = VCC
2
VO = 2.5 V 1 +
e1
VO
324
+
VO
324
+
VCC
-
Vref
-
Where:TBP=Center Frequency Gain
Where:TN=Passband Notch Gain
R = 160 k
C = 0.001 F
R1 = 1.6 MR
2 = 1.6 MR
3 = 1.6 M
Figure 15. Bi−Quad Filter
Rev.2.6-2018
224
Vref =
Vref
1
V
2 CC
Triangle Wave
Output
+
R2
VCC
+
1/4
75 k
324
-
R1
100 k
Vref
C
2902
300 k
R3
1/4
324
-
324
C
Square
Wave
Output
R1
R1 + RC
4 CRf R1
-
Vin
Vref
R2 R1
R2 + R1
Figure 16. Function Generator
VO
324
+
R2
if R3 =
CO
1/4
Rf
f =
C
R3
CO = 10 C
1
Vref = 2 VCC
Figure 17. Multiple Feedback Bandpass Filter
Given:fo=center frequency
A(fo)=gain at center frequency
Choose value fo, C
Then:
R3 =
Q
fo C
R1 =
R3
2 A(fo)
R2 =
R1 R3
4Q2 R1 - R3
For less than 10% error from operational amplifier,
Qo fo
BW
< 0.1
where fo and BW are expressed in Hz.
If source impedance varies, filter may be preceded with
voltage follower buffer to stabilize filter parameters.
9/12
Rev.2.6-2018
TSSOP14 封装尺寸图
10/12
Rev.2.6-2018
SOP14 封装尺寸图
11/12
Rev.2.6-2018
DIP14 封装尺寸图
Xinluda reserves the right to change the above information without prior notice.
12/12
Rev.2.6-2018