0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
R1210N501C-TR-FE

R1210N501C-TR-FE

  • 厂商:

    NISSHINBO(日清纺)

  • 封装:

    SC-74A

  • 描述:

    升压 开关稳压器 IC 正 固定 1 输出 400mA SC-74A,SOT-753

  • 数据手册
  • 价格&库存
R1210N501C-TR-FE 数据手册
R1210Nxx1x SERIES PWM STEP-UP DC/DC CONVERTER NO.EA-075-181214 OUTLINE The R1210Nxx1x Series are CMOS-based PWM step-up DC/DC Converter, with high accuracy, low supply current. Each of the R1210Nxx1x Series consists of an oscillator, a PWM circuit, a reference voltage unit, an error amplifier, phase compensation circuit, resistors for voltage detection, a chip enable circuit. Further, includes a controller against drastic load transient, a control transistor with low ON-Resistance, ‘LX switch’, and a protection circuit for LX switch and an output voltage detector. R1210Nxx1A Series contain further a circuit for changeover oscillator frequency each. A low ripple, high efficiency step-up DC/DC converter can be composed of this IC with only three external components, or an inductor, a diode and a capacitor. The R1210N Series can detect drastic change of output voltage with a circuit controller. The load transient response is improved compared with current model, furthermore the R1210Nxx1A Series have another function, that is, when the load current is small, oscillator frequency is decreased by a circuit for switching oscillator frequency from Typ. 100kHz to 35kHz, therefore, supply current is reduced. The built-in chip enable circuit can make the standby mode with ultra low quiescent current. Since the package for these ICs is small SOT-23-5, high density mounting of the ICs on board is possible. FEATURES             External Components ....................................... Only an inductor, a diode, and a capacitor Standby Current ............................................... Max. 0.5A Temperature-Drift Coefficient of Output Voltage Typ.100ppm/C Output Voltage Range ....................................... 2.2V to 3.5V (xx1A), 2.2V to 6.0V (xx1C/D), 0.1V steps Two choices of Basic Oscillator Frequency ..... 100kHz (xx1A/C), 180kHz (xx1D) Output Voltage Accuracy .................................. 2.5% Package ........................................................... SOT-23-5 Efficiency .......................................................... Typ. 88% (VIN=Set Output Voltage0.6 [V], IOUT=10mA) Low Ripple, Low Noise Built-in a driver transistor with low on-resistance Start-up Voltage ................................................ Max. 0.9V Basic Frequency change-over circuit (only for xx1A type) from Typ. 100kHz to 35kHz APPLICATIONS  Power source for battery-powered equipment.  Power source for portable communication appliances, cameras, VCRs  Power source for appliances of which require higher voltage than battery voltage. 1 R1210Nxx1x BLOCK DIAGRAMS Vref Circuit LX VLX limiter 5 2 VOUT Phase Comp. Buffer PWM Controller OSC fosc Control 4 GND Chip Enable 1 CE SELECTION GUIDE Product Name Package Quantity per Reel Pb Free Halogen Free R1210Nxx1-TR-FE SOT-23-5 3,000 pcs Yes Yes xx : The output voltage can be designated. (0.1V steps) xx1A : 2.2V(22) to 3.5V(35) xx1C/xx1D : 2.2V(22) to 6.0V(60)  : The oscillator frequency and the Frequency Change-over circuit are options as follows. 2 Code Oscillator frequency Frequency Change-over circuit A 100kHz Yes C 100kHz No D 180kHz No R1210Nxx1x PIN CONFIGURATIONS  SOT-23-5 5 4 (mark side) 1 2 3 PIN DESCRIPTIONS  SOT-23-5 Pin No Symbol Pin Description 1 CE Chip Enable Pin ("H" Active) 2 VOUT Pin for Monitoring Output Voltage 3 NC No Connection 4 GND 5 LX Ground Pin Switching Pin (Nch Open Drain) ABSOLUTE MAXIMUM RATINGS Symbol Item Rating Unit VOUT VOUT Pin Output Voltage 0.3 to 9.0 V VLX LX Pin Output Voltage 0.3 to 9.0 V VCE CE Pin Input Voltage 0.3 to 9.0 V ILX LX Pin Output Current 400 mA PD Power Dissipation (SOT-23-5) 420 mW Topt Operating Temperature Range 40 to 85 C Tstg Storage Temperature Range 55 to 125 C ) For Power Dissipation, please refer to PACKAGE INFORMATION. ABSOLUTE MAXIMUM RATINGS Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured. 3 R1210Nxx1x ELECTRICAL CHARACTERISTICS  R1210Nxx1x Topt=25°C Symbol VOUT Conditions Output Voltage VIN=VSET0.6, IOUT=1mA VIN Maximum Input Voltage VOUT/ Topt Step-up Output Voltage Temperature Coefficient 40C≤Topt≤85C Start-up Voltage VIN0V2V, VOUT:1.8k pull-down Start-up Voltage Temperature Coefficient 40C≤Topt≤85C Vhold Hold-on Voltage VIN2.0V0V, IOUT=1mA IDD2 Supply Current 2 VOUT=VCE=VSET+0.5V Istandby Standby Current ILXleak fosc Vstart Vstart/ Topt Min. Typ. 0.975 Max. Unit 1.025 V 8 V 100 ppm/C 0.9 -3.2 xx1A/C 0.7 xx1D 0.9 V mV/C V   xx1A/C 10 17 A xx1D 15 24 A VOUT=6.5V, VCE=0V 0.5 A LX Leakage Current VOUT=VLX=8V 0.5 A Maximum Oscillator Frequency VOUT=VCE=VSET0.96 Oscillator Frequency Temperature Coefficient 40C≤Topt≤85C Oscillator Maximum Duty Cycle VOUT=VCE=VSET0.96, (VLX “L” Side) 70 85 97 % VLXlim VLX Limit Voltage VOUT=VCE=VSET0.96, (VLX “L” Side) 0.4 0.6 0.8 V VCEH CE “H” Input Voltage VOUT=VSET0.96 0.9 VCEL CE “L” Input Voltage VOUT=VSET0.96 ICEH CE “H” Input Current VOUT=VCE=6.5V -0.1 ICEL CE “L” Input Current VIN=6.5V, VCE=0V fosc2 Change-over frequency VIN=VSET0.6, IOUT=0.5mA (only for xx1A)  fosc/ Topt Maxduty IDD1 4 Item Supply Current 1 (xx1A/C) VOUT= VSET0.96 xx1A/C xx1D 80 100 120 kHz 144 180 216 kHz xx1A/C 0.5 kHz/C xx1D 0.6 kHz/C V 0.3 V 0 0.1 A -0.1 0 0.1 A 10 35 70 kHz 2.2V≤VSET≤2.5V 30 55 2.6V≤VSET≤3.0V 35 60 3.1V≤VSET≤3.5V 40 70 3.6V≤VSET≤4.0V 45 80 4.1V≤VSET≤4.5V 50 90 4.6V≤VSET≤5.0V 70 100 5.1V≤VSET≤5.5V 80 110 5.6V≤VSET≤6.0V 90 120 A R1210Nxx1x Symbol IDD1 ILX Item Supply Current 1 (xx1D) LX Switching Current Conditions VOUT=VSET0.96 VLX=0.4V Min. Typ. Max. 2.2V≤VSET≤2.5V 50 80 2.6V≤VSET≤3.0V 60 90 3.1V≤VSET≤3.5V 70 100 3.6V≤VSET≤4.0V 80 110 4.1V≤VSET≤4.5V 90 120 4.6V≤VSET≤5.0V 100 130 5.1V≤VSET≤5.5V 110 150 5.6V≤VSET≤6.0V 120 170 2.2V≤VSET≤2.4V 70 2.5V≤VSET≤2.9V 85 3.0V≤VSET≤3.4V 100 3.5V≤VSET≤3.9V 120 4.0V≤VSET≤4.4V 140 4.5V≤VSET≤4.9V 150 5.0V≤VSET≤5.4V 170 5.5V≤VSET≤6.0V 190 Unit A mA *Note: VSET means setting Output Voltage. RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS) All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions. 5 R1210Nxx1x TYPICAL APPLICATIONS AND TECHNICAL NOTES SD 5 LX VOUT 2 CL VIN 4 GND CE 1 LOAD L L : 100H CD54NP (Sumida Electric Co, LTD) SD : CRS10I30A (TOSHIBA, Schottky Type) CL : 22F2 (Tantalum Type) When you use these ICs, consider the following issues; Set external components as close as possible to the IC and minimize the connection between the components and the IC. In particular, a capacitor should be connected to VOUT pin with the minimum connection. Make sufficient grounding. A large current flows through GND pin by switching. When the impedance of the GND connection is high, the potential within the IC is varied by the switching current. This may result in unstable operation of the IC. Use capacitors with a capacity of 22F or more, and with good high frequency characteristics such as tantalum capacitors. We recommend you to use output capacitors with an allowable voltage at least 3 times as much as setting output voltage. This is because there may be a case where a spike-shaped high voltage is generated by an inductor when an Lx transistor is off. Choose an inductor that has sufficiently small D.C. resistance and large allowable current and is hard to reach magnetic saturation. And if the value of inductance of an inductor is extremely small, the ILX may exceed the absolute maximum rating at the maximum loading. Use an inductor with appropriate inductance. Use a diode of a Schottky type with high switching speed, and also pay attention to its current capacity. The performance of power circuit with using this IC depends on external components. Choose the most suitable components for your application. 6 R1210Nxx1x TYPICAL CHARACTERISTICS 1) Output Voltage vs. Output Current R1210N301C R1210N301D 3.2 3.2 VIN:0.9V 3.1 Output Voltage VOUT (V) Output Voltage VOUT (V) VIN:0.9V VIN:2.0V VIN:1.5V VIN:2.5V 3.0 2.9 3.1 VIN:2.0V VIN:1.5V VIN:2.5V 3.0 2.9 2.8 2.8 0 50 100 150 200 250 Output Current IOUT (mA) 0 300 50 R1210N501C 300 R1210N501D 5.4 5.4 VIN:3.0V 5.2 VIN:4.0V Output Voltage VOUT (V) Output Voltage VOUT (V) 100 150 200 250 Output Current IOUT (mA) VIN:2.0V 5.0 4.8 VIN:1.5V 4.6 VIN:3.0V 5.2 VIN:4.0V 5.0 4.8 VIN:2.0V 4.6 VIN:1.5V 4.4 4.4 0 50 100 150 200 250 Output Current IOUT (mA) 300 0 50 100 150 200 250 Output Current IOUT (mA) 300 2) Efficiency vs. Output Current R1210N301C R1210N301D 100 100 80 VIN:2.5V 60 Efficiency η (%) Efficiency η (%) 80 VIN:2.0V VIN:1.5V 40 VIN:2.5V 60 VIN:2.0V VIN:1.5V 40 VIN:0.9V VIN:0.9V 20 20 0 0 0 50 150 200 250 100 Output Current IOUT (mA) 300 0 50 100 150 200 250 Output Current IOUT (mA) 300 7 R1210Nxx1x R1210N501C R1210N501D 100 100 80 VIN:4.0V VIN:4.0V VIN:3.0V 60 VIN:1.5V Efficiency η (%) Efficiency η (%) 80 VIN:2.0V 40 20 VIN:3.0V 60 VIN:2.0V VIN:1.5V 40 20 0 0 0 50 100 150 200 250 Output Current IOUT (mA) 300 0 50 100 150 200 250 Output Current IOUT (mA) 300 3) R1210Nxx1A/C Efficiency R1210N301x VIN:1.5V 100 90 Efficiency η (%) 80 70 60 50 40 R1210N301A 30 R1210N301C 20 10 0 0.01 0.10 1.00 10.00 Output Current IOUT(mA) 100.00 4) Ripple Voltage vs. Output Current R1210N301C R1210N301D ESR:0.33 Ω 140 140 120 120 Ripple Voltage Vripple (mV) Ripple Voltage Vripple (mV) ESR:0.33 Ω 100 VIN:1.5(V) VIN:2.0(V) 80 60 VIN:0.9(V) 40 20 0 80 VIN:1.5(V) 60 VIN:2.0(V) 40 VIN:0.9(V) 20 0 0 8 100 50 100 Output Current IOUT (mA) 150 0 50 100 Output Current IOUT (mA) 150 R1210Nxx1x R1210N501C R1210N501D ESR:0.33 Ω ESR:0.33 Ω 140 140 100 Ripple Voltage Vripple (mV) Ripple Voltage Vripple (mV) VIN:1.5(V) 120 VIN:2.0(V) 80 60 VIN:0.9(V) 40 20 120 VIN:1.5(V) 100 80 VIN:2.0(V) VIN:0.9(V) 60 40 20 0 0 0 50 100 150 200 250 Output Current IOUT (mA) 0 300 50 100 150 200 250 Output Current IOUT (mA) 300 5) Start-up Voltage/Hold-on Voltage vs. Output Current (Topt=25C) R1210N301D Start-up/Hold-on Voltage Vstart/Vhold (V) Start-up/Hold-on Voltage Vstart/Vhold (V) R1210N301C 2.0 1.6 Vstart 1.2 0.8 Vhold 0.4 0.0 0 5 10 15 20 25 Output Current IOUT (mA) 2.0 1.6 Vstart 1.2 0.8 Vhold 0.4 0.0 30 0 5 2.0 1.6 Vstart 1.2 Vhold 0.8 0.4 0.0 0 5 10 15 20 25 Output Current IOUT (mA) 30 R1210N501D Start-up/Hold-on Voltage Vstart/Vhold (V) Start-up/Hold-on Voltage Vstart/Vhold (V) R1210N501C 10 15 20 25 Output Current IOUT (mA) 30 2.0 1.6 Vstart 1.2 Vhold 0.8 0.4 0.0 0 5 10 15 20 25 Output Current IOUT (mA) 30 9 R1210Nxx1x 6) Output Voltage vs. Temperature R1210N301C R1210N301D 3.10 Output Voltage VOUT (V) Output Voltage VOUT (V) 3.10 3.05 IOUT:10(mA) IOUT:30(mA) 3.00 IOUT:0(mA) 2.95 2.90 -50 -25 0 25 50 Temperature Topt (°C) 75 3.05 3.00 IOUT:0(mA) 2.95 2.90 -50 100 IOUT:10(mA) IOUT:30(mA) -25 5.15 5.10 5.10 5.05 IOUT:10(mA) IOUT:30(mA) 5.00 4.95 IOUT:0(mA) 100 5.05 IOUT:10(mA) 5.00 4.95 IOUT:30(mA) IOUT:0(mA) 4.90 4.90 4.85 -50 75 R1210N501D 5.15 Output Voltage VOUT (V) Output Voltage VOUT (V) R1210N501C 0 25 50 Temperature Topt (°C) -25 0 25 50 Temperature Topt (°C) 75 4.85 -50 100 -25 0 25 50 Temperature Topt (°C) 75 100 75 100 7) Supply Current 1 vs. Temperature 80 80 60 40 20 0 -50 10 R1210N301D 100 Supply Current ISS1 (μA) Supply Current ISS1 (μA) R1210N301A 100 -25 0 25 50 Temperature Topt (°C) 75 100 60 40 20 0 -50 -25 0 25 50 Temperature Topt (°C) R1210Nxx1x R1210N501D 120 100 100 Supply Current ISS1 (μA) Supply Current ISS1 (μA) R1210N501C 120 85 60 40 20 0 -50 85 60 40 20 -25 0 25 50 Temperature Topt (°C) 75 0 -50 100 -25 0 25 50 Temperature Topt (°C) 75 100 75 100 75 100 8) Supply Current2 vs. Temperature R1210N221D 25 20 20 Supply Current ISS2 (μA) Supply Current ISS2 (μA) R1210N301A 25 15 10 5 0 -50 -25 25 50 0 Temperature Topt (°C) 75 15 10 5 0 -50 100 -25 R1210N601D 25 25 20 20 Supply Current ISS2 (μA) Supply Current ISS2 (μA) R1210N501C 15 10 5 0 -50 -25 0 25 50 Temperature Topt (°C) 0 25 50 Temperature Topt (°C) 75 100 15 10 5 0 -50 -25 0 25 50 Temperature Topt (°C) 11 R1210Nxx1x 9) Standby Current vs. Temperature R1210N221A R1210N221D 1.0 Standby Current Istandby (μA) Standby Current Istandby (μA) 1.0 0.8 0.6 0.4 0.2 0.0 -0.2 -50 -25 0 25 50 Temperature Topt (°C) 75 0.8 0.6 0.4 0.2 0.0 -0.2 -50 100 -25 R1210N601C 100 75 100 75 100 1.0 Standby Current Istandby (μA) Standby Current Istandby (μA) 75 R1210N601D 1.0 0.8 0.6 0.4 0.2 0.0 -0.2 -50 0 25 50 Temperature Topt (°C) -25 0 25 50 Temperature Topt (°C) 75 0.8 0.6 0.4 0.2 0.0 -0.2 -50 100 -25 0 25 50 Temperature Topt (°C) 10) Oscillator Frequency vs. Temperature R1210N221A R1210N221D 300 250 200 150 100 50 0 -50 12 Oscillator Frequency fosc (kHz) Oscillator Frequency fosc (kHz) 300 -25 0 25 50 Temperature Topt (°C) 75 100 250 200 150 100 50 0 -50 -25 0 25 50 Temperature Topt (°C) R1210Nxx1x R1210N601C R1210N601D 300 Oscillator Frequency fosc (kHz) Oscillator Frequency fosc (kHz) 300 250 200 150 100 50 0 -50 -25 0 25 50 Temperature Topt (°C) 75 250 200 150 100 50 0 -50 100 -25 0 25 50 Temperature Topt (°C) 75 100 75 100 75 100 11) Maximum Duty Cycle vs. Temperature R1210N221D 100 90 90 Maximum Duty Cycle (%) Maximum Duty Cycle (%) R1210N221A 100 80 70 60 50 40 -50 -25 0 25 50 Temperature Topt (°C) 75 80 70 60 50 40 -50 100 -25 R1210N601D 100 100 90 90 Maximum Duty (%) Maximum Duty (%) R1210N601C 80 70 60 80 70 60 50 50 40 -50 0 25 50 Temperature Topt (°C) -25 0 25 50 Temperature Topt (°C) 75 100 40 -50 -25 0 25 50 Temperature Topt (°C) 13 R1210Nxx1x 12) LX Switching Current vs. Temperature R1210N301A R1210N501C 500 LX Switching Current I_LXswitch (mA) LX Switching Current I_LXswitch (mA) 500 400 300 200 100 0 -50 -25 0 25 50 Temperature Topt (°C) 75 100 400 300 200 100 0 -50 -25 R1210N221D 100 75 100 75 100 500 LX Switching Current I_LXswitch (mA) LX Switching Current I_LXswitch (mA) 75 R1210N601D 500 400 300 200 100 0 -50 0 25 50 Temperature Topt (°C) -25 0 25 50 Temperature Topt (°C) 75 100 400 300 200 100 0 -50 -25 0 25 50 Temperature Topt (°C) 13) LX leakage Current vs. Temperature R1210N221A R1210N221D 0.8 0.6 0.4 0.2 0.0 -0.2 -50 14 1.0 LX Leakage Current ILX_leak (μA) LX Leakage Current ILX_leak (μA) 1.0 -25 0 25 50 Temperature Topt (°C) 75 100 0.8 0.6 0.4 0.2 0.0 -0.2 -50 -25 0 25 50 Temperature Topt (°C) R1210Nxx1x R1210N601C R1210N601D 1.0 LX Leakage Current ILX_leak (μA) LX Leakage Current ILX_leak (μA) 1.0 0.8 0.6 0.4 0.2 0.0 -0.2 -50 -25 0 25 50 Temperature Topt (°C) 75 0.8 0.6 0.4 0.2 0.0 -0.2 -50 100 -25 0 25 50 Temperature Topt (°C) 75 100 75 100 75 100 14) VLX Voltage Limit vs. Temperature R1210N221D 1.0 0.8 0.8 LX Voltage Limit VLXlim (V) LX Voltage Limit VLXlim (V) R1210N301A 1.0 0.6 0.4 0.2 0.0 -50 -25 0 25 50 Temperature Topt (°C) 75 0.6 0.4 0.2 0.0 -50 100 -25 R1210N601D 1.0 1.0 0.8 0.8 LX Voltage Limit VLXlim (V) LX Voltage Limit VLXlim (V) R1210N501C 0.6 0.4 0.2 0.0 -50 -25 0 25 50 Temperature Topt (°C) 0 25 50 Temperature Topt (°C) 75 100 0.6 0.4 0.2 0.0 -50 -25 0 25 50 Temperature Topt (°C) 15 R1210Nxx1x 15) CE “H” Input Voltage vs. Temperature R1210N221A R1210N601C 0.9 CE"H" Input Voltage V_CE"H" (V) CE"H" Input Voltage V_CE"H" (V) 0.9 0.8 0.7 0.6 0.5 0.4 0.3 -50 -25 0 25 50 Temperature Topt (°C) 75 0.8 0.7 0.6 0.5 0.4 0.3 -50 100 -25 0 25 50 Temperature Topt (°C) 75 100 75 100 16) CE “L” Input Voltage vs. Temperature R1210N221A R1210N601C 0.8 0.7 0.6 0.5 0.4 0.3 -50 16 0.9 CE"L" Input Voltage V_CE"L" (V) CE"L" Input Voltage V_CE"L" (V) 0.9 -25 0 25 50 Temperature Topt (°C) 75 100 0.8 0.7 0.6 0.5 0.4 0.3 -50 -25 0 25 50 Temperature Topt (°C) 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to our sales representatives for the latest information thereon. 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of our company. 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein. 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under our company's or any third party's intellectual property rights or any other rights. 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us. 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products. 7. Anti-radiation design is not implemented in the products described in this document. 8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage. 9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage. 10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact our sales or our distributor before attempting to use AOI. 11. Please contact our sales representatives should you have any questions or comments concerning the products or the technical information. Official website https://www.nisshinbo-microdevices.co.jp/en/ Purchase information https://www.nisshinbo-microdevices.co.jp/en/buy/
R1210N501C-TR-FE 价格&库存

很抱歉,暂时无法提供与“R1210N501C-TR-FE”相匹配的价格&库存,您可以联系我们找货

免费人工找货