FR9883
85T
18V, 2A, 500KHz Synchronous Step-Down
DC/DC Converter
Description
Features
The FR9883 is a synchronous step-down DC/DC
converter that provides wide 4.5V to 18V input
voltage range and 2A load current capability. At light
load condition, the FR9883 can operate at power
saving mode to support high efficiency and reduce
power loss.
The FR9883 fault protection includes cycle-by-cycle
current limit, short circuit protection, UVLO and
thermal shutdown. The soft-start function prevents
inrush current at turn-on. This device uses current
mode control scheme which provides fast transient
response. Internal compensation function reduces
external compensation components and simplifies
the design process. In shutdown mode, the supply
current is about 1μA.
Low RDS(ON) Integrated Power MOSFET
(145mΩ/90mΩ)
Internal Compensation Function
Wide Input Voltage Range: 4.5V to 18V
0.8V Reference Voltage
2A Output Current
500kHz Switching Frequency
Soft-Start Time Depends on EN/SS Resistor
Adjustment
Input Under Voltage Lockout
Cycle-by-Cycle Current Limit
Hiccup Short Circuit Protection
Over-Temperature Protection with Auto
Recovery
SOT-23-6 Package
The FR9883 is offered in SOT-23-6 package, which
provides a very compact system solution.
Applications
Pin Assignments
Ordering Information
S6 Package (SOT-23-6)
FR9883□
STB (Set-Top-Box)
LCD Display, TV
Distributed Power System
Networking, XDSL Modem
Package Type
S6: SOT-23-6
BST EN/SS FB
6
1
4
5
(Marking)
2
3
GND LX VIN
Figure 1. Pin Assignment of FR9883
FR9883-Preliminary 0.3-FEB-2016
SOT-23-6 Marking
Part Number
Product Code
FR9883S6
FN7
1
FR9883
85T
Typical Application Circuit
C3
0.1μF
R3
100kΩ
5
6
EN/SS
3
VIN
BST
LX 2
VIN
L1
2.2μH
VOUT
1.2V
4.5V to 18V
FR9883
C1
FB
C5
10μF/25V
CERAMIC
10μF/25V
CERAMIC
4
GND
1
R1
4.99kΩ 1%
C4
C2
22μF/6.3V
CERAMIC x 2
(optional)
R2
10kΩ 1%
Figure 2. CIN /COUT use Ceramic Capacitors Application Circuit
C3
0.1μF
R3
100kΩ
5
EN/SS
3
VIN
4.5V to 18V
6
BST
LX
VIN
2
FR9883
FB
C5
0.1μF/25V
CERAMIC
C1
100μF/25V
EC
4
GND
1
L1
2.2μH
VOUT
1.2V
R1
4.99kΩ 1%
C4
C2
100μF/6.3V
EC
(optional)
R2
10kΩ 1%
Figure 3. CIN /COUT use Electrolytic Capacitors Application Circuit
VIN=12V, the recommended BOM list is as below.
VOUT
C1
R1
R2
C5
C4
L1
C2
1.2V
10μF MLCC
4.99kΩ
10kΩ
10μF MLCC
10pF~10nF
2.2uH
22μF MLCC x2
1.8V
10μF MLCC
4.99kΩ
3.92kΩ
10μF MLCC
10pF~10nF
3.3uH
22μF MLCC x2
2.5V
10μF MLCC
4.99kΩ
2.32kΩ
10μF MLCC
10pF~10nF
4.7uH
22μF MLCC x2
3.3V
10μF MLCC
30.9kΩ
9.76kΩ
10μF MLCC
10pF~10nF
4.7uH
22μF MLCC x2
5V
10μF MLCC
30.9kΩ
5.76kΩ
10μF MLCC
10pF~10nF
6.8uH
22μF MLCC x2
1.2V
100μF EC
4.99kΩ
10kΩ
0.1μF
--
2.2uH
100μF EC
1.8V
100μF EC
4.99kΩ
3.92kΩ
0.1μF
--
3.3uH
100μF EC
2.5V
100μF EC
4.99kΩ
2.32kΩ
0.1μF
--
4.7uH
100μF EC
3.3V
100μF EC
30.9kΩ
9.76kΩ
0.1μF
--
4.7uH
100μF EC
5V
100μF EC
30.9kΩ
5.76kΩ
0.1μF
--
6.8uH
100μF EC
Table 1. Recommended Component Values
FR9883-Preliminary 0.3-FEB-2016
2
FR9883
85T
Functional Pin Description
Pin Name
Pin No.
Pin Function
GND
1
Ground pin.
LX
2
Power switching node.
VIN
3
Power supply input pin. Placed input capacitors as close as possible from VIN to GND to avoid noise
influence.
FB
4
Voltage feedback input pin. Connect FB and VOUT with a resistive voltage divider.
feedback voltage via FB and regulates it at 0.8V.
EN/SS
5
This pin includes enable the converter on/off, and soft-start time depends on an external resistor
adjustment. Connect to VIN with a 100kΩ resistor for self-startup and 1ms soft start.
BST
6
High side gate drive boost pin. A capacitance between 10nF to 1μF must be connected from this pin to
LX. It can boost the gate drive to fully turn on the internal high side NMOS.
Connect an external inductor to this switching node.
This IC senses
Block Diagram
VIN
ISEN
UVLO
&
POR
EN/SS
Internal
Regulator
OTP
VCC
VCC
1M
Oscillator
BST
Soft Start
High-Side
MOSFET
S
FB
Current
Comp
R
OTP
Control
Logic
Driver
Logic
LX
UVLO
Low-Side
MOSFET
Vref
Current
Limit
GND
Figure 4. Block Diagram of FR9883
FR9883-Preliminary 0.3-FEB-2016
3
FR9883
Absolute Maximum Ratings (Note 1)
85T
● Supply Voltage VIN ----------------------------------------------------------------------------------------- -0.3V to +20V
● LX Voltage VLX ---------------------------------------------------------------------------------------------- -1V to VIN+0.3V
● Dynamic LX Voltage in 15ns Duration----------------------------------------------------------------- -5V to VIN+5V
● BST Pin Voltage VBST ------------------------------------------------------------------------------------- VLX-0.3V to VLX+7.5V
● All Other Pins Voltage ------------------------------------------------------------------------------------ -0.3V to +20V
● Maximum Junction Temperature (TJ) ----------------------------------------------------------------- +150°C
● Storage Temperature (TS) ------------------------------------------------------------------------------- -65°C to +150°C
● Lead Temperature (Soldering, 10sec.) --------------------------------------------------------------- +260°C
● Package Thermal Resistance (θJA) (Note 2)
SOT-23-6 ------------------------------------------------------------------------------------------ 250°C/W
● Package Thermal Resistance (θJC)
SOT-23-6 ------------------------------------------------------------------------------------------ 110°C/W
Note 1:Stresses beyond this listed under “Absolute Maximum Ratings" may cause permanent damage to the device.
Note 2:θJA is measured at 25°C ambient with the component mounted on a high effective thermal conductivity 4-layer
board of JEDEC-51-7. The thermal resistance greatly varies with layout, copper thickness, number of layers and PCB size.
Recommended Operating Conditions
● Supply Voltage VIN ------------------------------------------------------------------------------------------- +4.5V to +18V
● Operation Temperature Range --------------------------------------------------------------------------- -40°C to +85°C
FR9883-Preliminary 0.3-FEB-2016
4
FR9883
85T
Electrical Characteristics
(VIN=12V, TA=25°C, unless otherwise specified.)
Parameter
Symbol
Conditions
Min
Typ
Max
Unit
VIN Quiescent Current
IDDQ
VEN/SS=2V, VFB=1.0V
1
1.2
mA
VIN Shutdown Supply Current
ISD
VEN/SS =0V
1
3
μA
Feedback Voltage
VFB
4.5V≦VIN≦18V
0.8
0.82
V
0.78
High-Side MOSFET RDS(ON) (Note 3)
RDS(ON)
145
mΩ
Low-Side MOSFET RDS(ON) (Note 3)
RDS(ON)
90
mΩ
High-Side MOSFET Leakage Current
ILX(leak)
High-Side MOSFET Current Limit
(Note 3)
Oscillation Frequency
Short Circuit Oscillation Frequency
ILIMIT(HS)
FOSC(short)
DMAX
Minimum On Time (Note 3)
TMIN
Input Supply Voltage UVLO Threshold
VUVLO(Vth)
Input Supply Voltage UVLO Threshold
Hysteresis
VUVLO(HYS)
E
Input Low Voltage
VEN/SS(L)
E
Input High Voltage
VEN/SS(H)
TSD
10
Minimum Duty
FOSC
Maximum Duty Cycle
Thermal Shutdown Threshold (Note 3)
VEN/SS =0V, VLX=0V
3.5
400
500
μA
A
600
kHz
VFB=0V
150
kHz
VFB=0.4V
85
%
100
ns
4.3
V
400
mV
VIN Rising
0.4
2
V
V
160
°C
Note 3:Not production tested.
FR9883-Preliminary 0.3-FEB-2016
5
FR9883
85T
Typical Performance Curves
VIN=12V, VOUT=3.3V, C1=10μF×2, C2=22μF×2, L1=4.7μH, TA=+25°C, unless otherwise noted.
IOUT=0A
IOUT=2A
VOUT 10mV/div.
IL
VLX
VOUT 10mV/div.
500mA/div.
5V/div.
2ms/div.
1A/div.
VLX
5V/div.
2μs/div.
Figure 5. Steady State Waveform
IOUT=0A
IL
Figure 6. Steady State Waveform
IOUT=2A
VEN
5V/div.
VEN
VOUT
2V/div.
VOUT 2V/div.
IL
5V/div.
1A/div.
IL
1A/div.
VLX
5V/div.
VLX 5V/div.
400μs/div.
Figure 7. Power On through EN/SS Waveform
IOUT=0A
400μs/div.
Figure 8. Power On through EN/SS Waveform
IOUT=2A
VEN
5V/div.
VOUT
2V/div.
IL
1A/div.
VLX
5V/div.
VEN
5V/div.
VOUT
2V/div.
IL
1A/div.
VLX
5V/div.
10ms/div.
400us/div.
Figure 9. Power Off through EN/SS Waveform
Figure 10. Power Off through EN/SS Waveform
FR9883-Preliminary 0.3-FEB-2016
6
FR9883
85T
Typical Performance Curves (Continued)
VIN=12V, VOUT=3.3V, C1=10μF×2, C2=22μF×2, L1=4.7μH, TA=+25°C, unless otherwise noted.
IOUT=0A
IOUT=2A
VIN 5V/div.
VIN 5V/div.
VOUT 2V/div.
VOUT 2V/div.
IL
IL
1A/div.
VLX
5V/div.
1A/div.
VLX
5V/div.
4ms/div.
4ms/div.
Figure 11. Power On through VIN Waveform
IOUT=0A
Figure 12. Power On through VIN Waveform
IOUT=2A
VIN
5V/div.
VIN
VOUT
2V/div.
VOUT 2V/div.
IL
1A/div.
VLX 5V/div.
200ms/div.
Figure 13. Power Off through VIN Waveform
IOUT=0.1A to 2A
5V/div.
IL
1A/div.
VLX
5V/div.
40ms/div.
Figure 14. Power Off through VIN Waveform
VOUT Short to GND
VOUT
VOUT
200mV/div.
IL
1A/div.
IL
2V/div.
2A/div.
200us/div.
20ms/div.
Figure 15. Load Transient Waveform
Figure 16. Short Circuit Protection
FR9883-Preliminary 0.3-FEB-2016
7
FR9883
85T
Typical Performance Curves (Continued)
VIN=12V, C1=10μF×2, C2=22μF×2, L1=4.7μH, TA=+25°C, unless otherwise noted.
100
100
90
90
80
80
70
70
Efficiency (%)
VOUT=3.3V
Efficiency (%)
VOUT=1.2V
60
50
40
30
60
50
40
30
20
VIN=5V
20
10
VIN=12V
10
0
0.01
0.1
1
VIN=5V
VIN=12V
VIN=18V
0
0.01
10
0.1
Load Current (A)
Figure 17. Efficiency vs. Load Current
10
Figure 18. Efficiency vs. Load Current
IOUT=600mA
VOUT=5V
100
0.82
90
0.815
Feedback Voltage (V)
80
Efficiency (%)
1
Load Current (A)
70
60
50
40
30
VIN=12V
20
0
0.01
0.805
0.8
0.795
0.79
0.785
VIN=18V
10
0.81
0.78
0.1
1
10
Load Current (A)
Figure 19. Efficiency vs. Load Current
-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90
Temperature (°C)
Figure 20. Feedback Voltage vs. Temperature
IOUT=600mA
600
Switching Frequency (kHz)
580
560
540
520
500
480
460
440
420
400
-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90
Temperature (°C)
Figure 21. Switching Frequency vs. Temperature
FR9883-Preliminary 0.3-FEB-2016
8
FR9883
85T
Function Description
The FR9883 is a high efficiency, internal
compensation, and constant frequency current mode
step-down synchronous DC/DC converter. It has
integrated high-side (145mΩ, typ) and low-side
(90mΩ, typ) power switches, and provides 2A load
current. It regulates input voltage from 4.5V to 18V,
and down to an output voltage as low as 0.8V.
Internal Compensation Function
The stability of the feedback circuit is controlled
through internal compensation circuits. This internal
compensation function is optimized for most
applications and this function can reduce external R,
C components.
Enable
The FR9883 EN/SS pin includes enable and
soft-start function. Enable function provides digital
control to turn on/off the converter. When the voltage
of EN/SS exceeds the threshold voltage, soft-start
function will start. If EN/SS voltage is below the
shutdown threshold voltage, the converter will turn
into the shutdown mode. Soft-start function employs
external EN/SS resistor to control soft-start period to
reduce inrush current during start up. Please refer to
P.10 for soft-start setting.
Input Under Voltage Lockout
When the FR9883 is power on, the internal circuits
are held inactive until VIN voltage exceeds the input
UVLO threshold voltage. And the regulator will be
disabled when VIN is below the input UVLO threshold
voltage. The hysteretic of the UVLO comparator is
400mV (typ).
FR9883-Preliminary 0.3-FEB-2016
Over Current Protection
The FR9883 over current protection function is
implemented using cycle-by-cycle current limit
architecture. The inductor current is monitored by
measuring the high-side MOSFET series sense
resistor voltage. When the load current increases,
the inductor current also increases. When the peak
inductor current reaches the current limit threshold,
the output voltage starts to drop. When the over
current condition is removed, the output voltage
returns to the regulated value.
Short Circuit Protection
The FR9883 provides short circuit protection
function to prevent the device damage from short
condition. When the short condition occurs and the
feedback voltage drops lower than 0.4V, the
oscillator frequency will be decreased and hiccup
mode will be triggered to prevent the inductor
current increasing beyond the current limit. Once
the short condition is removed, the frequency will
return to normal.
Over Temperature Protection
The FR9883 incorporates an over temperature
protection circuit to protect itself from overheating.
When the junction temperature exceeds the thermal
shutdown threshold temperature, the regulator will
be shutdown. And the hysteretic of the over
temperature protection is 30°C (typ).
9
FR9883
85T
Application Information
Soft-Start Time Setting
Power on(VIN control)
R3
t1
4
EN/SS
VIN=VEN/SS
5 VIN
VIN=12V
FR9883
VOUT
t2
Power on(EN control)
t1
R3
VEN/SS
4
EN/SS
VIN
5
VIN=12V
VEN/SS
VIN
FR9883
VOUT
t2
Parameters Description
Parameters
Description
Value
VIN
Input operation voltage
12V
VEN/SS
Enable & soft-start operation voltage
5V
t1
VIN rising time
t2
VOUT soft-start time
12ms
soft-start period depends on R3
resistor adjustment
Figure 22. Soft-Start Control Diagram
Soft-start time depends on EN/SS resistor adjustment
R3 (Ω)
VIN control
VEN/SS control
Soft-Start Time (ms)
0
0.5
0.5
100k
1
1
500k
5
5
Table 2. Soft-Start Setting
FR9883-Preliminary 0.3-FEB-2016
10
FR9883
85T
Application Information (Continued)
Output Voltage Setting
The output voltage VOUT is set using a resistive
divider from the output to FB. The FB pin regulated
voltage is 0.8V. Thus the output voltage is:
V
T =0.
V
1
R1
R2
Table 3 lists recommended values of R1 and R2 for
most used output voltage.
Table 3 Recommended Resistance Values
VOUT
R1
R2
5V
30.9kΩ
5.76kΩ
3.3V
30.9kΩ
9.76kΩ
2.5V
4.99kΩ
2.32kΩ
1.8V
4.99kΩ
3.92kΩ
1.2V
4.99kΩ
10kΩ
Place resistors R1 and R2 close to FB pin to prevent
stray pickup.
A low ESR capacitor is required to keep the noise
minimum.
Ceramic capacitors are better, but
tantalum or low ESR electrolytic capacitors may also
suffice.
When using tantalum or electrolytic
capacitors, a 0.1μF ceramic capacitor should be
placed as close to the IC as possible.
Output Capacitor Selection
The output capacitor is used to keep the DC output
voltage and supply the load transient current.
When operating in constant current mode, the
output ripple is determined by four components:
VR PPLE t =VR PPLE
C
t
VR PPLE(E
L)
VR PPLE
t
V
E R
E
t
t
The following figures show the form of the ripple
contributions.
VRIPPLE(ESR)(t)
Input Capacitor Selection
The use of the input capacitor is filtering the input
voltage ripple and the MOSFETS switching spike
voltage.
Because the input current to the
step-down converter is discontinuous, the input
capacitor is required to supply the current to the
converter to keep the DC input voltage. The
capacitor voltage rating should be 1.25 to 1.5 times
greater than the maximum input voltage. The input
capacitor ripple current RMS value is calculated as:
(RM ) =
=
V
V
+
VRIPPLE(C) (t)
(t)
+
VNOISE (t)
(t)
T
1.25
=
VRIPPLE(t)
2A
1
IIN(RMS) (A)
(t)
1
T
Where D is the duty cycle of the power MOSFET.
This function reaches the maximum value at D=0.5
and the equivalent RMS current is equal to IOUT/2.
The
following
diagram
is
the
graphical
representation of above equation.
0.75
+
VRIPPLE(ESL) (t)
1.5A
1A
0.5
(t)
0.25
0
10 20 30 40 50 60 70 80 90
D (%)
FR9883-Preliminary 0.3-FEB-2016
11
FR9883
85T
Application Information (Continued)
VR PPLE(E
R) =
VR PPLE(E
L) =
VR PPLE(C) =
V
F
T
C
1
L
V
V
T
E R
E L
V
L E L
F
V
T
C2
L C
That will lower ripple current and result in lower
output ripple voltage.
The Δ L is inductor
peak-to-peak ripple current:
L=
1
T
V
V
V
F
T
C
1
L
The following diagram is an example to graphical
represent Δ L equation.
1.8
1.6
It is important to use the proper method to eliminate
high frequency noise when measuring the output
ripple. The figure shows how to locate the probe
across the capacitor when measuring output ripple.
Removing the scope probe plastic jacket in order to
expose the ground at the tip of the probe. It gives a
very short connection from the probe ground to the
capacitor and eliminating noise.
Probe Ground
L=3.3μH
ΔIL (A)
1.4
Low ESR capacitors are preferred to use.
Ceramic, tantalum or low ESR electrolytic capacitors
can be used depending on the output ripple
requirement. When using the ceramic capacitors,
the ESL component is usually negligible.
1.2
L=4.7μH
1
0.8
L=6.8μH
0.6
0.4
0.2
5 6 7 8 9 10 11 12 13 14 15 16 17 18
VIN (V)
VOUT=3.3V, FOSC=500kHz
A good compromise value between size and
efficiency is to set the peak-to-peak inductor ripple
current Δ L equal to 30% of the maximum load
current. But setting the peak-to-peak inductor
ripple current Δ L between 20%~50% of the
maximum load current is also acceptable. Then
the inductance can be calculated with the following
equation:
L =0.3
L=
GND
The output inductor is used for storing energy and
filtering output ripple current. But the trade-off
condition often happens between maximum energy
storage and the physical size of the inductor. The
first consideration for selecting the output inductor is
to make sure that the inductance is large enough to
keep the converter in the continuous current mode.
V V
V F
PEA
Load Current
Inductor Selection
T(MA )
V
T
C
T
L
To guarantee sufficient output current, peak inductor
current must be lower than the FR9883 high-side
MOSFET current limit. The peak inductor current
is as below:
Ceramic Capacitor
FR9883-Preliminary 0.3-FEB-2016
T
T
Where FOSC is the switching frequency, L is the
inductance value, VIN is the input voltage, ESR is the
equivalent series resistance value of the output
capacitor, ESL is the equivalent series inductance
value of the output capacitor and the COUT is the
output capacitor.
VOUT
V
V
=
T(MA )
L
2
IPEAK
IOUT(MAX)
∆IL
Time
12
FR9883
85T
Application Information (Continued)
Feedforward Capacitor Selection
PCB Layout Recommendation
Internal compensation function allows users saving
time in design and saving cost by reducing the
number of external components. The use of a
feedforward capacitor C4 in the feedback network is
recommended to improve the transient response or
higher phase margin.
The device’s performance and stability is
dramatically affected by PCB layout.
It is
recommended to follow these general guidelines
shown as below:
1. Place the input capacitors and output capacitors
as close to the device as possible. Trace to
these capacitors should be as short and wide as
possible to minimize parasitic inductance and
resistance.
VOUT
R1
FR9883
C4
FB
R2
2. Place feedback resistors close to the FB pin.
3. Keep the sensitive signal (FB) away from the
switching signal (LX).
4. Multi-layer PCB design is recommended.
1
FCR
1
R1
1
1
R1 R2
Where FCROSS is the cross frequency.
To reduce transient ripple, the feedforward capacitor
value can be increased to push the cross frequency
to higher region.
Although this can improve
transient response, it also decrease phase margin
and cause more ringing. In the other hand, if more
phase margin is desired, the feedforward capacitor
value can be decreased to push the cross frequency
to lower region.
In general, the feedforward
capacitor range is between 10pF to 10nF.
6
5
4
R2
2
C3
R1
C =
R3
C4
For optimizing the feedforward capacitor, knowing
the cross frequency is the first thing. The cross
frequency (or the converter bandwidth) can be
determined by using a network analyzer. When
getting the cross frequency with no feedforward
capacitor identified, the value of feedforward
capacitor C4 can be calculated with the following
equation:
GND
GND
–
–
1
C2
+
VOUT
L1
LX
2
3
C5
C1
+
VIN
Figure 23. Recommended PCB Layout Diagram
External Diode Selection
For 5V input applications, it is recommended to add
an external boost diode. This helps improving the
efficiency. The boost diode can be a low cost one
such as 1N4148.
D1
1N4148
VIN
5V
VIN
BST
FR9883
C3
LX
FR9883-Preliminary 0.3-FEB-2016
13
FR9883
85T
Outline Information
SOT-23-6 Package (Unit: mm)
SYMBOLS
UNIT
DIMENSION IN MILLIMETER
MIN
MAX
A
0.90
1.45
A1
0.00
0.15
A2
0.90
1.30
B
0.30
0.50
D
2.80
3.00
E
2.60
3.00
E1
1.50
1.70
e
0.90
1.00
e1
1.80
2.00
L
0.30
0.60
Note:Followed From JEDEC MO-178-C.
Carrier Dimensions
Life Support Policy
Fitipower’s products are not authorized for use as critical components in life support devices or other medical systems.
FR9883-Preliminary 0.3-FEB-2016
14