R1210Nxx1x SERIES
PWM STEP-UP DC/DC CONVERTER
NO.EA-075-181214
OUTLINE
The R1210Nxx1x Series are CMOS-based PWM step-up DC/DC Converter, with high accuracy, low supply
current.
Each of the R1210Nxx1x Series consists of an oscillator, a PWM circuit, a reference voltage unit, an error
amplifier, phase compensation circuit, resistors for voltage detection, a chip enable circuit. Further, includes a
controller against drastic load transient, a control transistor with low ON-Resistance, ‘LX switch’, and a protection
circuit for LX switch and an output voltage detector. R1210Nxx1A Series contain further a circuit for changeover
oscillator frequency each. A low ripple, high efficiency step-up DC/DC converter can be composed of this IC with
only three external components, or an inductor, a diode and a capacitor.
The R1210N Series can detect drastic change of output voltage with a circuit controller. The load transient
response is improved compared with current model, furthermore the R1210Nxx1A Series have another function,
that is, when the load current is small, oscillator frequency is decreased by a circuit for switching oscillator
frequency from Typ. 100kHz to 35kHz, therefore, supply current is reduced.
The built-in chip enable circuit can make the standby mode with ultra low quiescent current.
Since the package for these ICs is small SOT-23-5, high density mounting of the ICs on board is possible.
FEATURES
External Components ....................................... Only an inductor, a diode, and a capacitor
Standby Current ............................................... Max. 0.5A
Temperature-Drift Coefficient of Output Voltage Typ.100ppm/C
Output Voltage Range ....................................... 2.2V to 3.5V (xx1A), 2.2V to 6.0V (xx1C/D), 0.1V steps
Two choices of Basic Oscillator Frequency ..... 100kHz (xx1A/C), 180kHz (xx1D)
Output Voltage Accuracy .................................. 2.5%
Package ........................................................... SOT-23-5
Efficiency .......................................................... Typ. 88% (VIN=Set Output Voltage0.6 [V], IOUT=10mA)
Low Ripple, Low Noise
Built-in a driver transistor with low on-resistance
Start-up Voltage ................................................ Max. 0.9V
Basic Frequency change-over circuit (only for xx1A type) from Typ. 100kHz to 35kHz
APPLICATIONS
Power source for battery-powered equipment.
Power source for portable communication appliances, cameras, VCRs
Power source for appliances of which require higher voltage than battery voltage.
1
R1210Nxx1x
BLOCK DIAGRAMS
Vref Circuit
LX
VLX limiter
5
2 VOUT
Phase Comp.
Buffer
PWM Controller
OSC
fosc Control
4 GND
Chip Enable
1
CE
SELECTION GUIDE
Product Name
Package
Quantity per Reel
Pb Free
Halogen Free
R1210Nxx1-TR-FE
SOT-23-5
3,000 pcs
Yes
Yes
xx : The output voltage can be designated. (0.1V steps)
xx1A
: 2.2V(22) to 3.5V(35)
xx1C/xx1D : 2.2V(22) to 6.0V(60)
: The oscillator frequency and the Frequency Change-over circuit are options as follows.
2
Code
Oscillator frequency
Frequency Change-over circuit
A
100kHz
Yes
C
100kHz
No
D
180kHz
No
R1210Nxx1x
PIN CONFIGURATIONS
SOT-23-5
5
4
(mark side)
1
2
3
PIN DESCRIPTIONS
SOT-23-5
Pin No
Symbol
Pin Description
1
CE
Chip Enable Pin ("H" Active)
2
VOUT
Pin for Monitoring Output Voltage
3
NC
No Connection
4
GND
5
LX
Ground Pin
Switching Pin (Nch Open Drain)
ABSOLUTE MAXIMUM RATINGS
Symbol
Item
Rating
Unit
VOUT
VOUT Pin Output Voltage
0.3 to 9.0
V
VLX
LX Pin Output Voltage
0.3 to 9.0
V
VCE
CE Pin Input Voltage
0.3 to 9.0
V
ILX
LX Pin Output Current
400
mA
PD
Power Dissipation (SOT-23-5)
420
mW
Topt
Operating Temperature Range
40 to 85
C
Tstg
Storage Temperature Range
55 to 125
C
) For Power Dissipation, please refer to PACKAGE INFORMATION.
ABSOLUTE MAXIMUM RATINGS
Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the
permanent damages and may degrade the life time and safety for both device and system using the device
in the field. The functional operation at or over these absolute maximum ratings is not assured.
3
R1210Nxx1x
ELECTRICAL CHARACTERISTICS
R1210Nxx1x
Topt=25°C
Symbol
VOUT
Conditions
Output Voltage
VIN=VSET0.6, IOUT=1mA
VIN
Maximum Input Voltage
VOUT/
Topt
Step-up Output Voltage
Temperature Coefficient
40C≤Topt≤85C
Start-up Voltage
VIN0V2V,
VOUT:1.8k pull-down
Start-up Voltage
Temperature Coefficient
40C≤Topt≤85C
Vhold
Hold-on Voltage
VIN2.0V0V,
IOUT=1mA
IDD2
Supply Current 2
VOUT=VCE=VSET+0.5V
Istandby
Standby Current
ILXleak
fosc
Vstart
Vstart/
Topt
Min.
Typ.
0.975
Max.
Unit
1.025
V
8
V
100
ppm/C
0.9
-3.2
xx1A/C
0.7
xx1D
0.9
V
mV/C
V
xx1A/C
10
17
A
xx1D
15
24
A
VOUT=6.5V, VCE=0V
0.5
A
LX Leakage Current
VOUT=VLX=8V
0.5
A
Maximum Oscillator
Frequency
VOUT=VCE=VSET0.96
Oscillator Frequency
Temperature Coefficient
40C≤Topt≤85C
Oscillator Maximum
Duty Cycle
VOUT=VCE=VSET0.96,
(VLX “L” Side)
70
85
97
%
VLXlim
VLX Limit Voltage
VOUT=VCE=VSET0.96,
(VLX “L” Side)
0.4
0.6
0.8
V
VCEH
CE “H” Input Voltage
VOUT=VSET0.96
0.9
VCEL
CE “L” Input Voltage
VOUT=VSET0.96
ICEH
CE “H” Input Current
VOUT=VCE=6.5V
-0.1
ICEL
CE “L” Input Current
VIN=6.5V, VCE=0V
fosc2
Change-over frequency
VIN=VSET0.6, IOUT=0.5mA
(only for xx1A)
fosc/
Topt
Maxduty
IDD1
4
Item
Supply Current 1
(xx1A/C)
VOUT= VSET0.96
xx1A/C
xx1D
80
100
120
kHz
144
180
216
kHz
xx1A/C
0.5
kHz/C
xx1D
0.6
kHz/C
V
0.3
V
0
0.1
A
-0.1
0
0.1
A
10
35
70
kHz
2.2V≤VSET≤2.5V
30
55
2.6V≤VSET≤3.0V
35
60
3.1V≤VSET≤3.5V
40
70
3.6V≤VSET≤4.0V
45
80
4.1V≤VSET≤4.5V
50
90
4.6V≤VSET≤5.0V
70
100
5.1V≤VSET≤5.5V
80
110
5.6V≤VSET≤6.0V
90
120
A
R1210Nxx1x
Symbol
IDD1
ILX
Item
Supply Current 1
(xx1D)
LX Switching Current
Conditions
VOUT=VSET0.96
VLX=0.4V
Min.
Typ.
Max.
2.2V≤VSET≤2.5V
50
80
2.6V≤VSET≤3.0V
60
90
3.1V≤VSET≤3.5V
70
100
3.6V≤VSET≤4.0V
80
110
4.1V≤VSET≤4.5V
90
120
4.6V≤VSET≤5.0V
100
130
5.1V≤VSET≤5.5V
110
150
5.6V≤VSET≤6.0V
120
170
2.2V≤VSET≤2.4V
70
2.5V≤VSET≤2.9V
85
3.0V≤VSET≤3.4V
100
3.5V≤VSET≤3.9V
120
4.0V≤VSET≤4.4V
140
4.5V≤VSET≤4.9V
150
5.0V≤VSET≤5.4V
170
5.5V≤VSET≤6.0V
190
Unit
A
mA
*Note: VSET means setting Output Voltage.
RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)
All of electronic equipment should be designed that the mounted semiconductor devices operate within the
recommended operating conditions. The semiconductor devices cannot operate normally over the
recommended operating conditions, even if when they are used over such conditions by momentary
electronic noise or surge. And the semiconductor devices may receive serious damage when they continue
to operate over the recommended operating conditions.
5
R1210Nxx1x
TYPICAL APPLICATIONS AND TECHNICAL NOTES
SD
5
LX
VOUT 2
CL
VIN
4
GND CE 1
LOAD
L
L
: 100H CD54NP (Sumida Electric Co, LTD)
SD : CRS10I30A (TOSHIBA, Schottky Type)
CL : 22F2 (Tantalum Type)
When you use these ICs, consider the following issues;
Set external components as close as possible to the IC and minimize the connection between the components
and the IC. In particular, a capacitor should be connected to VOUT pin with the minimum connection.
Make sufficient grounding. A large current flows through GND pin by switching. When the impedance of the GND
connection is high, the potential within the IC is varied by the switching current. This may result in unstable
operation of the IC.
Use capacitors with a capacity of 22F or more, and with good high frequency characteristics such as tantalum
capacitors.
We recommend you to use output capacitors with an allowable voltage at least 3 times as much as setting output
voltage. This is because there may be a case where a spike-shaped high voltage is generated by an inductor
when an Lx transistor is off.
Choose an inductor that has sufficiently small D.C. resistance and large allowable current and is hard to reach
magnetic saturation.
And if the value of inductance of an inductor is extremely small, the ILX may exceed the absolute maximum rating
at the maximum loading.
Use an inductor with appropriate inductance.
Use a diode of a Schottky type with high switching speed, and also pay attention to its current capacity.
The performance of power circuit with using this IC depends on external components. Choose the most suitable
components for your application.
6
R1210Nxx1x
TYPICAL CHARACTERISTICS
1) Output Voltage vs. Output Current
R1210N301C
R1210N301D
3.2
3.2
VIN:0.9V
3.1
Output Voltage VOUT (V)
Output Voltage VOUT (V)
VIN:0.9V
VIN:2.0V
VIN:1.5V
VIN:2.5V
3.0
2.9
3.1
VIN:2.0V
VIN:1.5V
VIN:2.5V
3.0
2.9
2.8
2.8
0
50
100
150
200
250
Output Current IOUT (mA)
0
300
50
R1210N501C
300
R1210N501D
5.4
5.4
VIN:3.0V
5.2
VIN:4.0V
Output Voltage VOUT (V)
Output Voltage VOUT (V)
100
150
200
250
Output Current IOUT (mA)
VIN:2.0V
5.0
4.8
VIN:1.5V
4.6
VIN:3.0V
5.2
VIN:4.0V
5.0
4.8
VIN:2.0V
4.6
VIN:1.5V
4.4
4.4
0
50
100
150
200
250
Output Current IOUT (mA)
300
0
50
100
150
200
250
Output Current IOUT (mA)
300
2) Efficiency vs. Output Current
R1210N301C
R1210N301D
100
100
80
VIN:2.5V
60
Efficiency η (%)
Efficiency η (%)
80
VIN:2.0V
VIN:1.5V
40
VIN:2.5V
60
VIN:2.0V
VIN:1.5V
40
VIN:0.9V
VIN:0.9V
20
20
0
0
0
50
150
200
250
100
Output Current IOUT (mA)
300
0
50
100
150
200
250
Output Current IOUT (mA)
300
7
R1210Nxx1x
R1210N501C
R1210N501D
100
100
80
VIN:4.0V
VIN:4.0V
VIN:3.0V
60 VIN:1.5V
Efficiency η (%)
Efficiency η (%)
80
VIN:2.0V
40
20
VIN:3.0V
60
VIN:2.0V
VIN:1.5V
40
20
0
0
0
50
100
150
200
250
Output Current IOUT (mA)
300
0
50
100
150
200
250
Output Current IOUT (mA)
300
3) R1210Nxx1A/C Efficiency
R1210N301x
VIN:1.5V
100
90
Efficiency η (%)
80
70
60
50
40
R1210N301A
30
R1210N301C
20
10
0
0.01
0.10
1.00
10.00
Output Current IOUT(mA)
100.00
4) Ripple Voltage vs. Output Current
R1210N301C
R1210N301D
ESR:0.33 Ω
140
140
120
120
Ripple Voltage Vripple (mV)
Ripple Voltage Vripple (mV)
ESR:0.33 Ω
100
VIN:1.5(V)
VIN:2.0(V)
80
60
VIN:0.9(V)
40
20
0
80
VIN:1.5(V)
60
VIN:2.0(V)
40
VIN:0.9(V)
20
0
0
8
100
50
100
Output Current IOUT (mA)
150
0
50
100
Output Current IOUT (mA)
150
R1210Nxx1x
R1210N501C
R1210N501D
ESR:0.33 Ω
ESR:0.33 Ω
140
140
100
Ripple Voltage Vripple (mV)
Ripple Voltage Vripple (mV)
VIN:1.5(V)
120
VIN:2.0(V)
80
60 VIN:0.9(V)
40
20
120
VIN:1.5(V)
100
80
VIN:2.0(V)
VIN:0.9(V)
60
40
20
0
0
0
50
100
150
200
250
Output Current IOUT (mA)
0
300
50
100
150
200
250
Output Current IOUT (mA)
300
5) Start-up Voltage/Hold-on Voltage vs. Output Current (Topt=25C)
R1210N301D
Start-up/Hold-on Voltage Vstart/Vhold (V)
Start-up/Hold-on Voltage Vstart/Vhold (V)
R1210N301C
2.0
1.6
Vstart
1.2
0.8
Vhold
0.4
0.0
0
5
10
15
20
25
Output Current IOUT (mA)
2.0
1.6
Vstart
1.2
0.8
Vhold
0.4
0.0
30
0
5
2.0
1.6
Vstart
1.2
Vhold
0.8
0.4
0.0
0
5
10
15
20
25
Output Current IOUT (mA)
30
R1210N501D
Start-up/Hold-on Voltage Vstart/Vhold (V)
Start-up/Hold-on Voltage Vstart/Vhold (V)
R1210N501C
10
15
20
25
Output Current IOUT (mA)
30
2.0
1.6
Vstart
1.2
Vhold
0.8
0.4
0.0
0
5
10
15
20
25
Output Current IOUT (mA)
30
9
R1210Nxx1x
6) Output Voltage vs. Temperature
R1210N301C
R1210N301D
3.10
Output Voltage VOUT (V)
Output Voltage VOUT (V)
3.10
3.05
IOUT:10(mA)
IOUT:30(mA)
3.00
IOUT:0(mA)
2.95
2.90
-50
-25
0
25
50
Temperature Topt (°C)
75
3.05
3.00
IOUT:0(mA)
2.95
2.90
-50
100
IOUT:10(mA)
IOUT:30(mA)
-25
5.15
5.10
5.10
5.05
IOUT:10(mA)
IOUT:30(mA)
5.00
4.95
IOUT:0(mA)
100
5.05
IOUT:10(mA)
5.00
4.95
IOUT:30(mA)
IOUT:0(mA)
4.90
4.90
4.85
-50
75
R1210N501D
5.15
Output Voltage VOUT (V)
Output Voltage VOUT (V)
R1210N501C
0
25
50
Temperature Topt (°C)
-25
0
25
50
Temperature Topt (°C)
75
4.85
-50
100
-25
0
25
50
Temperature Topt (°C)
75
100
75
100
7) Supply Current 1 vs. Temperature
80
80
60
40
20
0
-50
10
R1210N301D
100
Supply Current ISS1 (μA)
Supply Current ISS1 (μA)
R1210N301A
100
-25
0
25
50
Temperature Topt (°C)
75
100
60
40
20
0
-50
-25
0
25
50
Temperature Topt (°C)
R1210Nxx1x
R1210N501D
120
100
100
Supply Current ISS1 (μA)
Supply Current ISS1 (μA)
R1210N501C
120
85
60
40
20
0
-50
85
60
40
20
-25
0
25
50
Temperature Topt (°C)
75
0
-50
100
-25
0
25
50
Temperature Topt (°C)
75
100
75
100
75
100
8) Supply Current2 vs. Temperature
R1210N221D
25
20
20
Supply Current ISS2 (μA)
Supply Current ISS2 (μA)
R1210N301A
25
15
10
5
0
-50
-25
25
50
0
Temperature Topt (°C)
75
15
10
5
0
-50
100
-25
R1210N601D
25
25
20
20
Supply Current ISS2 (μA)
Supply Current ISS2 (μA)
R1210N501C
15
10
5
0
-50
-25
0
25
50
Temperature Topt (°C)
0
25
50
Temperature Topt (°C)
75
100
15
10
5
0
-50
-25
0
25
50
Temperature Topt (°C)
11
R1210Nxx1x
9) Standby Current vs. Temperature
R1210N221A
R1210N221D
1.0
Standby Current Istandby (μA)
Standby Current Istandby (μA)
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-50
-25
0
25
50
Temperature Topt (°C)
75
0.8
0.6
0.4
0.2
0.0
-0.2
-50
100
-25
R1210N601C
100
75
100
75
100
1.0
Standby Current Istandby (μA)
Standby Current Istandby (μA)
75
R1210N601D
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-50
0
25
50
Temperature Topt (°C)
-25
0
25
50
Temperature Topt (°C)
75
0.8
0.6
0.4
0.2
0.0
-0.2
-50
100
-25
0
25
50
Temperature Topt (°C)
10) Oscillator Frequency vs. Temperature
R1210N221A
R1210N221D
300
250
200
150
100
50
0
-50
12
Oscillator Frequency fosc (kHz)
Oscillator Frequency fosc (kHz)
300
-25
0
25
50
Temperature Topt (°C)
75
100
250
200
150
100
50
0
-50
-25
0
25
50
Temperature Topt (°C)
R1210Nxx1x
R1210N601C
R1210N601D
300
Oscillator Frequency fosc (kHz)
Oscillator Frequency fosc (kHz)
300
250
200
150
100
50
0
-50
-25
0
25
50
Temperature Topt (°C)
75
250
200
150
100
50
0
-50
100
-25
0
25
50
Temperature Topt (°C)
75
100
75
100
75
100
11) Maximum Duty Cycle vs. Temperature
R1210N221D
100
90
90
Maximum Duty Cycle (%)
Maximum Duty Cycle (%)
R1210N221A
100
80
70
60
50
40
-50
-25
0
25
50
Temperature Topt (°C)
75
80
70
60
50
40
-50
100
-25
R1210N601D
100
100
90
90
Maximum Duty (%)
Maximum Duty (%)
R1210N601C
80
70
60
80
70
60
50
50
40
-50
0
25
50
Temperature Topt (°C)
-25
0
25
50
Temperature Topt (°C)
75
100
40
-50
-25
0
25
50
Temperature Topt (°C)
13
R1210Nxx1x
12) LX Switching Current vs. Temperature
R1210N301A
R1210N501C
500
LX Switching Current I_LXswitch (mA)
LX Switching Current I_LXswitch (mA)
500
400
300
200
100
0
-50
-25
0
25
50
Temperature Topt (°C)
75
100
400
300
200
100
0
-50
-25
R1210N221D
100
75
100
75
100
500
LX Switching Current I_LXswitch (mA)
LX Switching Current I_LXswitch (mA)
75
R1210N601D
500
400
300
200
100
0
-50
0
25
50
Temperature Topt (°C)
-25
0
25
50
Temperature Topt (°C)
75
100
400
300
200
100
0
-50
-25
0
25
50
Temperature Topt (°C)
13) LX leakage Current vs. Temperature
R1210N221A
R1210N221D
0.8
0.6
0.4
0.2
0.0
-0.2
-50
14
1.0
LX Leakage Current ILX_leak (μA)
LX Leakage Current ILX_leak (μA)
1.0
-25
0
25
50
Temperature Topt (°C)
75
100
0.8
0.6
0.4
0.2
0.0
-0.2
-50
-25
0
25
50
Temperature Topt (°C)
R1210Nxx1x
R1210N601C
R1210N601D
1.0
LX Leakage Current ILX_leak (μA)
LX Leakage Current ILX_leak (μA)
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-50
-25
0
25
50
Temperature Topt (°C)
75
0.8
0.6
0.4
0.2
0.0
-0.2
-50
100
-25
0
25
50
Temperature Topt (°C)
75
100
75
100
75
100
14) VLX Voltage Limit vs. Temperature
R1210N221D
1.0
0.8
0.8
LX Voltage Limit VLXlim (V)
LX Voltage Limit VLXlim (V)
R1210N301A
1.0
0.6
0.4
0.2
0.0
-50
-25
0
25
50
Temperature Topt (°C)
75
0.6
0.4
0.2
0.0
-50
100
-25
R1210N601D
1.0
1.0
0.8
0.8
LX Voltage Limit VLXlim (V)
LX Voltage Limit VLXlim (V)
R1210N501C
0.6
0.4
0.2
0.0
-50
-25
0
25
50
Temperature Topt (°C)
0
25
50
Temperature Topt (°C)
75
100
0.6
0.4
0.2
0.0
-50
-25
0
25
50
Temperature Topt (°C)
15
R1210Nxx1x
15) CE “H” Input Voltage vs. Temperature
R1210N221A
R1210N601C
0.9
CE"H" Input Voltage V_CE"H" (V)
CE"H" Input Voltage V_CE"H" (V)
0.9
0.8
0.7
0.6
0.5
0.4
0.3
-50
-25
0
25
50
Temperature Topt (°C)
75
0.8
0.7
0.6
0.5
0.4
0.3
-50
100
-25
0
25
50
Temperature Topt (°C)
75
100
75
100
16) CE “L” Input Voltage vs. Temperature
R1210N221A
R1210N601C
0.8
0.7
0.6
0.5
0.4
0.3
-50
16
0.9
CE"L" Input Voltage V_CE"L" (V)
CE"L" Input Voltage V_CE"L" (V)
0.9
-25
0
25
50
Temperature Topt (°C)
75
100
0.8
0.7
0.6
0.5
0.4
0.3
-50
-25
0
25
50
Temperature Topt (°C)
1. The products and the product specifications described in this document are subject to change or discontinuation of
production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer
to our sales representatives for the latest information thereon.
2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written
consent of our company.
3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise
taking out of your country the products or the technical information described herein.
4. The technical information described in this document shows typical characteristics of and example application circuits
for the products. The release of such information is not to be construed as a warranty of or a grant of license under
our company's or any third party's intellectual property rights or any other rights.
5. The products listed in this document are intended and designed for use as general electronic components in standard
applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products,
amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and
reliability, for example, in a highly specific application where the failure or misoperation of the product could result in
human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and
transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products
are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from
such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy
feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or
damage arising from misuse or inappropriate use of the products.
7. Anti-radiation design is not implemented in the products described in this document.
8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and
characteristics in the evaluation stage.
9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and
characteristics of the products under operation or storage.
10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case
of recognizing the marking characteristic with AOI, please contact our sales or our distributor before attempting to use
AOI.
11. Please contact our sales representatives should you have any questions or comments concerning the products or
the technical information.
Official website
https://www.nisshinbo-microdevices.co.jp/en/
Purchase information
https://www.nisshinbo-microdevices.co.jp/en/buy/