0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
APM32F107RCT6

APM32F107RCT6

  • 厂商:

    GEEHY(极海)

  • 封装:

    LQFP-64

  • 描述:

    ARM® Cortex®-M3 null 微控制器 IC 32-位 96MHz 256KB(256K x 8) 闪存 64-LQFP(10x10)

  • 数据手册
  • 价格&库存
APM32F107RCT6 数据手册
Datasheet APM32F107xBxC APM32F105x8xBxC Arm® Cortex®-M3 based 32-bit MCU Version: V0.4(The current manual is draft and official version will be released in April) 1. Product characteristics  Core – – 32-bit Arm Cortex -M3 core Up to 96MHz working frequency  On-chip memory – Flash:up to 256KB – SRAM:up to 64KB  Clock – HSECLK: 3~25MHz external crystal/ceramic oscillator supported LSECLK: 32.768KHz crystal/ceramic oscillator supported – – – ® – 3 USART, 2 UART, support ISO7816, LIN and IrDA functions – 3 SPI (2 reusable I2S), maximum transmission speed 18Mbps – – – 2 CAN 1 USB OTG_FS Controller Ethernet MAC  Analog peripherals – 2 12-bit ADCs – 2 12-bit DACs  Timer – 1 16-bit advanced timers TMR1 that can provide 7 channels PWM output, support dead zone generation and braking input functions – 4 16-bit general-purpose timers TMR2/3/4/5, each with up to 4 independent channels to support input capture, output comparison, PWM, pulse count and other functions – – 2 16-bit basic timers TMR6/7 2 watchdog timers: one independent watchdog IWDT and one window watchdog WWDT 1 24-bit autodecrement SysTick Timer ® HSICLK: 8MHz RC calibrated by factory LSICLK: 40KHz RC supported oscillator oscillator – PLL: 3 configurable phase-locked loops are provided  Reset and power management – VDD range: 2.0~3.6V – VDDA range: 2.0~3.6V – VBAT range of backup domain power supply: 1.8V~3.6V – Power-on/power-down (POR/PDR) supported – Programmable power supply voltage detector supported(PVD)  RTC  Low-power mode – Support calendar functions – Sleep, stop and standby modes supported  DMA    84Bytes backup register CRC computing unit 96-bit unique device ID – Two DMA; DMA1 supports 7 channels and DMA2 supports 5 channels  Debugging interface – – JTAG SWD  I/O – – – Up to 80 I/Os All I/Os can be mapped to external interrup vector Up to 60 FT input I/Os  Communication peripherals – 2 I2C interfaces (1Mbit/s), all of which support SMBus/PMBus www.geehy.com reset – Page 1 Contents 1. Product characteristics.............................................................................................. 1 2. Product information ................................................................................................... 5 3. Pin information ........................................................................................................... 6 3.1. Pin distribution ................................................................................................................................... 6 3.2. Pin function description ..................................................................................................................... 7 4. Functional description ............................................................................................. 15 4.1. System architecture ......................................................................................................................... 16 4.1.1. System block diagram ............................................................................................................................. 16 4.1.2. Address mapping ..................................................................................................................................... 17 4.1.3. Startup configuration ............................................................................................................................... 19 4.2. Core ................................................................................................................................................. 19 4.3. Interrupt controller............................................................................................................................ 19 4.3.1. Nested Vector Interrupt Controller (NVIC) ............................................................................................... 19 4.3.2. External Interrupt/Event Controller (EINT) .............................................................................................. 19 4.4. On-chip memory .............................................................................................................................. 20 4.5. Clock ................................................................................................................................................ 20 4.5.1. Clock tree................................................................................................................................................. 20 4.5.2. Clock source ............................................................................................................................................ 21 4.5.3. System clock ........................................................................................................................................... 22 4.5.4. Bus clock ................................................................................................................................................. 22 4.6. Power supply and power management ........................................................................................... 22 4.6.1. Power supply scheme ............................................................................................................................. 22 4.6.2. Voltage regulator ..................................................................................................................................... 22 4.6.3. Power supply voltage monitor ................................................................................................................. 22 4.7. Low-power mode ............................................................................................................................. 23 4.8. DMA ................................................................................................................................................. 23 4.9. GPIO ................................................................................................................................................ 23 4.10. Communication peripherals ............................................................................................................. 23 4.10.1. USART/UART .......................................................................................................................................... 23 4.10.2. I2C ........................................................................................................................................................... 24 w w w. g e e h y. c o m Page 2 4.10.3. SPI/I2S..................................................................................................................................................... 24 4.10.4. CAN ......................................................................................................................................................... 24 4.10.5. USB OTG_FS .......................................................................................................................................... 24 4.10.6. Ethernet ................................................................................................................................................... 24 4.11. Analog peripherals ........................................................................................................................... 25 4.11.1. ADC ......................................................................................................................................................... 25 4.11.2. DAC ......................................................................................................................................................... 25 4.12. Timer ................................................................................................................................................ 25 4.13. RTC .................................................................................................................................................. 26 4.13.1. Backup register ........................................................................................................................................ 27 4.14. CRC ................................................................................................................................................. 27 5. Electrical characteristics ......................................................................................... 28 5.1. Test conditions of electrical characteristics ..................................................................................... 28 5.1.1. Maximum and minimum values ............................................................................................................... 28 5.1.2. Typical value ............................................................................................................................................ 28 5.1.3. Typical curve ............................................................................................................................................ 28 5.1.4. Power supply scheme ............................................................................................................................. 29 5.1.5. Load capacitance .................................................................................................................................... 29 5.2. Test under general operating conditions ......................................................................................... 30 5.3. Absolute maximum ratings .............................................................................................................. 30 5.3.1. Maximum temperature characteristics .................................................................................................... 31 5.3.2. Maximum rated voltage characteristics ................................................................................................... 31 5.3.3. Maximum rated current features ............................................................................................................. 31 5.3.4. Electrostatic discharge (ESD).................................................................................................................. 32 5.3.5. Static latch-up (LU) .................................................................................................................................. 32 5.4. On-chip memory .............................................................................................................................. 32 5.4.1. Flash characteristics ................................................................................................................................ 32 5.5. Clock ................................................................................................................................................ 33 5.5.1. Characteristics of external clock source .................................................................................................. 33 5.5.2. Characteristics of internal clock source ................................................................................................... 33 5.5.3. PLL Characteristics.................................................................................................................................. 34 w w w. g e e h y. c o m Page 3 5.6. Reset and power management ....................................................................................................... 35 5.6.1. Test of embedded reset and power control block characteristics............................................................ 35 5.7. Power consumption ......................................................................................................................... 36 5.7.1. Power consumption test environment ..................................................................................................... 36 5.7.2. Power consumption in run mode ............................................................................................................. 37 5.7.3. Power consumption in sleep mode ......................................................................................................... 38 5.7.4. Power consumption in stop mode and standby mode ............................................................................ 39 5.7.5. Backup domain power consumption ....................................................................................................... 39 5.7.6. Peripheral power consumption ................................................................................................................ 39 5.8. Wake-up time in low power mode ................................................................................................... 41 5.9. Pin characteristics............................................................................................................................ 41 5.9.1. I/O pin characteristics .............................................................................................................................. 41 5.9.2. NRST pin characteristics ......................................................................................................................... 43 5.10. Communication peripherals ............................................................................................................. 43 5.10.1. I2C peripheral characteristics .................................................................................................................. 43 5.10.2. SPI peripheral characteristics .................................................................................................................. 45 5.11. Analog peripherals ........................................................................................................................... 46 5.11.1. ADC ......................................................................................................................................................... 46 5.11.2. DAC ......................................................................................................................................................... 48 6. Package information ................................................................................................ 49 6.1. LQFP100 package diagram............................................................................................................. 49 6.2. LQFP64 package diagram............................................................................................................... 52 7. Packaging information ............................................................................................. 54 7.1. Reel packaging ................................................................................................................................ 54 7.2. Tray packaging ................................................................................................................................ 55 8. Ordering information................................................................................................ 57 9. Commonly used function module denomination .................................................. 58 10. Version history ......................................................................................................... 59 w w w. g e e h y. c o m Page 4 2. Product information See the following table for APM32F107 105xx product functions and peripheral configuration. Table 1 Functions and Peripherals of APM32F107 105xx Series Chips Product APM32F105 Model R8T6 Package RBT6 RCT6 V8T6 LQFP64 VBT6 Operating voltage 32-bit 128 256 64 51 128 LQFP64 256 80 VCT6 LQFP100 128 256 128 51 USART/UART 3/2 SPI/I2S 3/2 I2C interface USB OTG_FS Ethernet 2 256 1 0 1 2 16-bit advanced 1 16-bit general 4 16-bit basic 2 System tick timer 1 Watchdog 2 1 Unit 2 External channel 16 Internal channel 2 Unit 2 Channel 2 Operating temperature 80 1 CAN Real-time clock w w w. g e e h y. c o m VBT6 64 Communication 12-bit DAC RCT6 2.0~3.6V 64 GPIOs 12-bit ADC RBT6 Cortex®-M3@96MHz SRAM(KB) Timer VCT6 LQFP100 Arm® Core and maximum working frequency Flash(KB) APM32F107 Ambient temperature:-40°C 至 85°C Junction temperature:-40°C 至 105°C Page 5 3. Pin information 3.1. Pin distribution LQFP100 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 VDD_2 VSS_2 NC PA13 PA12 PA11 PA10 PA9 PA8 PC9 PC8 PC7 PC6 PD15 PD14 PD13 PD12 PD11 PD10 PD9 PD8 PB15 PB14 PB13 PB12 PA3 VSS_4 VDD_4 PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PE7 PE8 PE9 PE10 PE11 PE12 PE13 PE14 PE15 PB10 PB11 VSS_1 VDD_1 PE2 PE3 PE4 PE5 PE6 VBAT PC13-TAMPER-RTC PC14-OSC32_IN PC15-OSC32_OUT VSS_5 VDD_5 OSC_IN OSC_OUT NRST PC0 PC1 PC2 PC3 VSSA VREFVREF+ VDDA PA0-WKUP PA1 PA2 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 VDD_3 VSS_3 PE1 PE0 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 PC12 PC11 PC10 PA15 PA14 Figure 1 Distribution Diagram of APM32F107 105xx Series LQFP100 Pins w w w. g e e h y. c o m Page 6 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 VDD_3 VSS_3 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PD2 PC12 PC11 PC10 PA15 PA14 Figure 2 Distribution Diagram of APM32F107 105xx Series LQFP64 Pins 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 LQFP64 VDD_2 VSS_2 PA13 PA12 PA11 PA10 PA9 PA8 PC9 PC8 PC7 PC6 PB15 PB14 PB13 PB12 PA3 VSS_4 VDD_4 PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PB10 PB11 VSS_1 VDD_1 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 VBAT PC13-TAMPER-RTC PC14-OSC32_IN PC15-OSC32_OUT PD0-OSC_IN PD1-OSC_OUT NRST PC0 PC1 PC2 PC3 VSSA VDDA PA0-WKUP PA1 PA2 3.2. Pin function description Table 2 Legends/Abbreviations Used in Output Pin Table Name Pin name Pin type Abbreviation Definition Unless otherwise specified in parentheses below the pin name, the pin functions during and after reset are the same as the actual pin name P Power pin I Only input pin I/O I/O pin 5T FT I/O 5Tf FT I/O, FM+ function STDA I/O with 3.3 V standard, directly connected to ADC STD I/O with 3.3 V standard B Dedicated Boot0 pin RST Bidirectional reset pin with built-in pull-up resistor I/O structure Note w w w. g e e h y. c o m Unless otherwise specified in the notes, all I/O is set as floating input during and after reset Page 7 Name Abbreviation Definition Default Pin function multiplexing Function directly selected/enabled through peripheral register function Remap Select this function through AFIO remapping register Table3 Description of APM32F107 105xx by Pin Function Name (Function after Type Structure PE2 I/O 5T PE3 I/O PE4 Default multiplexing Remap LQFP64 LQFP100 TRACECK - - 1 5T TRACED0 - - 2 I/O 5T TRACED1 - - 3 PE5 I/O 5T TRACED2 - - 4 PE6 I/O 5T TRACED3 - - 5 VBAT P - - - 1 6 I/O STD TAMPER_RTC - 2 7 I/O STD OSC32_IN - 3 8 I/O STD OSC32_OUT - 4 9 VSS_5 P - - - - 10 VDD_5 P - - - - 11 OSC_IN I STD - - 5 12 OSC_OUT O STD - - 6 13 NRST I/O RST - - 7 14 PC0 I/O STDA ADC12_IN10 - 8 15 - 9 16 - 10 17 - 11 18 - 12 19 reset) function PC13TAMPER-RTC (PC13) PC14OSC32_IN (PC14) PC15OSC32_OUT (PC15) ADC12_IN11, PC1 I/O STDA ETH_MII_MDC, ETH_RMII_MDC PC2 I/O STDA PC3 I/O STDA VSSA P - w w w. g e e h y. c o m ADC12_IN12, ETH_MII_TXD2 ADC12_IN13, ETH_MII_TX_CLK - Page 8 Name (Function after Type Structure VREF- P - VREF+ P VDDA P Default multiplexing Remap LQFP64 LQFP100 - - - 20 - - - - 21 - - - 13 22 - 14 23 - 15 24 - 16 25 - 17 26 reset) function WKUP, USART2_CTS, PA0-WKUP (PA0) I/O STDA ADC12_IN0, TMR2_CH1_ETR, TMR5_CH1, ETH_MII_CRS_WKUP USART2_RTS, ADC12_IN1, PA1 I/O STDA TMR5_CH2, TMR2_CH2, ETH_MII_RX_CLK, ETH_RMII_REF_CLK USART2_TX, TMR5_CH3, PA2 I/O STDA ADC12_IN2, TMR2_CH3, ETH_MII_MDIO, ETH_RMII_MDIO USART2_RX, TMR5_CH4, PA3 I/O STDA ADC12_IN3, TMR2_CH4, ETH_MII_COL VSS_4 P - - - 18 27 VDD_4 P - - - 19 28 20 29 - 21 30 TMR1_BKIN 22 31 TMR1_CH1N 23 32 SPI1_NSS, PA4 I/O STDA USART2_CK, SPI3_NSS, DAC_OUT1, I2S3_WS ADC12_IN4 SPI1_SCK, PA5 I/O STDA DAC_OUT2, ADC12_IN5 SPI1_MISO, PA6 I/O STDA ADC12_IN6 TMR3_CH1 PA7 w w w. g e e h y. c o m I/O STDA SPI1_MOSI, Page 9 Name (Function after Type Structure reset) Default multiplexing function Remap LQFP64 LQFP100 - 24 33 - 25 34 TMR1_CH2N 26 35 TMR1_CH3N 27 36 ADC12_IN7, TMR3_CH2, ETH_MII_RX_DV, ETH_RMII_CRS_DV ADC12_IN14 PC4 I/O STDA ETH_MII_RXD0, ETH_RMII_RXD0 ADC12_IN15, PC5 I/O STDA ETH_MII_RXD1, ETH_RMII_RXD1 ADC12_IN8, PB0 I/O STDA TMR3_CH3, ETH_MII_RXD2 ADC12_IN9, PB1 I/O STDA TMR3_CH4, ETH_MII_RXD3 PB2 I/O 5T - - 28 37 PE7 I/O 5T - TMR1_ETR - 38 PE8 I/O 5T - TMR1_CH1N - 39 PE9 I/O 5T - TMR1_CH1 - 40 PE10 I/O 5T - TMR1_CH2N - 41 PE11 I/O 5T - TMR1_CH2 - 42 PE12 I/O 5T - TMR1_CH3N - 43 PE13 I/O 5T - TMR1_CH3 - 44 PE14 I/O 5T - TMR1_CH4 - 45 PE15 I/O 5T - TMR1_BKIN - 46 TMR2_CH3 29 47 TMR2_CH4 30 48 (PB2,BOOT1) I2C2_SCL, PB10 I/O 5T USART3_TX, ETH_MII_RX_ER I2C2_SDA, PB11 I/O 5T USART3_RX, ETH_MII_TX_EN, ETH_RMII_TX_EN VSS_1 P - - - 31 49 VDD_1 P - - - 32 50 PB12 I/O 5T SPI2_NSS, - 33 51 w w w. ge e h y. c o m P a ge 1 0 Name (Function after Type Structure reset) Default multiplexing function Remap LQFP64 LQFP100 - 34 52 - 35 53 - 36 54 - 55 - 56 - 57 - 58 - 59 I2S2_WS, I2C2_SMBAI, USART3_CK, TMR1_BKIN, CAN2_RX, ETH_MII_TXD0, ETH_RMII_TXD0 SPI2_SCK, I2S2_CK, USART3_CTS, PB13 I/O 5T TMR1_CH1N, CAN2_TX, ETH_MII_TXD1, ETH_RMII_TXD1 SPI2_MISO, PB14 I/O 5T TMR1_CH2N, USART3_RTS SPI2_MOSI, PB15 I/O 5T I2S2_SD, TMR1_CH3N USART3_TX, PD8 I/O 5T - ETH_MII_RX_DV, ETH_RMII_CRS_DV USART3_RX, PD9 I/O 5T - ETH_MII_RXD0, ETH_RMII_RXD0 USART3_CK, PD10 I/O 5T - ETH_MII_RXD1, ETH_RMII_RXD1 PD11 I/O 5T - USART3_CTS, ETH_MII_RXD2 TMR4_CH1, PD12 I/O 5T - USART3_RTS, ETH_MII_RXD3 PD13 I/O 5T - TMR4_CH2 - 60 PD14 I/O 5T - TMR4_CH3 - 61 PD15 I/O 5T - TMR4_CH4 - 62 PC6 I/O 5T I2S2_MCK TMR3_CH1 37 63 PC7 I/O 5T I2S3_MCK TMR3_CH2 38 64 w w w. g e e h y. c o m P a ge 11 Name (Function after Type Structure PC8 I/O 5T PC9 I/O 5T reset) Default multiplexing Remap LQFP64 LQFP100 - TMR3_CH3 39 65 - TMR3_CH4 40 66 - 41 67 - 42 68 - 43 69 - 44 70 - 45 71 function USART1_CK, PA8 I/O 5T TMR1_CH1, MCO, OTG_FS_SOF USART1_TX, PA9 I/O 5T TMR1_CH2, OTG_FS_VBUS USART1_RX, PA10 I/O 5T TMR1_CH3, OTG_FS_ID USART1_CTS, PA11 I/O 5T OTG_FS_DM, CAN1_RX, TMR1_CH4 USART1_RTS, PA12 I/O 5T OTG_FS_DP, CAN1_TX, TMR1_ETR PA13 I/O 5T - PA13 46 72 NC - - Not connected - - 73 VSS_2 P - - - 47 74 VDD_2 P - - - 48 75 I/O 5T - PA14 49 76 50 77 51 78 52 79 53 80 - 81 (JTMS,SWDIO) PA14 (JTCK,SWCLK) PA15 (JTDI) TMR2_CH1_ETR, I/O 5T SPI3_NSS,I2S3_WS PA15, SPI1_NSS USART3_TX, PC10 I/O 5T UART4_TX SPI3_SCK, I2S3_CK PC11 I/O 5T UART4_RX USART3_RX, SPI3_MISO USART3_CK, PC12 I/O 5T UART5_TX SPI3_MOSI, I2S3_SD PD0 w w w. ge e h y. c o m I/O 5T - CAN1_RX, P a ge 1 2 Name (Function after Type Structure reset) Default multiplexing function (OSC_IN) PD1 Remap LQFP64 LQFP100 - 82 - 54 83 OSC_IN 5T PD2 I/O 5T PD3 I/O 5T - USART2_CTS - 84 PD4 I/O 5T - USART2_RTS - 85 PD5 I/O 5T - USART2_TX - 86 PD6 I/O 5T - USART2_RX - 87 PD7 I/O 5T - USART2_CK - 88 55 89 56 90 57 91 58 92 USART1_RX 59 93 - - 60 94 TMR4_CH3, I2C1_SCL, ETH_MII_TXD3 CAN1_RX 61 95 62 96 (OSC_OUT) - CAN1_TX, I/O TMR3_ETR, UART5_RX, OSC_OUT PB3, PB3 (JTDO) I/O 5T SPI3_SCK, TRACESWO, I2S3_CK TMR2_CH2, SPI1_SCK PB4 (NJTRST) PB4, I/O 5T SPI3_MISO TMR3_CH1, SPI1_MISO I2C1_SMBAI, PB5 I/O STD SPI3_MOSI, TMR3_CH2, I2S3_SD, SPI1_MOSI, ETH_MII_PPS_OUT, CAN2_RX ETH_RMII_PPS_OUT I2C1_SCL, USART1_TX, TMR4_CH1 CAN2_TX PB6 I/O 5T PB7 I/O 5T BOOT0 I B PB8 I/O 5T PB9 I/O 5T TMR4_CH4 PE0 I/O 5T TMR4_ETR - - 97 PE1 I/O 5T - - - 98 VSS_3 P - - - 63 99 VDD_3 P - - - 64 100 I2C1_SDA, TMR4_CH2 I2C1_SDA, CAN1_TX Note: w w w. ge e h y. c o m P a ge 1 3 (1) Function availability depends on the chosen device. For devices having reduced peripheral counts, it is always the lower number of peripheral that is included. For example, if a device has only one SPI and two USARTs, they will be called SPI1 and USART1 & USART2, respectively. (2) PC13, PC14 and PC15 are supplied through the power switch since the switch only sinks a limited amount of current (3mA). The use of GPIOs from PC13 to PC15 in output mode is limited: only one GPIO can be used at a Time, the speed should not exceed 2 MHz with a maximum load of 30pF and these IOs must not be used as a current source (e.g. to drive an LED). (3) Main function after the first backup domain power-up. Later on, it depends on the contents of the Backup registers even after reset (because these registers are not reset by the main reset). For details on how to manage these IOs, refer to the Battery backup domain and BAKPR register description sections in the reference manual. (4) This alternate function can be remapped by software to some other port pins (if available on the used package). For more details, refer to the Alternate Function I/O and Debug Configuration section in the reference manual. (5) SPI2/I2S2 and I2C2 are not available when the Ethernet is being used. (6) Pin5 and pin6 in the LQFP64 package are configured as OSC_IN/OSC_OUT after reset, however the functionality of PD0 and PD1 can be remapped by software on these pins. For the LQFP100 package, PD0 and PD1 are available by default, so there is no need for remapping. For more details, refer to the Alternate Function I/O and Debug Configuration section in the reference manual. The use of PD0 and PD1 in output mode is limited as they can only be used at 50 MHz in output mode. w w w. ge e h y. c o m P a ge 1 4 4. Functional description This chapter mainly introduces the system architecture, interrupt, on-chip memory, clock, power supply and peripheral features of APM32F107 105xx series products; for information about the Arm® Cortex®-M3 core, please refer to the Arm® Cortex®-M3 technical reference manual, which can be downloaded from Arm’s website. w w w. ge e h y. c o m P a ge 1 5 4.1. System architecture 4.1.1. System block diagram Figure 3APM32F107 105xx System Block Diagram Arm® Cortex®-M3 I-Code D-Code Systen Bus JTAG/SWD FMC DMA Ethernet MAC Bus Matrix FLASH DMA1/2 AHB BUS USB OTG AHB/APB1 BRIDGE SRAM CRC AHB/APB2 BRIDGE TMR2/3/4/5/6/7 AFIO RTC EINT WWDT GPIO A/B/C/D/E IWDT ADC1/2 SPI2(I2S2) TMR1 SPI3(I2S3) SPI1 USART2/3 USART1 UART4/5 I2C1/2 CAN1/2 BAKPR PMU DAC1/2 w w w. ge e h y. c o m P a ge 1 6 4.1.2. Address mapping Table 4 APM32F107 105xx Series Address Mapping Diagram Region Start Address Peripheral Name 0x0000 0000 Code Mapping Area 0x0004 0000 Reserved 0x0800 0000 Flash Main Storage Area 0x0804 0000 Reserved 0x1FFF B000 System Memory Area 0x1FFF F800 Option Byte SRAM 0x2000 0000 SRAM — 0x2001 0000 Reserved 0x4000 0000 TMR2 0x4000 0400 TMR3 0x4000 0800 TMR4 0x4000 0C00 TMR5 0x4000 1000 TMR6 0x4000 1400 TMR7 0x4000 1800 Reserved 0x4000 2800 RTC 0x4000 2C00 WWDT 0x4000 3000 IWDT 0x4000 3400 Reserved 0x4000 3800 SPI2/I2S2 0x4000 3C00 SPI3/I2S3 0x4000 4000 Reserved 0x4000 4400 USART2 0x4000 4800 USART3 0x4000 4C00 UART4 0x4000 5000 UART5 Code Area APB1 Bus w w w. ge e h y. c o m P a ge 1 7 Region APB2 Bus AHB Bus w w w. ge e h y. c o m Start Address Peripheral Name 0x4000 5400 I2C1 0x4000 5800 I2C2 0x4000 5C00 Reserved 0x4000 6400 CAN1 0x4000 6800 CAN2 0x4000 6C00 BAKPR 0x4000 7000 PMU 0x4000 7400 DAC 0x4000 7800 Reserved 0x4001 0000 AFIO 0x4001 0400 EINT 0x4001 0800 GPIOA 0x4001 0C00 GPIOB 0x4001 1000 GPIOC 0x4001 1400 GPIOD 0x4001 1800 GPIOE 0x4001 1C00 Reserved 0x4001 2400 ADC1 0x4001 2800 ADC2 0x4001 2C00 TMR1 0x4001 3000 SPI1 0x4001 3400 Reserved 0x4001 3800 USART1 0x4001 3C00 Reserved 0x4002 0000 DMA1 0x4002 0400 DMA2 0x4002 0800 Reserved P a ge 1 8 Region Start Address Peripheral Name 0x4002 1000 RCM 0x4002 1400 Reserved 0x4002 2000 Flash Interface 0x4002 2400 Reserved 0x4002 3000 CRC 0x4002 3400 Reserved 0x4002 8000 Ethernet 0x4003 0000 Reserved 0x5000 0000 USB OTG_FS 0x5000 0400 Reserved — 4.1.3. Startup configuration At startup, the user can select one of the following three startup modes by setting the high and low levels of the Boot pin:  Startup from main memory  Startup from BootLoader  Startup from built-in SRAM The user can use USART interface to reprogram the user Flash if boot from BootLoader. 4.2. Core The core of APM32F107 105xx is Arm® Cortex®-M3. Based on this platform, the development cost is low and the power consumption is low. It can provide excellent computing performance and advanced system interrupt response, and is compatible with all Arm tools and software. 4.3. Interrupt controller 4.3.1. Nested Vector Interrupt Controller (NVIC) It embeds a nested vectored interrupt controller (NVIC) that can handle up to 68 maskable interrupt channels (not including 16 interrupt lines of Cortex®-M3) and 16 priority levels. The interrupt vector entry address can be directly transmitted to the core, so that the interrupt response processing with low delay can give priority to the late higher priority interrupt. 4.3.2. External Interrupt/Event Controller (EINT) The external interrupt/event controller consists of 20 edge detectors, and each detector includes edge detection circuit and interrupt/event request generation circuit; each detector can be configured as rising edge trigger, falling edge trigger or both and can be masked independently. Up to 80 GPIOs can be connected to the 16 external interrupt lines. w w w. ge e h y. c o m P a ge 1 9 4.4. On-chip memory On-chip memory includes main memory area, SRAM and information block; the information block includes system memory area and option byte; the system memory area stores BootLoader, 96-bit unique device ID and capacity information of main memory area; the system memory area has been written into the program and cannot be erased. Table5 On-chip Memory Area Memory Maximum capacity Function Main memory area 256 KB Store user programs and data. SRAM 64 KB System memory area 18KB Option byte 16Bytes CPU can access at 0 waiting cycle (read/write). Store BootLoader, 96-bit unique device ID, and main memory area capacity information Configure main memory area read-write protection and MCU working mode 4.5. Clock 4.5.1. Clock tree Clock tree of APM32F107 105xx is shown in the figure below: w w w. ge e h y. c o m P a ge 2 0 Figure 4 APM32F107 105xx Clock Tree ETH_MII_TX_CLK MACTXCLK ETH PHY AFIO_REMAP [MACEISEL] /2,20 ETH_MII_RX_CLK MACRXCLK DPLL1CLK (PLL1CLK*2) MACRMIICLK OTGFSPSC 48MHz /2,3,4,5 LSICLK 40KHz OTGFSCLK IWDTCLK RTCSEL[1:0] OSC32_OUT OSC32_IN LSECLK OSC 32.768 KHz Cortex System Clock /8 RTC FCLK /128 CSS OSC_OUT OSC_IN 96MHz MAX 3-25MHz HSECLK OSC PLLPSC1SRC PLLSEL PLLPSC1 PLL1CLK /1,2, x4\x5\ ...16 PLL2CLK x6\x6.5 \x7\x8\ /2 x9 SYSCLK 96MHz MAX 8MHz HSICLK HSECLK AHB Prescaler /1,2...512 48MHz MAX FMCCLK /1,2, ...16 x8,x9...x14, x16,x20 SCLKSEL APB1 Rrescaler /1,2,4,8,16 48MHz MAX ADC Prescaler /2,4,6,8 MCOSEL MCO TMR2,3,4,5,6,7 if(APB1 prescaler=1)×1 else×2 PLL2CLK PLL3CLK x8,x9...x14, x16,x20 DPLL3CLK (PLL3CLK*2) HSECLK HSICLK SYSCLK PLL1CLK/2 PLL2CLK PLL3CLK/2 PLL3CLK OSCCLK HCLK to core memory and DMA 14MHz MAX TMRxCLK (x=2,3. ..7) PCLK1 ADCCLK (ADC1,2) 96MHz MAX APB2 PRESCLAER /1,2,4,8,16 TMR1 if(APB2 prescaler=1)×1 else×2 96MHz MAX TMR1CLK PCLK2 I2S2CLK I2S3CLK 4.5.2. Clock source Clock source is divided into high-speed clock and low-speed clock according to the speed; the high-speed clock includes HSICLK and HSECLK, and the low-speed clock includes LSECLK and LSICLK; clock source is divided into internal clock and external clock according to the chip inside/outside; the internal clock includes HSICLK and LSICLK, and the external clock includes HSECLK and LSECLK, among which HSICLK is calibrated by the factory to ±1% accuracy. w w w. ge e h y. c o m P a ge 2 1 4.5.3. System clock HSICLK, PLL1CLK and HSECLK can be selected as system clock; the clock source of PLL1CLK can be one of HSICLK and HSECLK; the required system clock can be obtained by configuring PLL clock multiplier factor and frequency dividing coefficient. When the product is reset and started, HSICLK is selected as the system clock by default, and then the user can choose one of the above clock sources as the system clock by himself. When HSECLK failure is detected, the system will automatically switch to the HSICLK, and if an interrupt is enabled, the software can receive the related interrupt. 4.5.4. Bus clock AHB, APB1 and APB2 are built in. The clock source of AHB is SYSCLK, and the clock source of APB1 and APB2 is HCLK; the required clock can be obtained by configuring the frequency dividing coefficient. The maximum frequency of AHB and high-speed APB2 is 96MHz, and the maximum frequency of APB1 is 48MHz. 4.6. Power supply and power management 4.6.1. Power supply scheme Table6 Power Supply Scheme Name Voltage range VDD 2.0~3.6V VDDA/VSSA 2.0~3.6V VBAT 1.8~3.6V Instruction I/Os (see pin distribution diagram for specific IO) and internal voltage regulator are powered through VDD pin. Power supply of ADC, DAC, reset module, RC oscillator and PLL analog part; when ADC or DAC is us-ed, VDDA shall not be less than 2.4V; VDDA and VSSA must be connected to VDD and VSS. When VDD is closed, RTC, external 32.768KHz oscillator and backup register are supplied through internal power switch. 4.6.2. Voltage regulator Table7 Regulator Operating Mode Name Instruction Master mode (MR) Used in run mode Low-power mode (LPR) Used in stop mode Used in standby mode, when the voltage regulator has high impedance output, the core circuit is powered down, the power consumption of the voltage regulator is zero, and all data of registers and SRAM will be lost. Note: The voltage regulator is always in working state after reset, and outputs with high impedance in power-down Power-down mode mode. 4.6.3. Power supply voltage monitor Power-on reset (POR) and power-down reset (PDR) circuits are integrated inside the product. These two circuits are always in working condition. When the power-down reset circuit monitors that the power supply voltage is lower than the specified threshold value (VPOR/PDR), even if the external reset circuit is used, the system will remain reset. The product has a built-in programmable voltage regulator (PVD) that can monitor VDD and compare it with VPVD threshold. When VDD is outside the VPVD threshold range and the interrupt is enabled, the MCU can be set to a safe state through the interrupt service program. w w w. ge e h y. c o m P a ge 2 2 4.7. Low-power mode APM32F107 105xx supports three low-power modes, namely, sleep mode, stop mode and standby mode, and there are differences in power, wake-up time and wake-up mode among these three modes. The low-power mode can be selected according to the actual application requirements. Table8 Low Power Consumption Mode Mode Instruction Sleep mode The core stops working, all peripherals are working, and it can be woken up through interrupts/events Stop mode Standby mode Under the condition that SRAM and register data are not lost, the stop mode can achieve the lowest power consumption; The clock of the internal 1.5V power supply module will stop, HSECLK crystal resonator, HSICLK and PLL will be prohibited, and the voltage regulator can be configured in normal mode or low power mode; Any external interrupt line can wake up MCU, and the external interrupt lines include one of the 16 external interrupt lines, PVD output, RTC and USB OTG_FS. The power consumption in this mode is the lowest; Internal voltage regulator is turned off, all 1.3V power supply modules are powered off, HSECLK crystal resonator, HSICLK and PLL clocks are turned off, SRAM and register data disappear, RTC area and backup register contents remain, and standby circuit still works; The external reset signal on NRST, IWDT reset, rising edge on WKUP pin or RTC event will wake MCU out of standby mode. 4.8. DMA 2 built-in DMAs; DMA1 supports 7 channels and DMA2 supports 5 channels. Each channel supports multiple DMA requests, but only one DMA request is allowed to enter the DMA channel at the same time. The peripherals supporting DMA requests are ADC, SPI, USART, I2C, and TMRx. Four levels of DMA channel priority can be configured. Support "memory→memory, memory→peripheral, peripheral→memory" transfer of data (the memory includes Flash、SRAM) 4.9. GPIO GPIO can be configured as general input, general output, multiplexing function and analog input、output. The general input can be configured as floating input, pull-up input and pull-down input; the general output can be configured as push-pull output and open-drain output; the multiplexing function can be used for digital peripherals; and the analog input and output can be used for analog peripherals and low-power mode; the enable and disable pull-up/pull-down resistor can be configured; the speed of 2MHz, 10MHz and 50MHz can be configured; the higher the speed is, the greater the power and the noise will be. 4.10. Communication peripherals 4.10.1. USART/UART Up to 5 universal synchronous/asynchronous transmitter receivers are built in the chip. The USART1 interface can communicate at a rate of 4.5Mbit/s, while other USART/UART interfaces can communicate at a rate of 2.25Mbit/s. All USART/UART interfaces can configure baud rate, parity check bit, stop bit, and data bit length; except UART5, all the other USART/UART can support DMA. USART/UART function differences are shown in the table below: w w w. ge e h y. c o m P a ge 2 3 Table9 USART/UART Function Differences USART mode/function USART1 USART2 USART3 UART4 UART5 Hardware flow control of modem √ √ √ — — Synchronous mode √ √ √ √ √ Smart card mode √ √ √ — — IrDASIR coder-encoder functions √ √ √ √ √ LIN mode √ √ √ √ √ Single-line half-duplex mode √ √ √ √ √ Support DMA function √ √ √ √ — Note: √ = support. 4.10.2. I2C I2C1/2 bus interfaces are built in. I2C1/2 both can work in multiple master modes or slave modes, support 7-bit or 10-bit addressing, and support dual-slave addressing in 7-bit slave mode; the communication rate supports standard mode (up to 100kbit/s) and fast mode (up to 400kbit/s); hardware CRC generator/checker are built in; they can operate with DMA and support SMBus 2.0 version/PMBus. 4.10.3. SPI/I2S Three built-in SPIs, support full duplex and half duplex communication in master mode and slave mode, can use DMA controller, and can configure 4~16 bits per frame, and communicate at a rate of up to 18Mbit/s. 2 built-in I2S (multiplexed with SPI2 and SPI3 respectively), support half duplex communication in master mode and slave mode, support synchronous transmission, and can be configured with 16-bit, 24-bit and 32-bit data transfer with 16-bit or 32-bit resolution. The configurable range of audio sampling rate is 8kHz~48kHz; when one or two I2S interfaces are configured as the master mode, the master clock can be output to external DAC or decoder (CODEC) at 256 times of sampling frequency. 4.10.4. CAN 2 built-in CANs (CAN1 and CAN2 can be used at the same time), compatible with 2.0A and 2.0B (active) specification, and can communicate at a rate of up to 1Mbit/s. It can receive and send standard frame of 11-bit identifier and extended frame of 29-bit identifier. It has 3 sending mailboxes and 2 receiving FIFO, 28 3-level adjustable filters. 4.10.5. USB OTG_FS 1 USB controllers, namely, OTG_FS can support both host and slave functions to comply with the On-The-Go supplementary standard of USB 2.0 specification, and can also be configured as "Host only" or "Slave only" mode, to fully comply with USB 2.0 specification. OTG_FS clock (48MHz) is output by specific PLL1. 4.10.6. Ethernet Provides an IEEE-802.3-2002 compatible MAC for Ethernet LAN communication over MII or RMII. This MCU requires a PHY connection to a physical LAN bus. The PHY connects to the MII port, uses 17 signals for MII or 9 signals for RMII, and can use a 25MHz clock (MII) from the kernel. w w w. ge e h y. c o m P a ge 2 4 4.11. Analog peripherals 4.11.1. ADC 2 built-in ADCs with 12-bit accuracy, up to 16 external channels and 2 internal channels for each ADC. The internal channels measure the temperature sensor voltage and reference voltage respectively. A/D conversion mode of each channel has single, continuous, scan or intermittent modes, ADC conversion results can be left aligned or right aligned and stored in 16 bit data register; they support analog watchdog, and DMA. 4.11.1.1. Internal reference voltage Built-in reference voltage VREFINT, internally connected to ADC_IN17 channel, which can be obtained through ADC; VREFINT provides stable voltage output for ADC. 4.11.2. DAC Two built-in 12-bit DACs, and each corresponding to an output channel, which can be configured in 8-bit and 12-bit modes, and the DMA function is supported. The waveform generation supports noise wave and triangle wave. The conversion mode supports independent or simultaneous conversion and the trigger mode supports external signal trigger and internal timer update trigger. 4.12. Timer 1 built-in 16-bit advanced timers (TMR1), 4 general-purpose timers (TMR2/3/4/5), 2 basic timers (TMR6/7), 1 independent watchdog timer, 1 window watchdog timer and 1 system tick timer. Watchdog timer can be used to detect whether the program is running normally. The system tick timer is the peripheral of the core with automatic reloading function. When the counter is 0, it can generate a maskable system interrupt, which can be used for real-time operating system and general delay. Table10 Function Comparison between Advanced/General-purpose/Basic and System Tick Timers Timer type System tick timer Timer name Sys Tick Timer Counter resolution 24-bit 16 bits 16 bits Counter type Down Up Up, down, up/down Prescaler coefficient - Any integer between 1 and 65536 Any integer between 1 and 65536 General DMA request - OK OK OK Capture/Comparison channel - - 4 4 Complementary outputs - No No Yes Pin characteristics w w w. ge e h y. c o m - Basic timer TMR6 TMR7 - General-purpose timer TMR2 TMR3 TMR4 TMR5 There are 5 pins in total: 1-way external trigger signal input pins, 4-way channel (noncomplementary channel) pins Advanced timer TMR1 16 bits Up, down, up/down Any integer between 1 and 65536 There are 9 pins in total: 1-way external trigger signal input pins, 1-way braking input signal pins, P a ge 2 5 System tick timer Timer type Function Instruction Special for realtime operating system Automatic reloading function supported When the counter is 0, it can generate a maskable system interrupt Can program the clock source Basic timer Used to generate DAC trigger signals. Can be used as a 16-bit generalpurpose timebase counter. General-purpose timer Synchronization or event chaining function provided Timers in debug mode can be frozen. -Can be used to generate PWM output Each timer has independent DMA request generation. It can handle incremental encoder signals Advanced timer 3-pair complementary channel pins, 1-way channel (noncomplementary channel) pins It has complementary PWM output with dead band insertion When configured as a 16-bit standard timer, it has the same function as the TMRx timer. When configured as a 16-bit PWM generator, it has full modulation capability (0~100%). In debug mode, the timer can be frozen, and PWM output is disabled. Synchronization or event chaining function provided. Table11 Independent Watchdog and Window Watchdog Timers Name Counter resolution Counter type Prescaler coefficient Independent watchdog 12-bit Down Any integer between 1 and 256 Window watchdog 7-bit Down - Functional Description The clock is provided by an internally independent RC oscillator of 40KHz, which is independent of the master clock, so it can run in stop and standby modes. The whole system can be reset in case of problems. It can provide timeout management for applications as a free-running timer. It can be configured as a software or hardware startup watchdog through option bytes. Timers in debug mode can be frozen. Can be set for free running. The whole system can be reset in case of problems. Driven by the master clock, it has early interrupt warning function; Timers in debug mode can be frozen. 4.13. RTC 1 RTC is built in, and there are LSECLK signal input pins (OSC32_IN and OSC32_OUT) and 1 TAMP input signal detection pin (TAMP); the clock source can select external 32.768kHz crystal oscillator, resonator or oscillator, LSICLK and HSECLK/128; it is supplied by VDD by default; when VDD is powered off, it can be automatically switched to VBAT power supply, and RTC configuration and time data will not be lost; RTC configuration and time data are not lost in case of system resetting, software resetting and power resetting; it supports clock and calendar functions. w w w. ge e h y. c o m P a ge 2 6 4.13.1. Backup register 84Bytes backup register is built in, and is supplied by VDD by default; when VDD is powered off, it can be automatically switched to VBAT power supply, and the data in backup register will not be lost; the data in backup register will not be lost in case of system resetting, software resetting and power resetting. 4.14. CRC A CRC (cyclic redundancy check) calculation unit is built in, which can generate CRC codes and operate 8-bit, 16-bit and 32-bit data. w w w. ge e h y. c o m P a ge 2 7 5. Electrical characteristics 5.1. Test conditions of electrical characteristics 5.1.1. Maximum and minimum values Unless otherwise specified, all products are tested on the production line at TA=25℃. Its maximum and minimum values can support the worst environmental temperature, power supply voltage and clock frequency. In the notes at the bottom of each table, it is stated that the data are obtained through comprehensive evaluation, design simulation or process characteristics and are not tested on the production line; on the basis of comprehensive evaluation, after passing the sample test, take the average value and add and subtract three times the standard deviation (average ±3∑) to get the maximum and minimum values. 5.1.2. Typical value Unless otherwise specified, typical data are measured based on TA=25℃, VDD=VDDA=3.3V. these data are only used for design guidance. 5.1.3. Typical curve Unless otherwise specified, typical curves will only be used for design guidance and will not be tested. w w w. ge e h y. c o m P a ge 2 8 5.1.4. Power supply scheme Figure 5 Power Supply Scheme MCU VBAT VBAT VDD Power switch LSECLK, RTC, backup register VSS VDDX x×100nF+ 1×4.7μF Input Schmitt trigger, output buffer Core, Flash, SRAM, Voltage regulator I/O logic, Input Schmitt trigger, output buffer VDD VDDA RC oscillator, analog peripheral 1×10nF+ 1×1μF VDD 1×10nF+ 1×1μF digital peripheral VSSA VREF+ ADC、DAC VREF- Notes: VDDx in the figure means the number of VDD is x 5.1.5. Load capacitance Figure 6 Load conditions when measuring pin parameters MCU pin c=50p w w w. ge e h y. c o m P a ge 2 9 Figure 7 Pin Input Voltage Measurement Scheme MCU pin VIN Figure 8 Power Consumption Measurement Scheme VDD A IDDA A VBAT MCU IDD VDDX VSS VREF+ VDDA VSSA IDD_VBAT A VREF- VBAT 5.2. Test under general operating conditions Table12 General Operating Conditions Symbol Parameter Conditions Min Max Unit fHCLK Internal AHB clock frequency - - 96 fPCLK1 Internal APB1 clock frequency - - 48 fPCLK2 Internal APB2 clock frequency - - 96 VDD Main power supply voltage - 2 3.6 Must be the same as VDD VDD 3.6 VDDA Analog power supply voltage (When neither ADC nor DAC is used) Analog power supply voltage (When ADC and DAC are used) 2.4 3.6 VBAT Power supply voltage of backup domain - 1.8 3.6 V TA Ambient temperature (temperature number 6) Maximum power dissipation -40 85 ℃ MHz V V 5.3. Absolute maximum ratings If the load on the device exceeds the absolute maximum rating, it may cause permanent damage to the device. Here, only the maximum load that can be borne is given, and there is no guarantee that the device functions normally under this condition. w w w. ge e h y. c o m P a ge 3 0 5.3.1. Maximum temperature characteristics Table13 Temperature Characteristics Symbol Description Numerical Value Unit TSTG Storage temperature range -55 ~ +150 ℃ TJ Maximum junction temperature 105 ℃ 5.3.2. Maximum rated voltage characteristics All power supply (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the power supply within the external limited range. Table14 Maximum Rated Voltage Characteristics Symbol Description Minimum value Maximum value VDD - VSS External main power supply voltage -0.3 4.0 VDDA-VSSA External analog power supply voltage -0.3 4.0 VBAT-VSS Power supply voltage of external backup domain -0.3 4.0 VDD-VDDA Voltage difference allowed by VDD>VDDA - 0.3 Input voltage on FT pins VSS-0.3 5.5 Input voltage on other pins VSS-0.3 VDD + 0.3 | ΔVDDx | Voltage difference between different power supply pins - 50 | VSSx-VSS | Voltage difference between different grounding pins - 50 Unit V VIN mV 5.3.3. Maximum rated current features Table15 Current Characteristics Symbol Description Maximum IVDD Total current into VDD/VDDA power lines (source)(1) 150 IVSS Total current out of VSS ground lines (sink)(1) 150 Irrigation current on any I/O and control pins 25 Source current on any I/O and control pins -25 Injection current of 5T pin(3) -5/+0 Injection current of other pins(4) ±5 Total injection current on all I/O and control pins (5) ±25 Unit IIO IINJ(PIN) mA (2) ΣIINJ(PIN)(2) Notes: (1) All power (VDD,VDDA) and ground (VSS,VSSA) pins must always be connected to a power supply within the external allowable range. (2) Negative injection disturbs the analog performance of the device. w w w. ge e h y. c o m P a ge 3 1 (3) Positive injection is not possible on these I/Os. a negative injection is induced by VINVDD while a negative injection is induced by VIN8MHz, turn on PLL, otherwise, turn off PLL. w w w. ge e h y. c o m P a ge 3 7 5.7.3. Power consumption in sleep mode Table29 Power Consumption in Sleep Mode when the Program is Executed in Flash or SRAM Parameter Conditions TA=25℃,VDD=3.3V TA=105℃,VDD=3.6V IDD(mA) IDDA(μA) IDD(mA) 96 MHz 376.86 12.27 423.00 13.06 72MHz 242.56 9.36 274.46 9.58 48MHz 194.82 6.61 221.60 7.18 36MHz 179.99 5.68 204.54 6.13 24MHz 157.53 4.08 181.12 4.65 16MHz 172.24 3.05 196.76 3.56 8MHz 111.03 1.94 132.61 2.44 96 MHz 376.19 4.66 423.80 5.14 72MHz 242.28 3.61 274.45 4.00 48MHz 194.68 2.74 221.70 3.22 36MHz 179.90 2.44 205.52 2.90 24MHz 157.45 1.94 181.58 2.41 16MHz 172.15 1.63 197.04 2.11 8MHz 111.02 1.22 133.28 1.73 36MHz 183.47 5.71 196.38 6.56 HSICLK (2) , enabling all 24MHz 160.89 4.08 172.68 4.53 peripherals 16MHz 175.62 3.06 188.03 3.53 8MHz 113.95 1.94 123.99 2.39 36MHz 183.41 2.44 196.20 2.87 HSICLK (2) , turning off all 24MHz 160.80 1.93 172.43 2.37 peripherals 16MHz 175.55 1.63 187.81 2.07 8MHz 113.94 1.22 123.89 1.66 peripherals consumption Maximum value (1) IDDA(μA) HSECLK bypass (2) , enabling all Power fHCLK Typical value (1) HSECLK bypass (2) , turning off all peripherals in sleep mode Note: (1) It is obtained from a comprehensive evaluation and is not tested in production. (2) The external clock is 8MHz, and when fHCLK>8MHz, turn on PLL, otherwise, turn off PLL w w w. ge e h y. c o m P a ge 3 8 5.7.4. Power consumption in stop mode and standby mode Table30 Power Consumption in Stop Mode and Standby Mode Maximum value (1), (VDD=3.6V) Typical value (1), (TA=25℃) Parameter Power consumption in stop mode Power consumption in standby mode Conditions VDD=2.4V Regulator in run mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF(no independent watchdog) Regulator in lowpower mode, lowspeed and high-speed internal RC oscillators and high-speed oscillator OFF(no independent watchdog) Low-speed internal RC oscillator and independent watchdog ON Low-speed internal RC oscillator on, independent watchdog OFF Low-speed internal RC oscillator and independent watchdog OFF, low-speed oscillator and RTC OFF VDD=3.3V VDD=3.6V Unit TA=105℃ IDDA IDD IDDA IDD IDDA IDD IDDA IDD 3.667 42.441 4.282 42.169 4.594 43.11 6.16 386.35 3.662 32.30 4.282 32.093 4.589 32.623 6.18 353.42 μA 2.885 0.164 3.781 0.346 4.218 0.503 5.32 4.74 2.883 0.042 3.781 0.189 4.221 0.323 5.30 4.41 2.336 0.01 2.957 0.064 3.271 0.018 4.43 3.95 Note: (1) It is obtained from a comprehensive evaluation and is not tested in production. 5.7.5. Backup domain power consumption Table31 Backup Domain Power Consumption Typical value (1), TA=25℃ Symbol Maximum value (1), VBAT=3.6V Conditions VBAT=2.0V VBAT=2.4V VBAT=3.3V TA=25℃ The low-speed 0.867 0.956 1.278 1.5 oscillator and RTC are in ON state Note: (1) It is obtained from a comprehensive evaluation and is not tested in production. IDD_VBAT TA=85℃ TA=105℃ 2.4 3.5 Uni t μA 5.7.6. Peripheral power consumption The HSECLK Bypass 1M is adopted as clock source, fPCLK=fHCLK=1M. Peripheral power consumption = current that enables the peripheral clock-current that disables the peripheral clock. w w w. ge e h y. c o m P a ge 3 9 Table32 Peripheral Power Consumption Parameter AHB APB1 Peripheral Typical value (1) TA =25℃, VDD =3.3V DMA1 0.09 DMA2 0.07 CRC 0.71 Ethernet 1.08 USB OTG_FS 1.75 TMR2 0.29 TMR3 0.26 TMR4 0.26 TMR5 0.26 TMR6 0.05 TMR7 0.05 WWDT 0.80 IWDT 0.06 SPI2/I2S2 0.24 SPI3/I2S3 0.05 USART2 0.10 USART3 0.09 UART4 0.09 UART5 0.10 I2C1 0.07 I2C2 0.08 CAN1 0.15 CAN2 0.14 BAKPR 0.01 DAC 0.05 PMU 0.03 GPIOA 0.08 GPIOB 0.11 GPIOC 0.10 GPIOD 0.10 GPIOE 0.10 ADC1 0.33 Unit mA APB2 w w w. ge e h y. c o m P a ge 4 0 Parameter Peripheral Typical value (1) TA =25℃, VDD =3.3V ADC2 0.31 TMR1 0.38 SPI1 0.19 USART1 0.17 Unit Note: It is obtained from a comprehensive evaluation and is not tested in production. 5.8. Wake-up time in low power mode The measurement of wake-up time in low power mode is from the start of wake-up event to the time when the user program reads the first instruction, in which VDD=VDDA. Table33 Wake Up Time in Low-power Mode Typical value (TA=25℃) Symbol Parameter Conditions tWUSLEEP Wake-up from sleep mode tWUSTOP Wake up from stop mode Min Max 2V 3.3V 3.6V Unit - 0.51 0.58 0.57 0.58 0.64 The voltage regulator is in run mode 1.78 2.18 1.88 1.83 2.22 The voltage regulator is in low power mode 2.58 4.06 2.90 2.77 4.55 68.63 66.97 93.10 μs Wake up from 62.78 80.03 standby mode Note: It is obtained from a comprehensive evaluation and is not tested in production. tWUSTDBY 5.9. Pin characteristics 5.9.1. I/O pin characteristics Table34 DC Characteristics (test condition of VDD=2.7~3.6V, TA=-40~105℃) Symbol Parameter Conditions Minimum value Typical value VIL Standard I/O low level input voltage - -0.3 - VIH I/O FT high level input voltage - -0.3 - VIL Standard I/O low level input voltage - 0.41*(VDD-2V)+1.3V - VDD+0.3 Standard I/O high level input voltage VDD>2V - 5.5 Unit 0.28*(VDD2V)+0.8V 0.32*(VDD2V)+0.75V V 0.42*(VDD-2V)+1V VIH Vhys Maximum value I/O FT high level input voltage VDD≤2V Standard I/O Schmitt trigger voltage hysteresis I/O FT Schmitt trigger voltage hysteresis - w w w. ge e h y. c o m 5.2 200 - - mV 5%VDD - - mV P a ge 4 1 Symbol Ilkg RPU RPD Parameter Conditions Input leakage current VSS ≤ VIN ≤ VDD Standard I/O port VIN=5V, I/O FT port Weak pull-up equivalent resistance of all pins except PA10 Weak pull-up equivalent resistance of PA10 Weak pull-down equivalent resistance of all pins except PA10 Weak pull-down equivalent resistance of PA10 CIO Minimum value Typical value Maximum value - - ±1 Unit μA - - 3 30 40 50 8 11 15 30 40 50 8 11 15 - 2.6 - pF VIN=VSS kΩ VIN=VDD IO pin capacitance - Note: It is obtained from a comprehensive evaluation and is not tested in production. Table35 AC Characteristics MODEy[1:0] Configuration 10 (2MHz) Symbol Parameter Conditions Minimum value Maximum value Unit fmax(IO)out Maximum frequency CL=50 pF, VDD=2~3.6V - 2 MHz Output fall time from high to low level Output rise time from low to high level CL=50 pF, VDD =2~3.6V - 125 - 125 Maximum frequency CL=50 pF, VDD =2~3.6V - 10 Output fall time from high to low level Output rise time from low to high level CL=50 pF, VDD =2~3.6V - 25 - 25 Maximum frequency CL=50 pF, VDD =2.7~3.6V - 50 tf(IO)out tr(IO)out fmax(IO)out 01 (10MHz) tf(IO)out tr(IO)out fmax(IO)out 11 (50MHz) ns MHz ns Output fall time from high to low 12 level CL=50 pF, Output rise time from low to high VDD =2.7~3.6V 12 tr(IO)out level Note: (1) The rate of I/O port can be configured through the corresponding register (see the user manual). MHz tf(IO)out ns (2) The data are obtained from a comprehensive evaluation and is not tested in production. w w w. ge e h y. c o m P a ge 4 2 Figure 9 I/O AC Characteristics Definition 90% The external output load is 50pF 10% 50% 50% 90% 10% tr(IO)OUT tr(IO)OUT T If (tr+tf) is less than or equal to (2/3) T and the duty cycle is (45~55%) When the load is 50pF, it reaches the maximum frequency Note: It is obtained from a comprehensive evaluation and is not tested in production. Table36 Output Drive Current Characteristics (test condition VDD=2.7~3.6V, TA=-40~105℃) Symbol VOL VOH VOL VOH Parameter Conditions Output low level voltage for an I/O pin when 8 pins are sunk at same time Output high level voltage for an I/O pin when 8 pins are sourced at same time Output low level voltage for an I/O pin when 8 pins are sunk at same time Output high level voltage for an I/O pin when 8 pins are sourced at same time IIO = +8mA 2.7V
APM32F107RCT6 价格&库存

很抱歉,暂时无法提供与“APM32F107RCT6”相匹配的价格&库存,您可以联系我们找货

免费人工找货