Datasheet
APM32F030xC
Arm® Cortex® -M0+ based 32-bit MCU
Version: V1.2
1
Product characteristics
Core
32-bit
Up to 29 FT I/Os
Arm®
Cortex®
-M0+ core
Up to 48MHz working frequency
2 I2C interfaces (1Mbit/s), all of
which support SMBus/PMBus
On-chip memory
Flash:256KB
6 USARTs, support synchronous
transmission function
SRAM:32KB
2 SPI (18Mbit/s) interfaces
Clock
HSECLK: 4~32MHz external
crystal/ceramic oscillator supported
LSECLK: 32.768KHz crystal/ceramic
oscillator supported
5 16-bit general-purpose timers
TMR3/14/15/16 and TMR17, with up
to 4 independent channels to support
input capture, output comparison,
PWM, pulse count and other
functions.
LSICLK: 40KHz RC oscillator
supported
PLL: Phase locked loop, 2~16 times
of frequency supported
2 16-bit basic timers TMR6/7
Reset and power
management
2 watchdog timers: one independent
watchdog IWDT and one window
watchdog WWDT
VDD range: 2.0~3.6V
VDDA range: VDD~3.6V
1 24-bit autodecrement SysTick
Timer
Low-power mode
DMA
5-channel DMA controller
RTC
Support calendar function
Sleep, stop and standby modes
supported
Timer
1 16-bit advanced timer TMR1 that
can provide 7-channel PWM output,
support dead zone generation and
braking input functions
HSICLK14: 14MHz RC oscillator
supported
Power-on/power-down reset
(POR/PDR) supported
Analog peripherals
1 12-bit ADC, support up to 16
external channels
HSICLK: 8MHz RC oscillator
calibrated by factory
Communication peripherals
Alarm and periodic wake-up from
stop/standby mode
CRC computing unit
96-bit unique device ID (UID)
Debugging interface
SWD
I/O
Up to 51 I/Os
All I/Os can be mapped to external
interrupt vector
www.geeh y.com
P age 1
Contents
1
Product characteristics .............................................................................................. 1
2
Product information ................................................................................................... 5
3
Pin information ........................................................................................................... 6
3.1
Pin distribution ................................................................................................................................... 6
3.2
Pin function description ..................................................................................................................... 7
4
Functional description ............................................................................................. 14
4.1
System architecture ......................................................................................................................... 14
4.1.1 System Block Diagram ............................................................................................................................ 14
4.1.2 Memory mapping ..................................................................................................................................... 14
4.1.3 Startup configuration ............................................................................................................................... 16
4.2
Core ................................................................................................................................................. 17
4.3
Interrupt controller............................................................................................................................ 17
4.3.1 Nested Vector Interrupt Controller (NVIC) ............................................................................................... 17
4.3.2 External Interrupt/Event Controller (EINT) .............................................................................................. 17
4.4
On-chip memory .............................................................................................................................. 17
4.5
Clock ................................................................................................................................................ 17
4.5.1 Clock source ............................................................................................................................................ 18
4.5.2 System clock ........................................................................................................................................... 18
4.5.3 Bus clock ................................................................................................................................................. 19
4.6
Reset and power management ....................................................................................................... 19
4.6.1 Power supply scheme ............................................................................................................................. 19
4.6.2 Voltage regulator ..................................................................................................................................... 19
4.6.3 Power supply voltage monitor ................................................................................................................. 19
4.7
Low-power mode ............................................................................................................................. 19
4.8
DMA ................................................................................................................................................. 20
4.9
GPIO ................................................................................................................................................ 20
4.10 Communication peripherals ............................................................................................................. 20
4.10.1 USART ..................................................................................................................................................... 20
4.10.2 I2C ........................................................................................................................................................... 21
4.10.3 SPI ........................................................................................................................................................... 21
w w w. g e e h y. c o m
Page 2
4.11
Analog peripherals ........................................................................................................................... 21
4.11.1 ADC ......................................................................................................................................................... 21
4.12 Timer ................................................................................................................................................ 22
4.13 RTC .................................................................................................................................................. 23
4.14 CRC ................................................................................................................................................. 24
5
Electrical characteristics ......................................................................................... 25
5.1
Test conditions of electrical characteristics ..................................................................................... 25
5.1.1 Maximum and minimum values ............................................................................................................... 25
5.1.2 Typical values .......................................................................................................................................... 25
5.1.3 Typical curve ............................................................................................................................................ 25
5.1.4 Power supply scheme ............................................................................................................................. 26
5.1.5 Load capacitance .................................................................................................................................... 26
5.2
Test under general operating conditions ......................................................................................... 27
5.3
Absolute maximum ratings .............................................................................................................. 28
5.3.1 Maximum temperature characteristics .................................................................................................... 28
5.3.2 Maximum rated voltage characteristics ................................................................................................... 28
5.3.3 Maximum rated current features ............................................................................................................. 28
5.3.4 ESD characteristics ................................................................................................................................. 29
5.3.5 Static latch-up .......................................................................................................................................... 29
5.4
On-chip memory .............................................................................................................................. 30
5.4.1 Flash characteristics ................................................................................................................................ 30
5.5
Clock ................................................................................................................................................ 30
5.5.1 Characteristics of external clock source .................................................................................................. 30
5.5.2 Characteristics of internal clock source ................................................................................................... 31
5.5.3 PLL Characteristics.................................................................................................................................. 32
5.6
Reset and power management ....................................................................................................... 32
5.6.1 Test of Embedded Reset and Power Control Block Characteristics ....................................................... 32
5.7
Power consumption ......................................................................................................................... 33
5.7.1 Power consumption test environment ..................................................................................................... 33
5.7.2 Power consumption in run mode ............................................................................................................. 33
5.7.3 Power consumption in sleep mode ......................................................................................................... 35
5.7.4 Power consumption in stop mode and standby mode ............................................................................ 36
w w w. g e e h y. c o m
Page 3
5.7.5 Peripheral power consumption ................................................................................................................ 37
5.8
Wake-up time in low power mode ................................................................................................... 38
5.9
Pin characteristics............................................................................................................................ 38
5.9.1 I/O pin characteristics .............................................................................................................................. 38
5.9.2 NRST pin characteristics ......................................................................................................................... 40
5.10 Communication peripherals ............................................................................................................. 41
5.10.1 I2C peripheral characteristics .................................................................................................................. 41
5.10.2 SPI peripheral characteristics .................................................................................................................. 42
5.11
Analog peripherals ........................................................................................................................... 44
5.11.1 ADC ......................................................................................................................................................... 44
6
Package information ................................................................................................ 46
6.1
LQFP64 Package Diagram.............................................................................................................. 46
6.2
LQFP48 Package Diagram.............................................................................................................. 48
7
Packaging Information ............................................................................................. 51
7.1
Reel Packaging................................................................................................................................ 51
7.2
Tray packaging ................................................................................................................................ 52
8
Ordering Information................................................................................................ 54
9
Commonly Used Function Module Denomination ................................................. 55
10
Revision History ....................................................................................................... 56
w w w. g e e h y. c o m
Page 4
2
Product information
See the following table for APM32F030xC product functions and peripheral configuration.
Table 1 Functions and Peripherals of APM32F030xC Series Chips
Product
APM32F030
Model
CCTx
RCTx
Package
LQFP48
LQFP64
Core and maximum working frequency
Arm® 32-bit Cortex®-M0+@48MHz
Operating voltage
2.0~3.6V
Flash(KB)
256
SRAM(KB)
32
GPIOs
Communication
interface
Timer
37
USART
6
SPI
2
I2C
2
16-bit advanced
1
16-bit general
5
16-bit basic
2
System tick timer
1
Watchdog
2
Real-time clock
1
Unit
12-bit ADC
51
External channel
Internal channel
1
10
16
2
Ambient temperature: -40℃ to 85℃/-40℃ to 105℃
Operating temperature
Junction temperature: -40℃ to 105℃/-40℃ to
125℃
Note:
(1)
When x is 6, ambient temperature is: from -40℃ to 85℃, and the junction temperature is from -40℃ to 105℃.
(2)
When x is 7, ambient temperature is: from -40℃ to 105℃, and the junction temperature is from -40℃ to 125℃.
w w w. g e e h y. c o m
Page 5
3
Pin information
3.1
Pin distribution
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
VDD
VSS
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD2
PC12
PC11
PC10
PA15
PA14
Figure 1 Distribution Diagram of APM32F030xCTx Series LQFP64 Pins
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
LQFP64
VDD
VSS
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
PB15
PB14
PB13
PB12
PA3
VSS
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PB10
PB11
VSS
VDD
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
VDD
PC13
PC14-OSC32_IN
PC15-OSC32_OUT
PF0-OSC_IN
PF1-OSC_OUT
NRST
PC0
PC1
PC2
PC3
VSSA
VDDA
PA0
PA1
PA2
48
47
46
45
44
43
42
41
40
39
38
37
VDD
VSS
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PA15
PA14
Figure 2 Distribution Diagram of APM32F030xCTx Series LQFP48 Pins
1
2
3
4
5
6
7
8
9
10
11
12
LQFP48
36
35
34
33
32
31
30
29
28
27
26
25
VDD
VSS
PA13
PA12
PA11
PA10
PA9
PA8
PB15
PB14
PB13
PB12
PA3
PA4
PA5
PA6
PA7
PB0
PB1
PB2
PB10
PB11
VSS
VDD
13
14
15
16
17
18
19
20
21
22
23
24
VDD
PC13
PC14-OSC32_IN
PC15-OSC32_OUT
PF0-OSC_IN
PF1-OSC_OUT
NRST
VSSA
VDDA
PA0
PA1
PA2
w w w. g e e h y. c o m
Page 6
Pin function description
3.2
Table 2 Legends/Abbreviations Used in Output Pin Table
Name
Pin name
Abbreviation
Definition
Unless otherwise specified in parentheses below the pin name, the pin functions during
and after reset are the same as the actual pin name
P
Power pin
I
Only input pin
I/O
I/O pin
5T
FT I/O
5Tf
FT I/O, FM + function
STDA
I/O with 3.3V standard, directly connected to ADC
STD
I/O with 3.3 V tolerance
B
Dedicated Boot0 pin
RST
Bidirectional reset pin with built-in pull-up resistor
Pin type
I/O structure
Note
Unless otherwise specified in the notes, all I/O is set as floating input during and after reset
Default
multiplexing
Pin
function
Function directly selected/enabled through peripheral register
function
Additional
Function selected through GPIO multiplexing function register
function
Table 3 Description of APM32F030xCTx by Pin Number
Name
(Function after reset)
VDD
Type
Structure
P
-
Default multiplexing
Additional
function
function
Digital power supply
LQFP48
LQFP64
1
1
2
2
RTC_TAMP1,
PC13
I/O
STD
RTC_TS,
-
RTC_OUT,
WKUP2
PC14-OSC32_IN
(PC14)
PC15-OSC32_OUT
(PC15)
PF0-OSC_IN
(PF0)
PF1-OSC_OUT
(PF1)
NRST
w w w. g e e h y. c o m
I/O
STD
-
OSC32_IN
3
3
I/O
STD
-
OSC32_OUT
4
4
I/O
STD
I2C1_SDA
OSC_IN
5
5
I/O
STD
I2C1_SCL
OSC_OUT
6
6
I/O
RST
7
7
Chip reset input/internal reset output
(active low)
Page 7
Name
Type
Structure
PC0
I/O
STDA
PC1
I/O
STDA
PC2
I/O
STDA
PC3
I/O
STDA
VSSA
P
-
VDDA
P
-
(Function after reset)
PA0
I/O
STDA
Default multiplexing
Additional
function
function
LQFP48
LQFP64
ADC_IN10
-
8
ADC_IN11
-
9
ADC_IN12
-
10
ADC_IN13
-
11
Analog ground
8
12
Analog power supply
9
13
10
14
11
15
12
16
13
17
EVENTOUT,
USART6_TX
EVENTOUT,
USART6_RX
SPI2_MISO,
EVENTOUT
SPI2_MOSI,
EVENTOUT
USART2_CTS,
USART4_TX
ADC_IN0,
RTC_TAMP2,
WKUP1
USART2_RTS,
PA1
I/O
STDA
EVENTOUT,
ADC_IN1
USART4_RX
USART2_TX,
ADC_IN2,
TMR15_CH1
WKUP4
PA2
I/O
STDA
PA3
I/O
STDA
VSS
P
-
Ground
-
18
VDD
P
-
Digital power supply
-
19
ADC_IN4
14
20
ADC_IN5
15
21
ADC_IN6
16
22
ADC_IN7
17
23
USART2_RX,
ADC_IN3
TMR15_CH2
SPI1_NSS,
PA4
I/O
STDA
USART2_CK,
TMR14_CH1,
USART6_TX
PA5
I/O
STDA
SPI1_SCK,
USART6_RX
SPI1_MISO,
TMR3_CH1,
PA6
I/O
STDA
TMR1_BKIN,
TMR16_CH1,
EVENTOUT,
USART3_CTS
SPI1_MOSI,
TMR3_CH2,
PA7
I/O
STDA
TMR14_CH1,
TMR1_CH1N,
TMR17_CH1,
EVENTOUT
w w w. g e e h y. c o m
Page 8
Name
Type
Structure
PC4
I/O
STDA
PC5
I/O
STDA
(Function after reset)
Default multiplexing
Additional
function
function
EVENTOUT,
LQFP48
LQFP64
-
24
-
25
ADC_IN8
18
26
ADC_IN9
19
27
-
20
28
-
21
29
-
22
30
ADC_IN14
USART3_TX
ADC_IN15,
USART3_RX
WKUP5
TMR3_CH3,
PB0
I/O
STDA
TMR1_CH2N,
EVENTOUT,
USART3_CK
TMR3_CH4,
PB1
I/O
STDA
TMR14_CH1,
TMR1_CH3N,
USART3_RTS
PB2
I/O
5T
SPI2_SCK,
PB10
I/O
5T
I2C2_SCL,
USART3_TX
I2C2_SDA,
PB11
I/O
5T
EVENTOUT,
USART3_RX
VSS
P
-
Ground
23
31
VDD
P
-
Digital power supply
24
32
-
25
33
-
26
34
-
27
35
28
36
SPI2_NSS,
PB12
I/O
5T
TMR1_BKIN,
EVENTOUT,
USART3_CK
SPI2_SCK,
PB13
I/O
5T
I2C2_SCL,
TMR1_CH1N,
USART3_CTS
SPI2_MISO,
I2C2_SDA,
PB14
I/O
5T
TMR1_CH2N,
TMR15_CH1,
USART3_RTS
SPI2_MOSI,
PB15
I/O
5T
TMR1_CH3N,
RTC_REFIN,
TMR15_CH1N,
WKUP7
TMR15_CH2
PC6
I/O
5T
TMR3_CH1
-
-
37
PC7
I/O
5T
TMR3_CH2
-
-
38
w w w. g e e h y. c o m
Page 9
Name
Default multiplexing
Additional
function
function
5T
TMR3_CH3
5T
TMR3_CH4
Type
Structure
PC8
I/O
PC9
I/O
(Function after reset)
LQFP48
LQFP64
-
-
39
-
-
40
-
29
41
-
30
42
-
31
43
-
32
44
-
33
45
-
34
46
USART1_CK,
PA8
I/O
5T
TMR1_CH1,
EVENTOUT,
MCO
USART1_TX,
PA9
I/O
5T
TMR1_CH2,
TMR15_BKIN,
I2C1_SCL
USART1_RX,
PA10
I/O
5T
TMR1_CH3,
TMR17_BKIN,
I2C1_SDA
USART1_CTS,
PA11
I/O
5T
TMR1_CH4,
EVENTOUT,
I2C2_SCL
USART1_RTS,
PA12
I/O
5T
TMR1_ETR,
EVENTOUT,
I2C2_SDA
PA13
I/O
5T
VSS
P
-
Ground
35
47
VDD
P
-
Digital power supply
36
48
I/O
5T
-
37
49
-
38
50
-
-
51
-
-
52
-
-
53
(SWDIO)
PA14
(SWCLK)
IR_OUT,SWDIO
USART2_TX,
SWCLK
SPI1_NSS,
PA15
I/O
5T
USART2_RX,
USART4_RTS,
EVENTOUT
PC10
I/O
5T
PC11
I/O
5T
USART3_TX,
USART4_TX
USART3_RX,
USART4_RX
USART3_CK,
PC12
I/O
5T
USART4_CK,
USART5_TX
w w w. ge e h y. c o m
P a ge 1 0
Name
(Function after reset)
Type
Structure
Default multiplexing
Additional
function
function
LQFP48
LQFP64
-
-
54
-
39
55
-
40
56
WKUP6
41
57
-
42
58
-
43
59
44
60
-
45
61
-
46
62
TMR3_ETR,
PD2
I/O
5T
USART3_RTS,
USART5_RX
SPI1_SCK,
PB3
I/O
5T
EVENTOUT,
USART5_TX
SPI1_MISO,
TMR3_CH1,
PB4
I/O
5T
EVENTOUT,
TMR17_BKIN,
USART5_RX
SPI1_MOSI,
I2C1_SMBA,
PB5
I/O
STD
TMR16_BKIN,
TMR3_CH2,
USART5_CK_RTS
I2C1_SCL,
PB6
I/O
5Tf
USART1_TX,
TMR16_CH1N
I2C1_SDA,
PB7
I/O
5Tf
USART1_RX,
TMR17_CH1N,
USART4_CTS
BOOT0
I
B
PB8
I/O
5T
Startup selection
I2C1_SCL,
TMR16_CH1
I2C1_SDA,
IR_OUT,
PB9
I/O
5T
SPI2_NSS,
TMR17_CH1,
EVENTOUT
VSS
P
-
Ground
47
63
VDD
P
-
Digital power supply
48
64
Note:
(1) PC13, PC14 and PC15 are powered through power switch. Since the switch only sinks limited current (3mA),
the use of
GPIO from PC13 to PC15 in output mode is limited: the speed shall not exceed 2MHz when the
heavy load is 30pF; not used for current source (e.g. driving LED).
(2) After reset, PA13 and PA14 are configured as SWDIO and SWCLK multiplexing functions, and the internal pullup of SWDIO pin and the internal pull-down of SWCLK pin are activated.
w w w. g e e h y. c o m
P a ge 11
Table 4 Port A Multiplexing Function Configuration
Pin name
AF0
AF1
AF2
AF3
AF4
AF5
AF6
PA0
-
USART2_CTS
-
-
USART4_TX
-
-
PA1
EVENTOUT
USART2_RTS
-
-
USART4_RX
TMR15_CH1N
-
PA2
TMR15_CH1
USART2_TX
-
-
-
-
-
PA3
TMR15_CH2
USART2_RX
-
-
-
-
-
PA4
SPI1_NSS
USART2_CK
-
-
TMR14_CH1
USART6_TX
-
PA5
SPI1_SCK
-
-
-
-
USART6_RX
-
PA6
SPI1_MISO
TMR3_CH1
TMR1_BKIN
-
USART3_CTS
TMR16_CH1
EVENTOUT
PA7
SPI1_MOSI
TMR3_CH2
TMR1_CH1N
-
TMR14_CH1
TMR17_CH1
EVENTOUT
PA8
MCO
USART1_CK
TMR1_CH1
EVENTOUT
-
-
-
PA9
TMR15_BKIN
USART1_TX
TMR1_CH2
-
I2C1_SCL
MCO
-
PA10
TMR17_BKIN
USART1_RX
TMR1_CH3
-
I2C1_SDA
-
-
PA11
EVENTOUT
USART1_CTS
TMR1_CH4
-
-
SCL
-
PA12
EVENTOUT
USART1_RTS
TMR1_ETR
-
-
SDA
-
PA13
SWDIO
IR_OUT
-
-
-
-
-
PA14
SWCLK
USART2_TX
-
-
-
-
-
PA15
SPI1_NSS
USART2_RX
-
EVENTOUT
USART4_RTS
-
-
Table 5 Port B Multiplexing Function Configuration
Pin name
AF0
AF1
AF2
AF3
AF4
AF5
PB0
EVENTOUT
TMR3_CH3
TMR1_CH2N
-
USART3_CK
-
PB1
TMR14_CH1
TMR3_CH4
TMR1_CH3N
-
USART3_RTS
-
PB2
-
-
-
-
-
-
PB3
SPI1_SCK
EVENTOUT
-
-
USART5_TX
-
PB4
SPI1_MISO
TMR3_CH1
EVENTOUT
-
USART5_RX
TMR17_BKIN
PB5
SPI1_MOSI
TMR3_CH2
TMR16_BKIN
I2C1_SMBA
USART5_CK_RTS
-
PB6
USART1_TX
I2C1_SCL
TMR16_CH1N
-
-
-
PB7
USART1_RX
I2C1_SDA
TMR17_CH1N
-
USART4_CTS
-
PB8
-
I2C1_SCL
TMR16_CH1
-
-
-
PB9
IR_OUT
I2C1_SDA
TMR17_CH1
EVENTOUT
-
SPI2_NSS
PB10
-
I2C2_SCL
-
-
USART3_TX
SPI2_SCK
PB11
EVENTOUT
I2C2_SDA
-
-
USART3_RX
-
PB12
SPI2_NSS
EVENTOUT
TMR1_BKIN
-
USART3_RTS
TMR15
PB13
SPI2_SCK
-
TMR1_CH1N
-
USART3_CTS
I2C2_SCL
w w w. ge e h y. c o m
P a ge 1 2
Pin name
AF0
AF1
AF2
AF3
AF4
AF5
PB14
SPI2_MISO
TMR15_CH1
TMR1_CH2N
-
USART3_RTS
I2C2_SDA
PB15
SPI2_MOSI
TMR15_CH2
TMR1_CH3N
TMR15_CH1N
-
-
Table 6 Port C Multiplexing Function Configuration
Pin name
AF0
AF1
AF2
PC0
EVENTOUT
-
USART6_TX
PC1
EVENTOUT
-
USART6_RX
PC2
EVENTOUT
SPI2_MISO
-
PC3
EVENTOUT
SPI2_MOSI
-
PC4
EVENTOUT
USART3_TX
-
PC5
-
USART3_RX
-
PC6
TMR3_CH1
-
-
PC7
TMR3_CH2
-
-
PC8
TMR3_CH3
-
-
PC9
TMR3_CH4
-
-
PC10
USART4_TX
USART3_TX
-
PC11
USART4_RX
USART3_RX
-
PC12
USART4_CK
USART3_CK
USART5_TX
PC13
-
-
-
PC14
-
-
-
PC15
-
-
-
Table 7 Port D Multiplexing Function Configuration
Pin name
AF0
AF1
AF2
PD2
TMR3_ETR
USART3_RTS
USART5_RX
Table 8 Port F Multiplexing Function Configuration
Pin name
AF0
AF1
PF0
-
I2C1_SDA
PF1
-
I2C1_SCL
w w w. ge e h y. c o m
P a ge 1 3
4
Functional description
This chapter mainly introduces the system architecture, interrupt, on-chip memory, clock, power
supply and peripheral features of APM32F030xC series products; for information about the
Arm® Cortex®-M0+ core, please refer to the Arm® Cortex®-M0+ technical reference manual,
which can be downloaded from Arm’s website.
4.1
System architecture
4.1.1
System Block Diagram
Figure 3 APM32F030xC System Block Diagram
Arm® Cortex®-M0+
(Fmax:48MHz)
SWD
SCB
STK
System bus
NVIC
Flash
AHB1 Bus
Flash
Interface
RCM
AHB2 Bus
DMA Bus
Bus matrix
DMA
AHB1/APB
bridge
CRC
GPIOs
(A-D,F)
SRAM
TMR1/3/6/7/1
4/15/16/17
PMU
SYSCFG
4.1.2
APB Bus
RTC
WWDT
IWDT
EINT
SPI1/2
ADC
USART1-6
DBGMCU
I2C1/2
Memory mapping
Table 9 APM32F030xC Storage Mapping Table
Region
Start address
Peripheral Name
Code
0x0000 0000
Code mapping area
Code
0x0004 0000
Reserved
w w w. ge e h y. c o m
P a ge 1 4
Region
Start address
Peripheral Name
Code
0x0800 0000
Main memory area
Code
0x0804 0000
Reserved
Code
0x1FFF D800
System memory
Code
0x1FFF F800
Option byte
Code
0x1FFF FC00
Reserved
SRAM
0x2000 0000
SRAM
—
0x2000 8000
Reserved
APB bus
0x4000 0400
TMR3
APB bus
0x4000 0800
Reserved
APB bus
0x4000 1000
TMR6
APB bus
0x4000 1400
TMR7
APB bus
0x4000 1800
Reserved
APB bus
0x4000 2000
TMR14
APB bus
0x4000 2400
Reserved
APB bus
0x4000 2800
RTC
APB bus
0x4000 2C00
WWDT
APB bus
0x4000 3000
IWDT
APB bus
0x4000 3400
Reserved
APB bus
0x4000 3800
SPI2
APB bus
0x4000 3C00
Reserved
APB bus
0x4000 4400
USART2
APB bus
0x4000 4800
USART3
APB bus
0x4000 4C00
USART4
APB bus
0x4000 5000
USART5
APB bus
0x4000 5400
I2C1
APB bus
0x4000 5800
I2C2
APB bus
0x4000 5C00
Reserved
APB bus
0x4000 7000
PMU
APB bus
0x4000 7400
Reserved
—
0x4000 8000
Reserved
APB bus
0x4001 0000
SYSCFG
APB bus
0x4001 0400
EINT
APB bus
0x4001 0800
Reserved
APB bus
0x4001 1400
USART6
APB bus
0x4001 1800
Reserved
APB bus
0x4001 2400
ADC
APB bus
0x4001 2800
Reserved
APB bus
0x4001 2C00
TMR1
w w w. ge e h y. c o m
P a ge 1 5
Region
Start address
Peripheral Name
APB bus
0x4001 3000
SPI1
APB bus
0x4001 3400
Reserved
APB bus
0x4001 3800
USART1
APB bus
0x4001 3C00
Reserved
APB bus
0x4001 4000
TMR15
APB bus
0x4001 4400
TMR16
APB bus
0x4001 4800
TMR17
APB bus
0x4001 4C00
Reserved
APB bus
0x4001 5800
DBGMCU
APB bus
0x4001 5C00
Reserved
—
0x4001 8000
Reserved
AHB1 bus
0x4002 0000
DMA
AHB1 bus
0x4002 0400
Reserved
AHB1 bus
0x4002 1000
RCM
AHB1 bus
0x4002 1400
Reserved
AHB1 bus
0x4002 2000
Flash interface
AHB1 bus
0x4002 2400
Reserved
AHB1 bus
0x4002 3000
CRC
AHB1 bus
0x4002 3400
Reserved
—
0x4002 4400
Reserved
AHB2 bus
0x4800 0000
GPIOA
AHB2 bus
0x4800 0400
GPIOB
AHB2 bus
0x4800 0800
GPIOC
AHB2 bus
0x4800 0C00
GPIOD
AHB2 bus
0x4800 1000
Reserved
AHB2 bus
0x4800 1400
GPIOF
—
0x4800 1800
Reserved
Core
0xE000 E010
STK
Core
0xE000 E100
NVIC
Core
0xE000 ED00
SCB
—
0xE010 0000
Reserved
4.1.3
Startup configuration
At startup, the user can select one of the following three startup modes by setting the high and
low levels of the Boot pin:
Startup from main memory
Startup from BootLoader
Startup from internal SRAM
w w w. ge e h y. c o m
P a ge 1 6
The user can use USART interface to reprogram the user Flash if boot from BootLoader.
4.2
Core
The core of APM32F030xC is Arm® Cortex®-M0+. Based on this platform, the development cost
is low and the power consumption is low. It can provide excellent computing performance and
advanced system interrupt response, and is compatible with all Arm tools and software.
4.3
Interrupt controller
4.3.1
Nested Vector Interrupt Controller (NVIC)
It embeds a nested vectored interrupt controller (NVIC) able to handle up to 32 maskable
interrupt channels (not including16 interrupt lines of Cortex-M0+) and 4 priority levels. The
interrupt vector entry address can be directly transmitted to the core, so that the interrupt
response processing with low delay can give priority to the late higher priority interrupt.
4.3.2
External Interrupt/Event Controller (EINT)
The external interrupt/event controller consists of 32 edge detectors, and each detector
includes edge detection circuit and interrupt/event request generation circuit; each detector can
be configured as rising edge trigger, falling edge trigger or both and can be masked
independently. Up to 51 GPIOs can be connected to the 16 external interrupt lines.
4.4
On-chip memory
On-chip memory includes main memory area, SRAM and information block; the information
block includes system memory area and option byte; the system memory area stores
BootLoader, 96-bit unique device ID and capacity information of main memory area; the system
memory area has been written into the program and cannot be erased.
Table 10 On-chip Memory Area
Memory
Main memory
area
SRAM
System memory
area
Option byte
4.5
Maximum
capacity
Function
256 KB
Store user programs and data
32 KB
CPU can access at 0 waiting cycle (read/write)
8KB
16Bytes
Store BootLoader, 96-bit unique device ID, and main memory area
capacity information
Configure main memory area read-write protection and MCU working
mode
Clock
Clock tree of APM32F030xC is shown in the figure below:
w w w. ge e h y. c o m
P a ge 1 7
Figure 4 APM32F030xC Clock Tree
HSICLK
HSICLK
I2C1/2
Flash program
interface
HSICLK
SW
HSICLK
AHB/Core/
MemorIes/
DMA /Core
AHBPSC
HSICLK
8MHz
OSC_OUT
OSC_IN
PLLMUL PLLCLK
/1,2 ×2,×3
16
×16
/2
HSECLK
OSC
4-32MHz
SYSCLK
/1,2
/512
HCLK
/8
/1,/2,
/4,/8,
/16
System Timer
APB_CLK
APBPSC
HSECLK
×1,×2
HSECLK
LSECLK
LSICLK
SYSCLK
HSICLK
LSECLK
RTC
/2,/4
OSC32_IN
LSECLK
OSC
32.768kHz
LSICLK
HSICLK14
RC
14MHz
4.5.1
Clock
output
ADC
MCOPRE
/1,2,4...128
HSICLK14
IWDT
/1,2
MCO
USART1
LSECLK
LSICLK
LSICLK
40kHz
TMR1/3/6/
7/14/15
/16/17
CSS
/32
OSC32_OUT
APB
peripheral
PLLCLK
SYSCLK
HSECLK
HSICLK
HSICLK14
LSICLK
LSECLK
Clock source
Clock source is divided into high-speed clock and low-speed clock according to the speed; the
high-speed clock includes HSICLK, HSECLK and HSICLK14, and the low-speed clock includes
LSECLK and LSICLK; clock source is divided into internal clock and external clock according to
the chip inside/outside; the internal clock includes HSICLK, LSICLK and HSICLK14, and the
external clock includes HSECLK and LSECLK, among which HSICLK is calibrated by the
factory to ±1% accuracy.
4.5.2
System clock
HSICLK, PLLCLK and HSECLK can be selected as system clock; the clock source of PLLCLK
can be HSICLK or HSECLK; the requirred system clock can be obtained by configuring PLL
clock multiplier factor and frequency division factor.
When the system is reset, HSICLK is selected as the system clock by default, and then the user
can choose one of the above clock sources as the system clock by itself. When it detectes
w w w. ge e h y. c o m
P a ge 1 8
HSECLK is disabled, the system will automatically switch to the HSICLK, and if an interrupt is
enabled, the software can receive the related interrupt.
4.5.3
Bus clock
AHB, APB1 and ABP2 buses are built in. The clock source of AHB is SYSCLK and the clock
source of APB1 and APB2 is HCLK; the required clock can be obtained by configuring the
frequency division factor.
4.6
Reset and power management
4.6.1
Power supply scheme
Table 11 Power Supply Scheme
Name
Voltage range
VDD/VSS
2.0~3.6V
Instruction
I/Os (see pin distribution diagram for specific IO) and internal voltage regulator
are powered through VDD pin.
It supplies power to the ADC, reset module, RC oscillator and PLL analog part,
VDDA/VSSA
VDD~3.6V
and the voltage level of VDDA must always be greater than or equal to the voltage
level of VDD, which should be provided preferentially.
4.6.2
Voltage regulator
Table 12 Regulator Operating Mode
Name
Instruction
Master mode (MR)
Used in run mode
Low-power mode (LPR)
Used in stop mode
Used in standby mode, when the voltage regulator has high impedance output, the core
Power-down mode
circuit is powered down, the power consumption of the voltage regulator is zero, and all
data of registers and SRAM will be lost.
Note: The voltage regulator is always in working state after reset, and outputs with high impedance in power-down
mode.
4.6.3
Power supply voltage monitor
Power-on reset (POR) and power-down reset (PDR) circuits are integrated inside the product.
These two circuits are always in working condition. When the power-down reset circuit
monitors that the power supply voltage is lower than the specified threshold value (VPOR/PDR),
even if the external reset circuit is used, the system will remain reset.
4.7
Low-power mode
APM32F030xC supports three low-power modes, namely, sleep mode, stop mode and standby
mode, and there are differences in power, wake-up time and wake-up mode among these three
modes. The low-power mode can be selected according to the actual application requirements.
w w w. ge e h y. c o m
P a ge 1 9
Table 13 Low-power Mode
Mode
Instruction
Sleep mode
The core stops working, all peripherals are working, and it can be woken up through interrupts/events
Under the condition that SRAM and register data are not lost, the stop mode can achieve the lowest
power consumption;
Stop mode
The clock of the internal 1.5V power supply module will stop, HSECLK crystal resonator, HSICLK and
PLL will be prohibited, and the voltage regulator can be configured in normal mode or low power mode;
Any external interrupt line can wake up MCU, and the external interrupt lines include one of the 16
external interrupt lines, and RTC.
The power consumption in this mode is the lowest;
Internal voltage regulator is turned off, all 1.5V power supply modules are powered off, HSECLK crystal
Standby mode
resonator, HSICLK and PLL clocks are turned off, SRAM and register data disappear, RTC area and
backup register contents remain, and standby circuit still works;
The external reset signal on NRST, IWDT reset, rising edge on WKUP pin or RTC event will wake
MCU out of standby mode.
4.8
DMA
A built-in DMA, supporting 5 channels. Each channel supports multiple DMA requests, but only
one DMA request is allowed to enter the DMA channel at the same time. The peripherals
supporting DMA requests are ADC, SPI, USART, I2C, and TMRx. Four levels of DMA channel
priority can be configured. Data transmission of "Memory → Memory, Memory → Peripheral,
Peripheral → Memory" can be supported (memory includes Flash and SRAM).
4.9
GPIO
GPIO can be configured as general input, general output, multiplexing function and analog input
and output. The general input can be configured as floating input, pull-up input and pull-down
input; the general output can be configured as push-pull output and open-drain output; the
multiplexing function can be used for digital peripherals; and the analog input and output can be
used for analog peripherals and low-power mode; the enable and disable pull-up/pull-down
resistor can be configured; the speed of 2MHz, 10MHz and 50MHz can be configured; the
higher the speed is, the greater the power and the noise will be.
4.10
Communication peripherals
4.10.1 USART
Up to 6 general-purpose synchronous/asynchronous transmitter receivers are embedded in the
chip, and the communication rate can support 6Mbit/s at most. All USART interfaces can be
provided by DMA controller. The functions of USART interfaces are shown in the following table.
w w w. ge e h y. c o m
P a ge 2 0
Table 14 USART Function Differences
USART mode
Hardware flow
control
USART1
USART2
USART3
USART4
USART5
USART6
√
√
√
√
—
—
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
—
√
√
√
√
√
√
√
√
√
—
—
—
4
4
4
—
—
—
Multi-buffer
communication
(DMA)
Multi-processor
communication
Synchronous
Half duplex
(single-line mode)
Receiving timeout
interrupt
Support the baud
rate automatic
detection mode
Note:
(1) "√" means this function is supported, while "—" means that this function is not supported.
4.10.2 I2C
I2C1/2 can work in master mode and slave mode, and supports 7-bit and 10-bit addressing
modes. I2C1/2 supports standard mode (up to 100kbit/s) or fast mode (up to 400kbit/s). In
addition, I2C1 has built-in programmable analog and digital noise filters, and also supports
ultra-fast mode (up to 1 Mbit/s).
In addition, I2C1 also provides hardware support for SMBus 2.0 and PMBus 1.1: ARP function,
master notification protocol, hardware CRC(PEC) generation/verification, timeout verification
and alarm protocol management.
I2C supports DMA function.
4.10.3 SPI
2 built-in SPIs, support full duplex and half duplex communication in master mode and slave
mode, can use DMA controller, and can configure 4~16 bits per frame, and communicate at a
rate of up to 18Mbit/s.
4.11
Analog peripherals
4.11.1 ADC
1 built-in ADC with 12-bit accuracy, up to 16 external channels and 2 internal channels for each
ADC. The internal channels measure the temperature sensor voltage and reference voltage
respectively. A/D conversion mode of each channel has single, continuous, scan or intermittent
w w w. ge e h y. c o m
P a ge 2 1
modes, ADC conversion results can be left aligned or right aligned and stored in 16-bit data
register; they support analog watchdog, and DMA.
4.11.1.1 Temperature sensor
A temperature sensor (TSensor) is built in, which is internally connected with ADC_IN16
channel. The voltage generated by the sensor changes linearly with temperature, and the
converted voltage value can be obtained by ADC and converted into temperature.
4.11.1.2 Internal reference voltage
Built-in reference voltage VREFINT, internally connected to ADC_IN17 channel, which can be
obtained through ADC; VREFINT provides stable voltage output for ADC.
4.12
Timer
A built-in 16-bit advanced timer (TMR1), 5 general-purpose timers (TMR3/14/15/16/17), two
basic timers (TMR6/7), an independent watchdog timer, a window watchdog timer and a system
tick timer.
Watchdog timer can be used to detect whether the program is running normally.
The system tick timer is the peripheral of the core with automatic reloading function. When the
counter is 0, it can generate a maskable system interrupt, which can be used for real-time
operating system and general delay.
Table 15 Function Comparison between Advanced/General-purpose/Basic and System Tick Timers
Timer type
Timer name
System tick
Sys Tick Timer
Counter
resolution
Counter type
TMR7
TMR3
Advanced timer
TMR1
TMR1
TMR1
TMR1
4
5
6
7
TMR1
16 bits
16 bits
16 bits
Down
Up
Up, down, up/down
Up, down, up/down
-
between 1 and
Any integer
factor
Any integer between 1
Any integer between 1 and 65536
and 65536
65536
General DMA
request
Capture/Comp
arison channel
Complementar
y outputs
Instruction
TMR6
General-purpose timer
24 bits
Prescaler
Function
Basic timer
timer
-
OK
OK
-
-
4
-
No
No
Special for realtime
system
w w w. ge e h y. c o m
operating
Not
OK
OK
OK
OK
1
2
1
1
4
No
Yes
Yes
Yes
Yes
OK
Can be used as
Synchronization
a
function provided
16-bit
or
event
chaining
general-
Timers in debug mode can be frozen.
purpose
-Can be used to generate PWM output
It
has
complementary
PWM output with dead
band insertion
P a ge 2 2
System tick
Timer type
Basic timer
timer
General-purpose timer
Automatic
timebase
Except
reloading function
counter.
independent DMA request mechanism.
bit standard timer, it has
It can handle incremental encoder signals
the same function as the
supported
TMR14,
each
timer
Advanced timer
has
When configured as a 16-
When the counter
TMRx timer.
is
can
When configured as a 16-
a
bit PWM generator, it has
0,
it
generate
maskable system
full modulation capability
interrupt
(0~100%).
Can program the
In debug mode, the timer
clock source
can be frozen, and PWM
output is disabled.
Synchronization or event
chaining function
provided.
Table 16 Independent Watchdog and Window Watchdog Timers
Name
Counter
Counter
Prescaler
resolution
type
factor
Functional Description
The clock is provided by an internally independent RC
oscillator of 40KHz, which is independent of the master
clock, so it can run in stop and standby modes.
Independent
watchdog
12-bit
Down
Any integer
The whole system can be reset in case of problems.
between 1
It can provide timeout management for applications as a
and 256
free-running timer.
It can be configured as a software or hardware startup
watchdog through option bytes.
Timers in debug mode can be frozen.
Can be set for free running.
Window
watchdog
The whole system can be reset in case of problems.
7-bit
Down
-
Driven by the master clock, it has early interrupt warning
function;
Timers in debug mode can be frozen.
4.13
RTC
A built-in RTC with LSECLK signal input pins (OSC32_IN, OSC32_OUT), 2 TAMP input signal
detection pins (RTC_TAMP1/2), one reference clock input signal (RTC_REFIN), one output
timestamp event output pin (RTC_TS), and one signal output pin RTC_OUT (it can be
configured as calibration signal output or alarm clock signal output).
The external crystal oscillator, resonator or oscillator, LSICLK and HSECLK/32 with external
frequency of 32.768kHz can be selected as the clock source.
w w w. ge e h y. c o m
P a ge 2 3
With calendar function, it can display sub-seconds, seconds, minutes, hours (12 or 24 hours
format), weeks, dates, months and years. It supports alarm clock function, and can output the
alarm clock signal for external use, and wake up from low power consumption mode. It can
receive signals to wake up from low power consumption mode. In terms of accuracy, it supports
daylight saving time compensation, month angel compensation and leap year days
compensation. In terms of precision, the error caused by crystal oscillator can be repaired by
RTC digital calibration function, and the accuracy of calendar can be improved by using a more
accurate second source clock (50 or 60Hz).
4.14
CRC
A CRC (cyclic redundancy check) calculation unit is built in, which can generate CRC codes
and operate 8-bit, 16-bit and 32-bit data.
w w w. ge e h y. c o m
P a ge 2 4
5
Electrical characteristics
5.1
Test conditions of electrical characteristics
5.1.1 Maximum and minimum values
Unless otherwise specified, all products are tested on the production line at TA=25℃. Its
maximum and minimum values can support the worst environmental temperature, power supply
voltage and clock frequency.
In the notes at the bottom of each table, it is stated that the data are obtained through
comprehensive evaluation, design simulation or process characteristics and are not tested on
the production line; on the basis of comprehensive evaluation, after passing the sample test,
take the average value and add and subtract three times the standard deviation (average ±3∑)
to get the maximum and minimum values.
5.1.2 Typical values
Unless otherwise specified, typical data are measured based on TA=25℃, VDD=VDDA=3.3V.
these data are only used for design guidance.
5.1.3 Typical curve
Unless otherwise specified, typical curves will only be used for design guidance and will not be
tested.
w w w. ge e h y. c o m
P a ge 2 5
5.1.4
Power supply scheme
Figure 5 Power Supply Scheme
MCU
LSECLK、RTC、
Backup register
VSS
VDD 4×V
DD
4×100nF
+4.7μF
Input schmitt
trigger.
Output buffer
Core
Flash
SRAM
1/0 logic
Digital
peripheral
Voltage regulator
Input schmitt
trigger
Output buffer
VDDA
VDDA
RC oscillator
Analog peripherals
10nF+
1μF
VSSA
VREF+
5.1.5
ADC
VREF-
Load capacitance
Figure 6 Load conditions when measuring pin parameters
MCU pin
c=50p
w w w. ge e h y. c o m
P a ge 2 6
Figure 7 Pin Input Voltage Measurement Scheme
MCU pin
VIN
Figure 8 Power Consumption Measurement Scheme
VDD
MCU
IDD
A
VDDX
VSS
IDDA
A
VDDA
VSSA
5.2
Test under general operating conditions
Table 17 General Operating Conditions
Minimum
Maximum
value
value
-
-
48
Internal APB1 clock frequency
-
-
48
Main power supply voltage
-
2
3.6
VDD
3.6
Symbol
Parameter
Conditions
fHCLK
Internal AHB clock frequency
fPCLK1
VDD
Unit
MHz
Analog power supply voltage
VDDA
(When ADC is not used)
Must be the
Analog power supply voltage
same as VDD
(When ADC is used)
TA
w w w. ge e h y. c o m
Ambient temperature (temperature
Maximum power
number 6)
dissipation
Ambient temperature (temperature
Maximum power
number 7)
dissipation
V
V
2.4
3.6
-40
85
℃
-40
105
℃
P a ge 2 7
5.3
Absolute maximum ratings
If the load on the device exceeds the absolute maximum rating, it may cause permanent
damage to the device. Here, only the maximum load that can be borne is given, and there is no
guarantee that the device functions normally under this condition.
5.3.1 Maximum temperature characteristics
Table 18 Temperature Characteristics
Symbol
Description
Numerical Value
Unit
TSTG
Storage temperature range
-55 ~ +150
℃
TJ
Maximum junction temperature
150
℃
5.3.2 Maximum rated voltage characteristics
All power supply (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the
power supply within the external limited range.
Table 19 Maximum Rated Voltage Characteristics
Minimum
Maximum
value
value
External main power supply voltage
-0.3
4.0
VDDA-VSSA
External analog power supply voltage
-0.3
4.0
VDD-VDDA
Voltage difference allowed by VDD>VDDA
-
0.3
Input voltage on FT pins
VSS-0.3
VDD+4.0
Input voltage on 3.3V pin
VSS-0.3
4.0
Input voltage on other pins
VSS-0.3
4.0
-
50
Symbol
Description
VDD - VSS
Unit
V
VIN
| ΔVDDx |
| VSSx-VSS |
Voltage difference between different power supply
pins
Voltage difference between different grounding pins
mV
-
50
5.3.3 Maximum rated current features
表格 20 Maximum Rated Current Features
Symbol
Description
Maximum
ΣIVDD
Total current into sum of all VDD power lines (source)(1)
120
ΣIVSS
Total current out of sum of all VSS ground lines (sink)(1)
-120
IVDD(PIN)
Maximum current into each VDD power pin (source)(1)
100
IVSS(PIN)
Maximum current out of each VSS ground pin (sink)(1)
-100
Output current sunk by any I/O and control pin
25
Output current source by any I/O and control pin
-25
Unit
mA
IIO(PIN)
w w w. ge e h y. c o m
P a ge 2 8
Symbol
Description
Maximum
Total output current sunk by sum of all I/Os and control pins (2)
80
Total output current sourced by sum of all I/Os and control pins (2)
-80
Unit
ΣIIO(PIN)
Injected current on 5T and 5Tf pins
IINJ(PIN)
(3)
ΣIINJ(PIN)
-5/+0
(4)
Injected current on STD and RST pin
±5
Injected current on STDA pins(5)
±5
Total injection current on all I/O and control pins (4)
±25
(1) All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply,
in the permitted range.
(2) This current consumption must be correctly distributed over all I/Os and control pins. The total output current
must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP
packages.
(3) A positive injection is induced by VIN > VDDIOx while a negative injection is induced by VIN < VSS. IINJ(PIN) must
never be exceeded.
(4) Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified
maximum value.
(5) On these I/Os, a positive injection is induced by VIN > VDDA. Negative injection disturbs the analog performance
of the device.
(6) When several inputs are submitted to a current injection, the maximum IINJ(PIN) is the absolute sum of the
positive and negative injected currents (instantaneous values)
5.3.4
ESD characteristics
Table 21 ESD Characteristics
Symbol
VESD(HBM)
VESD(CDM)
Parameter
Electrostatic discharge voltage
(human body model)
Electrostatic discharge voltage
(charging device model)
Conditions
TA=+25℃
Maximum
value
Unit
6000
V
TA=+25℃
2000
Note: The samples are measured by a third-party testing organization and are not tested in production.
5.3.5
Static latch-up
Table 22 Static Latch-up
Symbol
Parameter
Conditions
Type
LU
Class of static latch-up
TA=+25℃/105℃
Class II-A
Note: The samples are measured by a third-party testing organization and are not tested in production.
w w w. ge e h y. c o m
P a ge 2 9
5.4
On-chip memory
5.4.1
Flash characteristics
Table 23 Flash Memory Characteristics
Symbol
Parameter
tprog
16-bit programming time
tERASE
Conditions
Minimum
Typical
Maximum
value
values
value
-
48
-
μs
-
3
-
ms
-
12
-
ms
2
-
3.6
V
TA = -40~105℃
VDD=2.4~3.6V
Page (2KBytes) erase
TA = -40~105℃
time
VDD=2.4~3.6V
TA = 25℃
tME
Whole erase time
Vprog
Programming voltage
VDD=3.3V
TA = -40~105℃
Unit
Note: It is obtained from a comprehensive evaluation and is not tested in production.
5.5
Clock
5.5.1
Characteristics of external clock source
High-speed external clock generated by crystal resonator
For detailed parameters (frequency, package, precision, etc.) of crystal resonator, please
consult the corresponding manufacturer.
Table 24 HSECLK4~32MHz Oscillator Characteristics
Symbol
fOSC_IN
Parameter
Oscillator
frequency
Feedback
RF
resistance
IDD(HSECLK)
tSU(HSECLK)
Minimum
Typical
Maximum
value
values
value
-
4
8
32
MHz
-
-
300
-
kΩ
-
0.29
-
mA
-
2
-
ms
Conditions
HSECLK current
VDD=3.3V,
consumption
CL=10pF@8MHz
Startup time
VDD is stable
Unit
Note: It is obtained from a comprehensive evaluation and is not tested in production.
Low-speed external clock generated by crystal resonator
For detailed parameters (frequency, package, precision, etc.) of crystal resonator, please
consult the corresponding manufacturer.
w w w. ge e h y. c o m
P a ge 3 0
Table 25 LSECLK Oscillator Characteristics (fLSECLK=32.768KHz)
Symbol
fOSF_IN
tSU(LSECLK)(1)
IDD(LSECLK)
Parameter
Minimum
Typical
Maximum
value
values
value
-
-
32.768
-
KHz
VDDIOx is stable
-
2
-
s
-
-
0.9
-
μA
Conditions
Oscillator
frequency
Startup time
LSECLK current
consumption
Unit
Note: It is obtained from a comprehensive evaluation and is not tested in production.
(1) tSU(HXT) is the startup time, which is measured from the time when LSECLK is enabled by software to the time when
stable oscillation at 32.768KHz is obtained. This value is measured using a standard crystal resonator, which may
vary greatly due to different crystal manufacturers.
5.5.2
Characteristics of internal clock source
High speed internal (HSICLK) RC oscillator
Table 26 HSICLK Oscillator Characteristics
Minimu
Symbol
Parameter
Conditions
m
value
fHSICLK
ACCHSICLK
Frequency
-
IDDA(HSICLK)
Unit
value
-
MHz
-1
-
1
%
-3
-
3
%
VDD=3.3V,TA=-40~105℃
1
-
2
μs
-
-
80
100
μA
Factory
oscillator
calibration
HSICLK oscillator
um
8
Accuracy of HSICLK
Startup time of
values
Maxim
-
VDD=3.3V,TA=25℃(1)
VDD=2-3.6V,TA=40~105℃
tSU(HSICLK)
Typical
Power consumption
of HSICLK oscillator
Note: (1) Except for calibration in production, other data are obtained from a comprehensive evaluation and is not tested in
production.
14MHz high speed internal (HSICLK14) RC oscillator
Table 27 HSICLK14 Oscillator Characteristics
Symbol
fHSICLK
ACCHSICLK
Parameter
Conditions
Frequency
-
Accuracy of HSICLK
Factory
oscillator
calibration
VDD=3.3V,TA=25℃(1)
VDD=2-3.6V,
TA=-40~105℃
w w w. ge e h y. c o m
Maxim
Minimu
Typical
m value
values
-
14
-
MHz
-1
-
1
%
-3
-
3
%
um
Unit
value
P a ge 3 1
Symbol
Typical
m value
values
VDD=3.3V,TA=-40~105℃
1
-
2
μs
-
-
100
150
μA
Parameter
Conditions
Startup time of
tSU(HSICLK)
HSICLK oscillator
Power consumption
IDDA(HSICLK)
Maxim
Minimu
of HSICLK oscillator
um
Unit
value
Note: (1) Except for calibration in production, other data are obtained from a comprehensive evaluation and is not tested in
production.
Low speed internal (LSICLK) RC oscillator
Table 28 LSICLK Oscillator Characteristics
Symbol
Minim
Typica
Maxim
um
l
um
value
values
value
Parameter
Unit
fLSICLK
Frequency (VDD =2-3.6V, TA =-40~105℃)
30
40
50
KHz
tSU(LSICLK)
LSICLK oscillator startup time, (VDD=3.3V, TA=-40~105℃)
-
-
96
μs
IDD(LSICLK)
Power consumption of LSICLK oscillator
-
0.75
-
μA
Note: It is obtained from a comprehensive evaluation and is not tested in production.
PLL Characteristics
5.5.3
Table 29 PLL Characteristics
Numerical Value
Symbol
Parameter
Unit
Minimum
Typical
Maximum
value
values
value
PLL input clock
1
8.0
24
MHz
PLL input clock duty cycle
40
-
60
%
16
-
48
MHz
-
-
200
μs
fPLL_IN
fPLL_OUT
PLL frequency doubling output clock, (VDD=3.3V, TA=40~125℃)
tLOCK
PLL phase locking time
Note: It is obtained from a comprehensive evaluation and is not tested in production.
5.6
Reset and power management
5.6.1
Test of Embedded Reset and Power Control Block Characteristics
Table 30 Embedded Reset and Power Control Block Characteristics
Symbol
Parameter
Conditions
VPOR/PDR
Power-on/power-down
Falling edge
w w w. ge e h y. c o m
Minimum
Typical
Maximum
value
values
value
1.89
1.92
1.95
Unit
V
P a ge 3 2
Symbol
Minimum
Typical
Maximum
value
values
value
Rising edge
1.92
1.95
1.98
V
PDR hysteresis
-
20.00
30.00
40.00
mV
Reset duration
-
1.10
1.29
1.52
ms
Parameter
Conditions
reset threshold
VPDRhyst
TRSTTEMPO
Unit
Note: It is obtained from a comprehensive evaluation and is not tested in production.
5.7
Power consumption
5.7.1
Power consumption test environment
(1) The values are measured by executing Coremark, with the Keil.V5 compilation environment
and the L3 compilation optimization level.
(2) All I/O pins are configured as analog inputs and are connected to a static level of VDD or VSS
(non-loaded)
(3) Unless otherwise specified, all peripherals are turned off
(4) The relationship between Flash waiting cycle setting and fHCLK :
0~24MHz: 0 waiting cycle
24~48MHz: 1 waiting cycle
(5) The instruction prefetch function is enabled (Note: it must be set before clock setting and
bus frequency division)
(6) When the peripherals are enabled: fPCLK =fHCLK
5.7.2
Power consumption in run mode
Table 31 Power Consumption in Run Mode when the Program is Executed in Flash
Parameter
Conditions
HSECLK bypass (2) , enabling all
peripherals
Power
fHCLK
Typical value (1)
Maximum value (1)
TA=25℃,VDD=3.3V
TA=105℃,VDD=3.6V
IDDA(μA)
IDD(mA)
IDDA(μA)
IDD(mA)
48MHz
103.09
14.51
116.07
15.11
32MHz
71.88
10.05
83.44
10.50
24MHz
58.02
7.93
69.07
8.44
8MHz
2.17
3.17
7.35
3.64
1MHz
2.17
1.94
7.17
2.78
48MHz
103.07
8.99
116.02
9.30
32MHz
71.85
6.23
83.42
6.58
24MHz
58.04
5.07
69.02
5.56
8MHz
2.17
2.25
7.28
2.65
1MHz
2.17
1.82
7.23
2.68
consumption
in run mode
HSECLK bypass (2) , turning off all
peripherals
w w w. ge e h y. c o m
P a ge 3 3
Parameter
Conditions
HSICLK (2) , enabling all peripherals
HSICLK (2) , turning off all peripherals
fHCLK
Typical value (1)
Maximum value (1)
TA=25℃,VDD=3.3V
TA=105℃,VDD=3.6V
IDDA(μA)
IDD(mA)
IDDA(μA)
IDD(mA)
48MHz
165.36
14.52
182.74
14.78
32MHz
134.37
9.97
150.34
10.28
24MHz
120.54
7.87
135.75
8.13
8MHz
64.98
3.12
76.50
3.36
48MHz
165.40
8.89
182.68
9.01
32MHz
134.36
6.18
150.14
6.44
24MHz
120.55
5.00
135.79
5.25
8MHz
64.99
2.16
76.34
2.44
Note: (1) It is obtained from a comprehensive evaluation and is not tested in production.
(2) The external clock is 8MHz, and when fHCLK>8MHz, turn on PLL, otherwise, turn off PLL.
Table 32 Power Consumption in Run Mode when the Program is Executed in RAM
Parameter
Conditions
HSECLK bypass (2) , enabling all
peripherals
Power
HSECLK bypass (2) , turning off all
consumption
peripherals
in run mode
HSICLK (2) , enabling all peripherals
HSICLK (2) , turning off all peripherals
w w w. ge e h y. c o m
fHCLK
Typical value (1)
Maximum value (1)
TA=25℃,VDD=3.3V
TA=105℃,VDD=3.6V
IDDA(μA)
IDD(mA)
IDDA(μA)
IDD(mA)
48MHz
103.16
12.36
12.51
12.82
32MHz
71.93
8.52
8.77
8.74
24MHz
58.01
6.62
6.75
6.91
8MHz
2.17
2.70
2.89
2.93
1MHz
2.17
0.98
1.14
1.18
48MHz
102.49
6.75
7.07
6.97
32MHz
71.34
4.79
5.08
4.98
24MHz
57.36
3.72
3.99
4.01
8MHz
2.33
1.77
1.99
1.96
1MHz
2.33
086
1.07
1.07
48MHz
165.37
12.37
12.82
12.86
32MHz
134.37
8.57
8.93
8.90
24MHz
120.52
6.66
6.96
6.84
8MHz
64.98
2.77
3.00
3.04
48MHz
164.62
6.74
7.05
7.03
32MHz
134.35
4.81
5.05
4.99
P a ge 3 4
Parameter
Conditions
fHCLK
Typical value (1)
Maximum value (1)
TA=25℃,VDD=3.3V
TA=105℃,VDD=3.6V
IDDA(μA)
IDD(mA)
IDDA(μA)
IDD(mA)
24MHz
120.50
3.76
4.03
4.05
8MHz
64.35
1.84
2.02
2.01
Note: (1) It is obtained from a comprehensive evaluation and is not tested in production.
(2) The external clock is 8MHz, and when fHCLK>8MHz, turn on PLL, otherwise, turn off PLL.
5.7.3
Power consumption in sleep mode
Table 33 Power Consumption in Sleep Mode when the Program RAM is Executed in Flash
Parameter
Conditions
HSECLK bypass (2) , enabling all
peripherals
HSECLK bypass (2) , turning off all
Sleep mode
peripherals
Power
consumption
HSICLK (2) , enabling all peripherals
HSICLK (2) , turning off all peripherals
fHCLK
Typical value (1)
Maximum value (1)
TA=25℃,VDD=3.3V
TA=105℃,VDD=3.6V
IDDA(μA)
IDD(mA)
IDDA(μA)
IDD(mA)
48MHz
103.14
9.31
116.13
9.7
32MHz
71.93
6.52
83.37
6.96
24MHz
58.00
5.09
69.03
5.59
8MHz
2.17
2.25
7.23
2.65
1MHz
2.17
1.82
7.22
1.12
48MHz
103.13
2.39
115.96
2.79
32MHz
71.89
1.90
83.17
2.33
24MHz
57.99
1.65
68.91
2.09
8MHz
2.17
1.10
7.13
1.53
1MHz
2.16
0.72
7.12
0.97
48MHz
165.34
9.25
182.73
9.59
32MHz
134.36
6.47
150.16
6.77
24MHz
120.50
5.03
135.52
5.33
8MHz
64.98
2.21
75.37
2.48
48MHz
165.34
2.29
182.58
2.56
32MHz
134.39
1.80
150.09
2.08
24MHz
120.51
1.55
135.39
1.82
8MHz
64.99
1.02
75.68
1.29
Note: (1) It is obtained from a comprehensive evaluation and is not tested in production.
(2) The external clock is 8MHz, and when fHCLK>8MHz, turn on PLL, otherwise, turn off PLL.
w w w. ge e h y. c o m
P a ge 3 5
5.7.4
Power consumption in stop mode and standby mode
Table 34 Power Consumption in Stop Mode and Standby Mode
Typical value (1), (TA=25℃)
Parameter
Conditions
Regulator in run mode, all
Power
oscillators OFF
consumption
in stop mode
Power
Regulator in low-power mode, all
VDD=2.0V
VDD=3.3V
Maximum value (1), (VDD=3.6V)
VDD=3.6V
TA=85℃
TA=105℃
IDDA
IDD
IDDA
IDD
IDDA
IDD
IDDA
IDD
IDDA
IDD
2.55
22.78
3.03
23.43
3.25
23.96
4.84
79.63
7.57
165.32
2.50
8.53
3.02
9.24
3.25
9.73
4.80
61.51
7.54
142.50
VDDA
oscillators OFF
Monitor ON
LSICLK and IWDT ON
2.70
1.72
3.40
2.62
3.70
3.18
5.21
7.18
7.65
14.37
LSICLK and IWDT OFF
2.37
1.43
2.90
2.25
3.13
2.69
4.66
6.66
7.11
13.88
Unit
consumption
in standby
mode
Regulator in run mode, all
Power
oscillators OFF
consumption
in stop mode
Power
Regulator in low-power mode, all
μA
1.35
22.73
1.53
23.62
1.64
24.05
3.16
79.76
5.95
165.3
1.35
8.50
1.52
9.35
1.63
9.77
3.14
61.66
5.88
143.7
VDDA
oscillators OFF
Monitor OFF
LSICLK and IWDT ON
1.55
1.71
1.90
2.75
2.06
3.23
3.54
7.23
6.01
14.46
LSICLK and IWDT OFF
1.22
1.42
1.40
23.00
1.51
2.74
2.99
6.74
5.46
13.89
consumption
in standby
mode
Note: (1) It is obtained from a comprehensive evaluation and is not tested in production.
www.geehy.com
Page 36
5.7.5
Peripheral power consumption
The HSECLK Bypass 1M is adopted as clock source, fPCLK=fHCLK=1M.
Peripheral power consumption = current that enables the peripheral clock-current that disables
the peripheral clock.
Table 35 Peripheral Power Consumption
Parameter
Peripheral power
consumption
w w w . g e e h y. c o m
Peripheral
Typical value (1) TA =25℃, VDD =3.3V
BusMatrix
1.12
CRC
0.70
DMA
2.25
FLASH
23.75
GPIOA
2.25
GPIOB
2.12
GPIOC
0.87
GPIOD
0.79
GPIOF
0.71
SRAM
0.25
ALL_AHB
41.04
APB_Bridge
1.00
ADC
3.00
CAN
6.62
DAC
2.46
DBGMCU
0.25
I2C1
7.54
I2C2
1.87
PMU
0.91
SPI1
4.91
SPI2
4.5
SYSCFG
1.08
TMR1
6.95
TMR3
5.20
TMR6
1.41
TMR7
1.33
TMR14
2.70
Unit
μA/MHz
Page 37
Parameter
Peripheral
Typical value (1) TA =25℃, VDD =3.3V
TMR15
4.20
TMR16
3.20
TMR17
3.58
USART1
9.08
USART2
9.10
USART3
9.04
USART4
3.2
ALL_APB
114.62
Unit
Note: It is obtained from a comprehensive evaluation and is not tested in production.
5.8
Wake-up time in low power mode
The measurement of wake-up time in low power mode is from the start of wake-up event to the
time when the user program reads the first instruction, in which VDD=VDDA.
Table 36 Wake Up Time in Low-power Mode
Typical value (TA=25℃)
Symbol
tWUSLEEP
Parameter
Conditions
Wake-up from
-
sleep mode
The voltage regulator is in
tWUSTOP
Wake up from stop
run mode
mode
The voltage regulator is in
Wake up from
-
standby mode
2V
3.3V
3.6V
value
0.15
0.15
0.15
0.17
3..45
3.09
3.02
3.89
Unit
μs
low power mode
tWUSTDBY
Maximum
8.15
5.43
5.14
9.72
46.65
37.15
35.93
53.80
Note: It is obtained from a comprehensive evaluation and is not tested in production.
5.9
Pin characteristics
5.9.1
I/O pin characteristics
Table 37 DC Characteristics (test condition of VDD =2.7~3.6V, TA =-40~105℃)
Symbol
VIL
Parameter
Low level input
voltage
Conditions
Minimum value
Typical values
Maximum value
STD and STDA I/O
-
-
0.3VDDIOx+0.07
5T and 5Tf I/O
-
-
0.475VDDIOx -0.2
-
-
0.3VDDIOx
I/O pins except Boot0
pin
w w w. ge e h y. c o m
Unit
V
P a ge 3 8
Symbol
VIH
Parameter
High level input
voltage
Conditions
Minimum value
Typical values
Maximum value
STD and STDA I/O
0.445VDDIOx +0.398
-
-
5T and 5Tf I/O
0.5VDDIOx +0.2
-
-
0.7VDDIOx
-
-
I/O pins except Boot0
pin
Vhys
Unit
V
Schmitt trigger
STD and STDA I/O
-
300
-
hysteresis
5T and 5Tf I/O
-
300
-
-
-
+0.1
-
-
1
-
-
10
VIN=VSS
22
42
46
kΩ
VIN=VDDIOx
22
42
46
kΩ
mV
STD, 5T and 5Tf
I/OTTa in digital mode,
Ilkg
Input leakage
current
VSS≤VIN≤VDDIOx
STDA in digital mode,
VDDIOx≤VIN≤VDDA
5T and 5Tf I/O
VDDIOx≤VIN≤5V
μA
Weak pull-up
RPU
equivalent
resistance
Weak pull-down
RPD
equivalent
resistance
Note: It is obtained from a comprehensive evaluation and is not tested in production.
Table 38 AC Characteristics (TA =25℃)
OSSELy[1:0]
X0(2MHz)
Symbol
Parameter
fmax(IO)out
Maximum frequency
tf(IO)out
Output fall time from high to
Conditions
CL=50pF,
low level
Minimum
Maximum
value
value
-
2
-
18.16
VDDIOX=2~3.6V
tr(IO)out
fmax(IO)out
01(10MHz)
tf(IO)out
Output rise time from low to
high level
Maximum frequency
Output fall time from high to
CL=50pF,
low level
tr(IO)out
fmax(IO)out
10(50MHz)
tf(IO)out
w w w. ge e h y. c o m
high level
Maximum frequency
Output fall time from high to
low level
CL=30pF,
VDD=2.7~3.6V
MHz
ns
-
16.66
-
10
-
11.50
VDDIOX=2~3.6V
Output rise time from low to
Unit
MHz
ns
-
11.14
-
50
MHz
-
3.58
ns
P a ge 3 9
OSSELy[1:0]
Symbol
Parameter
Conditions
Minimum
Maximum
value
value
-
8.06
-
2
-
11
-
33
-
0.5
-
14
-
43
Output rise time from low to
tr(IO)out
high level
fmax(IO)out
Maximum frequency
Unit
MHz
CL=50pF,
FM+
tf(IO)out
configuration
Output fall time
VDDIOx≥2V
tr(IO)out
Output rise time
fmax(IO)out
Maximum frequency
ns
MHz
CL=50pF,
FM+
tf(IO)out
configuration
Output fall time
VDDIOx