0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
R1524N033B-TR-FE

R1524N033B-TR-FE

  • 厂商:

    NISSHINBO(日清纺)

  • 封装:

    SC-74A

  • 描述:

    PMIC - 稳压器 - 线性 正 固定 1 输出 200mA SOT-23-5

  • 数据手册
  • 价格&库存
R1524N033B-TR-FE 数据手册
R1524x Series 200 mA 36 V Input Ultra Low Supply Current VR No. EA-332-230703 OUTLINE The R1524x is an ultra-low supply current voltage regulator featuring 200 mA output current and 36 V input voltage. This device consists of an Output Short-circuit Protection Circuit, an Over-current Protection Circuit, and a Thermal Shutdown Circuit in addition to the basic regulator circuits. The operating temperature range is from −40°C to 105°C, and the maximum input voltage is 36 V. All these features allow the R1524x to become an ideal power source of electric home appliances. The output voltages are internally fixed (refer to SELECTION GUIDE). The output voltage accuracy is ±0.6%. The packages for this device range from high-density mounting to ultra high wattage. The R1524x is offered in five packages; a 5-pin SOT-23-5, a 5-pin SOT-89-5, a 6-pin HSOP-6J, a 6-pin DFN(PL)1820-6, and an 8pin HSOP-8E package. FEATURES ● ● ● ● ● ● Input Voltage Range (Maximum Rating) ················ 3.5 V to 36 V (50 V) Operating Temperature Range ···························· −40°C to 105°C Supply Current ················································· Typ. 2.2 µA Standby Current ··············································· Typ. 0.1 µA Dropout Voltage ··············································· Typ. 0.6 V (IOUT = 200 mA, VOUT = 5.0 V) Output Voltage Range ······································· 1.8 V / 2.5 V / 2.8 V / 3.0 V / 3.3 V / 3.4V / 5.0 V / 5.5 V / 6.0 V / 6.4 V / 7.0 V / 8.0 V / 8.5 V / 9.0 V / 10.0 V / 10.5 V / 11.0 V / 12.0 V *Contact our sales representatives for other voltages. Output Voltage Accuracy ···································· ±0.6% (Ta = 25°C) Output Voltage Temperature-Drift Coefficient ·········· Typ. ±60 ppm/°C Line Regulation ················································ Typ. 0.01%/V (VSET + 1 V ≤ VIN ≤ 36 V) Built-in Output Short-circuit Protection Circuit ········· Typ. 80 mA Built-in Over-current Protection Circuit ·················· Typ. 350 mA Built-in Thermal Shutdown Circuit ························ Thermal Shutdown Temperature: Typ. 160°C Ceramic capacitors are recommended to be used with this device ································ COUT = 0.1 μF or more ● Packages ······················································· SOT-23-5, SOT-89-5, HSOP-6J, DFN(PL)1820-6, HSOP-8E ● ● ● ● ● ● ● APPLICATIONS ● Power source for home appliances such as refrigerators, rice cookers, and electric hot-water pot. ● Power source for notebook PCs, digital TVs, cordless phones, and private LAN system. ● Power source for office equipment machines such as copiers, printers, facsimiles, scanners, and projectors. 1 R1524x No. EA-332-230703 SELECTION GUIDE The set output voltage and the package type are user-selectable. Selection Guide Product Name Package Quantity per Reel Pb Free Halogen Free R1524NxxxB-TR-FE SOT-23-5 3,000 pcs Yes Yes R1524HxxxB-T1-FE SOT-89-5 1,000 pcs Yes Yes R1524SxxxB-E2-FE HSOP-6J 1,000 pcs Yes Yes DFN(PL)1820-6 5,000 pcs Yes Yes HSOP-8E 1,000 pcs Yes Yes R1524KxxxB-TR R1524SxxxH-E2-FE xxx: Specify the set output voltage (VSET) 1.8 V (018) / 2.5 V (025) / 2.8 V (028) / 3.0 V (030) / 3.3 V (033) / 3.4 V (034) / 5.0 V (050) / 5.5 V (055) / 6.0 V (060) / 6.4 V (064) / 7.0 V (070) / 8.0 V (080) / 8.5 V (085) / 9.0 V (090) / 10.0 V (100) / 10.5 V (105) / 11.0 V (110) / 12.0 V (120) *Contact our sales representatives for other voltages. BLOCK DIAGRAM Thermal Shutdown Circuit VDD VOUT Vref Short Current Limit Protection CE GND R1524x Block Diagram 2 R1524x No. EA-332-230703 PIN DESCRIPTIONS 5 4 5 3 1 4 6 5 4 3 1 2 3 (mark side) 1 2 SOT-23-5 Pin Configuration Top View 6 5 2 SOT-89-5 Pin Configuration Bottom View 4 4 5 HSOP-6J Pin Configuration 8 6 Top View 7 6 5 Bottom View 5 2 3 3 7 8 2 1 (1) (1) 1 6 2 1 1 DFN(PL)1820-6 Pin Configuration 1 2 3 4 4 3 HSOP-8E Pin Configuration SOT-23-5 Pin Descriptions Pin No. Symbol 1 GND(2) Description Ground Pin 2 GND(2) Ground Pin 3 CE 4 VOUT Output Pin 5 VDD Input Pin Chip Enable Pin (Active-high) SOT-89-5 Pin Descriptions Pin No. Symbol Description 1 VOUT Output Pin 2 GND(3) Ground Pin 3 CE 4 GND(3) 5 VDD Chip Enable Pin (Active-high) Ground Pin Input Pin (1) The tab on the bottom of the package enhances thermal performance and is electrically connected to GND (substrate level). It is recommended that the tab be connected to the ground plane on the board, or otherwise be left open. (2) The GND pin must be wired together when it is mounted on board. (3) The GND pin must be wired together when it is mounted on board. 3 R1524x No. EA-332-230703 HSOP-6J Pin Descriptions Pin No. Symbol Description 1 VOUT Output Pin 2 GND(1) Ground Pin 3 CE 4 GND(1) Ground Pin 5 GND(1) Ground Pin 6 VDD Chip Enable Pin (Active-high) Input Pin DFN(PL)1820-6 Pin Descriptions Pin No. Symbol Description 1 CE Chip Enable Pin (Active-high) 2 NC No Connection 3 GND 4 VDD Input Pin 5 NC No Connection 6 VOUT Ground Pin Output Pin HSOP-8E Pin Descriptions Pin No. Symbol Description 1 VOUT 2 NC No Connection 3 NC No Connection 4 CE Chip Enable Pin (Active-high) 5 GND 6 NC No Connection 7 NC No Connection 8 VDD Input Pin Output Pin Ground Pin PIN EQUIVALENT CIRCUIT DIAGRAMS Driver CE VOUT VOUT Pin (1) CE Pin The GND pin must be wired together when it is mounted on board. 4 R1524x No. EA-332-230703 ABSOLUTE MAXIMUM RATINGS Absolute Maximum Ratings Symbol Item Rating Unit −0.3 to 50 V VIN Input Voltage VIN Peak Input Voltage( 1) 60 V VCE Input Voltage (CE Pin) −0.3 to 50 V VOUT Output Voltage −0.3 to VIN + 0.3 ≤ 50 V IOUT Output Current 300 mA PD Power Dissipation(2) (JEDEC STD.51-7 Test Land Pattern) SOT-23-5 660 SOT-89-5 2600 HSOP-6J 2700 DFN(PL)1820-6 2200 HSOP-8E 2900 mW Tj Junction Temperature Range −40 to 125 °C Tstg Storage Temperature Range −55 to 125 °C ABSOLUTE MAXIMUM RATINGS Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause permanent damage and may degrade the lifetime and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings are not assured. RECOMMENDED OPERATING CONDITIONS Recommended Operating Conditions Symbol Item VIN Input Voltage Ta Operating Temperature Range Rating Unit 3.5 to 36 V −40 to 105 °C RECOMMENDED OPERATING CONDITIONS All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions. (1) (2) Duration time: 200 ms Refer to POWER DISSIPATION for detailed information. 5 R1524x No. EA-332-230703 ELECTRICAL CHARACTERISTICS CIN = COUT = 0.1 μF, unless otherwise noted. The specifications surrounded by are guaranteed by design engineering at -40°C ≤ Ta ≤ 105°C. R1524x Electrical Characteristics Symbol ISS (Ta = 25°C) Item Supply Current Istandby Standby Current Conditions VIN = 14 V IOUT = 0 mA Min. Typ. Max. VSET ≤ 5.0 V 2.2 6.5 5.0 V < VSET 2.5 6.8 0.1 1.0 VIN = 36 V, VCE = 0 V Unit μA μA Output Voltage ×0.994 VSET + 1 V( 1) ≤ VIN ≤ Ta = 25°C 36 V, IOUT = 1 mA −40°C ≤ Ta ≤ 105°C ×0.984 ∆VOUT /∆IOUT Load Regulation VIN = VSET + 3.0 V 1 mA ≤ IOUT ≤ 200 mA ∆VOUT /∆VIN Line Regulation VSET + 1 V(1) ≤ VIN ≤ VSET < 3.3 V 36 V, IOUT = 1 mA 3.3 V ≤ VSET VDIF Dropout Voltage IOUT = 200 mA ILIM Output Current Limit VIN = VSET + 3.0 V 220 350 mA ISC Short Current Limit VIN = 3.5 V, VOUT = 0 V 60 80 mA VOUT ×1.006 ×1.016 V Refer to the Product-specific Electrical Characteristics -20 5 20 mV -0.02 0.01 0.02 %/V Refer to the Product-specific Electrical Characteristics VCEH CE Pin Input Voltage, high VIN = VSET + 1 V(1) VCEL CE Pin Input Voltage, low VIN = 36 V CE Pull-down Current VIN = 36 V, VCE = 2 V 0.2 Junction Temperature 160 °C Junction Temperature 135 °C IPD TTSD TTSR Thermal Shutdown Detection Temperature Thermal Shutdown Released Temperature 2.0 36 V 0 1.0 V 0.6 μA All test items listed under Electrical Characteristics are done under the pulse load condition (Tj ≈ Ta = 25°C). (1) V SET ≤ 2.5 V, VIN = 3.5 V 6 R1524x The specifications surrounded by No. EA-332-230703 are guaranteed by design engineering at -40°C ≤ Ta ≤ 105°C. R1524x Product-specific Electrical Characteristics VOUT (V) VOUT (V) Product (Ta = 25°C) (−40°C ≤ Ta ≤ 105°C) Name MIN. TYP. MAX. MIN. TYP. MAX. R1524x018x 1.7892 1.80 1.8108 1.7712 1.80 1.8288 R1524x025x 2.4850 2.50 2.5150 2.4600 2.50 2.5400 R1524x028x 2.7832 2.80 2.8168 2.7552 2.80 2.8448 R1524x030x 2.9820 3.00 3.0180 2.9520 3.00 3.0480 R1524x033x 3.2802 3.30 3.3198 3.2472 3.30 3.3528 R1524x034x 3.3796 3.40 3.4204 3.3456 3.40 3.4544 R1524x050x 4.9700 5.00 5.0300 4.9200 5.00 5.0800 R1524x055x 5.4670 5.50 5.5330 5.4120 5.50 5.5880 R1524x060x 5.9640 6.00 6.0360 5.9040 6.00 6.0960 R1524x064x 6.3616 6.40 6.4384 6.2976 6.40 6.5024 R1524x070x 6.9580 7.00 7.0420 6.8880 7.00 7.1120 R1524x080x 7.9520 8.00 8.0480 7.8720 8.00 8.1280 R1524x085x 8.4490 8.50 8.5510 8.3640 8.50 8.6360 R1524x090x 8.9460 9.00 9.0540 8.8560 9.00 9.1440 R1524x100x 9.9400 10.0 10.0600 9.8400 10.0 10.1600 R1524x105x 10.4370 10.5 10.5630 10.3320 10.5 10.6680 R1524x110x 10.9340 11.0 11.0660 10.8240 11.0 11.1760 R1524x120x 11.9280 12.0 12.0720 11.8080 12.0 12.1920 (Ta = 25°C) ∆VOUT/∆IOUT (mV) MIN. -10 TYP. 10 MAX. VDIF (V) TYP. MAX. 1.6 2.5 1.2 2.2 0.8 2.0 40 0.6 -18 18 1.2 72 0.5 7 R1524x No. EA-332-230703 THEORY OF OPERATION Thermal Shutdown R1524x has a built-in thermal shutdown circuit, which stops the regulator operation if the junction temperature of this device increases to 160°C (Typ.) or higher. If the temperature drops to 135°C (Typ.) or lower, the regulator restarts the operation. Unless eliminating the overheating problem, the regulator turns on and off repeatedly and as a result, a pulse shaped output voltage is generated. APPLICATION INFORMATION TYPICAL APPLICATIONS VDD R1524x C1 CE Control CE VOUT VOUT C2 GND C1 = Ceramic 0.1 µF C2 = Ceramic 0.1 µF R1524x Typical Applications 8 R1524x TECHNICAL NOTES No. EA-332-230703 Phase Compensation In the R1524x, phase compensation is provided to secure stable operation even when the load current is varied. For this purpose, make sure to use 0.1 μF or more of a capacitor (C2). In case of using a tantalum type capacitor and the ESR (Equivalent Series Resistance) value of the capacitor is large, the output might be unstable. Evaluate the circuit including consideration of frequency characteristics. Connect 0.1 μF or more of a capacitor (C1) between VDD and GND, and as close as possible to the pins. PCB Layout For SOT-23-5 package type, wire the following GND pins together: No. 1 and No. 2 For SOT-89-5 package type, wire the following GND pins together: No. 2 and No. 4. For HSOP-6J package type, wire the following GND pins together: No. 2, No. 4, and No. 5. 9 R1524x No. EA-332-230703 TYPICAL CHARACTERISTICS Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed. 1) Output Voltage vs. Output Current (Ta = 25°C) R1524x018B R1524x033B 2 Output Voltage VOUT (V) 1.8 Output Voltage VOUT (V) 1.6 1.4 1.2 1 0.8 0.6 VIN=3.8V 0.4 VIN=4.8V 0.2 0 0 3.6 3.3 3.0 2.7 2.4 2.1 1.8 1.5 1.2 0.9 0.6 0.3 0.0 100 200 300 400 Output Current IOUT (mA) VIN=5.3V 6.3V 0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 400 R1524x090B 10.0 9.0 Output Voltage VOUT (V) Output Voltage VOUT (V) R1524x050B 100 200 300 Output Current IOUT (mA) VIN=7V 8V 0 100 200 300 400 Output Current IOUT (mA) 8.0 7.0 6.0 VIN=11V 5.0 12V 4.0 3.0 2.0 1.0 0.0 0 100 200 300 400 Output Current IOUT (mA) Output Voltage VOUT (V) R1524x120B 13 12 11 10 9 8 7 6 5 4 3 2 1 0 VIN=14V VIN=15V 0 100 200 300 400 OutputCurrent IOUT (mA) 10 R1524x No. EA-332-230703 2) Output Voltage vs. Input Voltage (Ta = 25°C) 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 R1524x033B IOUT=1mA 50mA 100mA 0 1 2 3 4 5 Input Voltage VIN (V) Output Voltage VOUT (V) Output Voltage VOUT (V) R1524x018B 3.6 3.3 3.0 2.7 2.4 2.1 1.8 1.5 1.2 0.9 0.6 0.3 0.0 6 IOUT=1mA 50mA 100mA 1.5 2.0 3.5 4.0 4.5 5.0 R1524x090B 10.0 9.0 IOUT=1mA 50mA 100mA 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 Input Voltage VIN (V) Output Voltage VOUT (V) Output Voltage VOUT (V) 3.0 Input Voltage VIN (V) R1524x050B 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 2.5 8.0 7.0 6.0 5.0 4.0 3.0 IOUT=1mA 50mA 100mA 2.0 1.0 0.0 1 2 3 4 5 6 7 8 9 10 11 12 Input Voltage VIN (V) OutputVoltage VOUT [V] R1524x120B 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IOUT=1mA 50mA 100mA 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 InputVoltage VIN[V] 11 R1524x No. EA-332-230703 3) Supply Current vs. Temperature R1524x018B R1524x033B 5.0 5.0 VIN = 14V 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -40 -25 0 25 50 3.5 3.0 2.5 2.0 1.5 1.0 0.0 75 100 105 -40 -25 0 25 50 Ta (°C) Ta (°C) R1524x050B R1524x090B 75 100 105 5.0 VIN = 14V 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 VIN = 14V 4.5 Supply Current Iss (μA) Supply Current Iss (μA) 4.0 0.5 5.0 0.0 VIN = 14V 4.5 Supply Current Iss (μA) Supply Current Iss (μA) 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 -40 -25 0 25 50 75 100 105 Ta (°C) 0.0 -40 -25 0 25 50 75 100 105 Ta (°C) R1524x120B 5.0 VIN = 14V Supply Current Iss (μA) 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -40 -25 0 25 50 75 100 105 Ta (°C) 12 R1524x No. EA-332-230703 4) Supply Current vs. Input Voltage R1524x033B 4.0 8 3.5 7 Supply Current Iss (μA) Supply Current ISS (μA) R1524x018B 3.0 2.5 2.0 1.5 Ta=-40°C 1.0 25°C 0.5 0.0 6 25°C 6 105°C 5 4 3 2 1 105°C 0 Ta=-40°C 0 12 18 24 30 Input Voltage VIN (V) 36 0 6 12 18 24 30 Input Voltage VIN (V) 36 R1524x120B Supply Current ISS (uA) 8 7 Ta=-40℃ Ta=25℃ Ta=105℃ 6 5 4 3 2 1 0 0 6 12 18 24 30 36 Input Voltage VIN (V) 5) Output Voltage vs. Temperature (IOUT = 1 mA) R1524x018B R1524x033B 3.366 1.836 VIN = 14V Output Voltage VOUT (V) Output Voltage VOUT (V) VIN = 14V 1.818 1.800 1.782 1.764 -40 -25 0 25 50 Ta (°C) 75 100 105 3.333 3.300 3.267 3.234 -40 -25 0 25 50 75 100 105 Ta (°C) 13 R1524x No. EA-332-230703 R1524x090B R1524x050B 5.100 9.180 VIN = 14V Output Voltage VOUT (V) Output Voltage VOUT (V) VIN = 14V 5.050 5.000 4.950 4.900 -40 -25 0 25 50 9.090 9.000 8.910 8.820 75 100 105 -40 -25 0 Ta (°C) 25 50 75 100 105 Ta (°C) R1524x120B 12.24 Output Voltage VOUT (V) VIN = 14V 12.12 12.00 11.88 11.76 -40 -25 0 25 50 75 100 105 Ta (℃) 6) Dropout Voltage vs. Output Current R1524x018B R1524x033B 2.5 2.0 Ta=-40°C Dropout Voltage VDIF (V) Dropout Voltage VDIF [V] 2.0 1.5 1.0 Ta=-40°C 25°C 0.5 105°C 0.0 0 50 100 150 Output Current IOUT (mA) 200 25°C 1.5 105°C 1.0 0.5 0.0 0 50 100 150 200 Output Current IOUT (mA) 14 R1524x No. EA-332-230703 R1524x090B R1524x050B 1.0 1.5 Ta=-40°C 25°C Dropout Voltage VDIF (V) Dropout Voltage VDIF (V) Ta=-40°C 105°C 1.0 0.5 0.0 0 50 100 150 200 Output Current IOUT (mA) 0.8 25°C 105°C 0.6 0.4 0.2 0.0 0 50 100 150 200 Output Current IOUT (mA) R1524x120B Dropout Voltage VDIF (V) 1.2 Ta=-40℃ 1.0 Ta=25℃ 0.8 Ta=105℃ 0.6 0.4 0.2 0.0 0 50 100 150 200 Output Current IOUT (mA) 7) Dropout Voltage vs. Output Voltage (Ta = 25°C) Dropout Voltage VDIF (V) 1.8 Iout=1mA 1.6 50mA 1.4 100mA 1.2 200mA 1.0 0.8 0.6 0.4 0.2 0.0 0 1 2 3 4 5 6 7 8 9 10 11 12 Output Voltage VOUT (V) 15 R1524x No. EA-332-230703 8) Ripple Rejection vs. Input Voltage (Ta = 25°C, Ripple = 0.2 Vpp) R1524x018B R1524x033B 70 70 Ripple Rejection Ratio RR (dB) IOUT=50mA 60 Ripple Rejection RR (dB) f=100Hz 50 1kHz 40 30 10kHz 20 10 100kHz 0 1 3 5 7 9 11 13 f=100Hz 50 40 1kHz 30 10kHz 20 10 0 15 IOUT=50mA 60 Input Voltage VIN (V) 100kHz 2.0 R1524x050B 70 IOUT=50mA 60 f=100Hz 50 1kHz 40 30 10kHz 20 10 0 100kHz 3.5 5.0 6.0 8.0 10.0 12.0 Input Voltage VIN (V) 14.0 R1524x090B Ripple Rejection Ratio RR (dB) Ripple Rejection Ratio RR (dB) 70 4.0 50 f=100Hz 40 1kHz 30 20 10kHz 10 0 6.5 8.0 9.5 11.0 12.5 14.0 Input Voltage VIN (V) IOUT=50mA 60 100kHz 9.0 10.0 11.0 12.0 13.0 Input Voltage VIN (V) 14.0 R1524x120B Ripple Rejection Ratio RR (dB) 70 60 IOUT=50mA 50 f=100Hz 40 1kHz 30 20 10kHz 10 0 11.0 100kHz 12.0 13.0 14.0 15.0 Input Voltage VIN (V) 16 R1524x No. EA-332-230703 9) Ripple Rejection vs. Frequency (Ta = 25°C, Ripple = 0.2 Vpp) R1524x018B R1524x033B 80 80 IOUT=1mA 50mA 100mA 60 Ripple Rejection (dB) Ripple Rejection Ratio RR (dB) VIN = 3.8V 70 50 40 30 20 10 0 0.01 1 10 100 Frequency (kHz) IOUT=1mA 50mA 100mA 60 50 40 30 20 10 0 0.1 VIN = 5.3V 70 1000 0.01 R1524x050B 1000 80 VIN = 7.0V 70 Ripple Rejection Ratio RR (dB) Ripple Rejection Ratio RR (dB) 1 10 100 Frequency (kHz) R1524x090B 80 IOUT=1mA 50mA 100mA 60 50 40 30 20 10 0 0.1 0.01 0.1 1 10 100 Frequency (kHz) IOUT=1mA 50mA 100mA 60 50 40 30 20 10 0 1000 VIN = 11.0V 70 0.01 0.1 1 10 100 Frequency (kHz) 1000 Ripple Rejection Ratio RR (dB) R1524x120B 80 VIN=14.0V 70 60 Iout=1mA 50mA 100mA 50 40 30 20 10 0 0.01 0.1 1 10 100 1000 Frequency (kHz) 17 R1524x No. EA-332-230703 10) Input Transient Response (Ta = 25°C) R1524x033B 2.4 2.8 2.2 0.8 Output Voltage 1.6 1.4 C2 = 0.1 μF 10 μF 5.3 0 1 2 3 4 Time (ms) 5 4 2 3.8 3.3 2.8 6 C2=0.1μF 12.5 12 12.0 8 6.5 6 6.0 4 5.5 2 Output Voltage 0 10μF C2=0.1μF Input Voltage VIN (V) Output Voltage VOUT (V) 14 10 Input Voltage tr=tf=1μs 4.5 -1 0 3 4 5 6 4 5 6 Time (ms) 18 16 14 12 10 10.0 8 9.5 6 Output Voltage 9.0 8.5 7.5 2 3 10.5 3.5 1 2 Input Voltage tr=tf=1μs 11.0 8.0 0 1 IOUT=1mA 11.5 4.0 -1 10μF Time (ms) Output Voltage VOUT (V) IOUT=1mA 8.0 5.0 0 Output Voltage R1524x090B 8.5 7.0 6 4.3 R1524x050B 7.5 8 4.8 1.8 -1 10 Input Voltage tr=tf=1μs 2.3 1.2 1.0 5.8 4 C2=0.1μF 2 10μF Input Voltage VIN (V) 1.8 Output Voltage VOUT (V) Output Voltage VOUT (V) 4.8 Input Voltage VIN (V) 6.8 12 IOUT=1mA 6.3 8.8 Input Voltage 2.0 6.8 10.8 IOUT=1mA Input Voltage VIN (V) R1524x018B 0 -1 0 1 2 3 4 5 6 Time (ms) R1524x120B Output Voltage VOUT (V) 13.5 13.0 12.5 12 10 8 Output Voltage 6 12.0 11.5 11.0 10.5 16 14 Input Voltage tr=tf=1μs 14.0 10μF C2=0.1μF -1 0 1 2 3 4 5 6 4 2 0 Input Voltage VIN (V) 20 18 IOUT=1mA Time (ms) 18 R1524x No. EA-332-230703 11) Load Transient Response (Ta = 25°C) 1.8 10μF 1.2 10 4.5 0 1 2 3 4 5 6 7 8 3.6 3.3 3.0 2.7 R1524x090B 13.5 0 12.6 Output Voltage 4.5 C2=0.1μF 4.0 10μF 3.5 3.0 Output Current IOUT (mA) 6.0 Output Voltage VOUT (V) 14.4 20 5.0 10μF R1524x050B 40 5.5 C2=0.1μF 2.1 -100 0 100 200 300 400 500 600 700 800 9 7.5 6.5 0 Output Voltage Time (µs) 1mA 20 3.9 Time (ms) Output Current tr=tf=0.5μs 1mA 4.2 8.0 7.0 Output Current tr=tf=0.5μs 2.4 C2=0.1μF -1 40 Output Current IOUT (mA) Output Voltage 1.5 4.8 0 2.4 2.1 5.1 20 11.7 9.9 9.0 8.1 7.2 5.4 Time (µs) Output Current tr=tf=0.5μs 1mA 10.8 6.3 -100 0 100 200 300 400 500 600 700 800 40 Output Voltage C2=0.1μF 10μF 20 0 Output Current IOUT (mA) 1mA 30 Output Voltage VOUT (V) Output Current tr=tf=0.5μs 0.9 Output Voltage VOUT (V) R1524x033B Output Current (mA) Output Voltage VOUT (V) R1524x018B -100 0 100 200 300 400 500 600 700 800 Time (µs) R1524x120B 18.0 16.8 Output Voltage VOUT (V) 15.6 Output Current tr=tf=0.5μs 1mA 14.4 13.2 Output Voltage 12.0 10.8 9.6 C2=0.1μF 10μF 8.4 7.2 20 0 Output Current IOUT (mA) 40 19.2 -100 0 100 200 300 400 500 600 700 800 Time (μs) 19 R1524x No. EA-332-230703 12) CE Transient Response (Ta = 25°C) 900 CE Input Voltage 800 3 700 Output Voltage 600 2 1 500 0V 0 400 300 C2=0.1μF 200 C2=10μF Inrush Current 4 3 2 1 0 3.8V 100 0 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 Time (ms) CE Input Voltage 0V 1.8 1.5 1.2 0.9 0.6 0.3 0.0 -0.3 Output Voltage VOUT (V) 3.8V 4 Inrush Current (mA) Output Voltage VOUT (V) 5 C2=10μF, IOUT=1mA Input Voltage CE (V) R1524x018B C2=0.1μF, IOUT=100mA C2=0.1μF, IOUT=1mA C2=10μF, IOUT=100mA Output Voltage -2 -1 0 1 2 3 4 Time (ms) 5 6 7 8 R1524x033B 3.3 5V CE Input Voltage Output Voltage 0V 2.2 700 500 1μF 0.0 800 600 C2=0.1μF 1.1 900 10μF 400 300 200 100 Inrush Current Output Voltage VOUT (V) Output Voltage VOUT (V) 4.4 Inrush Current (mA) 5.5 0 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 5V 0V C2=10μF IOUT=1mA C2=10μF,IOUT=100mA & C2=0.1μF,IOUT=1mA C2=0.1μF IOUT=100mA Output Voltage -2 -0.20.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 CE Input Voltage 0 2 4 Time (ms) 6 8 10 12 14 Time (ms) R1524x050B 6.0 4.0 2.0 5V 0V CE Input Voltage Output Voltage 10μF 400 300 200 100 Inrush Current -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 Time (ms) 0 5V 7.0 700 500 1μF 8.0 800 600 C2=0.1μF 0.0 900 Output Voltage VOUT (V) Output Voltage VOUT (V) 8.0 Inrush Current (mA) 10.0 CE Input Voltage 0V 6.0 C2=10μF IOUT=1mA 5.0 4.0 C2=10μF,IOUT=100mA & C2=0.1μF,IOUT=1mA 3.0 2.0 C2=0.1μF IOUT=100mA 1.0 0.0 Output Voltage -2 0 2 4 6 8 10 12 14 Time (ms) 20 R1524x No. EA-332-230703 R1524x090B 9.0 5V CE Input Voltage Output Voltage 0V 6.0 12.0 700 500 1μF 0.0 14.0 800 600 C2=0.1μF 3.0 900 10μF 400 300 200 100 Inrush Current Output Voltage VOUT (V) Output Voltage VOUT (V) 12.0 5V 0V CE Input Voltage 10.0 Inrush Current (mA) 15.0 C2=10μF IOUT=1mA 8.0 6.0 C2=10μF,IOUT=100mA & C2=0.1μF,IOUT=1mA 4.0 C2=0.1μF IOUT=100mA 2.0 0.0 0 Output Voltage -2 -0.20.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 0 2 4 Time (ms) 6 8 10 12 14 Time (ms) 12.0 9.0 0V CE Input Voltage 900 5V 800 Output Voltage 6.0 700 600 3.0 500 C2=0.1μF 0.0 400 10μF 300 200 100 Inrush Current 20.0 18.0 16.0 14.0 12.0 10.0 8.0 6.0 4.0 2.0 0.0 5V Output Voltage VOUT (V) 15.0 Inrush Current (mA) Output Voltage VOUT (V) R1524x120B 0 C2=10μF, Iout=1mA C2=10μF, Iout=100mA C2=0.1μF, Iout=1mA C2=0.1μF, Iout=100mA Output Voltage -2 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 CE Input Voltage 0V 0 2 4 6 8 10 12 14 Time (ms) Time (ms) 13) Power-on Transient Response (Ta = 25°C, VCE = 5 V) R1524x033B 3 2 1 0 0V 8.0 Input Voltage Output Voltage 300 C2=0.1μF 200 C2=10μF 100 Inrush Current -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 Time (ms) Input Voltage 6.4 0 -100 Output Voltage VOUT (V) 3.8V Inrush Current (mA) Output Voltage VOUT (V) 4 5.3V 4.8 Output Voltage 3.2 1.6 0.0 0V C2=0.1μF 1μF 10μF 900 800 700 600 500 400 300 200 100 Inrush Current Inrush Current (mA) R1524x018B 0 -0.20.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 Time (ms) 21 R1524x No. EA-332-230703 R1524x090B R1524x050B 12.0 Output Voltage VOUT (V) 6.0 Output Voltage 700 9.0 4.0 600 2.0 500 0.0 C2=0.1μF 0V 400 1μF 300 10μF 200 100 Inrush Current 900 Input Voltage 11V 800 Output 700 600 6.0 3.0 0.0 500 C2=0.1μF 0V 400 1μF 300 10μF 200 100 0 0 Inrush Current -0.20.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 Inrush Current (mA) 15.0 800 7V Output Voltage VOUT (V) 8.0 Inrush Current (mA) 900 Input Voltage 10.0 -0.20.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 Time (ms) Time (ms) R1524x120B 900 800 700 600 500 400 300 200 100 0 Input Voltage 14V Inrush Current (mA) OutputVoltage VOUT (V) 15.0 12.0 9.0 6.0 3.0 0.0 Output Voltage C2=0.1uF 0V 10uF Inrush Current -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 Time (ms) 14) Load Dump (Ta = 25°C) 60 50 40 30 20 10 0 1.84 1.83 1.82 1.81 1.80 1.79 Input Voltage VIN (V) Output Voltage VOUT (V) Input Voltage Output Voltage C2=0.1μF -10 0 10 20 30 Time (ms) 40 50 60 6.8 60 6.3 50 5.8 40 5.3 30 Input Voltage 4.8 20 10 4.3 3.8 0 Output Voltage 3.3 C2=0.1μF 2.8 10μF Input Voltage VIN (V) R1524x033B Output Voltage VOUT (V) R1524x018B 2.3 1.8 -10 0 10 20 30 40 50 60 Time (ms) 22 R1524x 60 12.5 60 8.0 50 12.0 50 7.5 40 11.5 40 7.0 30 Input Voltage 6.5 20 6.0 10 5.5 0 Output Voltage 5.0 C2=0.1μF 4.5 10μF Output Voltage VOUT (V) 8.5 Input Voltage VIN (V) Output Voltage VOUT (V) R1524x050B 4.0 3.5 11.0 30 Input Voltage 10.5 20 10 10.0 9.5 0 Output Voltage 9.0 C2=0.1μF 8.5 10μF Input Voltage VIN (V) No. EA-332-230703 R1524x090B 8.0 -10 0 10 20 30 40 50 7.5 60 Time (ms) -10 0 10 20 30 40 50 60 Time (ms) 60 Output Voltage VOUT (V) 50 40 30 Input Voltage 20 10 13.0 12.0 C2=0.1uF 11.5 11.0 0 Output Voltage 12.5 -10 0 10 20 Input Voltage VIN (V) R1524x120B 10uF 30 40 50 60 Time (ms) 23 R1524x No. EA-332-230703 15) Cranking (Ta = 25°C) R1524x090B 20 16.5 20 7.5 15 15.0 15 10 Input Voltage 6.5 5 0 6.0 C2=0.1μF 10μF 5.5 5.0 4.5 4.0 3.5 3.0 0 1 2 3 4 5 6 7 10.5 Time (ms) 5 0 C2=0.1μF 9.0 10μF 7.5 6.0 4.5 1.5 8 10 Input Voltage 12.0 3.0 Output Voltage -1 13.5 Input Voltage VIN (V) 7.0 Output Voltage VOUT (V) 8.0 Input Voltage VIN (V) Output Voltage VOUT (V) R1524x050B Output Voltage -1 0 1 2 3 4 5 6 7 8 Time (ms) R1524x120B Output Voltage VOUT (V) 15.0 Input Voltage 15 13.5 10 12.0 5 10.5 9.0 7.5 C2=0.1uF 10uF 0 Input Voltage VIN (V) 20 16.5 6.0 4.5 3.0 1.5 Output Voltage -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Time (ms) 24 R1524x No. EA-332-230703 Input Transient/Load Transient vs. Output Capacity (C2) R1524 performs a stable operation by using 0.1 µF of ceramic capacitor as the output capacitor. However, the variation of output voltage may not meet the demand of the system when input voltage and load current vary. In such cases, the variation of output voltage can be minimized significantly by using 10 µF or higher ceramic capacitor. When using an electrolytic capacitor for the output line, place the electrolytic capacitor outer side of the ceramic capacitor arranged close to the IC. Input Transient Response Load Transient Response R1524x033B R1524x033B IOUT=1mA 4.8 8 Input Voltage tr=tf=1μs 5.3 5.1 10 6 4.8 4 4.3 2 3.8 0 Output Voltage 3.3 2.8 C2=0.1μF 10μF Output Voltage VOUT (V) 5.8 12 Input Voltage VIN (V) Output Voltage VOUT (V) 6.3 2.3 1.8 40 4.2 3.9 3.6 Output Voltage 3.3 3.0 C2=0.1μF 2.7 10μF 2.4 -1 0 1 2 3 4 5 1mA Output Current tr=tf=0.5μs 4.5 20 0 Output Current IOUT (mA) 6.8 2.1 -100 0 100 200 300 400 500 600 700 800 6 Time (µs) Time (ms) ESR vs. Output Current It is recommended that a ceramic type capacitor be used for this device. However, other types of capacitors having lower ESR can also be used. The relation between the output current (IOUT) and the ESR of output capacitor is shown below. VDD VOUT R1524xxxxB C1 CE GND C2 IOUT ESR C1 = Ceramic 0.1 μF, C2 = Ceramic 0.1 μF 25 R1524x R1524x018B 100 100 10 10 1 0.1 0.01 VIN=3.5V to 36V 1000 Equivalent Series Resistance ESR (Ω) VIN=3.5V to 36V 1000 Equivalent Series Resistance ESR (Ω) R1524x033B 1 0.1 0 50 100 150 200 0.01 0 Output Current IOUT (mA) 200 VIN=9V to 36V 1000 Equivalent Series Resistance ESR (Ω) Equivalent Series Resistance ESR (Ω) 150 100 100 10 10 1 0.1 1 0.1 0 50 100 150 200 Output Current IOUT (mA) VIN=12V to 36V 1000 0.01 0 50 100 150 200 Output Current IOUT (mA) R1524x120B Equivalent Series Resistance ESR (Ω) 100 R1524x090B VIN=5V to 36V 1000 50 Output Current IOUT (mA) R1524x050B 0.01 No. EA-332-230703 Measurement Conditions Frequency Band: 10 Hz to 2 MHz 100 Measurement Temperature: −40°C to 105°C 10 Hatched area: Noise level is 40 μV (average) or below Ceramic Capacitors: CIN = 0.1 μF, Murata, GRM188R71H104JA93D COUT = 0.1 μF, TDK, CGA3E2X7R1E104K 1 0.1 0.01 0 50 100 150 200 Output Current IOUT (mA) 26 POWER DISSIPATION SOT-23-5 PD-SOT-23-5-(105125150)-E-A The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7. Measurement Conditions Item Environment Board Material Board Dimensions Measurement Conditions Mounting on Board (Wind Velocity = 0 m/s) Glass Cloth Epoxy Plastic (Four-Layer Board) 76.2 mm × 114.3 mm × 0.8 mm Outer Layer (First Layer): Less than 95% of 50 mm Square Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square φ 0.3 mm × 7 pcs Copper Ratio Through-holes Measurement Result Item (Ta = 25°C, Tjmax = 125°C) Measurement Result Power Dissipation 660 mW Thermal Resistance (θja) θja = 150°C/W Thermal Characterization Parameter (ψjt) ψjt = 51°C/W θja: Junction-to-Ambient Thermal Resistance ψjt: Junction-to-Top Thermal Characterization Parameter 1000 900 830 Power Dissipation PD (mW) 800 700 600 660 500 400 300 200 100 0 0 25 105 50 75 100 125 Ambient Temperature (°C) 150 Power Dissipation vs. Ambient Temperature Measurement Board Pattern The above graph shows the power dissipation of the package at Tjmax = 125°C and Tjmax = 150°C. Operating the device in the hatched range might have a negative influence on its lifetime. The total hours of use and the total years of use must be limited as follows: Total Hours of Use 13,000 hours Total Years of Use (4 hours/day) 9 years i SOT-23-5 PACKAGE DIMENSIONS DM-SOT-23-5-JE-B 2.9±0.2 1.1±0.1 1.9±0.2 0.8±0.1 (0.95) 4 1 2 0~0.1 0.2min. +0.2 1.6-0.1 5 2.8±0.3 (0.95) 3 0.4±0.1 +0.1 0.15-0.05 SOT-23-5 Package Dimensions i POWER DISSIPATION SOT-89-5 PD-SOT-89-5-(105125150)-JE-A The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7. Measurement Conditions Item Environment Board Material Board Dimensions Copper Ratio Through-holes Measurement Conditions Mounting on Board (Wind Velocity = 0 m/s) Glass Cloth Epoxy Plastic (Four-Layer Board) 76.2 mm × 114.3 mm × 0.8 mm Outer Layer (First Layer): Less than 95% of 50 mm Square Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square φ 0.3 mm × 13 pcs Measurement Result (Ta = 25°C, Tjmax = 125°C) Item Measurement Result Power Dissipation Thermal Resistance (θja) Thermal Characterization Parameter (ψjt) 2600 mW θja = 38°C/W ψjt = 13°C/W θja: Junction-to-Ambient Thermal Resistance ψjt: Junction-to-Top Thermal Characterization Parameter 4000 Power Dissipation PD (mW) 3500 3200 3000 2500 2600 2000 1500 1000 500 0 0 25 105 50 75 100 125 Ambient Temperature (°C) 150 Power Dissipation vs. Ambient Temperature Measurement Board Pattern The above graph shows the power dissipation of the package at Tjmax = 125°C and Tjmax = 150°C. Operating the device in the hatched range might have a negative influence on its lifetime. The total hours of use and the total years of use must be limited as follows: Total Hours of Use Total Years of Use (4 hours/day) 13,000 hours 9 years i SOT-89-5 PACKAGE DIMENSIONS DM-SOT-89-5-JE-B 4.5±0.1 1.5±0.1 0.4±0.3 2 5 4.35±0.1 φ1.0 1 4 4 2.5±0.1 1.00±0.2 5 0.4±0.1 0.3±0.2 0.42±0.1 0.1 S 3 0.4±0.1 3 2 1 0.3±0.2 1.6±0.2 S 0.42±0.1 0.42±0.1 0.47±0.1 1.5±0.1 1.5±0.1 SOT-89-5 Package Dimensions i POWER DISSIPATION HSOP-6J PD-HSOP-6J-(105125150)-JE-A The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7. Measurement Conditions Item Environment Board Material Board Dimensions Copper Ratio Through-holes Measurement Conditions Mounting on Board (Wind Velocity = 0 m/s) Glass Cloth Epoxy Plastic (Four-Layer Board) 76.2 mm × 114.3 mm × 0.8 mm Outer Layer (First Layer): Less than 95% of 50 mm Square Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square φ 0.3 mm × 28 pcs Measurement Result (Ta = 25°C, Tjmax = 125°C) Item Measurement Result Power Dissipation Thermal Resistance (θja) Thermal Characterization Parameter (ψjt) 2700 mW θja = 37°C/W ψjt = 7°C/W θja: Junction-to-Ambient Thermal Resistance ψjt: Junction-to-Top Thermal Characterization Parameter 4000 3400 3500 Power Dissipation PD (mW) 3000 2500 2700 2000 1500 1000 500 0 0 25 105 50 75 100 125 Ambient Temperature (°C) 150 Power Dissipation vs. Ambient Temperature Measurement Board Pattern The above graph shows the power dissipation of the package at Tjmax = 125°C and Tjmax = 150°C. Operating the device in the hatched range might have a negative influence on its lifetime. The total hours of use and the total years of use must be limited as follows: Total Hours of Use Total Years of Use (4 hours/day) 13,000 hours 9 years i HSOP-6J PACKAGE DIMENSIONS DM-HSOP-6J-JE-A HSOP-6J Package Dimensions i POWER DISSIPATION DFN(PL)1820-6 PD-DFN(PL)1820-6-(105125150)-JE-C The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51. Measurement Conditions Item Measurement Conditions Environment Mounting on Board (Wind Velocity = 0 m/s) Board Material Glass Cloth Epoxy Plastic (Four-Layer Board) Board Dimensions 76.2 mm × 114.3 mm × 0.8 mm Outer Layer (First Layer): Less than 95% of 50 mm Square Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square  0.2 mm × 36 pcs Copper Ratio Through-holes Measurement Result (Ta = 25°C, Tjmax = 125°C) Item Measurement Result Power Dissipation 2200 mW Thermal Resistance (ja) ja = 45°C/W Thermal Characterization Parameter (ψjt) ψjt = 18°C/W ja: Junction-to–ambient thermal resistance. ψjt: Junction–to-top of package thermal characterization parameter. 3000 2700 Power Dissipation PD (mW) 2500 2200 2000 1500 1000 500 0 0 25 105 50 75 100 125 Ambient Temperature (°C) 150 Power Dissipation vs. Ambient Temperature Measurement Board Pattern The above graph shows the power dissipation of the package at Tjmax = 125°C and Tjmax = 150°C. Operating the device in the hatched range might have a negative influence on its lifetime. The total hours of use and the total years of use must be limited as follows: Total Hours of Use 13,000 hours Total Years of Use (4 hours/day) 9 years i PACKAGE DIMENSIONS DFN(PL)1820-6 DM-DFN(PL)1820-6-JE-B DFN(PL)1820-6 Package Dimensions * * ∗ The tab on the bottom of the package is substrate level (GND/VDD). It is recommended that the tab be connected to the ground plane/the VDD pin on the board, or otherwise be left floating. i POWER DISSIPATION HSOP-8E PD-HSOP-8E-(105125150)-JE-B The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7. Measurement Conditions Item Measurement Conditions Environment Mounting on Board (Wind Velocity = 0 m/s) Board Material Glass Cloth Epoxy Plastic (Four-Layer Board) Board Dimensions 76.2 mm × 114.3 mm × 0.8 mm Copper Ratio Outer Layer (First Layer): Less than 95% of 50 mm Square Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square Through-holes φ 0.3 mm × 21 pcs Measurement Result (Ta = 25°C, Tjmax = 125°C) Item Measurement Result Power Dissipation 2900 mW Thermal Resistance (θja) θja = 34.5°C/W Thermal Characterization Parameter (ψjt) ψjt = 10 °C/W θja: Junction-to–ambient thermal resistance. ψjt: Junction–to-top of package thermal characterization parameter. 4000 3600 3500 Power Dissipation PD (mW) 3000 2900 2500 2000 1500 1000 500 0 0 25 50 75 100 105 125 150 Ambient Temperature (°C) Power Dissipation vs. Ambient Temperature Measurement Board Pattern The above graph shows the power dissipation of the package at Tjmax = 125°C and Tjmax = 150°C. Operating the device in the hatched range might have a negative influence on its lifetime. The total hours of use and the total years of use must be limited as follows: Total Hours of Use Total Years of Use (4 hours/day) 13,000 hours 9 years i PACKAGE DIMENSIONS HSOP-8E DM-HSOP-8E-JE-B HSOP-8E Package Dimensions i 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to our sales representatives for the latest information thereon. The materials in this document may not be copied or otherwise reproduced in whole or in part without the prior written consent of us. This product and any technical information relating thereto are subject to complementary export controls (so-called KNOW controls) under the Foreign Exchange and Foreign Trade Law, and related politics ministerial ordinance of the law. (Note that the complementary export controls are inapplicable to any application-specific products, except rockets and pilotless aircraft, that are insusceptible to design or program changes.) Accordingly, when exporting or carrying abroad this product, follow the Foreign Exchange and Foreign Trade Control Law and its related regulations with respect to the complementary export controls. The technical information described in this document shows typical characteristics and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under our or any third party's intellectual property rights or any other rights. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death should first contact us. • Aerospace Equipment • Equipment Used in the Deep Sea • Power Generator Control Equipment (nuclear, steam, hydraulic, etc.) • Life Maintenance Medical Equipment • Fire Alarms / Intruder Detectors • Vehicle Control Equipment (automotive, airplane, railroad, ship, etc.) • Various Safety Devices • Traffic control system • Combustion equipment In case your company desires to use this product for any applications other than general electronic equipment mentioned above, make sure to contact our company in advance. Note that the important requirements mentioned in this section are not applicable to cases where operation requirements such as application conditions are confirmed by our company in writing after consultation with your company. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products. The products have been designed and tested to function within controlled environmental conditions. Do not use products under conditions that deviate from methods or applications specified in this datasheet. Failure to employ the products in the proper applications can lead to deterioration, destruction or failure of the products. We shall not be responsible for any bodily injury, fires or accident, property damage or any consequential damages resulting from misuse or misapplication of the products. Quality Warranty 8-1. Quality Warranty Period In the case of a product purchased through an authorized distributor or directly from us, the warranty period for this product shall be one (1) year after delivery to your company. For defective products that occurred during this period, we will take the quality warranty measures described in section 8-2. However, if there is an agreement on the warranty period in the basic transaction agreement, quality assurance agreement, delivery specifications, etc., it shall be followed. 8-2. Quality Warranty Remedies When it has been proved defective due to manufacturing factors as a result of defect analysis by us, we will either deliver a substitute for the defective product or refund the purchase price of the defective product. Note that such delivery or refund is sole and exclusive remedies to your company for the defective product. 8-3. Remedies after Quality Warranty Period With respect to any defect of this product found after the quality warranty period, the defect will be analyzed by us. On the basis of the defect analysis results, the scope and amounts of damage shall be determined by mutual agreement of both parties. Then we will deal with upper limit in Section 8-2. This provision is not intended to limit any legal rights of your company. Anti-radiation design is not implemented in the products described in this document. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage. Warning for handling Gallium and Arsenic (GaAs) products (Applying to GaAs MMIC, Photo Reflector). These products use Gallium (Ga) and Arsenic (As) which are specified as poisonous chemicals by law. For the prevention of a hazard, do not burn, destroy, or process chemically to make them as gas or power. When the product is disposed of, please follow the related regulation and do not mix this with general industrial waste or household waste. Please contact our sales representatives should you have any questions or comments concerning the products or the technical information. Official website https://www.nisshinbo-microdevices.co.jp/en/ Purchase information https://www.nisshinbo-microdevices.co.jp/en/buy/
R1524N033B-TR-FE 价格&库存

很抱歉,暂时无法提供与“R1524N033B-TR-FE”相匹配的价格&库存,您可以联系我们找货

免费人工找货