FTS10N15G
150V N-Channel Enhancement Mode MOSFET
General Features
➢
➢
➢
➢
➢
➢
ESD Improved Capability
Proprietary Advanced Planar Technology
Rugged Polysilicon Gate Cell Structure
Fast Switching Speed
RoHS Compliant
Halogen-free Available
BVDSX
RDS(ON) (Typ.)
ID
150V
5Ω
0.35A
SOT-223
➢
➢
➢
D
D
Applications
G
Relay Driver
High Speed Line Driver
Logic Level Translator
G
D
S
S
Ordering Information
Part Number
Package
Marking
Remark
FTS10N15G
SOT-223
10N15G
Halogen Free
Absolute Maximum Ratings
Symbol
TA =25℃ unless otherwise specified
Parameter
FTS10N15G
Unit
VDSX
Drain-to-Source Voltage[1]
150
V
VDGX
Drain-to-Gate Voltage[1]
150
V
ID
Continuous Drain Current
0.35
IDM
Pulsed Drain Current[2]
1.4
Power Dissipation
1.5
W
0.012
W/℃
PD
Derating Factor above 25℃
A
VGS
Gate-to-Source Voltage
±20
V
VESD(G-S)
Gate-to-Source ESD
IEC, C=150pF, R=330Ω
2500
V
Soldering Temperature
Distance of 1.6mm from case for 10 seconds
300
TL
TJ and TSTG
Operating and Storage Temperature Range
℃
-55 to 150
Caution: Stresses greater than those listed in the“Absolute Maximum Ratings” may cause permanent damage to the device.
Thermal Characteristics
Symbol
RθJA
Parameter
Thermal Resistance, Junction-to-Ambient
ARK Microelectronics Co., Ltd.
www.ark-micro.com
1 /7
FTS10N15G
Unit
83.3
℃/W
Rev. 1.1 Apr. 2022
FTS10N15G
Electrical Characteristics
OFF Characteristics
TA =25℃ unless otherwise specified
Symbol
Parameter
Min.
Typ.
Max.
Unit
Test Conditions
BVDSX
Drain-to-Source Breakdown Voltage
150
--
--
V
VGS=0V, ID=250µA
--
0.15
--
V/℃
Reference to 25℃,
ID=250µA
--
--
1
µA
VDS=150V, VGS=0V
--
--
100
uA
VDS=120V, VGS= 0V
TJ=125℃
--
--
10
--
--
-10
△BVDSS/
△TJ
IDSS
IGSS
Breakdown
Coefficient
Voltage Temperature
Drain-to-Source Leakage Current
Gate-to-Source Leakage Current
ON Characteristics
µA
VGS=+20V, VDS=0V
VGS=-20V, VDS=0V
TA =25℃ unless otherwise specified
Symbol
Parameter
Min.
Typ.
Max.
Unit
Test Conditions
RDS(ON)
Static Drain-to-Source On-Resistance
--
5
10
Ω
VGS=10V, ID=250mA [3]
VGS(th)
Gate Threshold Voltage
1.5
--
2.5
V
VGD=0V, ID=250µA
Forward Transconductance
--
360
--
mS
VDS=5V, ID=175mA[3]
gfs
Dynamic Characteristics
Symbol
Parameter
Essentially independent of operating temperature
Min.
Typ.
Max.
CISS
Input Capacitance
--
32.8
--
COSS
Output Capacitance
--
17.2
--
CRSS
Reverse Transfer Capacitance
--
4.6
--
QG
Total Gate Charge
--
1.2
--
QGS
Gate-to-Source Charge
--
0.4
--
QGD
Gate-to-Drain (Miller) Charge
--
0.7
--
Resistive Switching Characteristics
Symbol
Parameter
Min.
Typ.
Max.
Turn-on Delay Time
--
3.6
--
trise
Rise Time
--
7.2
--
td(off)
Turn-off Delay Time
--
16.0
--
Fall Time
--
36.8
--
ARK Microelectronics Co., Ltd.
Test Conditions
pF
VGS=0V
VDS=10V
f=1.0MHZ
nC
VDS=60V
ID=250mA
VGS=5V
Essentially independent of operating temperature
td(on)
tfall
Unit
www.ark-micro.com
2 /7
Unit
Test Conditions
ns
VDD=50V
RD=250 Ω
RG=50 Ω
VGS=10V
Rev. 1.1 Apr. 2022
FTS10N15G
Source-Drain Diode Characteristics
Symbol
TA =25℃ unless otherwise specified
Parameter
Min
Typ.
Max.
Unit
Test Conditions
ISD=300mA, VGS=0V
VSD
Diode Forward Voltage
--
--
1.5
V
ISD
Continuous Source Current (Body
Diode)
--
--
0.5
A
ISM
Maximum Pulsed Current (Body
Diode)
--
--
2.0
A
Integral P-N diode in
MOSFET
NOTE:
[1] TJ=+25℃ to +150℃
[2] Repetitive rating, pulse width limited by maximum junction temperature.
[3] Pulse width≤380µs; duty cycle≤2%.
ARK Microelectronics Co., Ltd.
www.ark-micro.com
3 /7
Rev. 1.1 Apr. 2022
FTS10N15G
Typical Characteristics
Figure 2. Maximum Continuous Drain Current
vs Case Temperature
1.6
0.5
ID,Drain Current(A)
PD,Power Dissipation(W)
Figure 1. Maximum Power Dissipation vs.
Case Temperature
1.2
0.8
0.4
0.4
0.3
0.2
0.1
0
25
50
75
100
125
0
150
25
50
TC,Case Temperature(℃)
ID,Dranin-to-Source Current(mA)
VGS=10V
800
ID,Drain Current(mA)
125
150
1,000
900
700
VGS=5V
600
500
400
VGS=4V
300
200
100
VGS=3V
900
TA=25℃
800
VDS=9V
700
600
500
VDS=3V
400
300
200
100
0
0
1
2
3
4
5
6
7
8
9
VDS,Drain-to-Source Voltage(V)
0
10
BVDSS,Drain-to-Source
2.2
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
-50
-25
0
25
50
75
1
10
1.20
1.15
1.10
1.05
1.00
0.95
0.90
-50
100 125 150
-25
0
25
50
75
100 125 150
Tj,Junction Temperature(℃)
Tj,Junction Temperature(℃)
ARK Microelectronics Co., Ltd.
2
3
4
5
6
7
8
9
VGS,Gate-to-Source Voltage(V)
Figure 6. Typical Breakdown Voltage
vs. Junction Temperature
Figure 5. Typical Drain-to-Source On-Resistance
vs. Junction Temperature
2.4
Breakdown Voltage(Normalized)
0
(Normalized)
100
Figure 4. Typical Transfer Characteristics
Figure 3.Typical Output Characteristics
1,000
RDS(ON),Drain-to-Source Resistance
75
TC,Case Temperature(℃)
www.ark-micro.com
4 /7
Rev. 1.1 Apr. 2022
FTS10N15G
Figure 8. Typical Capacitance vs.
Drain-to-Source Voltage
50
1,000
45
40
800
C,Capacitance(pF)
ISD,Reverse Drain Current(mA)
Figure 7. Typical Body Diode Transfer
Characteristics
150℃
600
25℃
400
200
CISS
35
30
25
20
COSS
15
10
CRSS
5
0
0
0.5
1
0
1.5
0
5
VSD,Source-to-Drain Voltage(V)
10
15
20
25
30
VDS,Drain Voltage(V)
ID,Dranin-to-Source Current(A)
Figure 9. Maximum Forward Safe Operating Area
1
0.1
0.01
0.001
1
ARK Microelectronics Co., Ltd.
10
VDS,Drain Voltage(V)
100
www.ark-micro.com
5 /7
Rev. 1.1 Apr. 2022
FTS10N15G
Package Dimensions
SOT-223
ARK Microelectronics Co., Ltd.
www.ark-micro.com
6 /7
Rev. 1.1 Apr. 2022
FTS10N15G
Published by
ARK Microelectronics Co., Ltd.
ADD: D26,UESTC National Science Park No. 1 Shuangxing Avenue, Chengdu, Sichuan.
All Rights Reserved.
Disclaimers
ARK Microelectronics Co., Ltd. reserves the right to make change without notice in order to improve
reliability, function or design and to discontinue any product or service without notice. Customers should obtain
the latest relevant information before orders and should verify that such information is current and complete. All
products are sold subject to ARK Microelectronics Co., Ltd’s terms and conditions supplied at the time of
order acknowledgement.
ARK Microelectronics Co., Ltd. warrants performance of its hardware products to the specifications at the
time of sale, Testing, reliability and quality control are used to the extent ARK Microelectronics Co., Ltd
deems necessary to support this warrantee. Except where agreed upon by contractual agreement, testing of all
parameters of each product is not necessary performed.
ARK Microelectronics Co., Ltd. does not assume any liability arising from the use of any product or circuit
designs described herein. Customers are responsible for their products and applications using ARK
Microelectronics Co., Ltd’s components. To minimize risk, customers must provide adequate design and
operating safeguards.
ARK Microelectronics Co., Ltd. does not warrant or convey any license either expressed or implied under its
patent rights, nor the rights of others. Reproduction of information in ARK Microelectronics Co., Ltd’s data
sheets or data books is permissible only if reproduction is without modification or alteration. Reproduction of this
information with any alteration is an unfair and deceptive business practice. ARK Microelectronics Co., Ltd is
not responsible or liable for such altered documentation.
Resale of ARK Microelectronics Co., Ltd’s products with statements different from or beyond the parameters
stated by ARK Microelectronics Co., Ltd. for the product or service voids all express or implied warrantees for
the associated ARK Microelectronics Co., Ltd’s product or service and is unfair and deceptive business
practice. ARK Microelectronics Co., Ltd is not responsible or liable for any such statements.
Life Support Policy:
ARK Microelectronics Co., Ltd’s products are not authorized for use as critical components in life devices or
systems without the expressed written approval of ARK Microelectronics Co., Ltd.
As used herein:
1. Life support devices or systems are devices or systems which:
a. are intended for surgical implant into the human body,
b. support or sustain life,
c. whose failure to perform when properly used in accordance with instructionsfor used provided in the
labeling, can be reasonably expected to result in significantinjury to the user.
2. A critical component is any component is any component of a life support device or system whose failure
to perform can be reasonably expected to cause the failure of the life support device or system, or to affect
its safety or effectiveness.
ARK Microelectronics Co., Ltd.
www.ark-micro.com
7 /7
Rev. 1.1 Apr. 2022