HT82C251A
CAN transceiver for 24 V systems
The HT82C251A is the interface between the CAN protocol controller and the physical
bus.. The device provides differential transmit ca-pability to the bus and differential receive
ca-pability to the CAN controller. The IC is in-tended for automotive electronic applications
Main features
• Fully compatible with the “ISO 11898-24 V”
standard
• Thermally protected
• Short-circuit proof
• Three mode operation
• High speed of data transfer (up to 1
Mbit/s)
• High immunity against electromagnetic
interference.
• Permissible value of electrostatic potential is
2000V.
DIP8 N
SUFFIX
HT82C251ANZ
8
1
SOP8 R
SUFFIX
HT82C251ARZ
MSOP8 M
SUFFIX
HT82C251ARMZ
QFN16(3*3) Q
SUFFIX
HT82C251ARQZ
TA = -40 to 150C for all packages.
Pin layout
TXD
01
08
RS
GND
02
07
CANH
VCC
03
06
CANL
RXD
04
05
Vref
Rev. 01
HT82C251A
VCC
01
TXD
Input signal
block
Protection
block
03
VT1
Driver
VD1
08
RS
Switch mode
block
07
RXD
CANH
04
Receiver
06
CANL
VD2
Vref
05
Reference
voltage
VT2
02
GND
VD1, VD2 – diodes;
VT1, VT2 - transistors
Fig. 3 – Block diagram
Rev. 01
HT82C251A
Table 2 – Absolute maximum ratings
Symbol
Unit
Target
Parameter
Supply voltage
Min
-0,3
Max
7,0
V
Vn
01, 04, 05, 08 pin voltage
-0,3
VCC + 0,3
V
Vtr
06, 07 pin transient voltage
-200
200
Tstg
Storage temperature
-60
Tj
Junction temperature
-
VCC
V
150
o
C
150
o
C
Table 3 – Recommended operating condition
Symbol
VCC
VCAN
Supply voltage
Input/output high and low level voltage of CAN - signal
Unit
Target
Parameter
Min
4,5
Max
5,5
V
-36
36
V
Rev. 01
HT82C251A
Table 4 – Electric parameters at -40 ≤Tamb ≤ +125 °C
Symbol
I3
VIH
VIL
IIH
IIL
V6,7
ILO
V7
V6
Parameter
Supply current
Measurement mode
Supply
Dominant;
V1 = 1,0 V, VCC < 5,1 V
Dominant;
V1 = 1,0 V, VCC < 5,25 V
Dominant;
V1 = 1,0 V, VCC < 5,5 V
Recessive;
V1 = 4,0 V, R8 = 47 kΩ
Standby mode 1)
Standby mode 2)
Transmitter
Output recessive
High-level input
voltage
Low-level input voltage Output dominant
High-level input
4,5 V< VCC < 5,5 V
current
V1 = 4,0 V
4,5 V< VCC < 5,5 V
Low-level input current
V1 = 1,0 V
4,5 V< VCC < 5,5 V
Recessive bus voltage
V1 = 4,0 V, no load
4, 5 V< VCC < 5,5 V
Off-state output leak-2, 0 V< (V6, V7) < 7,0 V
age
4, 5 V< VCC < 5,5 V
current
-5, 0 V< (V6, V7) < 36 V
CANH output voltage
4,75 V< VСС < 5,5 V
V1 = 1,0 V
V1 = 1,0 V
4,5 V< VСС < 4,75 V
4,5 V< VCC < 5,5 V
CANL output voltage
V1 = 1,0 V
Target
Min
Max
-
78
-
80
-
85
-
10
-
0,315
0,275
Unit
mA
0,7 VCC VCC+0,3
V
-0,3
-200
0,3 VCC
30
V
μA
-200
-100
μA
2,0
3,0
V
-2,0
2,0
mA
-10
10
3,0
4,5
2,75
4,5
0,5
2,0
V
V
Rev. 01
HT82C251A
Table 4 continued
Symbol
ΔV6,7
Parameter
Measurement mode
Target
Min
Max
1,5
3,0
Unit
V
4,5 V< VCC < 5,5 V
V1 = 1,0 V
1,5
V1 = 1,0 V, RL = 45 Ω
-0,5
0,05
V1 = 4,0 V, no load
CANH
short-circuit
mA
4,5 V< VCC < 5,5 V
-200
ISC7 current
V7 = -5,0 V
CANL signal shortmA
4,5 V< VCC < 5,5 V
200
ISC6 circuit current
V6 = 36 V
Receiver
(pins 06, 07 are externally controlled, V4 = 4,0 V, -2,0 V< (V6, V7) < 7,0 V, unless otherwise
specified)
3)
VDIFF(R)
V
-1,0
0,5
Differential input volt-1,0
0,4
4,5 V< VCC < 5,5 V
age
-7, 0 V< (V6, V7) < 12 V
(recessive mode)
difference between
output
voltage at pins 6 and 7
3)
VDIFF(D)
-
Differential input voltage
(dominant mode)
5,0
5,0
0,97
0,91
5,0
5,0
4,5 V< VCC < 5,5 V
I4 = -100 μA
4,5 V< VCC < 5,5 V
I4 = 1,0 mA
4,5 V< VCC < 5,5 V
I4 = 10 mA
4,5 V< VCC < 5,5 V
0,8 VCC
VCC
V
0
0,2 VCC
V
0
1,5
5,0
25
kΩ
4,5 V< VCC < 5,5 V
20
100
kΩ
4,5 V< VCC < 5,5 V
-7,0 V< (V6, V7) < 12 V
4)
4,5 V< VCC < 5,1 V
4)
VOH
VOL
RI
RDIFF
VREF
High-level output voltage (pin 4)
Low-level output voltage (pin 4)
CANL and CANH input
resistance l
Differential input
resistance
Reference voltage
V
0,9
1,0
Reference voltage
4,5 V< VCC < 5,5 V
V8 = 1,0 V, |I5| < 50 мкА
4,5 V< VCC < 5,5 V
V8 = 4,0 V, |I5| < 5,0 μA
0,45 VCC 0,55
VCC
0,4 VCC 0,6 VCC
V
Rev. 01
HT82C251A
Table 4 continued
Symbol
tbit
tonTXD
toffTXD
tonRXD
toffRXD
tWAKE
tdRXDL
Vstb
Islope
Vslope
Measurement mode
Target
Min
Max
Timing parameters (RL = 60 Ω, CL = 100 pF, unless otherwise specified)
1,0
One bit transmitting
4,5 V< VCC < 5,5 V
minimum time
R8 = 0 Ω
50
Input data transfer to
4,5 V< VCC < 5,5 V
active bus delay
R8 = 0 Ω
Input data transfer to
80
4,5 V< VCC < 5,5 V
inactive bus delay
R8 = 0 Ω
120
Input data transfer to
4,5 V< VCC < 5,5 V
active receiver delay
R8 = 0 Ω
550
4,5 V< VCC < 5,5 V
R8 = 47 kΩ
190
Input data transfer to
4,5 V< VCC < 5,5 V
inactive receiver delay
R8 = 0 Ω
400
4,5 V< VCC < 5,5 V
R8 = 47 kΩ
Wake-up time from
20
4, 5 V< VCC < 5,5 V
standby mode (via 08
pin)
3,0
Bus input data transfer
4,5 V< VCC < 5,5 V
delay to low on output
V8 = 4,0 V
of received data
Standby mode and low RFI mode
0,75 VCC
Input voltage for
4,5 V< VCC < 5,5 V
standby mode
Input current for low
- 200
- 10
4,5 V< VCC < 5,5 V
RFI mode
Input voltage for low
0,4 VCC 0,6 VCC
4,5 V< VCC < 5,5 V
RFI mode
Parameter
Unit
μs
ns
ns
ns
ns
μs
μs
V
μA
V
_______
1)
I1 = I4 = I5 = 0 mA, V8 = VCC
I1 = I4 = I5 = 0 mA, V8 = VCC, Tamb < 90 oC.
3)
For the receiver in all modes.
4)
Standby mode
2)
Rev. 01
HT82C251A
Table 5 Typical values of electric parameters
Symbol
Parameter
Vdiff(hys) Differential hysteresis
voltage
|SR| CANH, CANL slew rate
ISC7
High level CAN short circuit
current
Measurement mode
Typical value Unit
VCC from 4,5 to 5,5 V
150
mV
VCC from 4,5 to 5,5 V;
R8 = 47 kΩ
VCC from 4,5 to 5,5 V;
V7 = -36 V
7,0
V/μs
-100
mA
FUNCTIONAL DESCRIPTION
The HT82C251A provides differential transmit capability to the bus and differential receive
ca-pability to the CAN controller. Data transfer rate is up to 1 Mbit/s.
Output stage has good load capacity. It guarantees 2V peak-to-peak output voltage for 60Ω
load. HT82C251A has thermal and short circuit protection, high immunity to EMI and is fully
compatible with the “ISO 11898-24 V” standard.
The IC provides three operation modes: high-speed, reduced RFI mode, standby mode. The
design of HT82C251A permits possibility of adjustment of rise and fall slope of output
stages (transistors).
Pin RS is used to select one of three modes of operation: high-speed, reduced RFI or
standby. High level applied to this pin switches the IC to standby mode, low level – to highspeed mode. The high-speed mode is selected by connecting pin RS to ground.To reduce
RFI, connect pin RS by resistor Rext to ground. The rise and fall slope of output stages
(transistors) can be regulated with Rext resistance.
To select high-speed dominant mode a low level voltage (~ 1 V) is applied to TXD pin
and RS is connected to ground, CANH and CANL pins are connected by 60Ω resistor.
Guaranteed peak-to-peak output voltage (high and low level) will be 1,5 V for all operating
supply voltage range
To select recessive mode a high level voltage (~ 4 V) is applied to TXD pin and RS is connected to ground. In recessive mode bus output voltage V6,7 is about (~ 2.5 V).
High level (~ 4V) applied to pin RS switches IC to standby mode (with low power consumption); in this mode consumption current doesn`t exceed 270 μA. In this mode transmitter is turn off and consumption current of receiver and all circuit is significantly decreased.
Reference voltage value VREF per 05 output is half of supply voltage.
Rev. 01
HT82C251A
Table 6 - Truth table of the transceiver
Supply voltage range,
VCC, V
TXD
CANH
CANL
Bus state
RXD
pin
pin
pin
4,5 ÷ 5,5
L
H
L
Dominant
L
4,5 ÷ 5,5
H
Floating
Floating
Recessive
H*
4,5 ÷ 5,5
X
Floating, if
VRs > 0,75 VCC
Floating, if
VRs > 0,75 VCC
Floating
H*
0 ÷ 5,5
Floating
Floating
Floating
Floating
X
output
Notes
1 H – high level voltage; L – low level voltage; X – б don’t care (H or L).
2 Floating state – half of sum of output levels on pins 06 and 07 (VO(CANL) +
VO(CANH) / 2).
__________
* If another bus node is transmitting a dominant bit, then RXD shall be low
Table 7 – Transceiver mode table
RS pin state
Mode
VRs > 0,75 VCC
10 μA < -IRs < 200 μA
Standby
Slope control
(Reduced RFI)
High – speed
VRs < 0,3 VCC
RS pin resulting
voltage or current
- IRs < 10 μA
0,4 VCC < VRs < 0,6 VCC
- IRs < 500 μA
Rev. 01
HT82C251A
Table 8 - Truth table of the receiver
Input differential voltage VDIFF*, В
RXD pin
VDIFF > 0,9 V
L
0,5 V < VDIFF < 0,9 V
**
VDIFF < 0,5 V
H
Absent
H
_________
* Input difference voltage VDIFF, V is determined by formula
(1)
VDIFF = V7 – V6 ,
V7 – CANH output voltage, V;
V6 - CANL output voltage, V
** Not determined (hysteresis zone)
U
V
UCC
Pin 01 (TXD)
0V
0,9 V
Pins 06, 07
(CANL, CAN
HIGH)
0,5V
ΔU7,6
UO(D)
UO( R)
UCC
Pin 04 (RXD)
0,7UCC
0,3UCC
0V
0
toffTXD
tonTXD
tonRXD
t
μs
toffRXD
Fig. 4 –tonTXD, tonRXD, toffTXD, toffRXD parameters measurement timing diagram
Rev. 01
HT82C251A
U
V
High level
Pin 04
(RXD)
Low level
Hysteresis
0,5
Udiff
V
0,9
Fig. 5 –Vdiff(hys) parameter measurement timing diagram
U
V
Pin 08
(RS)
UCC
0
Pin 04
(RXD)
0
tWAKE
t
μs
Fig. 6 – tWAKE parameter measurement timing diagram
Rev. 01
HT82C251A
U
V
1,5 V
Pins 07,06
(CAN HIGH,
CANL)
0
Pin 04
(RXD)
0
t
μs
tdRXDL
tdRXDL≤15μs
Fig. 7 –tdRXDL parameter measurement timing diagram
Rev. 01
HT82C251A
P8×C592
MCU
CTX0
CTX0
CTX1
PX, Y
Rext
TXD
RXD
Vref
+5V
RS
VCC
HT82C251A
CAN
HIGH
R1
120Ω CAN bus line
GND
C1
100nF
CANL
R2
120Ω
Fig. 8 – Application diagramm
Rev. 01
HT82C251A
SOP8 package information
Dimensions
Ref.
Millimeters
Min.
Typ.
A
Inches
Max.
Min.
Typ.
1.75
0.069
A1
0.10
A2
1.25
b
0.28
0.48
0.011
0.019
c
0.17
0.23
0.007
0.010
D
4.80
4.90
5.00
0.189
0.193
0.197
E
5.80
6.00
6.20
0.228
0.236
0.244
E1
3.80
3.90
4.00
0.150
0.154
0.157
e
0.25
Max
0.004
0.010
0.049
1.27
0.050
h
0.25
0.50
0.010
0.020
L
0.40
1.27
0.016
0.050
L1
k
ccc
1.04
0°
0.040
8°
0.10
0°
8°
0.004
Rev. 01
HT82C251A
MiniSO8P package information
Table 5: MiniSO8 mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
A
Inches
Max.
Min.
Typ.
1.1
A1
0
A2
0.75
b
Max.
0.043
0.15
0
0.95
0.030
0.22
0.40
0.009
0.016
c
0.08
0.23
0.003
0.009
D
2.80
3.00
3.20
0.11
0.118
0.126
E
4.65
4.90
5.15
0.183
0.193
0.203
E1
2.80
3.00
3.10
0.11
0.118
0.122
0.80
0.016
e
L
0.85
0.65
0.40
0.60
0.006
0.033
0.026
0.024
L1
0.95
0.037
L2
0.25
0.010
k
ccc
0°
0.037
8°
0.10
0°
0.031
8°
0.004
Rev. 01
HT82C251A
QFN16(3*3) package information
Rev. 01
HT82C251A
DIP8 package information
D
A
E
H
8
5
E1
1
4
NOTE 8
b2
c
B
END VIEW
TOP VIEW
WITH LEADS CONSTRAINED
NOTE 5
A2
A
e/2
NOTE 3
L
SEATING
PLANE
A1
C
D1
M
e
8X
SIDE VIEW
b
0.010
eB
END VIEW
M
C A
M
B
M
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: INCHES.
3. DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACKAGE SEATED IN JEDEC SEATING PLANE GAUGE GS−3.
4. DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH
OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE
NOT TO EXCEED 0.10 INCH.
5. DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM
PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR
TO DATUM C.
6. DIMENSION E3 IS MEASURED AT THE LEAD TIPS WITH THE
LEADS UNCONSTRAINED.
7. DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE
LEADS, WHERE THE LEADS EXIT THE BODY.
8. PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE
CORNERS).
DIM
A
A1
A2
b
b2
C
D
D1
E
E1
e
eB
L
M
INCHES
MIN
MAX
−−−− 0.210
0.015
−−−−
0.115 0.195
0.014 0.022
0.060 TYP
0.008 0.014
0.355 0.400
0.005
−−−−
0.300 0.325
0.240 0.280
0.100 BSC
−−−− 0.430
0.115 0.150
−−−−
10 °
MILLIMETERS
MIN
MAX
−−−
5.33
0.38
−−−
2.92
4.95
0.35
0.56
1.52 TYP
0.20
0.36
9.02
10.16
0.13
−−−
7.62
8.26
6.10
7.11
2.54 BSC
−−−
10.92
2.92
3.81
−−−
10 °
NOTE 6
Rev. 01