Datasheet
APM32F405xG
APM32F407xExG
Arm® Cortex® -M4 core-based 32-bit MCU
Version: V1.2
1
Product Characteristics
Core
–
32-bit Arm® Cortex®-M4 core with
FPU
Up to 168MHz working frequency
–
–
–
–
Up to 140 I/O
All I/O can be mapped to external
interrupt vector
Up to 138 FT input I/O
Communication peripherals
–
Memory and interface
–
Flash: The capacity is up to 1MB
SRAM: System (192KB) + backup
(4KB)
EMMC: Support CF card, SRAM,
PSRAM, SDRAM, NOR and NAND
memories
–
–
–
–
–
4 USART, 2 UART, supporting
ISO7816, LIN and IrDA functions
3 I2C, supporting SMBus/PMBus
3 SPI (2 reusable I2S)
2 CAN
3 USB_OTG controllers
1 SDIO interface
Analog peripherals
Clock
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
HSECLK: 4~26MHz external
crystal/ceramic oscillator supported
LSECLK: 32.768KHz crystal/ceramic
oscillator supported
HSICLK: 16MHz RC oscillator
calibrated by factory
LSICLK: 28KHz RC oscillator
supported
PLL1: Phase locked loop; output
frequency is configured by four
parameters
PLL2: Phase locked loop specially
used to provide clock signals to I2S;
output frequency is configured by
three parameters
–
–
–
Reset and power
management
VDD range: 1.8~3.6V
VDDA range: 1.8~3.6V
VBAT range of backup domain power
supply: 1.65V~3.6V
Power-on/power-down/brown-out
reset (POR/PDR/BOR) supported
Programmable power supply voltage
detector (PVD) supported
Low-power mode
Sleep, stop and standby modes
supported
DMA
Two DMA; each DMA has 8 data
streams, 16 in total
–
–
–
–
–
3 12-bit ADCs
2 12-bit DACs
Timer
2 16-bit advanced timers TMR1/8
that can provide 7-channel PWM
output, support dead zone
generation and braking input
functions
2 32-bit general-purpose timers
TMR2/5, each with up to 4
independent channels to support
input capture, output comparison,
PWM, pulse count and other
functions
8 16-bit general-purpose timers
TMR/3/4/9/10/11/12/13/14, each with
up to 2 independent channels to
support input capture, output
comparison, PWM, pulse count and
other functions
2 16-bit basic timers TMR6/7
2 watchdog timers: one independent
watchdog IWDT and one window
watchdog WWDT
1 24-bit autodecrement SysTick
Timer
RTC
Support calendar function
Alarm and regular wake-up from
stop/standby mode
CRC computing unit
96-bit unique device ID
Debugging interface
JTAG
SWD
I/O
w w w. g e e h y. c o m
Page 1
Contents
1
Product Characteristics .................................................................................................................. 1
2
Product Information ........................................................................................................................ 6
3
Pin Information ................................................................................................................................ 7
3.1
Pin distribution ................................................................................................................................... 7
3.2
Pin function description ................................................................................................................... 10
3.3
GPIO Multiplexing Function Configuration ...................................................................................... 28
4
Function Description .................................................................................................................... 51
4.1
System architecture......................................................................................................................... 52
4.1.1 System block diagram ..................................................................................................................... 52
4.1.2 Address mapping ............................................................................................................................ 53
4.1.3 Startup configuration ....................................................................................................................... 54
4.2
Core ................................................................................................................................................. 54
4.3
Interrupt controller ........................................................................................................................... 54
4.3.1 Nested Vector Interrupt Controller (NVIC) ...................................................................................... 54
4.3.2 External Interrupt/Event Controller (EINT) ...................................................................................... 54
4.4
On-chip memory .............................................................................................................................. 54
4.4.1 Configurable external memory controller (EMMC) ......................................................................... 55
4.4.2 LCD parallel interface (LCD) ........................................................................................................... 55
4.5
Clock ................................................................................................................................................ 55
4.5.1 Clock tree ........................................................................................................................................ 55
4.5.2 Clock source .................................................................................................................................... 56
4.5.3 System clock ................................................................................................................................... 57
4.5.4 Bus clock ......................................................................................................................................... 57
4.5.5 Phase locked loop ........................................................................................................................... 57
4.6
Power and power management ...................................................................................................... 57
4.6.1 Power supply scheme ..................................................................................................................... 57
4.6.2 Voltage regulator ............................................................................................................................. 57
4.6.3 Power supply voltage monitor ......................................................................................................... 58
w w w. g e e h y. c o m
Page2
4.7
Low-power mode ............................................................................................................................. 58
4.8
DMA ................................................................................................................................................. 58
4.9
GPIO ................................................................................................................................................ 59
4.10
Communication peripherals ............................................................................................................ 59
4.10.1 USART/UART .................................................................................................................................. 59
4.10.2 I2C ................................................................................................................................................... 59
4.10.3 SPI/I2S ............................................................................................................................................ 60
4.10.4 CAN ................................................................................................................................................. 60
4.10.5 USB_OTG ....................................................................................................................................... 60
4.10.6 Ethernet ........................................................................................................................................... 60
4.10.7 SDIO ................................................................................................................................................ 60
4.11
Analog peripherals .......................................................................................................................... 61
4.11.1 ADC ................................................................................................................................................. 61
4.11.2 DAC ................................................................................................................................................. 61
4.12
Timer ................................................................................................................................................ 61
4.13
RTC ................................................................................................................................................. 63
4.13.1 Backup domain ................................................................................................................................ 63
4.14
RNG ................................................................................................................................................. 63
4.15
DCI................................................................................................................................................... 63
4.16
CRC ................................................................................................................................................. 64
5
Electrical Characteristics ............................................................................................................. 64
5.1
Test conditions of electrical characteristics ..................................................................................... 64
5.1.1 Maximum and minimum values....................................................................................................... 64
5.1.2 Typical value .................................................................................................................................... 64
5.1.3 Typical curve.................................................................................................................................... 64
5.1.4 Power supply scheme ..................................................................................................................... 65
5.1.5 Load capacitance ............................................................................................................................ 66
5.2
Test under general operating conditions ......................................................................................... 66
5.3
Absolute maximum ratings .............................................................................................................. 67
5.3.1 Maximum temperature characteristics ............................................................................................ 67
w w w. g e e h y. c o m
Page3
5.3.2 Maximum rated voltage characteristics........................................................................................... 67
5.3.3 Maximum rated current characteristics ........................................................................................... 67
5.3.4 Electro-static discharge (ESD) ........................................................................................................ 68
5.3.5 Static latch-up (LU).......................................................................................................................... 68
5.4
On-chip memory .............................................................................................................................. 68
5.4.1 Flash characteristics........................................................................................................................ 68
5.5
Clock ................................................................................................................................................ 69
5.5.1 Characteristics of external clock source ......................................................................................... 69
5.5.2 Characteristics of internal clock source .......................................................................................... 70
5.5.3 PLL Characteristics ......................................................................................................................... 71
5.6
Reset and power management ....................................................................................................... 71
5.6.1 Test of Embedded Reset and Power Control Module Characteristics............................................ 71
5.7
Power consumption ......................................................................................................................... 73
5.7.1 Power consumption test environment ............................................................................................. 73
5.7.2 Power consumption in run mode..................................................................................................... 74
5.7.3 Power consumption in sleep mode ................................................................................................. 77
5.7.4 Power consumption in stop mode ................................................................................................... 78
5.7.5 Power consumption in standby mode ............................................................................................. 78
5.7.6 Peripheral power consumption........................................................................................................ 79
5.7.7 Backup Domain Power Consumption ............................................................................................. 81
5.8
Wake-up time in low-power mode ................................................................................................... 81
5.9
I/O port characteristics .................................................................................................................... 82
5.10
NRST pin characteristics ................................................................................................................. 84
5.11
Communication peripherals ............................................................................................................ 85
5.11.1 I2C peripheral characteristics.......................................................................................................... 85
5.11.2 SPI peripheral characteristics ......................................................................................................... 86
5.12
Analog peripherals .......................................................................................................................... 88
5.12.1 ADC ................................................................................................................................................. 88
5.12.2 DAC ................................................................................................................................................. 89
6
Package Information ..................................................................................................................... 91
w w w. g e e h y. c o m
Page4
6.1
LQFP176 package information ....................................................................................................... 91
6.2
LQFP144 package information ....................................................................................................... 93
6.3
LQFP100 package information ....................................................................................................... 96
6.4
LQFP64 package information ......................................................................................................... 99
7
Packaging Information................................................................................................................ 102
7.1
Reel packaging .............................................................................................................................. 102
7.2
Tray packaging .............................................................................................................................. 103
8
Ordering Information .................................................................................................................. 105
9
Commonly Used Function Module Denomination................................................................... 106
10
Version History ............................................................................................................................ 107
w w w. g e e h y. c o m
Page5
2
Product Information
See the following table for APM32F405xG 407xExG product functions and peripheral configuration.
Table 1 Functions and Peripherals of APM32F405xG 407xExG Series Chips
Product
APM32F407
Model
RET6
Package
RGT6
VET6
LQFP64
VGT6
LQFP100
ZET6
ZGT6
32-bit
Working voltage
Flash(KB)
1024
512
1024
512
LQFP176
512
51
82
114
LQFP144
1024
140
4/2
SPI/I2S
3/2
I2C
3
Communication
OTG_FS
1
interface
OTG_HS
2
CAN
2
0
1024
1
0
51
82
1
114
0
SDIO
1
16-bit advanced
2
32-bit general
2
16-bit general
8
16-bit basic
2
System tick timer
1
Watchdog
2
Real-time clock
1
0
1
RNG
0
1
Unit
12 位 DAC
LQFP100
1
USART/UART
12-bit ADC
LQFP64
0
0
DCI
ZGT6
1
DMC
Timer
VGT6
192+4
0
Ethernet
RGT6
Cortex®-M4@168MHz
1024
System + backup SRAM(KB)
GPIOs
IGT6
1.8~3.6V
512
SMC
IET6
LQFP144
Arm®
Core and maximum working frequency
APM32F405
External channel
3
13
21
Internal channel
3
Unit
2
Channel
2
Operating temperature
w w w. g e e h y. c o m
13
21
Ambient temperature: -40°C to 85°C
Junction temperature: -40℃ to 105℃
Page6
3
Pin Information
3.1
Pin distribution
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
PI7
PI6
PI5
PI4
VDD
PDR_ON
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PG15
VDD
VSS
PG14
PG13
PG12
PG11
PG10
PG9
PD7
PD6
VDD
VSS
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
VDD
VSS
PI3
PI2
Figure 1 Distribution Diagram of APM32F407xExG Series LQFP176 Pins
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
LQFP176
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
PI1
PI0
PH15
PH14
PH13
VDD
VSS
VCAP_2
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
VDD
VSS
PG8
PG7
PG6
PG5
PG4
PG3
PG2
PD15
PD14
VDD
VSS
PD13
PD12
PD11
PD10
PD9
PD8
PB15
PB14
PB13
PB12
VDD
VSS
PH12
PH4
PH5
PA3
BYPASS_REG
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PF11
PF12
VSS
VDD
PF13
PF14
PF15
PG0
PG1
PE7
PE8
PE9
VSS
VDD
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
VCAP_1
VDD
PH6
PH7
PH8
PH9
PH10
PH11
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
PE2
PE3
PE4
PE5
PE6
VBAT
PI8
PC13
PC14
PC15
PI9
PI10
PI11
VSS
VDD
PF0
PF1
PF2
PF3
PF4
PF5
VSS
VDD
PF6
PF7
PF8
PF9
PF10
PH0
PH1
NRST
PC0
PC1
PC2
PC3
VDD
VSSA
VREF+
VDDA
PA0
PA1
PA2
PH2
PH3
w w w. g e e h y. c o m
Page7
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
VDD
PDR_ON
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PG15
VDD
VSS
PG14
PG13
PG12
PG11
PG10
PG9
PD7
PD6
VDD
VSS
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
Figure 2 Distribution Diagram of APM32F405xG 407xExG Series LQFP144 Pins
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
LQFP144
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
VDD
VSS
VCAP_2
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
VDD
VSS
PG8
PG7
PG6
PG5
PG4
PG3
PG2
PD15
PD14
VDD
VSS
PD13
PD12
PD11
PD10
PD9
PD8
PB15
PB14
PB13
PB12
PA3
VSS
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PF11
PF12
VSS
VDD
PF13
PF14
PF15
PG0
PG1
PE7
PE8
PE9
VSS
VDD
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
VCAP_1
VDD
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
PE2
PE3
PE4
PE5
PE6
VBAT
PC13
PC14
PC15
PF0
PF1
PF2
PF3
PF4
PF5
VSS
VDD
PF6
PF7
PF8
PF9
PF10
PH0
PH1
NRST
PC0
PC1
PC2
PC3
VDD
VSSA
VREF+
VDDA
PA0
PA1
PA2
w w w. g e e h y. c o m
Page8
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
VDD
VSS
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
Figure 3 Distribution Diagram of APM32F405xG 407xExG Series LQFP100 Pins
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
LQFP100
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
VDD
VSS
VCAP_2
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
PD15
PD14
PD13
PD12
PD11
PD10
PD9
PD8
PB15
PB14
PB13
PB12
PA3
VSS
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PE7
PE8
PE9
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
VCAP_1
VDD
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
PE2
PE3
PE4
PE5
PE6
VBAT
PC13
PC14
PC15
VSS
VDD
PH0
PH1
NRST
PC0
PC1
PC2
PC3
VDD
VSSA
VREF+
VDDA
PA0
PA1
PA2
w w w. g e e h y. c o m
Page9
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
VDD
VSS
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD2
PC12
PC11
PC10
PA15
PA14
Figure 4 Distribution Diagram of APM32F405xG 407xExG Series LQFP64 Pins
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
LQFP64
VDD
VCAP_2
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
PB15
PB14
PB13
PB12
PA3
VSS
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PB10
PB11
VCAP_1
VDD
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
VBAT
PC13
PC14
PC15
PH0
PH1
NRST
PC0
PC1
PC2
PC3
VSSA
VDDA
PA0-WKUP
PA1
PA2
3.2
Pin function description
Table 2 Legends/Abbreviations Used in Output Pin Table
Name
Pin name
Pin type
I/O structure
Notes
Pin
Default multiplexing
function
function
w w w. g e e h y. c o m
Abbreviation
Definition
Unless otherwise specified in parentheses below the pin name, the pin functions
during and after reset are the same as the actual pin name
P
Power pin
I
Only input pin
I/O
I/O pin
5T
FT I/O
STDA
3.3V standard I/O, directly connected to ADC
STD
3.3V standard I/O
B
Dedicated Boot0 pin
RST
Bidirectional reset pin with built-in pull-up resistor
Unless otherwise specified in the notes, all I/O is set as floating input during and
after reset
Function directly selected/enabled through peripheral register
Page10
Name
Abbreviation
Redefining function
Definition
Select this function through AFIO remapping register
Table 3 Description of APM32F405xG 407xExG by Pin Number
Name
(Function after
Type
Structure
reset)
Multiplexing
Additional
LQFP
LQFP
LQFP
LQFP
function
function
64
100
144
176
-
-
1
1
1
-
-
2
2
2
-
-
3
3
3
-
-
4
4
4
-
-
5
5
5
-
1
6
6
6
-
-
-
7
2
7
7
8
TRACECK,
PE2
I/O
5T
SMC_A23,
ETH_MII_TXD3,
EVENTOUT
TRACED0,
PE3
I/O
5T
SMC_A19,
EVENTOUT
TRACED1,
PE4
I/O
5T
SMC_A20,
DCI_D4,
EVENTOUT
TRACED2,
SMC_A21,
PE5
I/O
5T
TMR9_CH1,
DCI_D6,
EVENTOUT
TRACED3,
SMC_A22,
PE6
I/O
5T
TMR9_CH2,
DCI_D7,
EVENTOUT
VBAT
PI8
P
I/O
-
5T
EVENTOUT,
DMC_CAS
RTC_TAMP1,
RTC_TAMP2,
RTC_TS
RTC_OUT,
PC13
I/O
5T
EVENTOUT
RTC_TAMP1,
RTC_TS
PC14- OSC32_IN
(PC14)
PC15- OSC32_OUT
(PC15)
I/O
5T
EVENTOUT
OSC32_IN
3
8
8
9
I/O
5T
EVENTOUT
OSC32_OUT
4
9
9
10
-
-
-
-
11
-
-
-
-
12
CAN1_RX,
PI9
I/O
5T
EVENTOUT,
DMC_RAS
PI10
w w w. g e e h y. c o m
I/O
5T
ETH_MII_RX_ER,
P a g e 11
Name
(Function after
Type
Structure
reset)
Multiplexing
Additional
LQFP
LQFP
LQFP
LQFP
function
function
64
100
144
176
-
-
-
-
13
EVENTOUT,
DMC_CS
OTG_HS_ULPI_DIR,
PI11
I/O
5T
EVENTOUT,
DMC_BA
VSS
P
-
-
-
-
-
-
14
VDD
P
-
-
-
-
-
-
15
-
-
-
10
16
-
-
-
11
17
-
-
-
12
18
ADC3_IN9
-
-
13
19
ADC3_IN14
-
-
14
20
ADC3_IN15
-
-
15
21
SMC_A0,
PF0
I/O
5T
DMC_A10,
I2C2_SDA,
EVENTOUT
SMC_A1,
PF1
I/O
5T
DMC_A0,
I2C2_SCL,
EVENTOUT
SMC_A2,
PF2
I/O
5T
DMC_A1,
I2C2_SMBAI,
EVENTOUT
SMC_A3,
PF3
I/O
5T
DMC_A2,
EVENTOUT
SMC_A4,
PF4
I/O
5T
DMC_A3,
EVENTOUT
SMC_A5,
PF5
I/O
5T
VSS
P
-
-
-
-
10
16
22
VDD
P
-
-
-
-
11
17
23
ADC3_IN4
-
-
18
24
ADC3_IN5
-
-
19
25
ADC3_IN6
-
-
20
26
EVENTOUT
TMR10_CH1,
PF6
I/O
5T
SMC_NIORD,
DMC_A4,
EVENTOUT
TMR11_CH1,
PF7
I/O
5T
SMC_NREG,
DMC_A5,
EVENTOUT
PF8
w w w. g e e h y. c o m
I/O
5T
TMR13_CH1,
SMC_NIOWR,
Page12
Name
(Function after
Type
Structure
reset)
Multiplexing
Additional
LQFP
LQFP
LQFP
LQFP
function
function
64
100
144
176
ADC3_IN7
-
-
21
27
ADC3_IN8
-
-
22
28
DMC_A6,
EVENTOUT
TMR14_CH1,
PF9
I/O
5T
SMC_CD,
DMC_A7
EVENTOUT
SMC_INTR,
PF10
I/O
5T
DMC_A8
EVENTOUT
PH0-OSC_IN
I/O
5T
EVENTOUT
OSC_IN
5
12
23
29
I/O
5T
EVENTOUT
OSC_OUT
6
13
24
30
NRST
I/O
RST
-
-
7
14
25
31
PC0
I/O
5T
ADC123_IN10
8
15
26
32
PC1
I/O
5T
ADC123_IN11
9
16
27
33
ADC123_IN12
10
17
28
34
ADC123_IN13
11
18
29
35
(PH0)
PH1-OSC_OUT
(PH1)
OTG_HS_ULPI_STP,
EVENTOUT
ETH_MDC,
EVENTOUT
SPI2_MISO,
OTG_HS_ULPI_DIR,
PC2
I/O
5T
ETH_MII_TXD2,
I2S2ext_SD,
EVENTOUT
SPI2_MOSI,
I2S2_SD,
PC3
I/O
5T
OTG_HS_ULPI_NXT,
ETH_MII_TX_CLK,
EVENTOUT
VDD
P
-
-
-
-
19
30
36
VSSA
P
-
-
-
12
20
31
37
VREF+
P
-
-
-
-
21
32
38
VDDA
P
-
-
-
13
22
33
39
14
23
34
40
USART2_CTS,
UART4_TX,
PA0-WKUP
(PA0)
ETH_MII_CRS,
I/O
5T
TMR2_CH1_ETR,
TMR5_CH1,
WKUP,
ADC123_IN0
TMR8_ETR,
EVENTOUT
w w w. g e e h y. c o m
Page13
Name
(Function after
Type
Structure
reset)
Multiplexing
Additional
LQFP
LQFP
LQFP
LQFP
function
function
64
100
144
176
ADC123_IN1
15
24
35
41
ADC123_IN2
16
25
36
42
-
-
-
-
43
-
-
-
-
44
-
-
-
-
45
-
-
-
-
46
ADC123_IN3
17
26
37
47
USART2_RTS,
UART4_RX,
ETH_RMII_REF_CLK,
PA1
I/O
5T
ETH_MII_RX_CLK,
TMR5_CH2,
TMR2_CH2,
EVENTOUT
USART2_TX,
TMR5_CH3,
PA2
I/O
5T
TMR9_CH1,
TMR2_CH3,
ETH_MDIO,
EVENTOUT
PH2
I/O
5T
ETH_MII_CRS,
EVENTOUT
ETH_MII_COL,
PH3
I/O
5T
EVENTOUT,
DMC_A9
I2C2_SCL,
PH4
I/O
5T
OTG_HS_ULPI_NXT,
EVENTOUT
PH5
I/O
5T
I2C2_SDA,
EVENTOUT
USART2_RX,
TMR5_CH4,
TMR9_CH2,
PA3
I/O
5T
TMR2_CH4,
OTG_HS_ULPI_D0,
ETH_MII_COL,
EVENTOUT,
DMC_CKE
VSS
P
-
-
-
18
27
38
-
BYPASS_REG
I
5T
-
-
-
-
-
48
VDD
P
-
-
-
19
28
39
49
20
29
40
50
SPI1_NSS,
SPI3_NSS,
PA4
I/O
STDA
USART2_CK,
DAC_OUT1,
DCI_HSYNC,
ADC12_IN4
OTG_HS_SOF,
I2S3_WS,
w w w. g e e h y. c o m
Page14
Name
(Function after
Type
Structure
reset)
Multiplexing
Additional
LQFP
LQFP
LQFP
LQFP
function
function
64
100
144
176
21
30
41
51
ADC12_IN6
22
31
42
52
ADC12_IN7
23
32
43
53
ADC12_IN14
24
33
44
54
ADC12_IN15
25
34
45
55
ADC12_IN8
26
35
46
56
ADC12_IN9
27
36
47
57
-
28
37
48
58
EVENTOUT
SPI1_SCK,
OTG_HS_ULPI_CK,
PA5
I/O
STDA
TMR2_CH1_ETR,
TMR8_CH1N,
DAC_OUT2,
ADC12_IN5
EVENTOUT
SPI1_MISO,
TMR8_BKIN,
TMR13_CH1,
PA6
I/O
5T
DCI_PIXCLK,
TMR3_CH1,
TMR1_BKIN,
EVENTOUT
SPI1_MOSI,
TMR8_CH1N,
TMR14_CH1,
PA7
I/O
5T
TMR3_CH2,
ETH_MII_RX_DV,
TMR1_CH1N,
ETH_RMII_CRS_DV,
EVENTOUT
ETH_RMII_RX_D0,
PC4
I/O
5T
ETH_MII_RX_D0,
EVENTOUT
ETH_RMII_RX_D1,
PC5
I/O
5T
ETH_MII_RX_D1,
EVENTOUT
TMR3_CH3
TMR8_CH2N,
PB0
I/O
5T
OTG_HS_ULPI_D1,
ETH_MII_RXD2,
TMR1_CH2N,
EVENTOUT
TMR3_CH4
TMR8_CH3N,
PB1
I/O
5T
OTG_HS_ULPI_D2,
ETH_MII_RXD3,
TMR1_CH3N,
EVENTOUT
PB2-BOOT
w w w. g e e h y. c o m
I/O
5T
EVENTOUT
Page15
Name
(Function after
Type
Structure
reset)
Multiplexing
Additional
LQFP
LQFP
LQFP
LQFP
function
function
64
100
144
176
-
-
-
49
59
-
-
-
50
60
(PB2)
DCI_D12,
PF11
I/O
5T
EVENTOUT,
DMC_UDQM
SMC_A6,
PF12
I/O
5T
VSS
P
-
-
-
-
-
51
61
VDD
P
-
-
-
-
-
52
62
PF13
I/O
5T
-
-
-
53
63
PF14
I/O
5T
-
-
-
54
64
PF15
I/O
5T
-
-
-
55
65
PG0
I/O
5T
-
-
-
56
66
-
-
-
57
67
-
-
38
58
68
-
-
39
59
69
-
-
40
60
70
EVENTOUT
SMC_A7,
EVENTOUT
SMC_A8,
EVENTOUT
SMC_A9,
EVENTOUT
SMC_A10,
EVENTOUT
SMC_A11,
PG1
I/O
5T
DMC_CK,
EVENTOUT
SMC_D4,
PE7
I/O
5T
TMR1_ETR,
EVENTOUT
SMC_D5,
PE8
I/O
5T
TMR1_CH1N,
EVENTOUT
SMC_D6,
PE9
I/O
5T
TMR1_CH1,
EVENTOUT
VSS
P
-
-
-
-
-
61
71
VDD
P
-
-
-
-
-
62
72
-
-
41
63
73
-
-
42
64
74
-
-
43
65
75
SMC_D7,
PE10
I/O
5T
TMR1_CH2N,
EVENTOUT
SMC_D8,
PE11
I/O
5T
TMR1_CH2,
EVENTOUT
SMC_D9,
PE12
I/O
5T
TMR1_CH3N,
EVENTOUT
w w w. g e e h y. c o m
Page16
Name
(Function after
Type
Structure
reset)
Multiplexing
Additional
LQFP
LQFP
LQFP
LQFP
function
function
64
100
144
176
-
-
44
66
76
-
-
45
67
77
-
-
46
68
78
-
29
47
69
79
-
30
48
70
80
SMC_D10,
PE13
I/O
5T
TMR1_CH3,
EVENTOUT
SMC_D11,
PE14
I/O
5T
TMR1_CH4,
EVENTOUT
SMC_D12,
PE15
I/O
5T
TMR1_BKIN,
EVENTOUT
SPI2_SCK,
I2S2_CK,
I2C2_SCL,
PB10
I/O
5T
USART3_TX,
OTG_HS_ULPI_D3,
ETH_MII_RX_ER,
TMR2_CH3,
EVENTOUT
I2C2_SDA,
USART3_RX,
OTG_HS_ULPI_D4,
PB11
I/O
5T
ETH_RMII_TX_EN,
ETH_MII_TX_EN,
TMR2_CH4,
EVENTOUT
VCAP_1
P
-
-
-
31
49
71
81
VDD
P
-
-
-
32
50
72
82
-
-
-
-
83
-
-
-
-
84
-
-
-
-
85
-
-
-
-
86
I2C2_SMBAI,
PH6
I/O
5T
TMR12_CH1,
ETH_MII_RXD2,
EVENTOUT
I2C3_SCL,
PH7
I/O
5T
ETH_MII_RXD3,
EVENTOUT
I2C3_SDA,
PH8
I/O
5T
DCI_HSYNC,
EVENTOUT,
DMC_DQ8
I2C3_SMBAI,
PH9
I/O
5T
TMR12_CH2,
DCI_D0,
w w w. g e e h y. c o m
Page17
Name
(Function after
Type
Structure
reset)
Multiplexing
Additional
LQFP
LQFP
LQFP
LQFP
function
function
64
100
144
176
-
-
-
-
87
-
-
-
-
88
-
-
-
-
89
EVENTOUT
TMR5_CH1,
PH10
I/O
5T
DCI_D1,
EVENTOUT,
DMC_DQ9
TMR5_CH2,
PH11
I/O
5T
DCI_D2,
EVENTOUT
TMR5_CH3,
PH12
I/O
5T
DCI_D3,
EVENTOUT
VSS
P
-
-
-
-
-
-
90
VDD
P
-
-
-
-
-
-
91
-
33
51
73
92
OTG_HS_VBUS
34
52
74
93
-
35
53
75
94
SPI2_NSS,
I2S2_WS,
I2C2_SMBAI,
USART3_CK,
TMR1_BKIN,
PB12
I/O
5T
CAN2_RX,
OTG_HS_ULPI_D5,
ETH_RMII_TXD0,
ETH_MII_TXD0,
OTG_HS_ID,
EVENTOUT
SPI2_SCK,
I2S2_CK,
USART3_CTS,
TMR1_CH1N,
PB13
I/O
5T
CAN2_TX,
OTG_HS_ULPI_D6,
ETH_RMII_TXD1,
ETH_MII_TXD1,
EVENTOUT
SPI2_MISO,
TMR1_CH2N,
TMR12_CH1,
PB14
I/O
5T
OTG_HS_DM,
USART3_RTS,
TMR8_CH2N,
I2S2ext_SD,
w w w. g e e h y. c o m
Page18
Name
(Function after
Type
Structure
reset)
Multiplexing
Additional
LQFP
LQFP
LQFP
LQFP
function
function
64
100
144
176
RTC_REFIN
36
54
76
95
-
-
55
77
96
-
-
56
78
97
-
-
57
79
98
-
-
58
80
99
-
-
59
81
100
-
-
60
82
101
EVENTOUT
SPI2_MOSI,
I2S2_SD,
TMR1_CH3N,
PB15
I/O
5T
TMR8_CH3N
TMR12_CH2,
OTG_HS_DP,
EVENTOUT
SMC_D13,
PD8
I/O
5T
USART3_TX,
EVENTOUT
SMC_D14,
PD9
I/O
5T
USART3_RX,
EVENTOUT
SMC_D15,
PD10
I/O
5T
DMC_DQ10
USART3_CK,
EVENTOUT
SMC_CLE,
PD11
I/O
5T
SMC_A16,
USART3_CTS,
EVENTOUT
SMC_ALE,
SMC_A17,
PD12
I/O
5T
DMC_DQ11,
TMR4_CH1,
USART3_RTS,
EVENTOUT
SMC_A18,
PD13
I/O
5T
DMC_DQ12
TMR4_CH2,
EVENTOUT
VSS
P
-
-
-
-
-
83
102
VDD
P
-
-
-
-
-
84
103
-
-
61
85
104
-
-
62
86
105
SMC_D0,
PD14
I/O
5T
DMC_DQ13,
TMR4_CH3,
EVENTOUT
PD15
w w w. g e e h y. c o m
I/O
5T
SMC_D1,
Page19
Name
(Function after
Type
Structure
reset)
Multiplexing
Additional
LQFP
LQFP
LQFP
LQFP
function
function
64
100
144
176
-
-
-
87
106
-
-
-
88
107
-
-
-
89
108
-
-
-
90
109
-
-
-
91
110
-
-
-
92
111
-
-
-
93
112
DMC_DQ14,
TMR4_CH4,
EVENTOUT
SMC_A12,
PG2
I/O
5T
DMC_DQ15,
EVENTOUT
SMC_A13,
PG3
I/O
5T
DMC_DQ0,
EVENTOUT
SMC_A14,
PG4
I/O
5T
DMC_DQ1,
EVENTOUT
SMC_A15,
PG5
I/O
5T
DMC_DQ2,
EVENTOUT
SMC_INT2,
PG6
I/O
5T
DMC_DQ3
EVENTOUT
SMC_INT3,
PG7
I/O
5T
USART6_CK,
EVENTOUT
DMC_DQ4
PG8
I/O
5T
USART6_RTS,
ETH_PPS_OUT,
EVENTOUT
VSS
P
-
-
-
-
-
94
113
VDD
P
-
-
-
-
-
95
114
-
37
63
96
115
-
38
64
97
116
I2S2_MCK,
TMR8_CH1,
SDIO_D6,
PC6
I/O
5T
USART6_TX,
DCI_D0,
TMR3_CH1,
EVENTOUT
I2S3_MCK,
TMR8_CH2,
PC7
I/O
5T
SDIO_D7,
USART6_RX,
DCI_D1,
TMR3_CH2,
w w w. g e e h y. c o m
Page20
Name
(Function after
Type
Structure
reset)
Multiplexing
Additional
LQFP
LQFP
LQFP
LQFP
function
function
64
100
144
176
-
39
65
98
117
-
40
66
99
118
-
41
67
100
119
OTG_FS_VBUS
42
68
101
120
-
43
69
102
121
-
44
70
103
122
-
45
71
104
123
EVENTOUT
TMR8_CH3,
SDIO_D0,
PC8
I/O
5T
TMR3_CH3,
USART6_CK,
DCI_D2,
EVENTOUT
I2S_CKIN,
MCO2,
TMR8_CH4,
PC9
I/O
5T
SDIO_D1,
I2C3_SDA,
DCI_D3,
TMR3_CH4,
EVENTOUT
USART1_CK,
TMR1_CH1,
PA8
I/O
5T
MCO,
I2C3_SCL,
OTG_FS_SOF,
EVENTOUT
USART1_TX,
TMR1_CH2,
PA9
I/O
5T
I2C3_SMBAI,
DCI_D0,
EVENTOUT
USART1_RX,
TMR1_CH3,
PA10
I/O
5T
OTG_FS_ID,
DCI_D1,
EVENTOUT
USART1_CTS,
CAN1_RX,
PA11
I/O
5T
TMR1_CH4,
OTG_FS_DM,
EVENTOUT
USART1_RTS,
PA12
I/O
5T
CAN1_TX,
TMR1_ETR,
OTG_FS_DP,
w w w. g e e h y. c o m
Page21
Name
(Function after
Type
Structure
reset)
Multiplexing
Additional
LQFP
LQFP
LQFP
LQFP
function
function
64
100
144
176
PA13
46
72
105
124
EVENTOUT
PA13
JTMS-SWDIO,
I/O
5T
VCAP_2
P
-
-
-
47
73
106
125
VSS
P
-
-
-
-
74
107
126
VDD
P
-
-
-
48
75
108
127
-
-
-
-
128
-
-
-
-
129
-
-
-
-
130
-
-
-
-
131
-
-
-
-
132
-
-
-
-
133
-
-
-
-
134
(JTMS-SWDIO)
EVENTOUT
TMR8_CH1N,
PH13
I/O
5T
CAN1_TX,
EVENTOUT,
DMC_DQ5
TMR8_CH2N,
PH14
I/O
5T
DCI_D4,
EVENTOUT
TMR8_CH3N,
PH15
I/O
5T
DCI_D11,
EVENTOUT,
DMC_DQ6
TMR5_CH4,
SPI2_NSS,
PI0
I/O
5T
I2S2_WS,
DCI_D13,
EVENTOUT
SPI2_SCK,
PI1
I/O
5T
I2S2_CK,
DCI_D8,
EVENTOUT
TMR8_CH4,
SPI2_MISO,
PI2
I/O
5T
DCI_D9,
I2S2ext_SD,
EVENTOUT
TMR8_ETR,
SPI2_MOSI,
PI3
I/O
5T
I2S2_SD,
DCI_D10,
EVENTOUT,
DMC_DQ7
VSS
P
-
-
-
-
-
-
135
VDD
P
-
-
-
-
-
-
136
w w w. g e e h y. c o m
Page22
Name
(Function after
Type
Structure
I/O
5T
reset)
PA14
(JTCK/SWCLK)
Multiplexing
Additional
LQFP
LQFP
LQFP
LQFP
function
function
64
100
144
176
-
49
76
109
137
-
50
77
110
138
-
51
78
111
139
-
52
79
112
140
-
53
80
113
141
-
-
81
114
142
-
-
82
115
143
-
54
83
116
144
JTCK-SWCLK,
EVENTOUT
JTDI,
SPI3_NSS,
PA15
(JTDI)
I/O
5T
I2S3_WS,
TMR2_CH1_ETR,
SPI1_NSS,
EVENTOUT
SPI3_SCK,
I2S3_CK,
UART4_TX,
PC10
I/O
5T
SDIO_D2,
DCI_D8,
USART3_TX,
EVENTOUT
UART4_RX,
SPI3_MISO,
SDIO_D3,
PC11
I/O
5T
DCI_D4,
USART3_RX,
I2S3ext_SD,
EVENTOUT
UART5_TX,
SDIO_CK,
DCI_D9,
PC12
I/O
5T
SPI3_MOSI,
I2S3_SD,
USART3_CK,
EVENTOUT
SMC_D2,
PD0
I/O
5T
CAN1_RX,
EVENTOUT
SMC_D3,
PD1
I/O
5T
CAN1_TX,
EVENTOUT
TMR3_ETR,
UART5_RX,
PD2
I/O
5T
SDIO_CMD,
DCI_D11,
EVENTOUT
w w w. g e e h y. c o m
Page23
Name
(Function after
Type
Structure
reset)
Multiplexing
Additional
LQFP
LQFP
LQFP
LQFP
function
function
64
100
144
176
-
-
84
117
145
-
-
85
118
146
-
-
86
119
147
SMC_CLK,
PD3
I/O
5T
USART2_CTS,
EVENTOUT
SMC_NOE,
PD4
I/O
5T
USART2_RTS,
EVENTOUT
SMC_NWE,
PD5
I/O
5T
USART2_TX,
EVENTOUT
VSS
P
-
-
-
-
-
120
148
VDD
P
-
-
-
-
-
121
149
-
-
87
122
150
-
-
88
123
151
-
-
-
124
152
-
-
-
125
153
-
-
-
126
154
-
-
-
127
155
-
-
-
128
156
-
-
-
129
157
SMC_NWAIT,
PD6
I/O
5T
USART2_RX,
EVENTOUT
SMC_NE1,
PD7
I/O
5T
SMC_NCE2,
USART2_CK,
EVENTOUT
SMC_NE2,
PG9
I/O
5T
SMC_NCE3,
USART6_RX,
EVENTOUT
SMC_NCE4_1,
PG10
I/O
5T
SMC_NE3,
EVENTOUT
SMC_NCE4_2,
PG11
I/O
5T
ETH_MII_TX_EN,
ETH_RMII_TX_EN,
EVENTOUT
SMC_NE4,
PG12
I/O
5T
USART6_RTS,
EVENTOUT
SMC_A24,
USART6_CTS,
PG13
I/O
5T
ETH_MII_TXD0,
ETH_RMII_TXD0,
EVENTOUT
SMC_A25,
PG14
I/O
5T
USART6_TX,
ETH_MII_TXD1,
w w w. g e e h y. c o m
Page24
Name
(Function after
Type
Structure
reset)
Multiplexing
Additional
LQFP
LQFP
LQFP
LQFP
function
function
64
100
144
176
ETH_RMII_TXD1,
EVENTOUT
VSS
P
-
-
-
-
-
130
158
VDD
P
-
-
-
-
-
131
159
-
-
-
132
160
-
55
89
133
161
-
56
90
134
162
-
57
91
135
163
-
58
92
136
164
-
59
93
137
165
DMC_LDQM,
PG15
I/O
5T
USART6_CTS,
DCI_D13,
EVENTOUT
JTDO,
TRACESWO,
PB3
(JTDO/TRACESWO)
SPI3_SCK,
I/O
5T
I2S3_CK,
TMR2_CH2,
SPI1_SCK,
EVENTOUT
NJTRST,
SPI3_MISO,
PB4
(NJTRST)
I/O
5T
TMR3_CH1,
SPI1_MISO,
I2S3ext_SD,
EVENTOUT
I2C1_SMBAI,
CAN2_RX,
OTG_HS_ULPI_D7,
ETH_PPS_OUT,
PB5
I/O
-
TMR3_CH2,
SPI1_MOSI,
SPI3_MOSI,
DCI_D10,
I2S3_SD,
EVENTOUT
I2C1_SCL,
TMR4_CH1,
PB6
I/O
5T
CAN2_TX,
DCI_D5,
USART1_TX,
EVENTOUT
I2C1_SDA,
PB7
I/O
5T
SMC_NL,
DCI_VSYNC,
w w w. g e e h y. c o m
Page25
Name
(Function after
Type
Structure
reset)
Multiplexing
Additional
LQFP
LQFP
LQFP
LQFP
function
function
64
100
144
176
VPP
60
94
138
166
-
61
95
139
167
-
62
96
140
168
-
-
97
141
169
-
-
98
142
170
USART1_RX,
TMR4_CH2,
EVENTOUT
BOOT0
I
B
TMR4_CH3,
SDIO_D4,
TMR10_CH1,
PB8
I/O
5T
DCI_D6,
ETH_MII_TXD3,
I2C1_SCL,
CAN1_RX,
EVENTOUT
SPI2_NSS,
I2S2_WS,
TMR4_CH4,
TMR11_CH1,
PB9
I/O
5T
SDIO_D5,
DCI_D7,
I2C1_SDA,
CAN1_TX,
EVENTOUT
TMR4_ETR,
PE0
I/O
5T
SMC_NBL0,
DCI_D2,
EVENTOUT
SMC_NBL1,
PE1
I/O
5T
DCI_D3,
EVENTOUT
VSS
P
-
-
-
63
99
-
-
PDR_ON
I
5T
-
-
-
-
143
171
VDD
P
-
-
-
64
100
144
172
-
-
-
-
173
-
-
-
-
174
-
-
-
-
175
TMR8_BKIN,
PI4
I/O
5T
DCI_D5,
EVENTOUT
TMR8_CH1,
PI5
I/O
5T
DCI_VSYNC,
EVENTOUT
PI6
w w w. g e e h y. c o m
I/O
5T
TMR8_CH2,
DCI_D6,
Page26
Name
(Function after
Type
Structure
reset)
Multiplexing
Additional
LQFP
LQFP
LQFP
LQFP
function
function
64
100
144
176
-
-
-
-
176
EVENTOUT
TMR8_CH3,
PI7
I/O
5T
DCI_D7,
EVENTOUT,
DMC_WE
Note:
(1) PC13, PC14 and PC15 are powered through the power switch. Since the switch only sinks limited current (3mA), the
use of GPIO from PC13 to PC15 in output mode is limited:
① The speed shall not exceed 2MHz when the heavy load is 30pF;
② Not used for current source (e.g. driving LED).
w w w. g e e h y. c o m
Page27
GPIO Multiplexing Function Configuration
3.3
Table 4 GPIOA Multiplexing Function Configuration
AF0
Port
SYS
P
A
-
0
AF1
AF2
TMR1/
TMR
2
3/4/5
TMR2_
TMR
CH1_E
5_C
TR
H1
AF3
TMR8
/9/10/
11
TMR8
_ETR
AF4
I2C1/
2/3
-
AF5
AF6
AF7
AF8
AF9
AF10
SPI1/SPI2
SPI3/I2
USART1
UART4/
CAN1/2T
OTG_F
/I2S2/I2S2
Sext/I2
/2/3/I2S3
5/USAR
MR12/13
S/OTG_
ext
S3
ext
T6
/14
HS
-
-
USART2
UART4
_CTS
_TX
-
-
AF11
AF12
AF13
SMC/DMC/
ETH
SDIO/OTG
DCI
_CRS
F
AF1
1
5
4
_FS
ETH_MII
A
EVE
-
-
-
NTO
UT
ETH_MII
P
A
-
1
TMR2_
CH2
_RX_CL
TMR
5_C
-
-
-
-
H2
USART2
UART4
_RTS
_RX
-
-
K
ETH_RM
EVE
-
-
-
NTO
UT
II_REF_
CLK
Po
rt_
P
A
A
-
2
P
A
-
3
TMR2_
CH3
TMR2_
CH4
TMR
5_C
H3
TMR
5_C
H4
TMR9
_CH1
TMR9
_CH2
-
-
-
-
-
_TX
USART2
_RX
-
-
OTG_H
-
-
S_ULPI
_D0
ETH_MD
IO
ETH_MII
_COL
EVE
-
-
-
4
w w w. g e e h y. c o m
-
-
-
SPI1_NS
NSS
USART2
S
I2S3_
_CK
WS
-
-
-
-
-
-
NTO
UT
EVE
DMC_CKE
-
-
NTO
UT
SPI3_
P
A
-
USART2
OTG_HS_
SOF
DCI_
HSY
NC
EVE
-
NTO
UT
Pa g e 2 8
AF0
Port
SYS
P
A
-
5
P
A
-
6
AF1
AF2
TMR1/
TMR
2
3/4/5
AF3
TMR8
/9/10/
11
TMR2_
TMR8
CH1_E
_CH1
TR
N
TMR1_
BKIN
TMR
TMR8
3_C
_BKI
H1
N
AF4
I2C1/
2/3
-
-
AF5
AF6
AF7
AF8
AF9
AF10
SPI1/SPI2
SPI3/I2
USART1
UART4/
CAN1/2T
OTG_F
/I2S2/I2S2
Sext/I2
/2/3/I2S3
5/USAR
MR12/13
S/OTG_
ext
S3
ext
T6
/14
HS
SPI1_SC
K
SPI1_MIS
O
AF11
AF12
AF13
SMC/DMC/
ETH
SDIO/OTG
DCI
A
F
AF1
1
5
4
_FS
OTG_H
-
-
-
S_ULPI
EVE
-
-
-
-
_CK
-
-
-
TMR13_
CH1
UT
DCI_
-
NTO
-
-
PIXC
EVE
-
K
NTO
UT
ETH_MII
P
A
-
7
TMR1_
CH1N
TMR
TMR8
3_C
_CH1
H2
N
-
SPI1_MO
SI
-
-
-
TMR14_
CH1
_RX_DV
-
ETH_RM
EVE
-
-
-
II_CRS_
NTO
UT
DV
P
A
MCO1
8
P
A
-
9
TMR1_
CH1
TMR1_
CH2
I2C3
-
-
_SC
-
-
L
I2C3
-
-
_SM
-
-
BA
USART1
_CK
USART1
_TX
-
-
-
-
OTG_F
S_SOF
-
EVE
-
-
-
-
UT
-
-
DCI_
D0
EVE
-
1
-
TMR1_
CH3
-
-
-
-
-
USART1
_RX
-
-
OTG_F
S_ID
-
-
DCI_
D1
EVE
-
A
11
-
TMR1_
CH4
w w w. g e e h y. c o m
-
-
-
-
-
USART1
_CTS
-
CAN1_R
OTG_F
X
S_DM
NTO
UT
0
P
NTO
UT
P
A
NTO
EVE
-
-
-
-
NTO
UT
Pa g e 2 9
AF0
Port
SYS
AF1
AF2
TMR1/
TMR
2
3/4/5
AF3
TMR8
/9/10/
11
AF4
I2C1/
2/3
AF5
AF6
AF7
AF8
AF9
AF10
SPI1/SPI2
SPI3/I2
USART1
UART4/
CAN1/2T
OTG_F
/I2S2/I2S2
Sext/I2
/2/3/I2S3
5/USAR
MR12/13
S/OTG_
ext
S3
ext
T6
/14
HS
CAN1_T
OTG_F
X
S_DP
AF11
AF12
AF13
SMC/DMC/
ETH
SDIO/OTG
DCI
A
F
AF1
1
5
4
_FS
P
A
1
-
TMR1_
ETR
-
-
-
-
-
USART1
_RTS
-
EVE
-
-
-
-
UT
2
P
A
1
3
P
A
1
4
JTMS
_SWD
EVE
-
-
-
-
-
-
-
-
-
-
-
-
-
NTO
UT
JTCK
EVE
_SWC
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LK
A
CH1
JTDI
NTO
UT
TMR2_
5
-
IO
P
1
NTO
TMR2_
ETR
w w w. g e e h y. c o m
SPI3_
-
-
-
SPI1_NS
NSS
S
I2C3_
WS
EVE
-
-
-
-
-
-
-
-
NTO
UT
Pa g e 3 0
Table 5 GPIOB Multiplexing Function Configuration
AF0
Port
AF1
AF2
AF3
TMR8
TMR1
TMR
/2
3/4/5
TMR1
TMR
TMR8
_CH2
3_C
_CH2
0
N
H3
N
P
TMR1
TMR
TMR8
_CH3
3_C
_CH3
N
H4
N
SYS
P
B
B
-
-
1
/9/10/
11
AF4
I2C1/
2/3
-
AF5
AF6
AF7
AF8
AF9
AF10
SPI1/SPI2
SPI3/I2
USART1/
UART4/
CAN1/2T
OTG_F
/I2S2/I2S2
Sext/I2
2/3/I2S3e
5/USAR
MR12/13/
S/OTG_
ext
S3
xt
T6
14
HS
-
-
-
-
OTG_HS
-
-
-
-
-
_ULPI_D
2
AF11
SMC/DMC/
ETH
ETH_M
S_ULPI
II_RXD
_D1
2
_RXD3
SDIO/OTG
_FS
OTG_H
ETH_MII
AF12
AF
13
A
F
DC
1
I
4
EVE
-
-
-
EVE
-
-
-
-
EVE
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
P
JTDO/T
rt_
B
RACES
B
3
WO
SPI3_S
TMR2
_CH2
-
-
TMR
NJTRST
-
3_C
4
H1
P
TMR
-
-
3_C
5
H2
P
TMR
-
-
SPI1_SCK
CK
I2S3_C
EVE
-
-
-
-
-
-
-
-
-
6
w w w. g e e h y. c o m
4_C
H1
SPI1
-
_MIS
O
I2C1_
SMBA
I2C1_
SCL
SPI3_MIS
I2S3ext
O
_SD
SPI1
SPI3_MO
_MO
SII2S3_S
SI
D
-
-
-
USART
1_TX
NTO
UT
K
P
B
NTO
UT
Po
B
NTO
UT
2
B
NTO
UT
P
B
AF15
EVE
-
-
-
-
-
-
-
-
NTO
UT
CAN2_R
X
-
OTG_H
S_ULPI
_D7
CAN2_T
X
ETH_PP
S_OUT
-
DCI_D
10
EVE
-
-
-
NTO
UT
EVE
-
-
-
DCI_D5
-
-
NTO
UT
Pa g e 3 1
AF0
Port
SYS
AF1
TMR1
TMR
/2
3/4/5
P
B
AF2
TMR
-
-
4_C
AF3
TMR8
/9/10/
11
I2C1_
SDA
AF4
I2C1/
2/3
-
7
H2
P
TMR
TMR1
I2C1
4_C
0_CH
_SC
H3
1
L
TMR
TMR1
I2C1
4_C
1_CH
_SD
H4
1
A
B
-
-
8
P
B
-
-
9
P
B
1
-
TMR2
_CH3
I2C2
-
-
_SC
L
0
AF5
AF6
AF7
AF8
AF9
AF10
SPI1/SPI2
SPI3/I2
USART1/
UART4/
CAN1/2T
OTG_F
/I2S2/I2S2
Sext/I2
2/3/I2S3e
5/USAR
MR12/13/
S/OTG_
ext
S3
xt
T6
14
HS
-
-
SPI2_NSS
I2S2_WS
SPI2_SCK
I2S2_CK
USART
1_RX
-
-
-
-
-
-
USART3
_TX
-
-
-
-
-
CAN1_R
X
CAN1_T
X
-
-
AF11
AF12
SMC/DMC/
ETH
SDIO/OTG
_FS
SMC_N
DCI_VSYN
L
C
ETH_M
-
II_TXD
AF
13
A
F
DC
1
I
4
EVE
-
-
3
I_D
EVE
-
6
-
SDIO_D5
I_D
EVE
-
7
OTG_H
ETH_M
S_ULPI
II_RX_
_D3
ER
NTO
UT
DC
-
NTO
UT
DC
SDIO_D4
AF15
NTO
UT
EVE
-
-
-
NTO
UT
ETH_M
P
B
-
11
TMR2
_CH4
I2C2
-
-
_SD
-
-
A
USART3
_RX
OTG_H
-
-
S_ULPI
_D4
II_TX_
EN
ETH
EVE
-
-
-
NTO
UT
_RMII_
TX_EN
P
B
1
2
TMR1
-
_BKI
N
w w w. g e e h y. c o m
I2C2
-
-
_SM
BA
SPI2_NSS
I2S2_WS
-
USART3
_CK
-
CAN2_R
X
OTG_H
ETH_R
S_ULPI
MII_TX
_D5
D0
OTG_HS_I
D
EVE
-
-
NTO
UT
Pa g e 3 2
AF0
Port
SYS
AF1
AF2
TMR1
TMR
/2
3/4/5
AF3
TMR8
/9/10/
11
AF4
I2C1/
2/3
AF5
AF6
AF7
AF8
AF9
AF10
SPI1/SPI2
SPI3/I2
USART1/
UART4/
CAN1/2T
OTG_F
/I2S2/I2S2
Sext/I2
2/3/I2S3e
5/USAR
MR12/13/
S/OTG_
ext
S3
xt
T6
14
HS
AF11
AF12
SMC/DMC/
ETH
SDIO/OTG
_FS
AF
13
A
F
DC
1
I
4
-
-
AF15
ETH_M
II_TXD
0
ETH_R
P
B
1
TMR1
-
_CH1
-
-
-
N
3
SPI2_SCK
I2S2_CK
-
USART3
_CTS
-
CAN2_T
X
OTG_H
S_ULPI
_D6
MII_TX
D1
ETH_M
EVE
-
NTO
UT
II_TXD
1
P
B
1
TMR1
-
4
P
B
RTC_R
1
EFIN
5
_CH2
TMR8
-
_CH2
N
N
TMR1
TMR8
_CH3
N
w w w. g e e h y. c o m
-
_CH3
N
-
SPI2_MIS
I2S2ext
USART3
O
_SD
_RTS
-
SPI2_MO
-
SII2S2_S
D
-
-
-
TMR12_
CH1
TMR12_
CH2
-
-
-
-
OTG_HS_
DM
OTG_HS_
DP
EVE
-
-
NTO
UT
EVE
-
-
NTO
UT
Pa g e 3 3
Table 6 GPIOC Multiplexing Function Configuration
Port
AF
AF
0
1
SY
S
TM
R1/
2
AF2
TMR
3/4/5
AF3
TMR8/
9/10/1
1
AF4
I2C1
/2/3
AF5
AF6
AF7
AF8
AF9
AF10
SPI1/SPI2/I
SPI3/I2
USART1/
UART4/
CAN1/2T
OTG_FS
2S2/I2S2ex
Sext/I2
2/3/I2S3e
5/USAR
MR12/13/
/OTG_H
t
S3
xt
T6
14
S
P
C
-
-
-
-
-
-
-
-
-
-
_ULPI_
-
-
-
-
-
-
-
-
-
-
-
1
P
-
-
-
-
-
2
Po
rt_
C
P
C
AF
13
F1
SMC/DMC/S
ETH
DIO/OTG_F
A
DCI
SPI2_MIS
I2S2ext
O
_SD
OTG_HS
-
-
-
DIR
SPI2_MOS
-
-
-
-
-
3
I
-
_ULPI_
-
-
-
I2S2_SD
AF15
4
S
EVE
-
-
-
-
STP
P
C
AF12
OTG_HS
0
C
AF11
NTO
UT
ETH_M
DC
ETH_MI
I_TXD2
OTG_HS
ETH
_ULPI_
_MII_TX
NXT
_CLK
EVE
-
-
-
NTO
UT
EVE
-
-
-
NTO
UT
EVE
-
-
-
NTO
UT
ETH_MI
P
C
I_RXD0
-
-
-
-
-
-
-
-
-
-
-
4
ETH_R
EVE
-
-
-
MII_RX
NTO
UT
D0
ETH_MI
P
C
I_RXD1
-
-
5
-
-
-
-
-
-
-
-
-
ETH_R
MII_RX
EVE
-
-
-
NTO
UT
D1
w w w. g e e h y. c o m
Pa g e 3 4
Port
AF
AF
0
1
SY
S
TM
R1/
2
P
C
AF2
TMR
3/4/5
TMR
-
-
3_CH
6
1
P
TMR
C
-
-
3_CH
7
2
P
C
TMR
-
-
3_CH
8
3
P
M
C
C
9
O2
TMR
-
3_CH
4
AF3
TMR8/
9/10/1
1
TMR8
_CH1
TMR8
_CH2
TMR8
_CH3
TMR8
_CH4
AF4
I2C1
/2/3
-
-
-
AF5
AF6
AF7
AF8
AF9
AF10
SPI1/SPI2/I
SPI3/I2
USART1/
UART4/
CAN1/2T
OTG_FS
2S2/I2S2ex
Sext/I2
2/3/I2S3e
5/USAR
MR12/13/
/OTG_H
t
S3
xt
T6
14
S
I2S2_MCK
-
-
_SD
I2S_CKIN
-
-
-
USART6
_RX
USART6
_CK
ETH
DIO/OTG_F
-
-
-
-
-
-
-
-
-
CK/
USART3_
UART4_
I2S3_C
TX/
TX
-
-
-
-
-
11
SPI3_M
USART3_
UART4_
D
ISO/
RX
RX
-
-
-
-
-
-
SDIO_D6
SDIO_D7
OSI
USART3_
UART5_
-
-
12
w w w. g e e h y. c o m
-
-
-
I2S3_S
CK
TX
-
D
F1
DCI
_D
EVE
-
-
-
SDIO_D0
-
-
-
SDIO_D1
-
-
-
SDIO_D2
-
-
-
SDIO_D3
-
-
-
SDIO_CK
NTO
0
UT
DCI
EVE
_D
-
_D
NTO
UT
DCI
-
AF15
4
1
SPI3_M
P
A
DCI
K
I2S3ext_S
13
S
SPI3_S
P
C
CK
_TX
AF
SMC/DMC/S
A
10
C
I2S3_M
-
AF12
I2C3
P
C
-
USART6
AF11
EVE
-
NTO
2
UT
DCI
EVE
_D
-
NTO
3
UT
DCI
EVE
_D
-
NTO
8
UT
DCI
EVE
_D
-
NTO
4
UT
DCI
EVE
_D
9
-
NTO
UT
Pa g e 3 5
Port
AF
AF
0
1
SY
S
TM
R1/
2
AF2
TMR
3/4/5
AF3
TMR8/
9/10/1
1
AF4
I2C1
/2/3
AF5
AF6
AF7
AF8
AF9
AF10
AF11
SPI1/SPI2/I
SPI3/I2
USART1/
UART4/
CAN1/2T
OTG_FS
2S2/I2S2ex
Sext/I2
2/3/I2S3e
5/USAR
MR12/13/
/OTG_H
t
S3
xt
T6
14
S
AF12
AF
13
F1
SMC/DMC/S
ETH
DIO/OTG_F
A
DCI
4
S
P
C
AF15
EVE
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
NTO
13
UT
P
EVE
C
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
14
UT
P
C
NTO
EVE
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
15
NTO
UT
Table 7 GPIOD Multiplexing Function Configuration
A
F
0
AF
1
A
AF2
AF3
AF4
AF5
AF6
AF7
AF8
AF9
AF10
F1
AF12
1
AF1
3
Port
A
F1
P
Por
D0
t_D
P
D1
S
TM
Y
R1/
S
2
-
-
TMR3
TMR8/
/4/5
9/10/11
-
-
-
-
-
-
w w w. g e e h y. c o m
I2C
E
SPI3/I2S
USART1/2
UART4/5
CAN1/2TM
OTG_FS/
2S2/I2S2ext
ext/I2S3
/3/I2S3ext
/USART6
R12/13/14
OTG_HS
-
-
-
-
-
CAN1_RX
-
-
SMC_D2
-
-
-
-
-
-
-
CAN1_TX
-
-
SMC_D3
-
-
3
T
H
SMC/DMC/S
4
SPI1/SPI2/I
1/2/
DIO/OTG_FS
AF15
DCI
EVEN
TOUT
EVEN
TOUT
Pa g e 3 6
A
F
0
AF
1
A
AF2
AF3
AF4
AF5
AF6
AF7
AF8
AF9
AF10
F1
AF12
1
AF1
3
Port
A
F1
P
D2
P
D3
P
D4
P
D5
P
D6
P
D7
P
D8
P
D9
S
TM
Y
R1/
S
2
-
-
TMR3
TMR8/
/4/5
9/10/11
TMR3
_ETR
-
I2C
1/2/
3
-
SPI1/SPI2/I
SPI3/I2S
USART1/2
UART4/5
CAN1/2TM
OTG_FS/
2S2/I2S2ext
ext/I2S3
/3/I2S3ext
/USART6
R12/13/14
OTG_HS
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
w w w. g e e h y. c o m
-
USART2_
CTS
USART2_
RTS
USART2_
TX
USART2_
RX
USART2_
CK
USART3_
TX
USART3_
RX
UART5_
RX
E
T
H
SMC/DMC/S
DIO/OTG_FS
4
DCI
DCI
-
-
-
SDIO_CMD
_D1
-
1
-
-
-
-
SMC_CLK
-
-
-
-
-
-
SMC_NOE
-
-
-
-
-
-
SMC_NWE
-
-
-
-
-
-
SMC_NWAIT
-
-
-
-
-
-
-
-
-
-
-
-
SMC_D13
-
-
-
-
-
-
SMC_D14
-
-
SMC_NE1/S
MC_NCE2
AF15
EVEN
TOUT
EVEN
TOUT
EVEN
TOUT
EVEN
TOUT
EVEN
TOUT
EVEN
TOUT
EVEN
TOUT
EVEN
TOUT
Pa g e 3 7
A
F
0
AF
1
A
AF2
AF3
AF4
AF5
AF6
AF7
AF8
AF9
AF10
F1
AF12
1
AF1
3
Port
A
F1
S
TM
Y
R1/
S
2
-
-
TMR3
TMR8/
/4/5
9/10/11
-
-
I2C
1/2/
3
SPI1/SPI2/I
SPI3/I2S
USART1/2
UART4/5
CAN1/2TM
OTG_FS/
2S2/I2S2ext
ext/I2S3
/3/I2S3ext
/USART6
R12/13/14
OTG_HS
-
-
-
-
-
P
D1
-
0
P
D1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
P
D1
2
P
D1
-
-
3
P
D1
-
-
4
P
D1
5
-
-
TMR4
_CH1
TMR4
_CH2
TMR4
_CH3
TMR4
_CH4
w w w. g e e h y. c o m
USART3_
CK
USART3_
CTS
USART3_
RTS
E
T
H
SMC/DMC/S
DIO/OTG_FS
4
DCI
SMC_D15
-
-
-
-
-
-
-
-
-
-
-
-
-
DMC_DQ10
-
-
-
-
-
-
-
-
SMC_A16
SMC_A17
DMC_DQ11
SMC_A18
-
-
-
-
-
-
-
-
DMC_DQ12
SMC_D0
-
-
-
-
-
-
-
-
DMC_DQ13
SMC_D1
-
-
-
-
-
-
-
-
DMC_DQ14
AF15
EVEN
TOUT
EVEN
TOUT
EVEN
TOUT
EVEN
TOUT
EVEN
TOUT
EVEN
TO
Pa g e 3 8
Table 8 GPIOE Multiplexing Function Configuration
AF0
Port
SYS
AF1
AF2
TMR1
TMR
/2
3/4/5
P
E
AF3
AF
4
AF5
AF6
AF7
AF8
AF9
AF10
TMR8/
I2C
SPI1/SPI2/
SPI3/I2
USART1/
UART4/
CAN1/2T
OTG_FS
9/10/1
1/2/
I2S2/I2S2e
Sext/I2
2/3/I2S3e
5/USAR
MR12/13/
/OTG_H
1
3
xt
S3
xt
T6
14
S
AF11
AF12
SMC/DMC/
ETH
SDIO/OTG_
FS
TMR
-
-
0
4_ET
-
-
-
-
-
-
-
-
-
SMC_NBL0
R
-
-
-
13
DC
I
A
F1
-
-
-
-
-
-
-
-
-
SMC_NBL1
1
I_D
EVE
-
TRA
E
CEC
UT
DC
EVE
I_D
-
2
LK
Po
P
TRA
rt_
E
CED
E
3
0
P
TRA
E
CED
4
1
P
TRA
E
CED
5
2
P
TRA
E
CED
6
3
-
-
-
-
-
-
-
-
-
MII_TX
NTO
UT
ETH_
-
NTO
2
3
P
AF15
4
DC
P
E
AF
EVE
SMC_A23
-
-
D3
NTO
UT
EVE
-
-
-
-
-
-
-
-
-
-
-
SMC_A19
-
-
NTO
UT
DC
-
-
-
w w w. g e e h y. c o m
-
-
-
-
TMR9
_CH1
TMR9
_CH2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SMC_A20
SMC_A21
SMC_A22
I_D
EVE
-
NTO
4
UT
DC
EVE
I_D
-
NTO
6
UT
DC
EVE
I_D
7
-
NTO
UT
Pa g e 3 9
AF0
Port
SYS
P
E
-
7
P
E
-
-
9
P
-
-
11
P
-
-
13
P
E
TMR1
_ETR
AF7
AF8
AF9
AF10
TMR8/
I2C
SPI1/SPI2/
SPI3/I2
USART1/
UART4/
CAN1/2T
OTG_FS
9/10/1
1/2/
I2S2/I2S2e
Sext/I2
2/3/I2S3e
5/USAR
MR12/13/
/OTG_H
1
3
xt
S3
xt
T6
14
S
AF11
AF12
SMC/DMC/
ETH
SDIO/OTG_
FS
AF
13
DC
I
A
F1
_CH1
TMR1
_CH1
_CH2
TMR1
_CH2
_CH3
-
TMR1
_CH3
TMR1
_CH4
w w w. g e e h y. c o m
AF15
4
EVE
-
-
-
-
-
-
-
-
-
-
SMC_D4
-
-
NTO
UT
EVE
-
-
-
-
-
-
-
-
-
-
SMC_D5
-
-
NTO
UT
EVE
-
-
-
-
-
-
-
-
-
-
SMC_D6
-
-
NTO
UT
EVE
-
-
-
-
-
-
-
-
-
-
SMC_D7
-
-
NTO
UT
EVE
-
-
-
-
-
-
-
-
-
-
SMC_D8
-
-
NTO
UT
EVE
-
-
-
-
-
-
-
-
-
-
SMC_D9
-
-
N
P
14
3/4/5
AF6
TMR1
12
E
/2
4
AF5
N
P
E
TMR
AF
TMR1
10
E
TMR1
AF3
N
P
E
AF2
TMR1
8
E
AF1
NTO
UT
EVE
-
-
-
-
-
-
-
-
-
-
SMC_D10
-
-
NTO
UT
EVE
-
-
-
-
-
-
-
-
-
-
SMC_D11
-
-
NTO
UT
Pa g e 4 0
AF0
Port
SYS
P
AF1
AF2
TMR1
TMR
/2
3/4/5
AF
AF3
4
AF5
AF6
AF7
AF8
AF9
AF10
TMR8/
I2C
SPI1/SPI2/
SPI3/I2
USART1/
UART4/
CAN1/2T
OTG_FS
9/10/1
1/2/
I2S2/I2S2e
Sext/I2
2/3/I2S3e
5/USAR
MR12/13/
/OTG_H
1
3
xt
S3
xt
T6
14
S
-
-
-
-
-
-
-
-
AF11
AF12
SMC/DMC/
ETH
SDIO/OTG_
AF
13
DC
I
FS
A
F1
4
TMR1
E
-
_BKI
15
-
-
SMC_D12
-
AF15
-
N
EVE
NTO
Table 9 GPIOF Multiplexing Function Configuration
A
F
0
Port
P
F0
P
F1
Po
rt_
F
P
F2
P
F3
P
F4
P
F5
AF
1
A
AF2
AF3
AF4
AF5
AF6
AF7
AF8
AF9
AF10
F1
AF12
1
S
TM
Y
R1/
S
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TMR
3/4/5
w w w. g e e h y. c o m
TMR8/
CAN1/2T
I2C1/
SPI1/SPI2/I
SPI3/I2S
USART1/2
UART4/5
2/3
2S2/I2S2ext
ext/I2S3
/3/I2S3ext
/USART6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
9/10/1
1
I2C2_
SDA
I2C2_
SCL
I2C2_
SMBA
MR12/13/1
4
OTG_FS/
E
OTG_HS
T
H
AF1
3
A
F1
SMC/DMC/S
DIO/OTG_FS
SMC_A0
DMC_A10
SMC_A1
DMC_A0
SMC_A2
DMC_A1
SMC_A3
DMC_A2
SMC_A4
DMC_A3
SMC_A5
DCI
AF15
4
-
-
-
-
-
-
-
-
-
-
-
-
EVEN
TOUT
EVEN
TOUT
EVEN
TOUT
EVEN
TOUT
EVEN
TOUT
EVEN
TOUT
Pa g e 4 1
A
F
0
Port
P
F6
P
F7
P
F8
P
F9
AF
1
A
AF2
TM
Y
R1/
S
2
-
-
-
-
-
-
-
AF4
AF5
AF6
AF7
AF8
AF9
AF10
F1
TMR
3/4/5
-
TMR8/
9/10/1
1
TMR1
0_CH1
TMR11
_CH1
-
CAN1/2T
I2C1/
SPI1/SPI2/I
SPI3/I2S
USART1/2
UART4/5
2/3
2S2/I2S2ext
ext/I2S3
/3/I2S3ext
/USART6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
MR12/13/1
4
TMR13_C
H1
TMR14_C
H1
OTG_FS/
E
OTG_HS
T
H
-
-
-
3
A
F1
SMC/DMC/S
DIO/OTG_FS
SMC_NIORD
DMC_A4
SMC_NREG
DMC_A5
DCI
R
-
-
-
-
SMC_CD
DMC_A7
SMC_INTR
DMC_A8
P
-
-
-
-
-
-
-
-
-
-
DCI
-
-
-
-
-
-
-
-
-
-
-
-
DMC_UDQM
1
_D1
-
2
P
F1
-
-
-
-
-
-
-
-
-
-
-
-
SMC_A6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SMC_A7
-
-
2
P
F1
3
w w w. g e e h y. c o m
AF15
4
DMC_A6
0
F1
AF1
SMC_NIOW
P
F1
AF12
1
S
-
AF3
EVEN
TOUT
EVEN
TOUT
EVEN
TOUT
EVEN
TOUT
EVEN
TOUT
EVEN
TOUT
EVEN
TOUT
EVEN
TOUT
Pa g e 4 2
A
F
0
Port
AF
1
A
AF2
AF3
AF4
AF5
AF6
AF7
AF8
AF9
AF10
F1
AF12
1
S
TM
Y
R1/
S
2
-
-
-
-
-
-
TMR
3/4/5
TMR8/
CAN1/2T
E
3
A
F1
SPI1/SPI2/I
SPI3/I2S
USART1/2
UART4/5
2/3
2S2/I2S2ext
ext/I2S3
/3/I2S3ext
/USART6
-
-
-
-
-
-
-
-
-
SMC_A8
-
-
-
-
-
-
-
-
-
-
-
SMC_A9
-
-
1
MR12/13/1
T
OTG_HS
4
H
SMC/DMC/S
DIO/OTG_FS
DCI
P
F1
4
P
F1
AF15
4
I2C1/
9/10/1
OTG_FS/
AF1
5
EVEN
TOUT
EVEN
TOUT
Table 10 GPIOG Multiplexing Function Configuration
A
F
0
Port
AF
1
AF2
AF3
AF
4
AF5
AF6
AF7
AF8
AF9
AF10
S
TM
TMR
TMR8/
I2C
SPI1/SPI2/I
SPI3/I2
USART1/
UART4/5
CAN1/2T
OTG_FS
Y
R1/
3/4/
9/10/1
1/2/
2S2/I2S2ex
Sext/I2
2/3/I2S3e
/USART
MR12/13/
/OTG_H
S
2
5
1
3
t
S3
xt
6
14
S
AF11
AF12
AF1
3
F1
SMC/DMC/S
ETH
DIO/OTG_F
A
DCI
4
S
P
Por
t_
G
G
EVE
-
-
-
-
-
-
-
-
-
-
-
-
SMC_A10
-
-
0
NTO
UT
P
G
AF15
-
-
-
1
w w w. g e e h y. c o m
-
-
-
-
-
-
-
-
-
SMC_A11
DMC_CK
EVE
-
-
NTO
UT
Pa g e 4 3
A
F
0
Port
AF
1
AF2
AF3
AF
4
AF5
AF6
AF7
AF8
AF9
AF10
S
TM
TMR
TMR8/
I2C
SPI1/SPI2/I
SPI3/I2
USART1/
UART4/5
CAN1/2T
OTG_FS
Y
R1/
3/4/
9/10/1
1/2/
2S2/I2S2ex
Sext/I2
2/3/I2S3e
/USART
MR12/13/
/OTG_H
S
2
5
1
3
t
S3
xt
6
14
S
AF11
-
-
-
-
-
-
-
-
-
-
-
ETH
-
P
-
-
-
-
-
-
-
-
-
-
-
-
3
P
G
-
-
-
-
-
-
-
-
-
-
-
-
4
P
G
-
-
-
-
-
-
-
-
-
-
-
-
5
P
G
-
-
-
-
-
-
-
-
-
-
-
-
6
P
G
-
-
-
-
-
-
-
-
7
P
G
-
-
-
8
w w w. g e e h y. c o m
-
-
-
-
-
USART6
_CK
USART6
_RTS
3
DIO/OTG_F
A
F1
DCI
AF15
4
S
2
G
AF1
SMC/DMC/S
P
G
AF12
SMC_A12
DMC_DQ15
SMC_A13
DMC_DQ0
SMC_A14
DMC_DQ1
SMC_A15
DMC_DQ2
SMC_INT2
DMC_DQ3
EVE
-
-
NTO
UT
EVE
-
-
NTO
UT
EVE
-
-
NTO
UT
EVE
-
-
NTO
UT
EVE
-
-
NTO
UT
EVE
-
-
-
SMC_INT3
-
-
NTO
UT
-
-
ETH_PP
S_OUT
EVE
DMC_DQ4
-
-
NTO
UT
Pa g e 4 4
A
F
0
Port
AF
1
AF2
AF3
AF
4
AF5
AF6
AF7
AF8
AF9
AF10
S
TM
TMR
TMR8/
I2C
SPI1/SPI2/I
SPI3/I2
USART1/
UART4/5
CAN1/2T
OTG_FS
Y
R1/
3/4/
9/10/1
1/2/
2S2/I2S2ex
Sext/I2
2/3/I2S3e
/USART
MR12/13/
/OTG_H
S
2
5
1
3
t
S3
xt
6
14
S
P
G
-
-
-
-
-
-
-
-
9
USART6
_RX
-
-
AF11
AF1
3
ETH
DIO/OTG_F
A
F1
SMC/DMC/S
DCI
4
-
SMC_NE2/S
MC_NCE3
EVE
-
-
-
-
-
-
-
-
-
-
-
-
-
10
_1/SMC_NE
NTO
UT
SMC_NCE4
-
AF15
S
P
G
AF12
EVE
-
-
3
NTO
UT
ETH_MII
P
G
_TX_EN
-
-
-
-
-
-
-
-
-
-
-
11
ETH_RM
II_TX_E
SMC_NCE4
_2
EVE
-
-
NTO
UT
N
P
G
-
-
-
-
-
-
-
-
12
-
-
-
-
-
-
-
-
13
-
-
-
SMC_NE4
-
-
USART6
_CTS
-
-
_TXD0
ETH_RM
EVE
SMC_A24
-
-
-
-
14
w w w. g e e h y. c o m
-
-
-
-
-
USART6
_TX
-
-
_TXD1
ETH_RM
II_TXD1
NTO
UT
ETH_MII
-
NTO
UT
II_TXD0
P
G
_RTS
EVE
ETH_MII
P
G
USART6
EVE
SMC_A25
-
-
NTO
UT
Pa g e 4 5
A
F
0
Port
AF
1
AF2
AF3
AF
4
AF5
AF6
AF7
AF8
AF9
AF10
S
TM
TMR
TMR8/
I2C
SPI1/SPI2/I
SPI3/I2
USART1/
UART4/5
CAN1/2T
OTG_FS
Y
R1/
3/4/
9/10/1
1/2/
2S2/I2S2ex
Sext/I2
2/3/I2S3e
/USART
MR12/13/
/OTG_H
S
2
5
1
3
t
S3
xt
6
14
S
P
G
-
-
-
-
-
-
-
USART6
-
_CTS
15
AF11
AF12
AF1
3
F1
SMC/DMC/S
ETH
DIO/OTG_F
A
DCI
4
S
DCI
-
-
AF15
-
DMC_LDQM
_D1
EVE
-
3
NTO
UT
Table 11 GPIOH Multiplexing Function Configuration
A
F
0
Port
AF
1
S
TM
Y
R1/
S
2
AF2
TMR
3/4/5
AF3
TMR8/
9/10/1
1
AF4
I2C1/
2/3
AF5
AF6
AF7
AF8
AF9
SPI1/SPI2/
SPI3/I2
USART1/
UART4/
CAN1/2T
I2S2/I2S2e
Sext/I2
2/3/I2S3e
5/USAR
MR12/13/
xt
S3
xt
T6
14
AF10
OTG_FS/
OTG_HS
AF11
AF12
AF13
F1
SMC/DMC/
ETH
SDIO/OTG_
A
DCI
4
FS
P
H
AF15
EVE
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
NTO
0
UT
Po
P
EVE
rt_
H
H
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
NTO
UT
P
H
-
-
-
-
2
w w w. g e e h y. c o m
-
-
-
-
-
-
-
-
ETH_M
II_CRS
EVE
-
-
-
NTO
UT
Pa g e 4 6
A
F
0
Port
AF
1
S
TM
Y
R1/
S
2
AF2
TMR
3/4/5
AF3
TMR8/
9/10/1
1
AF4
I2C1/
2/3
AF5
AF6
AF7
AF8
AF9
SPI1/SPI2/
SPI3/I2
USART1/
UART4/
CAN1/2T
I2S2/I2S2e
Sext/I2
2/3/I2S3e
5/USAR
MR12/13/
xt
S3
xt
T6
14
AF10
OTG_FS/
OTG_HS
P
H
-
-
-
-
-
-
-
-
-
-
-
3
P
H
-
-
-
-
4
P
H
-
-
-
-
5
P
H
-
-
-
-
-
-
-
-
7
P
-
-
-
-
8
P
H
I2C2
_SDA
-
-
-
-
_SM
I2C3
_SCL
I2C3
_SDA
-
-
9
w w w. g e e h y. c o m
-
_SM
BA
F1
SMC/DMC/
ETH
SDIO/OTG_
A
DCI
-
_ULPI_N
AF15
4
FS
ETH_M
II_COL
EVE
DMC_A9
-
-
NTO
UT
EVE
-
-
-
-
NTO
UT
EVE
-
-
-
-
-
-
-
-
-
-
NTO
UT
-
-
-
-
-
-
-
-
TMR12_C
H1
-
ETH_M
-
-
II_RXD
EVE
-
-
-
UT
ETH_M
EVE
II_RXD
-
-
-
-
-
-
-
-
-
DMC_DQ8
HSY
EVE
-
NC
-
-
-
-
TMR12_C
H2
-
-
NTO
UT
DCI_
-
NTO
2
3
I2C3
-
AF13
XT
BA
P
H
_SCL
AF12
OTG_HS
I2C2
6
H
I2C2
AF11
-
DCI_
D0
NTO
UT
EVE
-
NTO
UT
Pa g e 4 7
A
F
0
Port
AF
1
S
TM
Y
R1/
S
2
P
H
AF2
TMR
3/4/5
-
-
5_C
H1
P
TMR
-
-
5_C
11
H2
P
TMR
H
-
-
12
5_C
9/10/1
1
-
-
-
-
-
-
_CH1
N
P
TMR8
-
-
-
_CH2
14
N
P
TMR8
H
2/3
AF6
AF7
AF8
AF9
SPI1/SPI2/
SPI3/I2
USART1/
UART4/
CAN1/2T
I2S2/I2S2e
Sext/I2
2/3/I2S3e
5/USAR
MR12/13/
xt
S3
xt
T6
14
AF10
OTG_FS/
OTG_HS
AF11
AF12
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
AF13
F1
SMC/DMC/
ETH
SDIO/OTG_
A
DCI
-
-
-
15
w w w. g e e h y. c o m
_CH3
N
AF15
4
FS
-
-
-
DMC_DQ9
-
-
DCI_
D1
DCI_
D2
DCI_
D3
EVE
-
NTO
UT
EVE
-
NTO
UT
EVE
-
NTO
UT
TMR8
13
H
I2C1/
AF5
H3
P
H
TMR8/
AF4
TMR
10
H
AF3
EVE
-
-
-
-
-
CAN1_TX
-
-
DMC_DQ5
-
-
NTO
UT
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
DMC_DQ6
DCI_
D4
DCI_
D11
EVE
-
NTO
UT
EVE
-
NTO
UT
Pa g e 4 8
Table 12 GPIOI Multiplexing Function Configuration
A
F
Port
PI
0
PI
1
PI
2
Po
rt_
I
PI
3
PI
4
PI
5
PI
6
0
AF
1
S
TM
Y
R1/
S
2
AF2
TMR
3/4/5
AF3
AF
4
-
5_CH
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
w w w. g e e h y. c o m
AF7
AF8
AF9
I2C
SPI1/SPI2/I
SPI3/I2
USART1/
UART4/
CAN1/2T
9/10/1
1/2/
2S2/I2S2ex
Sext/I2
2/3/I2S3e
5/USAR
MR12/13/
1
3
t
S3
xt
T6
14
-
-
4
-
AF6
TMR8/
TMR
-
AF5
-
TMR8
_CH4
TMR8
_ETR
TMR8
_BKIN
TMR8
_CH1
TMR8
_CH2
-
-
SPI2_NSS
I2S2_WS
SPI2_SCK
I2S2_CK
-
-
SPI2_MIS
I2S2ext
O
_SD
-
-
-
-
-
-
-
-
-
AF10
OTG_FS/
OTG_HS
-
-
-
AF11
AF12
ETH
DIO/OTG_F
I
-
-
-
-
-
-
-
-
-
-
-
DCI
4
-
-
-
-
-
-
-
DMC_DQ7
-
-
DCI_
D13
DCI_
D8
DCI_
D9
DCI_
D10
DCI_
D5
EVE
-
-
-
-
-
-
-
-
-
VSYN
EVE
-
-
-
-
-
-
-
-
-
-
D6
NTO
UT
EVE
-
NTO
UT
EVE
-
NTO
UT
EVE
-
NTO
UT
EVE
-
C
DCI_
NTO
UT
DCI_
-
AF15
S
I2S2_SD
-
A
F1
SMC/DMC/S
SPI2_MOS
-
AF13
NTO
UT
EVE
-
NTO
UT
Pa g e 4 9
A
F
Port
PI
7
PI
8
PI
9
0
AF
1
S
TM
Y
R1/
S
2
-
-
AF2
TMR
3/4/5
-
AF3
AF
4
AF5
AF6
AF7
AF8
AF9
TMR8/
I2C
SPI1/SPI2/I
SPI3/I2
USART1/
UART4/
CAN1/2T
9/10/1
1/2/
2S2/I2S2ex
Sext/I2
2/3/I2S3e
5/USAR
MR12/13/
1
3
t
S3
xt
T6
14
TMR8
_CH3
-
-
-
-
-
-
AF10
OTG_FS/
OTG_HS
-
-
-
-
-
-
-
-
-
-
-
-
AF13
F1
SMC/DMC/S
ETH
DIO/OTG_F
A
DCI
AF15
4
S
-
DMC_WE
DCI_
D7
EVE
-
NTO
UT
-
DMC_CAS
-
-
NTO
UT
EVE
-
-
-
-
-
-
-
-
-
CAN1_RX
-
-
DMC_RAS
-
-
NTO
UT
ETH_MI
-
-
-
-
-
-
-
-
-
-
-
0
I_RX_E
EVE
DMC_CS
-
-
R
PI
1
AF12
EVE
PI
1
AF11
UT
OTG_HS
-
-
-
1
w w w. g e e h y. c o m
-
-
-
-
-
-
-
_ULPI_DI
R
NTO
EVE
-
DMC_BA
-
-
NTO
UT
Pa g e 5 0
4
Function Description
This chapter mainly introduces the system architecture, interrupt, on-chip memory, clock, power
supply and peripheral features of APM32F405xG 407xExG series products; for information
about the Arm® Cortex®-M4 core, please refer to the Arm® Cortex®-M4 Technical Reference
Manual, which can be downloaded from Arm’s website.
w w w. g e e h y. c o m
Page51
4.1
System architecture
4.1.1
System block diagram
Figure 5 APM32F405xG 407xExG System Block Diagram
NVIC
M4 with FPU
I Code
Ethernet MAC
ART
D Code
Flash
CCM Data RAM
D-bus
FMC
I-bus
S-bus
JTAG/SWD
Fast USB OTG
Main SRAM1
Annex SRAM2
DMA1
AHB bus matrix
DMA2
EMMC
SRAM/External
memory
AHB1
GPIO A-I
AHB2
Fast USB OTG
CRC
RCM
RNG
AHB/APB1
TMR2/3/4/5/6/7/12/13
/14
RTC
AHB/APB2
TMR1/8/9/10/11
USART1/6
WWDT
ADC1/2/3
IWDT
SDIO
SPI2/I2S2
SPI1
SPI3/I2S3
SYSCFG
USART2/3
UART4/5
Camera interface
EINT
T-Sensor
I2C1/2/3
CAN1/2
DAC1/2
w w w. g e e h y. c o m
Page52
4.1.2
Address mapping
Figure 6 APM32F405xG 407xExG Series Address Mapping Diagram
0xFFFF FFFF
0xE000 0000
Reserved
M4 core
Peripheral
Reserved
AHB Peripheral
0x4002 0000
Reserved
APB2 Peripheral
0x4001 0000
Reserved
APB1 Peripheral
0x4000 0000
0x2002 0000
Reserved
SRAM
0x2000 0000
0x1FFF F008
Reserved
Option Bytes
0x1FFF C000
0x1FFF F000
System storage
area
Reserved
Flash
0x0800 0000
Mapping area
0x0000 0000
EMMC Reg.
0xA000 0000
Reserved
RNG
Reserved
DCI
Reserved
USB OTG_FS
Reserved
0x5006 0C00
0x5006 0800
USB OTG_HS1/2
Reserved
MAC
Reserved
DMA2
DMA1
Reserved
Backup SRAM
FMC Reg.
RCM
Reserved
CRC
Reserved
GPIOA-I
0x5000 0000
0x4008 0000
0x4004 0000
0x4002 9400
0x4002 8000
0x4002 6800
0x4002 6400
0x4002 6000
0x4002 5000
0x4002
0x4002
0x4002
0x4002
0x4002
0x4002
0x4002
0x4001 0800
TMR8
TMR1
0x4001 0400
0x4001 0000
DAC
PMU
Reserved
CAN2
CAN1
Reserved
I2C3
I2C2
I2C1
UART5
UART4
USART3
USART2
I2S3ext
SPI3/I2S3
SPI2/I2S2
I2S2ext
TMR14
TMR13
TMR12
TMR7
TMR6
TMR5
TMR4
TMR3
TMR2
0x9FFF FFFF
0x9000 0000
EMMC bank 3
NAND (NAND2)
0x8000 0000
EMMC bank 2
NAND (NAND1)
0x7000 0000
EMMC bank 1
NOR/PSRAM 4/SDRAM
0x6C00 0000
EMMC bank 1
NOR/PSRAM 3/SDRAM
0x6800 0000
EMMC bank 1
NOR/PSRAM 2/SDRAM
0x6400 0000
EMMC bank 1
NOR/PSRAM 1/SDRAM
0x6000 0000
4000
3C00
3800
3400
3000
2400
0000
TMR11
TMR10
TMR9
EINT
SYSCFG
Reserved
SPI1
SDIO
Reserved
ACD1/2/3
Reserved
USART6
USART1
Reserved
IWDT
WWDT
RTC
Reserved
w w w. g e e h y. c o m
0x5005 0400
0x5005 0000
0x5004 0000
EMMC bank4 PCCARD
0x4001 4800
0x4001 4400
0x4001 4000
0x4001 3C00
0x4001 3800
0x4001
0x4001
0x4001
0x4001
0x4001
0x4001
0x4001
3400
3000
2C00
2400
2000
1800
1400
0x4001 1000
0x4000 7400
0x4000 7000
0x4000 6C00
0x4000 6800
0x4000 6400
0x4000 6000
0x4000
0x4000
0x4000
0x4000
0x4000
0x4000
0x4000
5C00
5800
5400
5000
4C00
4800
4400
0x4000 4000
0x4000 3C00
0x4000
0x4000
0x4000
0x4000
3800
3400
3000
2C00
0x4000 2800
0x4000 2400
0x4000 2000
0x4000 1C00
0x4000 1800
0x4000 1400
0x4000 1000
0x4000
0x4000
0x4000
0x4000
0C00
0800
0400
0000
Page53
4.1.3
Startup configuration
At startup, the user can select one of the following three startup modes by setting the high and
low levels of the Boot pin:
Startup from main memory
Startup from BootLoader
Startup from built-in SRAM
The user can use serial interface to reprogram the user Flash if starting up from BootLoader.
4.2
Core
The core of APM32F405xG 407xExG is Arm® Cortex®-M4 with FPU computing unit. Based on
this platform, the development cost is low and the power consumption is low. It can provide
excellent computing performance and advanced system interrupt response, and is compatible
with all Arm tools and software.
4.3
Interrupt controller
4.3.1
Nested Vector Interrupt Controller (NVIC)
It embeds a nested vectored interrupt controller (NVIC) that can handle up to 79 maskable
interrupt channels (not including 16 interrupt lines of Cortex®-M4) and 8 priority levels. The
interrupt vector entry address can be directly transmitted to the core, so that the interrupt
response processing with low delay can give priority to the late higher priority interrupt.
4.3.2
External Interrupt/Event Controller (EINT)
The external interrupt/event controller consists of 23 edge detectors, and each detector
includes edge detection circuit and interrupt/event request generation circuit; each detector can
be configured as rising edge trigger, falling edge trigger or both and can be masked
independently. Up to 140 GPIOs can be connected to 16 external interrupt lines.
4.4
On-chip memory
On-chip memory includes main memory area, SRAM and information block; the information
block includes system memory area and option byte; the system memory area stores
BootLoader, 96-bit unique device ID and capacity information of main memory area; the system
memory area has been written into the program when leaving the factory and cannot be erased.
Table 13 On-chip Memory Area
Memory
Maximum capacity
Function
Main memory area
1MB
Store user programs and data
SRAM
192 KB
CPU can access at 0 wait cycle (read/write)
System memory area
30KB
w w w. g e e h y. c o m
Store BootLoader, 96-bit unique device ID, and main memory
area capacity information
Page54
4.4.1
Memory
Maximum capacity
Option byte
16Bytes
Function
Configure main memory area read-write protection and MCU
working mode
Configurable external memory controller (EMMC)
APM32F405xG 407xExG series integrates EMMC module, consists of SMC (static memory
controller), DMC (dynamic memory controller), and supports PC card, SRAM, SDRAM,
PSRAM, NorFlash and NandFlash.
Function introduction:
Three EMMC interrupt sources, connected to NVIC unit through logic or
Write FIFO
The code can run in off-chip memories except NAND flash and PC card
Connect to LCD
4.4.2
LCD parallel interface (LCD)
EMMC can be configured to seamlessly connect with most graphic LCD controllers, and
supports the modes of Intel 8080 and Motorola 6800, and can flexibly connect with specific LCD
interface. This LCD parallel interface can be used to easily build a simple graphics application
environment or the high-performance scheme of the special acceleration controller can be
used.
4.5
Clock
4.5.1
Clock tree
Clock tree of APM32F405xG 407xExG is shown in the figure below:
w w w. g e e h y. c o m
Page55
Figure 7 APM32F405xG 407xExG Clock Tree
MACTXCLK
PHY ETH
25-50MHz
/2,20
SYSCFG_PMCFG[ETHSEL]
MACRXCLK
MACRMIICLK
USB2.0
PHY
24-60MHz
OTG_HS ULPI
Cortex
System
Clock
/8
LSICLK
40KHz
IWDTCLK
FCLK
RTCSEL[1:0]
SMCCLK
OSC32_OUT
OSC32_IN
OSC_OUT
OSC_IN
LSECLK
OSC
32.768
KHz
/2,4
RTC
/2...31
SW
4-26MHz
HSECLK
OSC
168MHz MAX
SYSCLK
168MHz
MAX
16MHz
HSICLK
HSECLK
DMCCLK
/B
PLL A
42MHz MAX
SCSEL
C1
PLL1 D
HCLK
AHB
Prescaler
/1,2,4
512
APB1
Rrescaler
/1,2,4,8,16
TMR2,3,4,5,6,7,12,13,14
if(APB1 prescaler=1)×1
else×2
42MHz MAX
PLL48CLK
TMRxCLK
PCLK1
C2
C1
I2SSEL
PLL2 D
C2
I2S_CKIN
I2SCLK
MCOSEL1
LSECLK
/2...5
ADCCLK
(Analog)
TMR1,8,9,10,11
if(APB2 prescaler=1)×1
else×2
TMRxCLK
84MHz MAX
HSICLK
MCO1
(Analog)ADC
Prescaler
/2,4,6,8
APB2
PRESCLAER
/1,2,4,8,16
HSECLK
PLL1CLK
84MHz MAX
PCLK2
MCOSEL2
SYSCLK
MCO2
/2...5
ETH PTP
PLL2CLK
HSECLK
PLL1CLK
4.5.2
Clock source
Clock source is divided into high-speed clock and low-speed clock according to the speed; the
high-speed clock includes HSICLK and HSECLK, and the low-speed clock includes LSECLK
w w w. g e e h y. c o m
Page56
and LSICLK; besides, some modules may have additional clock source pins to obtain the
required clock frequency through external circuits.
4.5.3
System clock
HSICLK, PLLCLK and HSECLK can be selected as system clock; the clock source of PLLCLK
can be HSICLK or HSECLK; the required system clock can be obtained by configuring PLL
clock multiplier factor and frequency division factor.
When the product is reset and started, HSICLK is selected as the system clock by default, and
then the user can choose one of the above clock sources as the system clock. When HSECLK
failure is detected, the system will automatically switch to the HSICLK, and if an interrupt is
enabled, the software can receive the related interrupt.
4.5.4
Bus clock
AHB, APB1 and APB2 buses are built in. The clock source of AHB is SYSCLK, and the clock
source of APB1 and APB2 is HCLK; the required clock can be obtained by configuring the
frequency division factor. The maximum frequency of AHB is 168MHz, the maximum frequency
of APB2 is 84MHz, and the maximum frequency of APB1 is 42MHz.
4.5.5
Phase locked loop
APM32F405xG 407xExG series product has two PLL, one is PLL (PLL1), and the other is PLL
(PLL2) specially used to provide specific clock frequency for I2S. They all need to generate
different clock frequencies by configuring parameters. Please refer to the User Manual for
specific parameters and configuration registers.
4.6
Power and power management
4.6.1
Power supply scheme
Table 14 Power Supply Scheme
Name
Voltage range
VDD
1.8~3.6V
VDDA/VSSA
1.8~3.6V
VBAT
1.8~3.6V
4.6.2
Description
I/O (see pin distribution diagram for specific IO) and internal voltage regulator
are powered through VDD pin.
Supply power for ADC, DAC, reset module, RC oscillator and PLL analog part;
when ADC or DAC is used, VDDA and VSSA must be connected to VDD and VSS.
When VDD is disabled, RTC, external 32KHz oscillator and backup register are
powered through internal power switch.
Voltage regulator
Table 15 Regulator Operating Mode
Name
Description
Master mode (MR)
Used in run mode
Low-power mode (LPR)
Used in stop mode
w w w. g e e h y. c o m
Page57
Name
Description
Used in standby mode; when the voltage regulator has high-impedance output, the core
Power-down mode
circuit is powered down, the power consumption of the voltage regulator is zero, and all
data of registers and SRAM will be lost.
Note: The voltage regulator is always in working state after reset, and outputs with high impedance in power-down
mode.
4.6.3
Power supply voltage monitor
Power-on reset (POR), power-down reset (PDR) and brown-out reset circuits are integrated
inside the product. These three circuits are always in working condition. When the power-down
reset circuit monitors that the power supply voltage is lower than the specified threshold value
(VPOR/PDR), even if the external reset circuit is used, the system will remain reset.
The product has a built-in programmable power supply voltage monitor (PVD) that can monitor
VDD and compare it with VPVD threshold. When VDD is outside the VPVD threshold range and the
interrupt is enabled, the MCU can be set to a safe state through the interrupt service program.
4.7
Low-power mode
APM32F405xG 407xExG supports three low-power modes, namely, sleep mode, stop mode
and standby mode, and there are differences in power, wake-up time and wake-up mode
among these three modes. The low-power mode can be selected according to the actual
application requirements.
Table 16 Low-power Mode
Mode
Description
Sleep mode
The core stops working, all peripherals are working, and it can be woken up through interrupts/events
Under the condition that SRAM and register data are not lost, the lowest power consumption can be
achieved in stop mode;
The clock of the internal 1.3V power supply module will stop, HSECLK crystal resonator, HSICLK
Stop mode
and PLL will be disabled, and the voltage regulator can be configured in normal mode or low-power
mode;
Any external interrupt line can wake up MCU, and the external interrupt lines include one of the 16
external interrupt lines, PVD output, RTC and USB_OTG.
The power consumption in this mode is the lowest;
Internal voltage regulator is turned off, all 1.3V power supply modules are powered down, HSECLK
Standby mode
crystal resonator, and HSICLK clocks are disabled, SRAM and register data disappear, RTC area
and backup register contents remain, and the standby circuit still works;
The external reset signal on NRST, IWDT reset, rising edge on WKUP pin or RTC event will wake
MCU out of standby mode.
4.8
DMA
2 built-in DMA, 16 data streams in total. Each data stream corresponds to 8 channels, but each
w w w. g e e h y. c o m
Page58
data stream can only use 1 channel at the same time. The peripherals supporting DMA
requests are ADC, SPI, USART, I2C, and TMRx. Four levels of DMA channel priority can be
configured. Support "memory→memory, memory→peripheral, peripheral→memory" data
transmission (the memory includes Flash、SRAM、SDRAM).
4.9
GPIO
GPIO can be configured as general input, general output, multiplexing function and analog input
and output. The general input can be configured as floating input, pull-up input and pull-down
input; the general output can be configured as push-pull output and open-drain output; the
multiplexing function can be used for digital peripherals; and the analog input and output can be
used for analog peripherals and low-power mode; the enable and disable pull-up/pull-down
resistor can be configured; the speed of 2MHz, 10MHz and 50MHz can be configured; the
higher the speed is, the greater the power and the noise will be.
4.10
Communication peripherals
4.10.1 USART/UART
Up to 6 universal synchronous/asynchronous transmitter receivers are built in the chip. The
USART1/6 interfaces can communicate at a rate of 10.5Mbit/s, while other USART/UART
interfaces can communicate at a rate of 5.25Mbit/s. All USART/UART interfaces can configure
baud rate, parity check bit, stop bit, and data bit length; they all can support DMA.
USART/UART function differences are shown in the table below:
Table 17 USART/UART Function Differences
USART mode/function
USART1
USART2
USART3
UART4
UART5
USART6
Hardware flow control of modem
√
√
√
—
—
√
Smart card mode
√
√
√
—
—
√
IrDA SIR coder-encoder functions
√
√
√
√
√
√
LIN mode
√
√
√
√
√
√
Standard characteristics
√
√
√
√
√
√
SPI host
√
√
√
—
—
√
5.25
2.62
2.62
2.62
2.62
5.25
10.50
5.25
5.25
5.25
5.25
10.5
APB2
APB1
APB1
APB1
APB1
APB2
Maximum baud rate under 16-time oversampling
(Mbit/s)
Maximum baud rate under 8-time oversampling
(Mbit/s)
APB mapping
Note: √ = support.
4.10.2 I2C
I2C1/2/3 bus interfaces are built-in and they all can work in multiple-master or slave modes,
w w w. g e e h y. c o m
Page59
support 7-bit or 10-bit addressing, and support dual-slave addressing in 7-bit slave mode; the
communication rate supports standard mode (up to 100kbit/s) and fast mode (up to 400kbit/s);
hardware CRC generator/checker are built in; they can operate with DMA and support SMBus
2.0 version/PMBus.
4.10.3 SPI/I2S
3 built-in SPI, support full-duplex and half-duplex communication in master mode and slave
mode, can use DMA controller, and can configure 4~16 bits per frame, and 3 SPI can
communicate at a rate of up to 42Mbit/s, 21MBit/s and 21MBit/s respectively.
2 built-in I2S (multiplexed with SPI2 and SPI3 respectively), support half-duplex communication
in master mode and slave mode, support synchronous transmission, and can be configured
with 16-bit, 24-bit and 32-bit data transfer with 16-bit or 32-bit resolution. The configurable
range of audio sampling rate is 8kHz~192kHz; when one or two I2S interfaces are configured
as the master mode, the master clock can be output to external DAC or decoder (CODEC) at
256-time sampling frequency.
4.10.4 CAN
2 built-in CAN, compatible with 2.0A and 2.0B (active) specification, and can communicate at a
rate of up to 1Mbit/s. It can receive and transmit standard frame of 11-bit identifier and extended
frame of 29-bit identifier. It has 3 sending mailboxes and 2 receiving FIFO, and 14 3-level
adjustable filters.
4.10.5 USB_OTG
Three USB controllers, namely, one OTG_FS and two OTG_HS, are embedded in the product.
They all can support both host and slave functions to comply with the On-The-Go
supplementary standard of USB 2.0 specification, and can also be configured as "Host only" or
"Slave only" mode, to fully comply with USB 2.0 specification. OTG_FS clock (48MHz) is output
by specific PLL, and OTG_HS clock (60MHz) is provided by external PHY.
4.10.6 Ethernet
Provides an IEEE-802.3-2002 compatible MAC for Ethernet LAN communication over MII or
RMII. This MCU requires a PHY connection to a physical LAN bus. The PHY connects to the
MII port, uses 17 signals for MII or 9 signals for RMII, and can use a 25MHz clock (MII) from the
kernel.
4.10.7 SDIO
The secure digital input/output interface can connect SD card, SD I/O card, multi-media card
(MMC) and CE-ATA card master interfaces, and provide data transmission between APB2
system bus and SD memory card, SD I/O card, MMC and CE-ATA device.
w w w. g e e h y. c o m
Page60
4.11
Analog peripherals
4.11.1 ADC
3 built-in ADC with 12-bit accuracy, up to 21 external channels and 3 internal channels for each
ADC. The internal channels measure the temperature sensor voltage, reference voltage and
backup voltage respectively. A/D conversion mode of each channel has single, continuous,
scan or intermittent modes, ADC conversion results can be left aligned or right aligned and
stored in 16-bit data register; they support analog watchdog, and DMA.
4.11.1.1 Temperature sensor
1 temperature sensor (TSensor) is built in, which is internally connected with ADC_IN16
channel. The voltage generated by the sensor changes linearly with temperature and the
converted voltage value can be obtained by ADC and converted into temperature.
4.11.1.2 Internal reference voltage
Built-in reference voltage VREFINT, internally connected to ADC_IN17 channel; VREFINT can be
obtained through ADC; VREFINT provides stable voltage output for ADC.
4.11.2 DAC
2 built-in 12-bit DAC, each corresponding to an output channel, which can be configured as 8bit and 12-bit modes, and the DMA function is supported. The waveform generation supports
noise wave and triangle wave. The conversion mode supports independent or simultaneous
conversion and the trigger mode supports external signal trigger and internal timer update
trigger.
4.12
Timer
2 built-in 16-bit advanced timers (TMR1/8), 8 16-bit general-purpose timers
(TMR3/4/9/10/11/12/13/14), 2 32-bit general timers (TMR2/5), 2 16-bit basic timers (TMR6/7), 1
independent watchdog timer, 1 window watchdog timer and 1 system tick timer.
Watchdog timer can be used to detect whether the program is running normally.
The system tick timer is the peripheral of the core with automatic reloading function. When the
counter is 0, it can generate a maskable system interrupt, which can be used for real-time
operating system and general delay.
Table 18 Function Comparison between Advanced/General-purpose/Basic and System Tick Timers
System tick
Timer type
Timer name
timer
Basic timer
General-purpose timer
Sys Tick Timer
TMR6/7
TMR2/5
24 bits
16 bits
32 bits
Counter
resolution
w w w. g e e h y. c o m
TMR3/4/9/10/1
1/12/13/14
16 bits
Advanced timer
TMR1/8
16 bits
Page61
System tick
Timer type
Basic timer
General-purpose timer
Advanced timer
Up
Up, down, up/down
Up, down, up/down
Any integer between
Any integer between 1 and
Any integer between 1 and
1 and 65536
65536
65536
-
OK
OK
OK
-
-
4
4
-
None
None
Yes
timer
Counter type
Down
Prescaler
-
factor
Generate
DMA request
Capture/comp
are register
Complementar
y output
1-way external trigger
signal input pin;
Pin
-
characteristics
-
1-way external trigger
1-way braking input signal
signal input pin;
pin;
4-way non-complementary
3-pair complementary
channel pin.
channel pins;
1-way non-complementary
channel pin.
It has complementary
Special for real-
PWM output with dead
time operating
Function
Description
system.
Synchronization or event
Automatic
chaining function provided.
reloading
Timers in debug mode can
function
Used to generate
be frozen.
supported.
DAC trigger signals.
Can be used to generate
When the
Can be used as a 16-
PWM output.
counter is 0, it
bit general-purpose
Each timer has
can generate a
timebase counter.
independent DMA request
When configured as a 16bit standard timer, it has
the same function as the
TMRx timer.
When configured as a 16bit PWM generator, it has
maskable
mechanism.
system interrupt.
It can handle incremental
Can program
encoder signals.
the clock
band insertion.
full modulation capability
(0~100%).
In debug mode, the timer
can be frozen, and PWM
output is disabled.
Synchronization or event
source.
chaining function provided.
Table 19 Function Comparison between IWDT and WWDT
Name
Independent
watchdog
w w w. g e e h y. c o m
Counter
resolution
Counter type
Prescaler
factor
Any integer
12 bits
Down
between 1
and 256
Function description
The clock is provided by an internally
independent RC oscillator of 28KHz, which is
independent of the master clock, so it can run in
stop and standby modes.
Page62
Name
Counter
resolution
Counter type
Prescaler
Function description
factor
The whole system can be reset in case of
problems.
It can provide timeout management for
applications as a free-running timer.
It can be configured as a software or hardware
startup watchdog through option bytes.
Timers in debug mode can be frozen.
Can be set for free running.
The whole system can be reset in case of
Window
watchdog
7 bits
Down
-
problems.
Driven by the master clock, it has early interrupt
warning function;
Timers in debug mode can be frozen.
4.13
RTC
1 RTC is built in, and there are LSECLK signal input pins (OS32_IN and OS32_OUT) and 2
TAMP input signal detection pins (RTC_TAMP1/2); the clock source can select external
32.768kHz crystal oscillator, resonator or oscillator, LSICLK and HSECLK/128; it is powered by
VDD by default; when VDD is powered off, it can be automatically switched to VBAT power supply,
and RTC configuration and time data will not be lost; RTC configuration and time data will not
be lost in case of system reset, software reset and power-on reset; it supports clock and
calendar functions.
4.13.1 Backup domain
4KB backup SRAM and 20 backup registers are built in, and are powered by VDD by default;
when VDD is powered off, it can be automatically switched to VBAT power supply, and the data in
backup register will not be lost; the data in backup register will not be lost in case of system
reset, software reset and power-on reset.
4.14
RNG
A RNG is embedded, and it provides 32-bit random number generated by the integrated
simulation.
4.15
DCI
DCI is used to receive high-speed data streams from CMOS camera. It supports different data
formats and is applicable to black-and-white cameras, X24 cameras and so on.
w w w. g e e h y. c o m
Page63
4.16
CRC
1 CRC (cyclic redundancy check) computing unit is built in, which can generate CRC codes and
operate 8-bit, 16-bit and 32-bit data.
5
Electrical Characteristics
5.1
Test conditions of electrical characteristics
5.1.1 Maximum and minimum values
Unless otherwise specified, all products are tested on the production line at TA=25℃. Its
maximum and minimum values can support the worst environmental temperature, power supply
voltage and clock frequency.
In the notes at the bottom of each table, it is stated that the data are obtained through
comprehensive evaluation, design simulation or process characteristics and are not tested on
the production line; on the basis of comprehensive evaluation, after passing the sample test,
take the average value and add and subtract three times the standard deviation (average ±3∑)
to get the maximum and minimum values.
5.1.2 Typical value
Unless otherwise specified, typical data are measured based on TA=25℃, VDD=VDDA=3.3V.
These data are only used for design guidance.
5.1.3 Typical curve
Unless otherwise specified, typical curves will only be used for design guidance and will not be
tested.
w w w. g e e h y. c o m
Page64
5.1.4
Power supply scheme
Figure 8 Power Supply Scheme
MCU
VBAT
VBAT
Power switch
GPIOs
2×2.2μF
LSECLK, RTC,
backup register
Input Schmidt
trigger, output
buffer
VCAP_1
VCAP_2
VDD
VDDX
Voltage regulator
x×100nF+
1×4.7μF
Core, Flash, SRAM,
I/O logic, digital
peripheral
VSS
BYPASS_REG
PDR_ON
VDD
VDDA
1×100nF+1×1μF
Reset controller
RC oscillator,
analog peripheral
VSSA
VDD
VREF+
ADC、DAC
1×100nF+1×1μF
VREF-
Notes: VDDx in the figure means the number of VDD is x
w w w. g e e h y. c o m
Page65
5.1.5
Load capacitance
Figure 9 Load conditions when measuring pin parameters
MCU pin
c=50p
Figure 10 Pin Input Voltage Measurement Scheme
MCU pin
VIN
Figure 11 Power Consumption Measurement Scheme
VDD
A
IDDA
A
VBAT
MCU
IDD
VDDX
VSS
VREF+
VDDA
VSSA
IDD_VBAT
A
VREF-
VBAT
Test under general operating conditions
5.2
Table 20 General Operating Conditions
Minimum
Maximum
value
value
-
-
168
Internal APB1 clock frequency
-
-
42
fPCLK2
Internal APB2 clock frequency
-
-
84
VDD
Main power supply voltage
-
1.8
3.6
V
VDDA
Analog power supply voltage
Must be the same
1.8
2.4
V
Symbol
Parameter
Conditions
fHCLK
Internal AHB clock frequency
fPCLK1
w w w. g e e h y. c o m
Unit
MHz
Page66
Symbol
Parameter
Conditions
(When neither ADC nor DAC is used)
as VDD
Minimum
Maximum
value
value
2.4
3.6
1.65
3.60
V
-40
85
℃
Analog power supply voltage
(When ADC and DAC are used)
5.3
VBAT
Power supply voltage of backup domain
TA
Ambient temperature (temperature number 6)
Maximum power
dissipation
Unit
Absolute maximum ratings
If the load on the device exceeds the absolute maximum rating, it may cause permanent
damage to the device. Here, only the maximum load that can be borne is given, and there is no
guarantee that the device functions normally under this condition.
5.3.1 Maximum temperature characteristics
Table 21 Temperature Characteristics
Symbol
Description
Value
Unit
TSTG
Storage temperature range
-65 ~ +150
℃
TJ
Maximum junction temperature
125
℃
5.3.2 Maximum rated voltage characteristics
All power supply (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the
power supply within the external limited range.
Table 22 Maximum Rated Voltage Characteristics
Minimum
Maximum
value
value
External main power supply voltage
-0.3
4.0
Input voltage on FT pins
VSS-0.3
VDD+4
Input voltage on other pins
VSS-0.3
4.0
| ΔVDDx |
Voltage difference between different power supply pins
-
50
| VSSx-VSS |
Voltage difference between different grounding pins
-
50
Symbol
Description
VDD - VSS
Unit
V
VIN
mV
5.3.3 Maximum rated current characteristics
Table 23 Current Characteristics
Maximum
Symbol
Description
IVDD
Total current through VDD/VDDA power line (supply current) (1)
240
IVSS
Total current through VSS ground line (outflow current) (1)
240
w w w. g e e h y. c o m
value
Unit
mA
Page67
Symbol
Maximum
Description
value
Sink current on any I/O and control pin
25
Source current on any I/O and control pin
25
Injection current of 5T pin
-5/+0
Injection current of other pins
±5
Total injection current on all I/O and control pins (4)
±25
Unit
IIO
IINJ(PIN) (2)
ΣIINJ(PIN)(2)
1. All power supply (VDD, VDDA) and ground (VSS, VSSA) must always be within the allowed range.
2. The outflow current will interfere with the analog performance of the device.
3. I/O cannot be injected positively: when VIN VDD, the current flows into the pins; when VIN25MHz, turn on PLL; otherwise, turn off PLL.
(3) When the analog peripherals such as ADC, DAC, HSECLK, LSECLK, HSICLK and LSICLK are turned on, extra power
consideration needs to be considered.
w w w. g e e h y. c o m
Page74
Table 36 Power Consumption in Run Mode when the Program is Executed in Flash (ART is turned off)
Parameter
Conditions
HSECLK bypass (2) , enabling all
peripherals (3)
Power
fHCLK
Typical value (1)
Maximum value (1)
TA=25℃,VDD=3.3V
TA=105℃,VDD=3.6V
IDDA(μA)
IDD(mA)
IDDA(μA)
IDD(mA)
168MHz
751.66
64.25
802.00
70.52
144MHz
693.58
51.09
745.30
56.05
120MHz
637.26
43.99
690.20
48.92
90MHz
780.86
34.91
831.40
39.97
60MHz
636.78
25.02
689.40
29.90
30MHz
636.66
14.33
689.00
19.32
25MHz
115.36
11.80
127.72
16.725
16MHz
115.36
7.83
127.75
12.53
8MHz
115.35
4.27
127.80
8.99
4MHz
115.35
2.45
127.88
7.13
2MHz
115.362
1.57
127.76
6.28
168MHz
750.94
24.71
801.40
30.85
144MHz
692.82
20.21
744.70
25.18
120MHz
636.76
17.96
689.80
22.91
90MHz
780.46
15.03
831.60
20.01
60MHz
636.46
11.19
689.80
16.13
30MHz
636.38
6.79
689.90
11.68
25MHz
115.33
5.26
128.50
10.15
16MHz
115.32
3.65
127.96
8.46
8MHz
115.36
2.14
127.82
6.80
4MHz
115.35
1.43
127.68
6.11
2MHz
115.53
1.07
127.90
5.82
consumption
in run mode
HSECLK bypass (2) , disabling all
peripherals
Note:
(1) The data are obtained from a comprehensive evaluation and are not tested in production.
(2) The external clock is 4MHz; when fHCLK>25MHz, turn on PLL; otherwise, turn off PLL.
(3) When the analog peripherals such as ADC, DAC, HSECLK, LSECLK, HSICLK and LSICLK are turned on, extra power
consideration needs to be considered.
w w w. g e e h y. c o m
Page75
Table 37 Power Consumption in Run Mode when the Program is Executed in RAM
Parameter
Conditions
HSECLK bypass (2) , enabling all
peripherals (3)
Power
fHCLK
Typical value (1)
Maximum value (1)
TA=25℃,VDD=3.3V
TA=105℃,VDD=3.6V
IDDA(μA)
IDD(mA)
IDDA(μA)
IDD(mA)
168MHz
752.14
70.29
803.80
76.51
144MHz
693.74
54.73
745.50
59.73
120MHz
637.60
46.22
690.40
51.16
90MHz
781.00
35.67
832.00
40.53
60MHz
637.02
24.70
689.8
29.65
30MHz
636.74
13.74
689.2
18.596
25MHz
115.42
11.23
127.85
16.02
16MHz
115.374
7.42
127.88
12.21
8MHz
115.37
4.05
127.81
8.836
4MHz
115.376
2.38
127.72
7.12
2MHz
115.347
1.53
127.76
6.28
168MHz
751.38
31.03
802.4
37.29
144MHz
693.00
24.11
744.7
29.11
120MHz
636.88
20.30
689.80
25.23
90MHz
780.56
15.81
931.60
20.74
60MHz
636.68
10.92
690.00
15.80
30MHz
636.62
6.19
689.70
11.02
25MHz
115.36
4.75
128.42
9.48
16MHz
115.35
3.26
128.79
8.07
8MHz
115.38
1.97
127.76
6.71
4MHz
115.36
1.33
127.73
6.04
2MHz
115.34
1.02
127.74
5.70
consumption
in run mode
HSECLK bypass (2) , disabling all
peripherals
Note:
(1) The data are obtained from a comprehensive evaluation and are not tested in production.
(2) The external clock is 4MHz, and when f HCLK>25MHz, turn on PLL, otherwise, turn off PLL.
(3) When the analog peripherals such as ADC, DAC, HSECLK, LSECLK, HSICLK and LSICLK are turned on, extra power
consideration needs to be considered.
w w w. g e e h y. c o m
Page76
5.7.3
Power consumption in sleep mode
Table 38 Power Consumption in Sleep Mode when the Program is Executed in Flash (ART is turned off)
Parameter
Conditions
HSECLK bypass (2), enabling all
peripherals
Power
fHCLK
Typical value (1)
Maximum value (1)
TA=25℃,VDD=3.3V
TA=105℃,VDD=3.6V
IDDA(μA)
IDD(mA)
IDDA(μA)
IDD(mA)
168MHz
751.34
54.18
802.1
60.33
144MHz
693.26
42.25
745.00
47.12
120MHz
637.24
35.75
689.80
40.53
90MHz
780.60
27.69
831.20
32.539
60MHz
636.72
19.33
689.20
24.149
30MHz
636.46
11.02
689.20
15.8
25MHz
115.356
8.96
127.77
13.7
16MHz
115.34
5.99
127.71
10.68
8MHz
115.334
3.33
127.78
8.01
4MHz
115.332
2.00
127.84
6.669
2MHz
115.352
1.34
127.82
6.017
168MHz
750.52
13.91
801.00
19.86
144MHz
692.58
10.82
743.90
15.64
120MHz
636.46
9.20
689.00
13.99
90MHz
780.24
7.44
830.60
12.21
60MHz
636.42
5.33
689.00
10.07
30MHz
636.36
3.38
688.80
8.10
25MHz
115.37
2.41
127.84
7.08
16MHz
115.35
1.79
127.74
6.46
8MHz
115.35
1.23
127.83
5.91
4MHz
115.36
0.96
127.86
5.63
2MHz
115.42
0.83
127.84
5.54
consumption
in sleep mode
HSECLK bypass (2) , disabling all
peripherals
Note:
(1) The data are obtained from a comprehensive evaluation and are not tested in production.
(2) The external clock is 4MHz; when fHCLK>25MHz, turn on PLL; otherwise, turn off PLL.
w w w. g e e h y. c o m
Page77
5.7.4
Power consumption in stop mode
Table 39 Power Consumption in Stop Mode
Maximum
Typical value
(1),
value (1),
(TA=25℃)
(VDD=3.6V)
Conditions
VDD=3.3V
TA=105℃
VDD=3.6V
IDDA
IDD
IDDA
IDD
IDDA
IDD
IDDA
IDD
(μA)
(mA)
(μA)
(mA)
(μA)
(mA)
(μA)
(mA)
9.28
0.69
9.80
0.70
10.05
0.71
12.36
20.00
9.23
0.69
9.72
0.70
10.00
0.70
12.35
20.00
4.18
0.21
4.65
0.21
4.87
0.21
5.91
15.00
4.19
0.20
4.64
0.20
4.86
0.20
5.86
15.00
Flash is in stop mode, and RC
The
regulator is
in run mode,
and all
oscillators
are in off
state
internal oscillator and high-speed
oscillator are turned off (with no
independent watchdog)
Flash is in power-down mode, and
RC internal oscillator and highspeed oscillator are turned off (with
no independent watchdog)
Flash is in stop mode, and RC
The
regulator is
in low-power
mode, and
all oscillators
are in off
state
5.7.5
VDD=2.4V
internal oscillator and high-speed
oscillator are turned off (with no
independent watchdog)
Flash is in power-down mode, and
RC internal oscillator and highspeed oscillator are turned off (with
no independent watchdog)
Power consumption in standby mode
Table 40 Power Consumption in Standby Mode
Maximum value (1),
Typical value (1), (TA=25℃)
Conditions
VDD=2.4V
VDD=3.3V
(VDD=3.6V)
TA=105℃
VDD=3.6V
IDDA
IDD
IDDA
IDD
IDDA
IDD
IDDA
IDD
(μA)
(μA)
(μA)
(μA)
(μA)
(μA)
(μA)
(μA)
2.15
8.38
2.56
9.73
2.83
10.19
3.76
59.39
2.15
3.52
2.62
4.46
2.81
5.11
3.48
32.00
The backup SRAM is
turned on, and the lowPower supply
speed oscillator and RTC
current in
are turned on
standby
The backup SRAM is
mode
turned off, and the lowspeed oscillator and RTC
are turned on
w w w. g e e h y. c o m
Page 78
Maximum value (1),
Typical value (1), (TA=25℃)
Conditions
VDD=2.4V
VDD=3.3V
(VDD=3.6V)
TA=105℃
VDD=3.6V
IDDA
IDD
IDDA
IDD
IDDA
IDD
IDDA
IDD
(μA)
(μA)
(μA)
(μA)
(μA)
(μA)
(μA)
(μA)
2.13
7.33
2.62
8.24
2.81
8.64
3.45
58.24
2.13
2.51
2.61
3.31
2.78
3.68
3.45
19.2
The backup SRAM is
turned on, and the RTC is
turned off
The backup SRAM is
turned off, and the RTC is
turned off
Note: (1) The data are obtained from a comprehensive evaluation and are not tested in production.
5.7.6
Peripheral power consumption
Peripheral power consumption = current that enables the peripheral clock-current that disables
the peripheral clock.
Table 41 Peripheral Power Consumption
Parameter
AHB1 (up to 168MHz)
Peripheral
Typical value (1) TA=25℃, VDD=3.3V
168MHz
144MHz
DMA1
5.4
4.21
DMA2
5.56
4.3
ETH
3
2.35
OTG_HS
4.21
3.26
GPIOA
0.32
0.25
GPIOB
0.31
0.24
GPIOC
0.32
0.24
GPIOD
0.3
0.23
GPIOE
0.31
0.25
GPIOF
0.33
0.26
GPIOG
0.3
0.24
GPIOH
0.3
0.24
GPIOI
0.3
0.24
CRC
0.03
0.03
BAKPR
0.07
0.05
OTG_FS
3.12
2.41
DCI
0.79
0.61
RNG
0.16
0.12
HASH
1.3
1
Unit
μA/MHz
AHB2 (up to 168MHz)
w w w. g e e h y. c o m
Page 79
Parameter
AHB3 (up to 168MHz)
APB1 (up to 42MHz)
APB2 (up to 84MHz)
w w w. g e e h y. c o m
Peripheral
Typical value (1) TA=25℃, VDD=3.3V
168MHz
144MHz
CRYP
0.25
0.19
EMMC
1.68
1.3
TMR2
0.46
0.36
TMR3
0.35
0.27
TMR4
0.34
0.27
TMR5
0.46
0.35
TMR6
0.08
0.07
TMR7
0.08
0.06
TMR12
0.19
0.15
TMR13
0.14
0.11
TMR14
0.14
0.1
WWDT
0.02
0.02
SPI2/I2S2
0.12
0.1
SPI3/I2S3
0.12
0.1
USART2
0.11
0.09
USART3
0.12
0.09
UART4
0.11
0.08
UART5
0.11
0.08
I2C1
0.12
0.09
I2C2
0.12
0.09
I2C3
0.12
0.1
CAN1
0.18
0.14
CAN2
0.16
0.13
PMU
0.01
0.01
DAC
0.08
0.06
SDIO
0.41
0.32
TMR1
0.99
0.77
TMR8
0.97
0.77
TMR9
0.41
0.32
TMR10
0.27
0.21
TMR11
0.26
0.22
ADC1
0.27
0.22
Unit
Page 80
Parameter
Typical value (1) TA=25℃, VDD=3.3V
Peripheral
168MHz
144MHz
ADC2
0.27
0.22
ADC3
0.28
0.23
SPI1
0.12
0.11
USART1
0.22
0.18
USART6
0.21
0.18
SYSCFG
0.05
0.05
Unit
Note: The data are obtained from a comprehensive evaluation and are not tested in production.
5.7.7
Backup Domain Power Consumption
Table 42 VBAT Power Consumption
Typical value (1), TA=25℃
Symbol
Parameter
Maximum value (1),
Unit
VBAT=3.6V
Conditions
VBAT=2.4V
VBAT=3.3V
TA=85℃
TA=105℃
1.894
2.262
6
11
1.08
1.412
3
5
0.926
1.116
5
10
0.02
0.128
2
4
The backup SRAM is turned
on, and the low-speed
oscillator and RTC are
turned on
The backup SRAM is turned
IDD_VBAT
LSECLK
off, and the low-speed
and RTC
oscillator and RTC are
are in ON
turned on
state
The backup SRAM is turned
on, and the RTC is turned
μA
off
The backup SRAM is turned
off, and the RTC is turned
off
Note: (1) The data are obtained from a comprehensive evaluation and are not tested in production.
5.8
Wake-up time in low-power mode
The measurement of wake-up time in low-power mode is from the start of wake-up event to the
time when the user program reads the first instruction, in which VDD=VDDA.
Table 43 Wake-up Time in Low-power Mode
Symbol
tWUSLEEP
Parameter
Wake-up from
sleep mode
w w w. g e e h y. c o m
Conditions
Min
Typ
Max
Unit
-
39.00
59
61.20
ns
Page 81
Symbol
Parameter
Conditions
The regulator is in run mode, and Flash is in
stop state
The regulator is in low-power mode, and Flash
tWUSTOP
Wake up from
is in stop state
the stop mode
The regulator is in run mode, and Flash is in
deep power-down mode
The regulator is in low-power mode, and Flash
is in deep power-down mode
tWUSTDBY
Wake up from
-
standby mode
Min
Typ
Max
Unit
12.51
13.602
14.99
15.51
19.552
22.93
125.63
133.156
135.16
133.52
136.956
139.60
173.03
214.056
227.96
μs
Note: The data are obtained from a comprehensive evaluation and are not tested in production.
5.9
I/O port characteristics
Table 44 DC Characteristics (TA=-40℃-105℃, VDD=2~3.6V)
Symbol
VIL
VIH
Vhys
Parameter
Conditions
Min
Typ
Max
STD and STDA I/O
-
-
0.3VDD-0.04
5T and 5Tf I/O
-
-
0.3VDD
Boot0 pin
-
-
0.1DD+0.1
STD and STDA I/O
0.45VDD+0.3
-
-
5T and 5Tf I/O
0.7VDD
-
-
Boot0 pin
0.17VDD+0.7
-
-
Schmidt trigger
STD, STDA and 5T, 5Tf I/O
10% VDD
-
-
hysteresis
Boot0 pin
0.1
-
-
-
-
±1
Low-level input
voltage
High-level input
voltage
Ilkg
RPU
Weak pull-down
equivalent
resistance
CIO
V
μA
5T and 5Tf I/O, VDDIOx≤VIN≤5V
-
-
3
Except PA10 and PB12, VIN=VSS
30
40
50
PA10 and PB12
7
10
14
Except PA10 and PB12, VIN=VDD
30
40
50
PA10 and PB12
7
10
14
-
-
5
-
equivalent
resistance
RPD
VDDIOx≤VIN≤VDDA
current
Weak pull-up
V
mV
STDA in digital mode,
Input leakage
Unit
I/O pin
capacitance
w w w. g e e h y. c o m
kΩ
pF
Page 82
Table 45 AC Characteristics (TA=25℃)
SPEED[1:0]
Symbol
fmax(IO)out
Parameter
Conditions
Min
Max
CL=50pF,VDD>2.7V
-
4
CL=50pF,VDD>1.8V
-
2
CL=10pF,VDD>2.7V
-
8
CL=10pF,VDD>1.8V
-
4
CL=50 pF,VDD=1.8 V-3.6V
-
100
CL=50pF,VDD>2.7V
-
25
CL=50pF,VDD>1.8V
-
12.5
CL=10pF,VDD>2.7V
-
50
CL=10pF,VDD>1.8V
-
20
CL=30pF,VDD>2.7V
-
10
high to low level and rise
CL=30pF,VDD>1.8V
-
20
time of output from low
CL=10pF,VDD>2.7V
-
6
CL=10pF,VDD>1.8V
-
10
CL=30pF,VDD>2.7V
-
50
CL=30pF,VDD>1.8V
-
25
CL=10pF,VDD>2.7V
-
100
CL=10pF,VDD>1.8V
-
50
CL=30pF,VDD>2.7V
-
6
high to low level and rise
CL=30pF,VDD>1.8V
-
10
time of output from low
CL=10pF,VDD>2.7V
-
4
CL=10pF,VDD>1.8V
-
6
CL=30pF,VDD>2.7V
-
100
CL=30pF,VDD>1.8V
-
50
CL=10pF,VDD>2.7V
-
180
CL=10pF,VDD>1.8V
-
100
CL=30pF,VDD>2.7V
-
4
CL=30pF,VDD>1.8V
-
6
CL=10pF,VDD>2.7V
-
2.5
Maximum frequency
00
Unit
MHz
Fall time of output from
tf(IO)out/tr(IO)out
high to low level and rise
time of output from low
ns
to high level
fmax(IO)out
Maximum frequency
MHz
01
Fall time of output from
tf(IO)out/tr(IO)out
to high level
fmax(IO)out
Maximum frequency
ns
MHz
10
Fall time of output from
tf(IO)out/tr(IO)out
to high level
fmax(IO)out
Maximum frequency
11
Fall time of output from
tf(IO)out/tr(IO)out
high to low level and rise
time of output from low
to high level
w w w. g e e h y. c o m
ns
MHz
ns
Page 83
SPEED[1:0]
Symbol
Parameter
Conditions
Min
Max
CL=10pF,VDD>1.8V
-
4
-
10
-
Unit
Pulse width of external
-
tEINTIpw
signal detected by EINT
controller
Figure 12 I/O AC Characteristics Definition
90%
10%
External
output load 50%
is 50pF
50%
90%
10%
tr(IO)OUT
tr(IO)OUT
T
If (tr+tf) is less than or equal to (2/3)T and the duty cycle is within
(45~55%), it reaches the maximum frequency when the load is 50pf
Table 46 Output Drive Voltage Characteristics (TA=25℃)
Symbol
Parameter
Conditions
Min
Max
VOL
I/O pin outputs low voltage
CMOS port, |IIO|=8mA,
-
0.4
VOH
I/O pin outputs high voltage
2.7 V < VDD < 3.6 V
VDD-0.4
-
VOL
I/O pin outputs low voltage
TTL port, |IIO|=20mA,
-
0.4
VOH
I/O pin outputs high voltage
2.7 V < VDD < 3.6 V
2.4
-
VOL
I/O pin outputs low voltage
|IIO|=20mA,
-
1.3
VOH
I/O pin outputs high voltage
2.7 V < VDD < 3.6 V
VDD-1.3
-
VOL
I/O pin outputs low voltage
|IIO|=6mA,
-
0.4
VOH
I/O pin outputs high voltage
2.7 V < VDD < 3.6 V
VDD-0.4
-
Unit
V
V
Note: The data are obtained from a comprehensive evaluation and are not tested in production.
5.10
NRST pin characteristics
The NRST pin input drive adopts CMOS process, which is connected with a permanent pull-up
resistor RPU.
Table 47 NRST Pin Characteristics (TA=-40~105℃, VDD=2~3.6V)
Symbol
Parameter
Conditions
Min
Typ
Max
VIL(NRST)
NRST low-level input voltage
TTL port,
-
-
0.8
VIH(NRST)
NRST high-level input voltage
2.7V≤VDD≤3.6V
2
-
-
VIL(NRST)
NRST low-level input voltage
CMOS port,
-
-
0.3VDD
w w w. g e e h y. c o m
Unit
V
Page 84
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
VIH(NRST)
NRST high-level input voltage
1.8V≤VDD≤3.6V
0.7VDD
-
-
Vhys(NRST)
NRST Schmidt trigger voltage hysteresis
-
-
200
-
mV
RPU
Weak pull-up equivalent resistance
VIN=VSS
30
40
50
kΩ
VF(NRST)
NRST input filter pulse
-
-
-
100
VNF(NRST)
NRST input unfiltered pulse
VDD>2.7V
300
-
-
TNRST_OUT
Generated reset pulse duration
Reset internal source
20
-
-
ns
μs
Communication peripherals
5.11
5.11.1 I2C peripheral characteristics
To achieve maximum frequency of I2C in standard mode, fPCLK1 must be greater than 2MHz. To
achieve maximum frequency of I2C in fast mode, fPCLK1 must be greater than 4MHz.
Table 48 I2C Interface Characteristics (TA=25℃, VDD=3.3V)
Standard I2C
Symbol
Fast I2C
Parameter
Unit
Min
Max
Min
Max
tw(SCLL)
SCL clock low time
4.7
-
1.3
-
tw(SCLH)
SCL clock high time
4.0
-
0.6
-
tsu(SDA)
SDA setup time
250
-
100
-
th(SDA)
SDA data hold time
0
-
0
900
tr(SDA)/tr(SCL)
SDA and SCL rise time
-
1000
20+0.1Cb
300
tf(SDA)/tf(SCL)
SDA and SCL fall time
-
300
-
300
th(STA)
Start condition hold time
4.0
-
0.6
-
tsu(STA)
Setup time of repeated start condition
4.7
-
0.6
-
tsu(STO)
Setup time of stop condition
4.0
-
0.6
-
4.7
-
1.3
-
-
400
-
400
μs
ns
tw(STO:STA)
Cb
Time from stop condition to start condition
(the bus is idle)
Capacitive load of each bus
μs
pF
Note: The data are obtained from a comprehensive evaluation and are not tested in production.
w w w. g e e h y. c o m
Page 85
Figure 13 Bus AC Waveform and Measurement Circuit
VDD
4.7KΩ
VDD
4.7KΩ
SDA
I2C bus
MCU
SCL
Repeated start condition
tsu(STA)
Start condition
Start condition
SDA
tf(STA)
th(STA)
tr(SDA)
tsu(SDA)
tw(SCLH)
tsu(STO:STA)
Stop condition
th(SDA)
SCL
tw(SCLL)
tf(SCL)
tf(SCL)
tsu(STO)
Note: The measuring points are set at CMOS levels: 0.3VDD and 0.7VDD.
5.11.2 SPI peripheral characteristics
Table 49 SPI Characteristics (TA=25℃, VDD=3.3V)
Symbol
Parameter
Conditions
Min
Max
Master mode
-
18
Slave mode
-
18
SI clock rise and fall time
Load capacitance: C=15pF
-
6
tsu(NSS)
NSS setup time
Slave mode
4TPCLK
-
th(NSS)
NSS hold time
Slave mode
2TPCLK + 10
-
TPCLK/2-2
TPCLK/2+1
Master mode
4
-
Slave mode
5
-
Master mode
4
-
Slave mode
5
-
fSCK
SPI clock frequency
1/tc(SCK)
tr(SCK)
tf(SCK)
tw(SCKH)
tw(SCKL)
SCK high and low time
tsu(MI)
MHz
Master mode, fPCLK=36MHz,
Prescaler factor=4
Data input setup time
tsu(SI)
th(MI)
Unit
ns
Data input hold time
th(SI)
ta(SO)
Data output access time
Slave mode, fPCLK=20MHz
0
3TPCLK
tdis(SO)
Disable time of data output
Slave mode
0
18
tv(SO)
Effective time of data output
-
22.5
w w w. g e e h y. c o m
Slave mode (after enabling
the edge)
Page 86
Symbol
Parameter
Conditions
tv(MO)
Effective time of data output
Max
-
6.97
11.5
-
1
-
25
75
Master mode (after enabling
the edge)
Slave mode (after enabling
th(SO)
the edge)
Data output hold time
Min
Master mode (after enabling
th(MO)
the edge)
SPI clock frequency duty
DuCy(SCK)
Slave mode
cycle
Unit
%
Note: The data are obtained from a comprehensive evaluation and are not tested in production.
Figure 14 SPI Timing Diagram - Slave Mode and CPHA=0
NSS input
tSU(NSS)
CPHA=0
CPOL=0
CPHA=0
CPOL=1
tc(SCK)
th(NSS)
th(SCKH)
tW(SCKL)
SCK input
ta(SO)
MISO output
tV(SO)
tr(SCK)
tf(SCK)
th(SO)
Output the most
significant bit
tdls(SO)
Output the least
significant bit
Output Bits 6~1
tSU(SI)
Input the most
significant bit
Input Bits 6~1
Input the least
significant bit
MOSI input
Figure 15 SPI Timing Diagram - Slave Mode and CPHA=1
NSS input
tc(SCK)
tSU(NSS)
CPHA=1
CPOL=0
CPHA=1
CPOL=1
SCK input
MISO
output
th(NSS)
tW(SCKH)
tW(SCKL)
tr(SCK)
tf(SCK)
tV(SO)
ta(SO)
Output the most
significant bit
tSU(SI)
tdis(SO)
th(SO)
Output Bits 6~1
Output the least
significant bit
th(SI)
Input the most significant
bit
Input Bits 6~1
Input the least
significant bit
MOSI input
Note: The measuring points are set at CMOS levels: 0.3VDD and 0.7VDD.
w w w. g e e h y. c o m
Page 87
Figure 16 SPI Timing Diagram - Master Mode
High level
tc(SCK)
NSS input
CPHA=0
CPOL=0
CPHA=0
CPOL=1
SCK input
CPHA=1
CPOL=0
CPHA=1
CPOL=1
SCK input
tW(SCKH)
tW(SCKL)
tSU(MI)
MISO input
MOSI output
Input the most
significant bit
th(MI)
Output the most
significant bit
Input Bits 6~1
Output the least
significant bit
Output Bits 6~1
tv(MO)
tr(SCK)
tf(SCK)
Input the least
significant bit
th(MO)
Note: The measuring points are set at CMOS levels: 0.3VDD and 0.7VDD.
5.12
Analog peripherals
5.12.1 ADC
Test parameter description:
Sampling rate: the number of conversion of analog quantity to digital quantity by ADC
per second
Sample rate=ADC clock/(number of sampling periods + number of conversion periods)
5.12.1.1 12-bit ADC characteristics
Table 50 12-bit ADC Characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
VDDA
Power supply voltage
-
1.8
-
3.6
V
IDDA
ADC power consumption
-
-
1.6
1.8
mA
VDDA=1.8~2.4V
0.6
15
18
fADC
ADC frequency
MHz
VDDA=2.4~3.6V
0.6
30
36
CADC
Internal sampling and holding capacitance
-
-
4
-
pF
RADC
Sampling resistor
-
-
-
6000
Ω
tS
Sampling time
fADC=30MHz
0.1
16
μs
w w w. g e e h y. c o m
Page 88
Symbol
Parameter
Conditions
Min
-
3
fADC=30MHz
12-bit resolution
fADC=30MHz
TCONV
Sampling and conversion time
10-bit resolution
fADC=30MHz
8-bit resolution
fADC=30MHz
6-bit resolution
Typ
Max
Unit
480
1/fADC
0.50
-
16.40
μs
0.43
-
16.34
μs
0.37
-
16.27
μs
0.30
-
16.20
μs
Table 51 12-bit ADC Accuracy
Symbol
Parameter
ET
Composite error
Conditions
fPCLK=56MHz,
Typ
Max
±2
±5
±1.5
±2.5
EO
Offset error
EG
Gain error
fADC=14MHz,
±1.5
±3
ED
Differential linear error
VDDA=2.4V-3.6V
±1
±2
EL
Integral linear error
±1.5
±3
TA=-40℃~105℃
Unit
LSB
Note: The data are obtained from a comprehensive evaluation and are not tested in production.
5.12.1.2 Test of Built-in Reference Voltage Characteristics
Table 52 Built-in Reference Voltage Characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
VREFINT
Built-in Reference Voltage
-40℃ < TA < +105℃
1.19
1.20
1.20
V
-
10
-
-
μs
VDD=3V
-
3
5
mV
-
-
30
50
ppm/℃
TS_vrefint
Sampling time of ADC when reading out
VRERINT
internal reference voltage
Built-in reference voltage extends to
Tcoeff
temperature range
Temperature coefficient
Note: The data are obtained from a comprehensive evaluation and are not tested in production.
5.12.2 DAC
Test parameter description:
DNL differential non-linear error: the deviation between two consecutive codes is 1LSB
INL integral non-linear error: the difference between the measured value at code i and
the value at code i on the connection between code 0 and the last code 4095
w w w. g e e h y. c o m
Page 89
Table 53 DAC Characteristics
Symbol
VDDA
Parameter
Analog power
supply voltage
RLOAD
Resistive load
RO
Output impedance
CLOAD
Capacitive load
Conditions
Min
Typ
Max
Unit
-
1.8
-
3.6
V
The buffer is turned on
5
-
-
kΩ
-
-
15
kΩ
-
-
50
pF
0.2
-
-
V
-
-
VDDA-0.2
V
-
0.5
-
mV
-
-
Configured with 12-bit DAC
-
-
±2
LSB
Configured with 12-bit DAC
-
-
±4
LSB
The resistive load between DAC_OUT
and VSS is 1.5MΩ with buffer off
Maximum capacitive load at
DAC_OUT pin with buffer on
DAC_OUT
Low DAC_OUT
Maximum output offset of DAC,
min
voltage with buffer
(0x0E0) corresponding to 12-bit input
DAC_OUT
Higher DAC_OUT
code to VREF+= (0xF1C) at 3.6V and
max
voltage with buffer
VREF+= (0x1C7) at 1.8V and (0xE38)
DAC_OUT
min
DAC_OUT
max
DNL
INL
Low DAC_OUT
voltage without
buffer
Higher DAC_OUT
Maximum output offset of DAC
voltage without
buffer
Differential nonlinear error
Integral non-linear
error
VREF+1LSB
V
Offset
Offset error
VREF+=3.6V, configuring 12-bit DAC
-
-
±12
LSB
Gain error
Gain error
Configured with 12-bit DAC
-
-
±0.5
%
Note: The data are obtained from a comprehensive evaluation and are not tested in production.
w w w. g e e h y. c o m
Page 90
6
Package Information
6.1
LQFP176 package information
Figure 17 LQFP176 Package Diagram
w w w. g e e h y. c o m
Page 91
(1)
The figure is not drawn to scale.
(2)
All pins should be soldered to the PCB.
S/N
SYM
DIMENSIONS
REMARKS
1
A
MAX. 1.600
OVERALL HEIGHT
2
A2
1.400±0.050
PKG THICKNESS
3
D
26.000±0.200
LEAD TIP TO TIP
4
D1
24.000±0.100
PKG LENGTH
5
E
26.000±0.200
LEAD TIP TO TIP
6
E1
24.000±0.100
PKG WDTH
7
L
0.600±0.150
FOOT LENGTH
8
L1
1.000 REF
LEAD LENGTH
9
e
0.500 BASE
LEAD PITCH
10
H(REF)
(21.50)
CUM LEAD PITCH
11
b
0.22±0.050
LEAD WIDTH
Table 54 LQFP176 Package Data
Note: Dimensions are marked in millimeters.
Figure 18 LQFP176 -176 Pins, 24 x24mm Welding Layout Recommendations
1.2
1
176
0.5
133
132
21.8
26.7
0.3
44
45
89
88
1.2
21.8
26.7
w w w. g e e h y. c o m
Page 92
Figure 19 LQFP176 -176 Pins, 24 x24mm Schematic Diagram
Company Logo
Product series
Specific model
APM32
F407IET6
XX
XXXX
Version number
Year and week
number
Arm authorization
logo
PIN1
6.2 LQFP144 package information
Figure 20 LQFP144 Package Diagram
w w w. g e e h y. c o m
Page 93
(1)
The figure is not drawn to scale.
(2)
All pins should be soldered to the PCB.
Table 55 LQFP144 Package Data
S/N
SYM
DIMENSIONS
REMARKS
1
A
MAX. 1.600
OVERALL HEIGHT
2
A2
1.400±0.050
PKG THICKNESS
3
D
22.000±0.200
LEAD TIP TO TIP
4
D1
20.000±0.100
PKG LENGTH
5
E
22.000±0.200
LEAD TIP TO TIP
6
E1
20.000±0.100
PKG WDTH
7
L
0.600±0.150
FOOT LENGTH
8
L1
1.000 REF
LEAD LENGTH
9
e
0.500 BASE
LEAD PITCH
10
H(REF)
(17.50)
CUM LEAD PITCH
11
b
0.22±0.050
LEAD WIDTH
Note: Dimensions are marked in millimeters.
w w w. g e e h y. c o m
Page 94
Figure 21 LQFP144-144 Pins, 20 x 20mm Welding Layout Recommendations
Note: Dimensions are marked in millimeters.
Figure 22 LQFP144 -144 Pins, 20 x20mm Schematic Diagram
Company Logo
Product series
Specific model
APM32
F407ZET6
XX
XXXX
Version number
Year and week
number
Arm authorization
logo
PIN1
w w w. g e e h y. c o m
Page 95
6.3
LQFP100 package information
Figure 23 LQFP100 Package Diagram
(1)
The figure is not drawn to scale.
(2)
All pins should be soldered to the PCB.
Table 56 LQFP100 Package Data
w w w. g e e h y. c o m
Page 96
DIMENSION LIST(FOOTPRINT: 2.00)
S/N
SYM
DIMENSIONS
REMARKS
1
A
MAX. 1.600
OVERALL HEIGHT
2
A2
1.400±0.050
PKG THICKNESS
3
D
16.000±0.200
LEAD TIP TO TIP
4
D1
14.000±0.100
PKG LENGTH
5
E
16.000±0.200
LEAD TIP TO TIP
6
E1
14.000±0.100
PKG WDTH
7
L
0.600±0.150
FOOT LENGTH
8
L1
1.000 REF
LEAD LENGTH
9
e
0.500 BASE
LEAD PITCH
10
H(REF)
(12.00)
CUM LEAD PITCH
11
b
0.22±0.050
LEAD WIDTH
Note: Dimensions are marked in millimeters.
Figure 24 LQFP100 - 100 Pins, 14 x 14mm Welding Layout Recommendations
Note: Dimensions are marked in millimeters.
w w w. g e e h y. c o m
Page 97
Figure 25 LQFP100 - 100 Pins, 14 x 14mm Package Schematic Diagram
Company Logo
Product series
Specific model
APM32
F407VET6
XX
XXXX
Version number
Year and week
number
Arm authorization
logo
PIN1
w w w. g e e h y. c o m
Page 98
6.4
LQFP64 package information
Figure 26 LQFP64 Package Diagram
(1)
The figure is not drawn to scale.
(2)
All pins should be soldered to the PCB.
w w w. g e e h y. c o m
Page 99
Table 57 LQFP64 Package Data
S/N
SYM
DIMENSIONS
REMARKS
1
A
MAX.1.600
OVERALLHEIGHT
2
A2
1.400±0.050
PKGTHICKNESS
3
D
12.000±0.200
LEADTIPTOTIP
4
D1
10.000±0.100
PKGLENGTH
5
E
12.000±0.200
LEADTIPTOTIP
6
E1
10.000±0.100
PKGWIDTH
7
L
0.600±0.150
FOOTLENGTH
8
L1
1.000REF.
LEADLENGTH
9
e
0.500BASE
LEADPITCH
10
H(REF.)
(7.500)
GUM.LEADPITCH
11
b
0.220±0.050
LEADWIDTH
Note: Dimensions are marked in millimeters.
Figure 27 LQFP64 Welding Layout Recommendations
48
33
49
0.30
32
0.5
10.3
12.7
10.3
17
64
1
16
1.2
7.8
12.7
Note: Dimensions are marked in millimeters.
w w w. g e e h y. c o m
Page 100
Figure 28 LQFP64 - 64 Pins, 10 x 10mm Package Schematic Diagram
Company Logo
Product series
Specific model
APM32
F407RET6
XX
XXXX
Version number
Year and week
number
Arm authorization
logo
PIN1
w w w. g e e h y. c o m
Page 101
7
Packaging Information
7.1
Reel packaging
Figure 29 Specification Drawing of Reel Packaging
A0
Dimension designed to accommodate the component width
B0
Dimension designed to accommodate the component length
K0
Dimension designed to accommodate the component thickness
W
Overall width of the carrier tape
Quadrant Assignments for PIN1 Orientation in Tape
Reel Dimensions
w w w. g e e h y. c o m
Page 102
All photos are for reference only, and the appearance is subject to the product.
Table 58 Reel Packaging Parameter Specification Table
Device
Package
Type
Reel
Pins
SPQ
Diameter
(mm)
A0
B0
K0
W
Pin1
(mm)
(mm)
(mm)
(mm)
Quadrant
APM32F407RET6
LQFP
64
1000
330
12.35
12.35
2.2
24
Q1
APM32F407RGT6
LQFP
64
1000
330
12.35
12.35
2.2
24
Q1
APM32F405RGT6
LQFP
64
1000
330
12.35
12.35
2.2
24
Q1
7.2
Tray packaging
Figure 30 Tray Packaging Diagram
Tray Dimensions
w w w. g e e h y. c o m
Page 103
All photos are for reference only, and the appearance is subject to the product
Table 59 Tray Packaging Parameter Specification Table
Device
Package
Type
Pins
SPQ
X-Dimension
Y-Dimension
X-Pitch
Y-Pitch
(mm)
(mm)
(mm)
(mm)
Tray
Tray
Length
Width
(mm)
(mm)
APM32F407IET6
LQFP
176
400
27
27
30.4
31.5
322.6
135.9
APM32F407IGT6
LQFP
176
400
27
27
30.4
31.5
322.6
135.9
APM32F407ZET6
LQFP
144
600
22.06
22.06
25.4
25.2
322.6
135.9
APM32F407ZGT6
LQFP
144
600
22.06
22.06
25.4
25.2
322.6
135.9
APM32F407VET6
LQFP
100
900
16.6
16.6
20.3
21
322.6
135.9
APM32F407VGT6
LQFP
100
900
16.6
16.6
20.3
21
322.6
135.9
APM32F407RET6
LQFP
64
1600
12.3
12.3
15.2
15.7
322.6
135.9
APM32F407RGT6
LQFP
64
1600
12.3
12.3
15.2
15.7
322.6
135.9
APM32F405ZGT6
LQFP
144
600
22.06
22.06
25.4
25.2
322.6
135.9
APM32F405VGT6
LQFP
100
900
16.6
16.6
20.3
21
322.6
135.9
APM32F405RGT6
LQFP
64
1600
12.3
12.3
15.2
15.7
322.6
135.9
w w w. g e e h y. c o m
Page 104
8
Ordering Information
Figure 31 APM32F405xG 407xExG Series Ordering Information Diagram
APM32
F
407
Z
G
T
6
XXX
Product series
APM32=Arm-based 32-bit MCU
Option
XX=Programmed device code
R=Reel package
Blank=Tray package
Product type
F=Foundation
Temperature range
6=Industrial-grade temperature
range, -40 -85
Product subseries
405/407=High-performance and
DSP with FPU
Package
T=LQFP
Number of pins
R=64 pins
V=100pins
Z=144pins
I=176pins
Flash memory capacity
E =512 KB
G =1 MB
Table 60 Ordering Information Table
Order code
FLASH(KB)
SRAM(KB)
Package
SPQ
Range of temperature
APM32F407IGT6
1024
192+4
LQFP176
400
Industrial grade -40℃~85℃
APM32F407IET6
512
192+4
LQFP176
400
Industrial grade -40℃~85℃
APM32F407ZGT6
1024
192+4
LQFP144
600
Industrial grade -40℃~85℃
APM32F407ZET6
512
192+4
LQFP144
600
Industrial grade -40℃~85℃
APM32F407VGT6
1024
192+4
LQFP100
900
Industrial grade -40℃~85℃
APM32F407VET6
512
192+4
LQFP100
900
Industrial grade -40℃~85℃
APM32F407RGT6
1024
192+4
LQFP64
1600
Industrial grade -40℃~85℃
APM32F407RET6
512
192+4
LQFP64
1600
Industrial grade -40℃~85℃
APM32F407RGT6-R
1024
192+4
LQFP64
1000
Industrial grade -40℃~85℃
APM32F407RET6-R
512
192+4
LQFP64
1000
Industrial grade -40℃~85℃
APM32F405ZGT6
1024
192+4
LQFP144
600
Industrial grade -40℃~85℃
APM32F405VGT6
1024
192+4
LQFP100
900
Industrial grade -40℃~85℃
APM32F407RGT6
1024
192+4
LQFP64
1600
Industrial grade -40℃~85℃
APM32F405RGT6-R
1024
192+4
LQFP64
1000
Industrial grade -40℃~85℃
w w w. g e e h y. c o m
Page 105
9
Commonly Used Function Module Denomination
Table 61 Commonly Used Function Module Denomination
Chinese description
Abbreviations
Reset management unit
RMU
Clock management unit
CMU
Reset and clock management
RCM
External interrupt
EINT
General-purpose IO
GPIO
Multiplexing IO
AFIO
Wake-up controller
WUPT
Buzzer
BUZZER
Independent watchdog timer
IWDT
Window watchdog timer
WWDT
Timer
TMR
CRC controller
CRC
Power Management Unit
PMU
DMA controller
DMA
Analog-to-digital converter
ADC
Real-time clock
RTC
External memory controller
EMMC
Controller local area network
CAN
I2C Interface
I2C
Serial peripheral interface
SPI
Universal asynchronous transmitter receiver
UART
Universal synchronous and asynchronous transmitter receiver
USART
Flash interface control unit
FMC
w w w. g e e h y. c o m
Page 106
10
Version History
Table 62 Document Version History
Date
Version
Change History
2021.10
1.0
New creation
2022.4.1
1.1
(1) Modify pin definitions
(2) The APM32F405xG model is added
(1) Add 3.3 GPIO Multiplexing Function Configuration
2022.7.12
1.2
(2) Modify the Arm trademark
(3) Add the statement
(4) Add DMC pin description
w w w. g e e h y. c o m
Page 107
Statement
This document is formulated and published by Geehy Semiconductor Co., Ltd. (hereinafter
referred to as “Geehy”). The contents in this document are protected by laws and regulations of
trademark, copyright and software copyright. Geehy reserves the right to make corrections and
modifications to this document at any time. Please read this document carefully before using
Geehy products. Once you use the Geehy product, it means that you (hereinafter referred to as
the “users”) have known and accepted all the contents of this document. Users shall use the
Geehy product in accordance with relevant laws and regulations and the requirements of this
document.
1. Ownership
This document can only be used in connection with the corresponding chip products or
software products provided by Geehy. Without the prior permission of Geehy, no unit or
individual may copy, transcribe, modify, edit or disseminate all or part of the contents of this
document for any reason or in any form.
The “极海” or “Geehy” words or graphics with “®” or “TM” in this document are trademarks of
Geehy. Other product or service names displayed on Geehy products are the property of their
respective owners.
2. No Intellectual Property License
Geehy owns all rights, ownership and intellectual property rights involved in this document.
Geehy shall not be deemed to grant the license or right of any intellectual property to users
explicitly or implicitly due to the sale or distribution of Geehy products or this document.
If any third party’s products, services or intellectual property are involved in this document,
it shall not be deemed that Geehy authorizes users to use the aforesaid third party’s products,
services or intellectual property, unless otherwise agreed in sales order or sales contract.
3. Version Update
Users can obtain the latest document of the corresponding models when ordering Geehy
products.
If the contents in this document are inconsistent with Geehy products, the agreement in
thesales order or the sales contract shall prevail.
4. Information Reliability
The relevant data in this document are obtained from batch test by Geehy Laboratory or
cooperative third-party testing organization. However, clerical errors in correction or errors
caused by differences in testing environment may occur inevitably. Therefore, users should
understand that Geehy does not bear any responsibility for such errors that may occur in this
document. The relevant data in this document are only used to guide users as performance
w w w. g e e h y. c o m
Page 108
parameter reference and do not constitute Geehy’s guarantee for any product performance.
Users shall select appropriate Geehy products according to their own needs, and
effectively verify and test the applicability of Geehy products to confirm that Geehy products
meet their own needs, corresponding standards, safety or other reliability requirements. If loses
are caused to users due to the user’s failure to fully verify and test Geehy products, Geehy will
not bear any responsibility.
5. Legality
USERS SHALL ABIDE BY ALL APPLICABLE LOCAL LAWS AND REGULATIONS WHEN
USING THIS DOCUMENT AND THE MATCHING GEEHY PRODUCTS. USERS SHALL
UNDERSTAND THAT THE PRODUCTS MAY BE RESTRICTED BY THE EXPORT, REEXPORT OR OTHER LAWS OF THE COUNTIRIES OF THE PRODUCTS SUPPLIERS,
GEEHY, GEEHY DISTRIBUTORS AND USERS. USERS (ON BEHALF OR ITSELF,
SUBSIDIARIES AND AFFILIATED ENTERPRISES) SHALL AGREE AND PROMISE TO ABIDE
BY ALL APPLICABLE LAWS AND REGULATIONS ON THE EXPORT AND RE-EXPORT OF
GEEHY PRODUCTS AND/OR TECHNOLOGIES AND DIRECT PRODUCTS.
6. Disclaimer of Warranty
THIS DOCUMENT IS PROVIDED BY GEEHY "AS IS" AND THERE IS NO WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, TO
THE EXTENT PERMITTED BY APPLICABLE LAW.
GEEHY WILL BEAR NO RESPONSIBILITY FOR ANY DISPUTES ARISING FROM THE
SUBSEQUENT DESIGN OR USE BY USERS.
7. Limitation of Liability
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL GEEHY OR ANY OTHER PARTY WHO PROVIDE THE DOCUMENT "AS IS", BE LIABLE
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, DIRECT, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
DOCUMENT (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY USERS OR THIRD PARTIES).
8. Scope of Application
The information in this document replaces the information provided in all previous versions
of the document.
© 2021-2022 Geehy Semiconductor Co., Ltd. - All Rights Reserved
w w w. g e e h y. c o m
Page 109