GW1N series of FPGA Products
Data Sheet
DS100-1.8E, 07/08/2019
Copyright©2019 Guangdong Gowin Semiconductor Corporation. All Rights Reserved.
No part of this document may be reproduced or transmitted in any form or by any denotes,
electronic, mechanical, photocopying, recording or otherwise, without the prior written
consent of GOWINSEMI.
Disclaimer
GOWINSEMI®, LittleBee®, Arora™, and the GOWINSEMI logos are trademarks of
GOWINSEMI and are registered in China, the U.S. Patent and Trademark Office and other
countries. All other words and logos identified as trademarks or service marks are the
property of their respective holders, as described at www.gowinsemi.com.cn. GOWINSEMI
assumes no liability and provides no warranty (either expressed or implied) and is not
responsible for any damage incurred to your hardware, software, data, or property resulting
from usage of the materials or intellectual property except as outlined in the GOWINSEMI
Terms and Conditions of Sale. All information in this document should be treated as
preliminary. GOWINSEMI may make changes to this document at any time without prior
notice. Anyone relying on this documentation should contact GOWINSEMI for the current
documentation and errata.
Revision History
Date
Version
Description
06/08/2018
1.19E
07/31/2018
1.2E
09/12/2018
1.3E
12/10/2018
1.4E
01/09/2019
1.5E
02/14/2019
1.6E
06/04/2019
1.7E
07/08/2019
1.8E
Initial version published.
PLL Structure diagram updated;
User Flash timing parameters added;
The desxription of systemIO status for blank chips
added.
The UG256 package added.
GW1N-2B/GW1N-4B added;
The BANK0 and BANK2 of GW1N-6 and GW1N-9
support I3C OpenDrain/PushPull conversion;
Change the step delay of IODELAY from 25ps to 30 ps.
Oscillator frequency updated.
Power supply for UV devices updated;
Recommended Operating Conditions for UV devices
updated;
Part naming figures updated.
Operating temperature changed to Junction
temperature;
GW1N-1S added;
Power supply restrictions of BANK0/1/3 in GW1N-6/9
added;
Description of User Flash in GW1N-2/2B/4/4B/6/9
added;
GW1N-6/9 EQ144 added.
GW1N-6/9 MG196, UG169, and EQ176 added;
GW1N-1S CS30 added.
Contents
Contents
Contents ............................................................................................................... i
List of Figures .................................................................................................... iv
List of Tables ...................................................................................................... vi
1 About This Guide ............................................................................................. 1
1.1 Purpose .............................................................................................................................. 1
1.2 Supported Products ............................................................................................................ 1
1.3 Related Documents ............................................................................................................ 1
1.4 Abbreviations and Terminology ........................................................................................... 2
1.5 Support and Feedback ....................................................................................................... 3
2 General Description......................................................................................... 4
2.1 Features .............................................................................................................................. 4
2.2 Product Resources ............................................................................................................. 6
2.3 Package Information ........................................................................................................... 7
3 Architecture...................................................................................................... 8
3.1 Architecture Overview ......................................................................................................... 8
3.2 Configurable Function Unit ............................................................................................... 10
3.2.1 CLU ................................................................................................................................ 10
3.2.2 CRU ............................................................................................................................... 12
3.3 IOB .................................................................................................................................... 12
3.3.1 I/O Buffer ....................................................................................................................... 13
3.3.2 True LVDS Design ......................................................................................................... 17
3.3.3 I/O Logic ........................................................................................................................ 18
3.3.4 I/O Logic Modes............................................................................................................. 20
3.4 Block SRAM (B-SRAM) .................................................................................................... 25
3.4.1 Introduction .................................................................................................................... 25
3.4.2 Configuration Mode ....................................................................................................... 26
3.4.3 Mixed Data Bus Width Configuration............................................................................. 27
3.4.4 Byte-enable .................................................................................................................... 27
3.4.5 Parity Bit ........................................................................................................................ 28
3.4.6 Synchronous Operation ................................................................................................. 28
3.4.7 Power up Conditions ..................................................................................................... 28
DS100-1.8E
i
Contents
3.4.8 Operation Modes ........................................................................................................... 28
3.4.9 B-SRAM Operation Modes ............................................................................................ 32
3.4.10 Clock Operations ......................................................................................................... 34
3.5 User Flash (GW1N-1 and GW1N-1S) .............................................................................. 35
3.5.1 Introduction .................................................................................................................... 35
3.5.2 Port Signal ..................................................................................................................... 35
3.5.3 Data Output Bit Selection .............................................................................................. 37
3.5.4 Operation Mode ............................................................................................................. 37
3.5.5 Read Operation ............................................................................................................. 37
3.5.6 Write Operation .............................................................................................................. 38
3.6 User Flash (GW1N-2/2B/4/4B/6/9) ................................................................................... 38
3.6.1 Introduction .................................................................................................................... 38
3.6.2 Port Signal ..................................................................................................................... 39
3.6.3 Operation Mode ............................................................................................................. 40
3.7 DSP................................................................................................................................... 40
3.7.1 Introduction .................................................................................................................... 40
3.7.2 DSP Operations ............................................................................................................. 44
3.8 Clock ................................................................................................................................. 44
3.8.1 Global Clock .................................................................................................................. 45
3.8.2 PLL ................................................................................................................................ 47
3.8.3 HCLK ............................................................................................................................. 50
3.8.4 DLL ................................................................................................................................ 51
3.9 Long Wire (LW) ................................................................................................................. 52
3.10 Global Set/Reset (GSR) ................................................................................................. 52
3.11 Programming Configuration ............................................................................................ 52
3.11.1 SRAM Configuration .................................................................................................... 52
3.11.2 Flash Configuration ...................................................................................................... 52
3.12 On Chip Oscillator........................................................................................................... 53
4 AC/DC Characteristic..................................................................................... 55
4.1 Operating Conditions ........................................................................................................ 55
4.2 ESD................................................................................................................................... 56
4.3 DC Characteristic .............................................................................................................. 59
4.4 Switching Characteristic ................................................................................................... 62
4.4.1 Internal Switching Characteristics ................................................................................. 62
4.4.2 External Switching Characteristics ................................................................................ 63
4.5 User Flash Characteristics ............................................................................................... 64
1
4.5.1 DC Characteristics ....................................................................................................... 64
4.5.2 Timing Parameters
1,5,6
................................................................................................... 65
4.5.3 Operation Timing Diagrams (GW1N-1/ GW1N-1S) ....................................................... 67
DS100-1.8E
ii
Contents
4.5.4 Operation Timing Diagrams (GW1N-2/2B/4/4B/6/9) ..................................................... 68
4.6 Configuration Interface Timing Specification .................................................................... 69
4.6.1 JTAG Port Timing Specifications ................................................................................... 69
4.6.2 AUTO BOOT Port Timing Specifications ....................................................................... 70
4.6.3 SSPI Port Timing Specifications .................................................................................... 71
4.6.4 MSPI Port Timing Specifications ................................................................................... 72
4.6.5 DUAL BOOT .................................................................................................................. 73
4.6.6 CPU ............................................................................................................................... 74
4.6.7 SERIAL .......................................................................................................................... 74
5 Ordering Information ..................................................................................... 75
5.1 Part Name......................................................................................................................... 75
5.2 Package Mark ................................................................................................................... 77
DS100-1.8E
iii
List of Figures
List of Figures
Figure 3-1 Architecture Overview of GW1N series of FPGA Products .............................................. 8
Figure 3-2 CFU View.......................................................................................................................... 10
Figure 3-3 Register in CLS ................................................................................................................ 11
Figure 3-4 IOB Structure View ........................................................................................................... 12
Figure 3-5 I/O Bank Distribution View of GW1N-1/2/4/2B/4B ............................................................ 13
Figure 3-6 I/O Bank Distribution View of GW1N-6/9 ...................................................................... 13
Figure 3-7 I/O Bank Distribution View of GW1N-1S .......................................................................... 14
Figure 3-8 True LVDS Design ............................................................................................................ 17
Figure 3-9 I/O Logic Output ............................................................................................................... 18
Figure 3-10 I/O Logic Input ................................................................................................................ 18
Figure 3-11 IODELAY......................................................................................................................... 19
Figure 3-12 Register Structure in I/O Logic ....................................................................................... 19
Figure 3-13 IEM Structure .................................................................................................................. 19
Figure 3-14 I/O Logic in Basic Mode.................................................................................................. 20
Figure 3-15 I/O Logic in SDR Mode ................................................................................................... 21
Figure 3-16 I/O Logic in DDR Input Mode ......................................................................................... 21
Figure 3-17 I/O Logic in DDR Output Mode ....................................................................................... 22
Figure 3-18 I/O Logic in IDES10 Mode .............................................................................................. 22
Figure 3-19 I/O Logic in OSER4 Mode .............................................................................................. 22
Figure 3-20 I/O Logic in IVideo Mode ................................................................................................ 22
Figure 3-21 I/O Logic in OVideo Mode .............................................................................................. 23
Figure 3-22 I/O Logic in IDES8 Mode ................................................................................................ 23
Figure 3-23 I/O Logic in OSER8 Mode .............................................................................................. 23
Figure 3-24 I/O Logic in IDES10 Mode .............................................................................................. 23
Figure 3-25 I/O Logic in OSER10 Mode ............................................................................................ 24
Figure 3-26 I/O Logic in IDES16 Mode .............................................................................................. 24
Figure 3-27 I/O Logic in OSER16 Mode ............................................................................................ 24
Figure 3-28 Single Port Block Memory .............................................................................................. 28
Figure 3-29 Dual Port Block Memory ................................................................................................. 29
Figure 3-30 Semi Dual Port Block Memory 1 .................................................................................... 31
Figure 3-31 ROM Block Memory ....................................................................................................... 32
Figure 3-32 Pipeline Mode in Single Port, Dual Port and Semi Dual Port ......................................... 33
DS100-1.8E
iv
List of Figures
Figure 3-33 Independent Clock Mode ............................................................................................... 34
Figure 3-34 Read/Write Clock Mode .................................................................................................. 35
Figure 3-35 Single Port Clock Mode .................................................................................................. 35
Figure 3-36 GW1N-1/GW1N-1S User Flash Ports ............................................................................ 36
Figure 3-37 GW1N-2/4/2B/4B/6/9 Flash Port Signal ......................................................................... 39
Figure 3-38 DSP Macro ..................................................................................................................... 42
Figure 3-39 GCLK Quadrant Distribution ........................................................................................... 45
Figure 3-40 DQCE Concept ............................................................................................................... 46
Figure 3-41 DCS Concept .................................................................................................................. 46
Figure 3-42 DCS Rising Edge............................................................................................................ 46
Figure 3-43 DCS Falling Edge ........................................................................................................... 47
Figure 3-44 PLL Structure .................................................................................................................. 47
Figure 3-45 GW1N-1 HCLK Distribution ............................................................................................ 50
Figure 3-46 GW1N-2/2B/4 /4B HCLK Distribution ............................................................................. 50
Figure 3-47 GW1N-6/9 HCLK Distribution ......................................................................................... 51
Figure 3-48 GW1N-1S HCLK Distribution ......................................................................................... 51
Figure 3-49 GW1N DLL Function ...................................................................................................... 51
Figure 4-1 Read Mode ....................................................................................................................... 67
Figure 4-2 Write Page Latches Mode ................................................................................................ 68
Figure 4-3 Clear Page Latches Mode ................................................................................................ 68
Figure 4-4 High Level Cycle ............................................................................................................... 68
Figure 4-5 User Flash Read Operation .............................................................................................. 68
Figure 4-6 User Flash Program Operation......................................................................................... 69
Figure 4-7 User Flash Erase Operation ............................................................................................. 69
Figure 4-8 JTAG Timing ..................................................................................................................... 70
Figure 4-9 Power Recycle Timing ...................................................................................................... 71
Figure 4-10 RECONFIG_N Trigger Timing ........................................................................................ 71
Figure 4-11 SSPI Timing Diagram ..................................................................................................... 72
Figure 4-12 MSPI Timing Diagram..................................................................................................... 73
Figure 5-1 Part Naming–ES ............................................................................................................... 75
Figure 5-2 Part Naming–Production .................................................................................................. 76
Figure 5-3 Package Mark ................................................................................................................... 77
DS100-1.8E
v
List of Tables
List of Tables
Table 1-1 Abbreviations and Terminologies ....................................................................................... 2
Table 2-1 Product Resources............................................................................................................. 6
Table2-2 Package Information and Max. I/O ..................................................................................... 7
Table3-1 Register Description in CLS ................................................................................................ 11
Table 3-2 Output I/O Standards and Configuration Options .............................................................. 14
Table 3-3 Input Standards and Configuration Options ....................................................................... 16
Table 3-4 B-SRAM Signals ................................................................................................................ 25
Table 3-5 Memory Size Configuration ................................................................................................ 26
Table 3-6 Dual Port Mixed Read/Write Data Width Configuration ..................................................... 27
Table 3-7Semi Dual Port Mixed Read/Write Data Width Configuration ............................................. 27
Table 3-8 Single Port Block Memory Configuration ........................................................................... 29
Table 3-9 Semi Dual Port Memory Configuration .............................................................................. 29
Table 3-10Semi Dual Port Memory Configuration ............................................................................. 31
Table 3-11 Block ROM Configuration ................................................................................................. 32
Table 3-12 Clock Operations in Different B-SRAM Modes ................................................................ 34
Table 3-13 Flash Module Signal Description ..................................................................................... 36
Table 3-14 Data Output Bit Selection ................................................................................................. 37
Table 3-15s Data Input Bit Selection .................................................................................................. 37
Table 3-16 Operation Modes Selection .............................................................................................. 37
Table 3-17 Flash Module Signal Description ..................................................................................... 39
Table 3-18 Truth Table in User Mode ................................................................................................. 40
Table 3-19 DSP Ports Description ..................................................................................................... 42
Table 3-20 Internal Registers Description .......................................................................................... 43
Table 3-21 PLL Ports Definition.......................................................................................................... 48
Table 3-22 GW1N-2/2B/4/4B Oscillator Output Frequency Options .................................................. 53
Table 3-23 GW1N-1/1S/6/9 Oscillator Output Frequency Options .................................................... 53
Table 4-1 Absolute Max. Ratings ....................................................................................................... 55
Table 4-2 Recommended Operating Conditions ................................................................................ 55
Table 4-3 Hot Socket Specifications .................................................................................................. 56
Table 4-4 GW1N ESD - HBM ............................................................................................................. 56
Table 4-5 GW1N ESD - CDM............................................................................................................. 56
Table 4-6 DC Electrical Characteristics over Recommended Operating Conditions ......................... 57
DS100-1.8E
vi
List of Tables
Table 4-7 Static Supply Current ......................................................................................................... 58
Table 4-8 I/O Operating Conditions Recommended .......................................................................... 59
Table 4-9 IOB Single‐Ended DC Electrical Characteristic ............................................................... 60
Table 4-10 IOB Differential Electrical Characteristics ........................................................................ 61
Table 4-11 CFU Block Internal Timing Parameters ............................................................................ 62
Table 4-12 B-SRAM Internal Timing Parameters ............................................................................... 62
Table 4-13 DSP Internal Timing Parameters ..................................................................................... 62
Table 4-14 GearboxInternal Timing Parameters ................................................................................ 62
Table 4-15 External Switching Characteristics ................................................................................... 63
Table 4-16 On chip Oscillator Output Frequency ............................................................................... 63
Table4-17 PLL Parameters ................................................................................................................ 63
Table 4-18 GW1N-1/ GW1N-1S User Flash DC Characteristic ......................................................... 64
Table 4-19 GW1N-2/2B/4/4B/6/9 User Flash DC Characteristic ....................................................... 64
Table 4-20 GW1N-1/GW1N-1S User Flash Timing Parameters ........................................................ 65
Table 4-21 GW1N-2/2B/4/4B/6/9 User Flash Timing Parameters ..................................................... 66
Table 4-22 JTAG Timing Parameters ................................................................................................. 70
Table 4-23 Timing Parameters for Power-on and RECONFIG_N Trigger ......................................... 71
Table 4-24 SSPI Timing parameters .................................................................................................. 72
Table 4-25 MSPI Timing Parameters ................................................................................................. 73
DS100-1.8E
vii
1About This Guide
1.1Purpose
1
About This Guide
1.1 Purpose
This data sheet describes the features, product resources and
structure, AC/DC characteristics, timing specifications of the configuration
interface, and the ordering information of the GW1N series of FPGA
products. It is designed to help you to understand the GW1N series of
FPGA products quickly and select and use devices appropriately.
1.2 Supported Products
The information in this guide applies to the following products:
GW1N series of FPGA products: GW1N-1, GW1N-1S, GW1N-2,
GW1N-2B, GW1N-4, GW1N-4B, GW1N-6, and GW1N-9.
1.3 Related Documents
The latest user guides are available on GOWINSEMI Website. You
can find the related documents at www.gowinsemi.com:
1.
2.
3.
4.
5.
6.
7.
DS100-1.8E
GW1N series of FPGA Products Data Sheet
Gowin FPGA Products Programming and Configuration User Guide
GW1N series of FPGA Products Package and Pinout
GW1N-1 Pinout
GW1N-1S Pinout
GW1N-2&2B&4&4B Pinout
GW1N-6&9 Pinout
1(77)
1About This Guide
1.4Abbreviations and Terminology
1.4 Abbreviations and Terminology
The abbreviations and terminologies used in this manual are set out in
Table 1-1 below.
Table 1-1 Abbreviations and Terminologies
DS100-1.8E
Abbreviations and Terminology
Name
FPGA
Field Programmable Gate Array
CFU
Configurable Function Unit
CLS
Configurable Logic Slice
CRU
Configurable Routing Unit
LUT4
4-input Look-up Tables
LUT5
5-input Look-up Tables
LUT6
6-input Look-up Tables
LUT7
7-input Look-up Tables
LUT8
8-input Look-up Tables
REG
Register
ALU
Arithmetic Logic Unit
IOB
Input/Output Block
S-SRAM
Shadow SRAM
B-SRAM
Block SRAM
SP
Single Port
SDP
Semi Dual Port
DP
Dual Port
DSP
Digital Signal Processing
DQCE
Dynamic Quadrant Clock Enable
DCS
Dynamic Clock Selector
PLL
Phase-locked Loop
DLL
Delay-locked Loop
CS30
WLCSP30
CM64
WLCSP64
CS72
WLCSP72
QN32
QFN32
QN48
QFN48
LQ100
LQFP100
2(77)
1About This Guide
1.5Support and Feedback
Abbreviations and Terminology
Name
LQ144
LQFP144
EQ144
ELQFP144
LQ176
LQFP176
EQ176
ELQFP176
MG160
MBGA160
MG196
MBGA196
PG204
PBGA204
PG256
PBGA256
PG256M
PBGA256M
UG332
UBGA332
UG169
UBGA169
TDM
Time Division Multiplexing
1.5 Support and Feedback
Gowin Semiconductor provides customers with comprehensive
technical support. If you have any questions, comments, or suggestions,
please feel free to contact us directly using the information provided below.
Website: www.gowinsemi.com
E-mail: support@gowinsemi.com
+Tel: +86 755 8262 0391
DS100-1.8E
3(77)
2General Description
2.1Features
2
General Description
The GW1N series of FPGA products are the first generation products
in the LittleBee® family. They offer abundant logic resources, multiple I/O
standards, embedded BSRAM, DSP, PLL/DLL, and built-in Flash. They are
non-volatile FPGA products with low power, instant-start, low-cost,
high-security, small size, various packages, and flexible usage.
GOWINSEMI provides a new generation of FPGA hardware
development environment through market-oriented independent research
and development that supports the GW1N series of FPGA products and
applies to FPGA synthesizing, layout, place and routing, data bitstream
generation and download, etc.
2.1 Features
User Flash (GW1N-1,GW1N-1S)
- 100,000 write cycles
-
Greater than10 years data retention at +85 ℃
-
Selectable 8/16/32 bits data-in and data-out
- Page size: 256 bytes
- 3 μA standby current
- Page write time: 8.2 ms
User Flash (GW1N-2/2B/4/4B/6/9)
- Up to 608Kbits
- 10,000 write cycles
Lower power consumption
- 55 nm embedded flash technology
- LV: supports 1.2 V core voltage
- UV: supports same power supply for VCC/ VCCO/ VCCx
Note!
GW1N-1 and GW1N-1S devices do not support UV Version.The other devices
support both LV and UV versions.
DS100-1.8E
Clock dynamically turns on and off
Multiple I/O Standards
4(77)
2General Description
2.1Features
-
DS100-1.8E
LVCMOS33/25/18/15/12; LVTTL33, SSTL33/25/18 I,
SSTL33/25/18 II, SSTL15; HSTL18 I, HSTL18 II, HSTL15 I; PCI,
LVDS25, RSDS, LVDS25E, BLVDSE
MLVDSE, LVPECLE, RSDSE
- Input hysteresis option
- Supports 4mA,8mA,16mA,24mA,etc. drive options
- Slew rate option
- Output drive strength option
- Individual bus keeper, weak pull-up, weak pull-down, and open
drain option
- Hot socket
- I/Os in the top layer of GW1N-1S and GW1N-6/9 devices support
MIPI input
- I/Os in the bottom layer of GW1N-6/9 devices support MIPI output
- I/Os in the Top layer and Bottom layer of GW1N-6/9 devices
support I3C OpenDrain/PushPull conversion
High performance DSP
- High performance digital signal processing ability
- Supports 9 x 9,18 x 18,36 x 36 bits multiplier and 54 bits
accumulator;
- Multipliers cascading
- Registers pipeline and bypass
- Adaptive filtering through signal feedback
- Supports barrel shifter
Abundant slices
- Four input LUT (LUT4)
- Double-edge flip-flops
- Supports shift register and distributed register
Block SRAM with multiple modes
- Supports dual port, single port, and semi-dual port
- Supports bytes write enable
Flexible PLLs+DLLs
- Frequency adjustment (multiply and division) and phase
adjustment
- Supports global clock
Built-in flash programming
- Instant-on
- Supports security bit operation
- Supports AUTO BOOT and DUAL BOOT
Configuration
- JTAG configuration
5(77)
2General Description
2.2Product Resources
-
The GW1N-2B and GW1N-4B devices support JTAG transparent
transmission
Offers up to six GowinCONFIG configuration modes: AUTOBOOT,
SSPI, MSPI, CPU, SERIAL, DUAL BOOT
2.2 Product Resources
Table 2-1 Product Resources
Device
GW1N-1
GW1N-2/
GW1N-2B
GW1N-4/
LUT4
1,152
2,304
Flip-Flop (FF)
864
GW1N-6
GW1N-9
GW1N-1S
4,608
6,912
8,640
1,152
1,728
3,456
5,184
6,480
864
0
0
0
13,824
17,280
0
72 K
180 K
180 K
468 K
468 K
72K
4
10
10
26
26
4
User Flash (bits)
96 K
256 K
256 K
608 K
608 K
96K
18 x 18 Multiplier
0
16
16
20
20
0
PLLs+DLLs
1+0
2+2
2+2
2+4
2+4
1+0
Total number of I/O banks
4
4
4
4
4
3
Max. user I/O1
119
207
207
273
273
25
Core Voltage (LV)
1.2 V
1.2 V
1.2 V
1.2 V
1.2 V
1.2V
Core Voltage (UV)
–
1.8V/2.5V/3.3V
Shadow SRAM
S-SRAM(bits)
Block SRAM
B-SRAM(bits)
B-SRAM quantity
B-SRAM
GW1N-4B
–
Note!
The JTAGSEL_N and JTAG pins cannot be used as I/O simultaneously. The Max. I/O
noted in this table is when the loaded four JTAG pins (TCK, TDI, TDO, and TMS) are
used as I/O.
DS100-1.8E
6(77)
2General Description
2.3Package Information
2.3 Package Information
Table2-2 Package Information and Max. I/O
Pitch
Size
GW1N-1S
GW1N-1
GW1N-2/
GW1N-2B
GW1N-4/
(mm)
(mm)
CS30
0.4
2.3 x 2.4
23
24
-
QN32
0.5
5x5
-
26
FN32
0.4
4x4
25
QN48
0.4
6x6
-
CM64
0.5
4.1 x 4.1
-
CS72
0.4
3.6 x 3.3
-
-
57(19)
QN88
0.4
10 x 10
-
-
LQ100
0.5
16 x 16
-
LQ144
0.5
22 x 22
EQ144
0.5
MG160
Package
GW1N-6
GW1N-9
-
-
-
24(3)
24(3)
-
-
-
-
-
-
-
41
40(9)
40(9)
40(12)
40(12)
55(16)
55(16)
57(19)
-
-
70(11)
70(11)
70(19)
70(19)
79
79(13)
79(13)
79(20)
79(20)
-
116
119(22)
119(22)
120(28) 120(28)
22 x 22
-
-
-
-
120(28) 120(28)
0.5
8x8
-
-
131(25)
131(25) 131(38) 131(38)
UG169
0.8
11 x 11
-
-
-
-
129(38) 129(38)
LQ176
0.4
22 x 22
-
-
-
-
147(37) 147(37)
EQ176
0.4
22 x 22
-
-
-
-
147(37) 147(37)
MG196
0.5
8x8
-
-
-
-
113(35) 113(35)
PG256
1.0
17 x 17
-
-
207(32)
207(32) 207(36) 207(36)
PG256M
1.0
17 x 17
-
-
207(32)
207(32) -
UG256
0.8
14 x 14
-
-
-
-
207(36) 207(36)
UG332
0.8
17 x 17
-
-
-
-
273(43) 273(43)
GW1N-4B
-
Note!
DS100-1.8E
The JTAGSEL_N and JTAG pins cannot be used as I/O simultaneously. The Max.
I/O noted in this table refers to when the loaded four JTAG pins (TCK, TDI, TDO,
and TMS) are used as I/O. See GW1N series of FPGA Products Package and Pinout for
further details.
[1] The package types in this data sheet are written with abbreviations. See 5.1Part
Name.
“
” denotes that the various device pins are compatible when the package
types are the same.
The GW1N-2/GW1N-2B and GW1N-4/GW1N-4B pins are fully compatible.
GW1N-6 and GW1N-9 pins are fully compatible.
7(77)
3Architecture
3.1Architecture Overview
3
Architecture
3.1 Architecture Overview
Figure 3-1 Architecture Overview of GW1N series of FPGA Products
PLL
IOB
Top IO
CFU
CFU
CFU
CFU
CFU
PLL
IOB
Block SRAM
Right IO
Left IO
User Flash
CFU
CFU
Block SRAM
CFU
OSC
CFU
DSP
CFU
DLL
IOB
User Flash
IOB
CFU
CFU
CFU
CFU
OSC
CFU
CFU
CFU
CFU
CFU
IOB
IOB
IOB
Bottom IO
DSP
CFU
CFU
CFU
IOB
DLL
IOB
As shown above, the core of GW1N series of FPGA products is CFU.
GW1N series of FPGA products also provide B-SRAMs, PLLs, DLLs, User
Flash, and on-chip oscillator, and supports Instant-on. See Table 2-1 for
more detailed information.
Note!
GW1N series of FPGA products include the devices of GW1N-1, GW1N-1S, GW1N-2,
GW1N-2B, GW1N-4, GW1N-4B, and GW1N-6/9. In these devices, CFU, B-SRAM, GCLK,
and on chip crystals are the same, but the other resources, such as DSP, Flash, I/Os,
PLL/DLL, high-speed clock, etc, are slightly different.
Configurable Function Unit (CFU) is the base cell for the array of
GW1N series FPGA Products. Devices with different capacities have
different numbers of rows and columns. CFU can be configured as LUT4
mode, ALU mode, and memory mode. Memory mode is supported in
GW1N-6 and GW1N -9. For more detailed information, see 3.2
DS100-1.8E
8(77)
3Architecture
3.1Architecture Overview
Configurable Function Unit.
The I/O resources in the GW1N series of FPGA products are arranged
around the periphery of the devices in groups referred to as banks1. Up to
four Banks are supported, including Bank0, Bank1, Bank2, and Bank3. The
I/O resources support multiple level standards, and support basic mode,
SRD mode, and generic DDR mode. For more detailed information, see 3.3
IOB.
Note!
[1]GW1N-1S includes three Banks, which are Bank0, Bank1, and Bank2 respectively. For
further detailed information, please refer to the I/O BANK distribution view in 3.3.1I/O
Buffer.
The B-SRAM is embedded as a row in the GW1N series of FPGA
products. In the FPGA array, each B-SRAM occupies three columns of
CFU. Each B-SRAM has 18,432 bits (18 Kbits) and supports multiple
configuration modes and operation modes. For more detailed information,
see 3.4 Block SRAM (B-SRAM).
The User Flash is embedded in the GW1N series of FPGA products,
without loss of data, even if powered off. For more detailed information, see
3.5 User Flash (GW1N-1 and GW1N-1S) and 3.6 User Flash
(GW1N-2/2B/4/4B/6/9).
GW1N-2/GW1N-2B, GW1N-4/GW1N-4B, GW1N-6, and GW1N-9
support DSP. DSP blocks are embedded as row in the FPGA array. Each
DSP occupies nine CFU columns. Each DSP block contains two Macros,
and each Macro contains two pre-adders, two multipliers with 18 by 18
inputs, and a three input ALU54. For more detailed information, see 3.7
DSP.
Note!
GW1N-1 and GW1N-1S do not support DSP currently.
GW1N-1 and GW1N-1S provide one PLL. GW1N-2/GW1N-2B,
GW1N-4/GW1N-4B, GW1N-6, and GW1N-9 provide PLLs and DLLs. PLL
blocks provide the ability to synthesize clock frequencies. Frequency
adjustment (multiply and division), phase adjustment, and duty cycle can
be adjusted using the configuration of parameters. There is an internal
programmable on-chip oscillator in each GW1N series of FPGA product.
The on-chip oscillator supports the clock frequencies ranging from 2.5 MHz
to 125 MHz, providing the clock resource for the MSPI mode. It also
provides a clock resource for user designs with the clock precision
reaching ±5%. For more detailed information, see 3.8 Clock, 3.12 On Chip
Oscillator.
FPGA provides abundant CRUs, connecting all the resources in the
FPGA. For example, routing resources distributed in CFU and IOB connect
resources in CFU and IOB. Routing resources can automatically be
generated by Gowin software. In addition, the GW1N series of FPGA
Products also provide abundant GCLKs, long wires (LW), global set/reset
(GSR), and programming options, etc. For more detailed information,
see3.8 Clock, 3.9 Long Wire (LW), 3.10 Global Set/Reset (GSR).
DS100-1.8E
9(77)
3Architecture
3.2Configurable Function Unit
3.2 Configurable Function Unit
The configurable function unit (CFU) is the base cell for the array of
the GW1N series of FPGA Products. Each CFU consists of a configurable
logic unit (CLU) and its routing resource configurable routing unit (CRU). In
each CLU, there are four configurable logic slices (CLS). Each CLS
contains look-up tables (LUT) and registers, as shown in Figure 3-2 below.
Figure 3-2 CFU View
Carry to Right CLU
CFU
CLU
LUT
CLS3
LUT
LUT
REG
LUT
REG
LUT
REG
LUT
REG
LUT
REG
LUT
REG
CLS2
CRU
CLS1
CLS0
Carry from left CLU
3.2.1 CLU
The CLU supports three operation modes: basic logic mode, ALU
mode, and memory mode.
Basic Logic Mode
Each LUT can be configured as one four input LUT. A higher input
number of LUT can be formed by combining LUT4 together.
-
Each CLS can form one five input LUT5.
- Two CLSs can form one six input LUT6.
- Four CLSs can form one seven input LUT7.
- Eight CLSs (two CLUs) can form one eight input LUT8.
ALU Mode
When combined with carry chain logic, the LUT can be configured as
DS100-1.8E
10(77)
3Architecture
3.2Configurable Function Unit
the ALU mode to implement the following functions.
-
Adder and subtractor
- Up/down counter
- Comparator, including greater-than, less-than, and not-equal-to
- MULT
Memory mode
GW1N-6 and GW1N-9 support memory mode. In this mode, a 16 x 4
S-SRAM or ROM can be constructed by using CLSs.
This S-SRAM can be initialized during the device configuration stage.
The initialization data can be generated in the bit stream file from Gowin
Yunyuan software.
Register
Each configurable logic slice (CLS0~CLS2) has two registers (REG),
as shown in Figure 3-3 below.
Figure 3-3 Register in CLS
D
CE
CLK
Q
SR
GSR
Table3-1 Register Description in CLS
Signal
I/O
Description
D
I
Data input 1
CE
I
CLK enable, can be high or low effective 2
CLK
I
Clock, can be rising edge or falling edge trigging 2
Set/Reset, can be configured as 2:
SR
I
Synchronized reset
Synchronized set
Asynchronous reset
Asynchronous set
Non
Global Set/Reset, can be configured as4:
GSR3,4
Q
I
O
Asynchronous reset
Asynchronous set
Non
Register
Note!
DS100-1.8E
[1] The source of the signal D can be the output of a LUT, or the input of the CRU; as
such, the register can be used alone when LUTs are in use.
11(77)
3Architecture
3.3IOB
[2] CE/CLK/SR in CFU is independent.
[3] In the GW1N series of FPGA products,GSR has its own dedicated network.
[4] When both SR and GSR are effective, GSR has higher priority.
3.2.2 CRU
The main functions of the CRU are as follows:
Input selection: Select input signals for the CFU.
Configurable routing: Connect the input and output of the CFUs,
including inside the CFU, CFU to CFU, and CFU to other functional
blocks in FPGA.
3.3 IOB
The IOB in the GW1N series of FPGA products includes I/O buffer, I/O
logic, and its routing unit. As shown in Figure 3-4, each IOB connects to
two pins (Marked A and B). They can be used as a differential pair or as
two single-end input/output.
Figure 3-4 IOB Structure View
Differential Pair
Differential Pair
“True”
“Comp”
“True”
“Comp”
PAD A
PAD B
PAD A
PAD B
Buffer Pair A & B
DI
DO
TO
DI
IO Logic
A
IO Logic
B
CLK
Routing
Output
Routing
Input
CLK
Routing
Output
Routing
Input
CLK
Routing
Output
Routing
Input
CLK
Routing
Output
Routing
Input
Routing
DO
IO Logic
B
TO
DI
DO
DI
TO
DO
TO
IO Logic
A
Buffer Pair A & B
Routing
IOB Features:
DS100-1.8E
VCCO supplied with each bank
LVCMOS, PCI, LVTTL, LVDS, SSTL, and HSTL (true LVDS not
supported in GW1N-1 and GW1N-1S)
Input hysteresis option
Output drive strength option
Slew rate option
Individual bus keeper, weak pull-up, weak pull-down, and open drain
option
12(77)
3Architecture
3.3IOB
Hot socket
IO logic supports basic mode, SRD mode, and generic DDR mode
I/Os in the top layer of GW1N-1S and GW1N-6/9 devices support MIPI
input
I/Os in the bottom layer of GW1N-6/9 devices support MIPI output
I/Os in the Top layer and Bottom layer of GW1N-6/9 devices support
I3C OpenDrain/PushPull conversion
3.3.1 I/O Buffer
There are four IO Banks in the GW1N series of FPGA products, as
shown in Figure 3-5. Each Bank supports single power supply and has
independent I/O power supply VCCO. GW1N-1S includes three IO Banks,
as shown in Figure 3-6. Each Bank supports single power supply and has
independent I/O power supply VCCO.To support SSTL, HSTL, etc., each
bank also provides one independent voltage source (VREF) as referenced
voltage. The user can choose from the internal reference voltage of the
bank (0.5 x VCCO) or the external reference voltage using any IO from the
bank.
Figure 3-5 I/O Bank Distribution View of GW1N-1/2/4/2B/4B
I/O Bank0
I/O Bank1
I/O Bank3
GW1N
I/O Bank2
Figure 3-6 I/O Bank Distribution View of GW1N-6/9
I/O Bank3
I/O Bank0
I/O Bank1
Top
I/O Bank1
Right
Left
I/O Bank3
GW1N-6/9
Bottom
I/O Bank2
DS100-1.8E
13(77)
3Architecture
3.3IOB
Figure 3-7 I/O Bank Distribution View of GW1N-1S
I/O Bank0
I/O Bank1
Top
I/O Bank2
Right
GW1N-1S
The GW1N series of FPGA products support LV and UV.
LV devices support 1.2 V VCC to meet users’ low power needs.
VCCO can be set as 1.2 V, 1.5 V, 1.8 V, 2.5 V, or 3.3 V according to
requirements1.
VCCX supports 2.5 V or 3.3 V power supply.
UV devices support 1.8V, 2.5 V, and 3.3 V, and linear voltage regulator
is integrated to facilitate single power supply.
For the devices of GW1N-1S, GW1N-6, and GW1N-9, I/Os of the top
layer support MIPI input. For the devices of GW1N-6 and GW1N-9, I/Os of
the bottom layer support MIPI output. I/Os of the top and bottom layer in
GW1N-6/9 support MIPI I3C OpenDrain/PushPull conversion.
Note!
By default, the systemIO is weak pull-up for blank chips;
For the recommended operating conditions of different devices, please refer to
4.1Operating Conditions;
When the I/O in Top layer of GW1N-6/9 is used as MIPI input, the VCCOx of the
used I/O needs to be supplied with 1.2V power supply, where x can be 0, 1, and 3.
When the I/O in Bottom layer of GW1N-6/9 is used as MIPI output, VCCO2 needs
to be supplied with 1.2V power supply.
The I/O power supply restrictions of BANK0, BANK1, BANK3 in GW1N-6/9 are as
follows:
-
When VCCO0 is greater than or equal to 1.8V 时,VCCO1 and VCCO3 support 1.2V,
1.5V, 1.8V, 2.5V, and 3.3V.
-
When VCCO0 is 1.5V 时,VCCO1 and VCCO3 support 1.2V, 1.5V, 1.8V, and 2.5V.
For the VCCO requirements of different I/O standards, see Table 3-2.
Table 3-2 Output I/O Standards and Configuration Options
DS100-1.8E
I/O output
standard
Single/Differ
Bank VCCO (V)
Driver Strength (mA)
LVTTL33
Single end
3.3
4,8,12,16,24
LVCMOS33
Single end
3.3
4,8,12,16,24
14(77)
3Architecture
DS100-1.8E
3.3IOB
I/O output
standard
Single/Differ
Bank VCCO (V)
Driver Strength (mA)
LVCMOS25
Single end
2.5
4,8,12,16
LVCMOS18
Single end
1.8
4,8,12
LVCMOS15
Single end
1.5
4,8
LVCMOS12
Single end
1.2
4,8
SSTL25_I
Single end
2.5
8
SSTL25_II
Single end
2.5
8
SSTL33_I
Single end
3.3
8
SSTL33_II
Single end
3.3
8
SSTL18_I
Single end
1.8
8
SSTL18_II
Single end
1.8
8
SSTL15
Single end
1.5
8
HSTL18_I
Single end
1.8
8
HSTL18_II
Single end
1.8
8
HSTL15_I
Single end
1.5
8
PCI33
Single end
3.3
N/A
LVPECL33E
Differential
3.3
16
MVLDS25E
Differential
2.5
16
BLVDS25E
Differential
2.5
16
RSDS25E
Differential
2.5
8
LVDS25E
Differential
2.5
8
LVDS25
Differential
2.5/3.3
3.5/2.5/2/1.25
RSDS
Differential
2.5/3.3
2
MINILVDS
Differential
2.5/3.3
2
PPLVDS
Differential
2.5/3.3
3.5
SSTL15D
Differential
1.5
8
SSTL25D_I
Differential
2.5
8
SSTL25D_II
Differential
2.5
8
SSTL33D_I
Differential
3.3
8
SSTL33D_II
Differential
3.3
8
SSTL18D_I
Differential
1.8
8
SSTL18D_II
Differential
1.8
8
HSTL18D_I
Differential
1.8
8
15(77)
3Architecture
3.3IOB
I/O output
standard
Single/Differ
Bank VCCO (V)
Driver Strength (mA)
HSTL18D_II
Differential
1.8
8
HSTL15D_I
Differential
1.5
8
Table 3-3 Input Standards and Configuration Options
DS100-1.8E
I/O Input
Standard
Single/Differ
Bank VCCO (V)
Hysteresis
Need VREF
LVTTL33
Single end
1.5/1.8/2.5/3.3
Yes
No
LVCMOS33
Single end
1.5/1.8/2.5/3.3
Yes
No
LVCMOS25
Single end
1.5/1.8/2.5/3.3
Yes
No
LVCMOS18
Single end
1.5/1.8/2.5/3.3
Yes
No
LVCMOS15
Single end
1.2/1.5/1.8/2.5/3.3
Yes
No
LVCMOS12
Single end
1.2/1.5/1.8/2.5/3.3
Yes
No
SSTL15
Single end
1.5/1.8/2.5/3.3
No
Yes
SSTL25_I
Single end
2.5/3.3
No
Yes
SSTL25_II
Single end
2.5/3.3
No
Yes
SSTL33_I
Single end
3.3
No
Yes
SSTL33_II
Single end
3.3
No
Yes
SSTL18_I
Single end
1.8/2.5/3.3
No
Yes
SSTL18_II
Single end
1.8/2.5/3.3
No
Yes
HSTL18_I
Single end
1.8/2.5/3.3
No
Yes
HSTL18_II
Single end
1.8/2.5/3.3
No
Yes
HSTL15_I
Single end
1.5/1.8/2.5/3.3
No
Yes
PCI33
Single end
3.3
Yes
No
LVDS
Differential
2.5/3.3
No
No
RSDS
Differential
2.5/3.3
No
No
MINILVDS
Differential
2.5/3.3
No
No
PPLVDS
Differential
2.5/3.3
No
No
LVDS25E
Differential
2.5/3.3
No
No
MLVDS25E
Differential
2.5/3.3
No
No
BLVDS25E
Differential
2.5/3.3
No
No
RSDS25E
Differential
2.5/3.3
No
No
LVPECL33
Differential
3.3
No
No
SSTL15D
Differential
1.5/1.8/2.5/3.3
No
No
16(77)
3Architecture
3.3IOB
I/O Input
Standard
Single/Differ
Bank VCCO (V)
Hysteresis
Need VREF
SSTL25D_I
Differential
2.5/3.3
No
No
SSTL25D_II
Differential
2.5/3.3
No
No
SSTL33D_I
Differential
3.3
No
No
SSTL33D_II
Differential
3.3
No
No
SSTL18D_I
Differential
1.8/2.5/3.3
No
No
SSTL18D_II
Differential
1.8/2.5/3.3
No
No
HSTL18D_I
Differential
1.8/2.5/3.3
No
No
HSTL18D_II
Differential
1.8/2.5/3.3
No
No
HSTL15D_I
Differential
1.5/1.8/2.5/3.3
No
No
3.3.2 True LVDS Design
BANK1/2/3 in the GW1N-2/2B/4/4B/6/9 devices support true LVDS
output, but BANK1/2/3 do not support internal 100Ω input differential
matched resistance. Bank0 supports internal 100Ω input differential
matched resistance. BANK0/1/2/3 support LVDS25E, MLVDS25E,
BLVDS25E,etc. For more detailed information about different levels, please
refer to Gowin systemIO User Guide.
For more detailed information about true LVDS, please refer to GW1N
series of FPGA products Pinout.
True LVDS input I/O needs external 100Ω terminal resistance for
matching. SeeFigure 3-8for the true LVDS design.
Figure 3-8 True LVDS Design
Sender
GW1N-2/4/6/9
txout+
txout-
50Ω
50Ω
rxin+
txout+
50Ω
Logic
Array
100Ω
rxin-
txout-
Input Buffer
50Ω
rxin+
Receiver
rxin-
Output Buffer
For more detailed information about LVDS25E, MLVDS25E, and
BLVDS25E on IO terminal matched resistance, please refer to Gowin
SystemIO User Guide.
DS100-1.8E
17(77)
3Architecture
3.3IOB
3.3.3 I/O Logic
Figure 3-9 shows the I/O logic output of the GW1N series of FPGA
products.
Figure 3-9 I/O Logic Output
TCTRL
TCFF
GND
SER
ISI
TDATA
OUTFF
IODELAY
Figure 3-10 shows the I/O logic input of the GW1N series of FPGA
products.
Figure 3-10 I/O Logic Input
CI
DI
IODELAY
INFF
IEM
DIN
IDES
Rate
Sel
Q
A description of the I/O logic modules of the GW1N series FPGA
products is presented below.
IODELAY
See Figure 3-11 for an overview of the IODELAY. Each I/O of the
GW1N series of FPGA products has an IODELAY cell. The longest delay it
can provide is about 128 steps x 30ps = 3840ps.
DS100-1.8E
18(77)
3Architecture
3.3IOB
Figure 3-11 IODELAY
DI
DO
DLY UNIT
SDTAP
SETN
DF
DLY ADJ
VALUE
There are two ways to control the delay cell:
Static control:
Dynamic control: Usually used to sample delay window together with
IEM. The IODELAY cannot be used for both input and output at the
same time
I/O Register
See Figure 3-12 for I/O register in the GW1N series of FPGA products.
Each I/O provides one input register, INFF, one output register, OUTFF,
and a tristate Register, TCFF.
Figure 3-12 Register Structure in I/O Logic
D
Q
CE
CLK
SR
Note!
CE can be either active low (0: enable)or active high (1: enable).
CLK can be either rising edge trigger or falling edge trigger.
SR can be either synchronous/asynchronous SET or RESET or disable.
The register can be programmed as register or latch.
IEM
IEM is for sampling clock edge and is used in the generic DDR mode.
See Figure 3-13 for the IEM structure.
Figure 3-13 IEM Structure
CLK
D
RESET
DS100-1.8E
LEAD
IEM
MCLK
LAG
19(77)
3Architecture
3.3IOB
De-serializer DES
The GW1N series of FPGA products provide a simple Serializer SER
for each output I/O to support advanced I/O protocols.
Serializer SER
The GW1N series of FPGA products provide a simple Serializer SER
for each output I/O to support advanced I/O protocols.
3.3.4 I/O Logic Modes
The I/O Logic in the GW1N series of FPGA products supports several
operations. In each operation, the I/O (or I/O differential pair) can be
configured as output, input, and INOUT or tristate output (output signal with
tristate control).
GW1N-1S, GW1N-6, and GW1N-9 pins support IO logic. The GW1N-1
pins IOL6 (A,B,C….J) and IOR6 (A,B,C….J) do not support IO logic. The
other pins support IO logic. The GW1N-2/GW1N-2B and
GW1N-4/GW1N-4B pins IOL10(A,B,C….J) and IOR10(A,B,C….J) do not
support IO logic. The other pins support IO logic.
Basic Mode
In basic mode, the I/O Logic is as shown in Figure 3-14, and the TC,
DO, and DI signals can connect to the internal cores directly through CRU.
Figure 3-14 I/O Logic in Basic Mode
TC
DO
IO PAD
DI
SDR Mode
In comparison with the basic mode, SDR utilizes the IO register, as
shown in Figure 3-15. This can effectively improve IO timing.
DS100-1.8E
20(77)
3Architecture
3.3IOB
Figure 3-15 I/O Logic in SDR Mode
TCTRL
D
Q
CE
>CLK
SR
DOUT
D
O_CE
CE
O_CLK
IO PAD
Q
>CLK
O_SR
SR
DIN
D
I_CE
Q
CE
I_CLK
>CLK
I_SR
SR
Note!
CLK enable O_CE and I_CE can be configured as active high or active low;
O_CLK and I_CLK can be either rising edge trigger or falling edge trigger;
Local set/reset signal O_SR and I_SR can be either synchronized reset, synchronized
set, asynchronous reset, asynchronous set, or no-function;
I/O in SDR mode can be configured as basic register or latch.
Generic DDR Mode
Higher speed IO protocols can be supported in generic DDR mode.
GW1N-1S, GW1N-6, and GW1N-9 devices support IDES16 mode and
OSER16 mode. The other devices do not support.
Figure 3-16 shows the generic DDR input, with a speed ratio of the
internal logic to PAD 1:2.
Figure 3-16 I/O Logic in DDR Input Mode
D
IDDR
2
Q[1:0]
CLK
Figure 3-17 shows generic DDR output, with a speed ratio of PAD to
FPGA internal logic 2:1.
DS100-1.8E
21(77)
3Architecture
3.3IOB
Figure 3-17 I/O Logic in DDR Output Mode
D[1:0]
2
ODDR
Q
CLK
IDES4
In IDES4 mode, the speed ratio of the PAD to FPGA internal logic is
1:4.
Figure 3-18 I/O Logic in IDES10 Mode
D
FCLK
IDES4
PCLK
4
Q[3:0]
CALIB
RESET
OSER4 Mode
In OSER4 mode, the speed ratio of the PAD to FPGA internal logic is
4:1.
Figure 3-19 I/O Logic in OSER4 Mode
TX[1:0]
D[3:0]
2
4
FCLK
OSER4
2
Q[1:0]
PCLK
RESET
IVideo Mode
In IVideo mode, the speed ratio of the PAD to FPGA internal logic is
1:7.
Figure 3-20 I/O Logic in IVideo Mode
D
CE
FCLK
PCLK
IVideo
7
Q[6:0]
CALIB
RESET
Note!
IVideo and IDES8/10 will occupy the neighboring I/O logic. If the I/O logic of a single
port is occupied, the pin can only be programmed in SDR or BASIC mode.
OVideo Mode
In OVideo mode, the speed ratio of the PAD to FPGA internal logic is
DS100-1.8E
22(77)
3Architecture
3.3IOB
7:1.
Figure 3-21 I/O Logic in OVideo Mode
D[6:0]
7
FCLK
OVideo
PCLK
Q
IDES8 Mode
In IDES8 mode, the speed ratio of the PAD to FPGA internal logic is
1:8.
Figure 3-22 I/O Logic in IDES8 Mode
D
FCLK
IDES8
PCLK
8
Q[7:0]
CALIB
RESET
OSER8 Mode
In OSER8 mode, the speed ratio of the PAD to FPGA internal logic is
8:1.
Figure 3-23 I/O Logic in OSER8 Mode
TX[3:0]
D[7:0]
4
8
FCLK
OSER8
2
Q[1:0]
PCLK
RESET
IDES10 Mode
In IDES10 mode, the speed ratio of the PAD to FPGA internal logic is
1:10.
Figure 3-24 I/O Logic in IDES10 Mode
D
FCLK
PCLK
IDES10
10
Q[9:0]
CALIB
RESET
OSER10 Mode
In OSER10 mode, the speed ratio of the PAD to FPGA internal logic is
10:1.
DS100-1.8E
23(77)
3Architecture
3.3IOB
Figure 3-25 I/O Logic in OSER10 Mode
D[9:0]
10
FCLK
OSER10
PCLK
Q
RESET
IDES16 Mode
Only GW1N-1S, GW1N-6, and GW1N-9 devices support this mode. In
IDES16 mode, the speed ratio of the PAD to FPGA internal logic is 1:16.
Figure 3-26 I/O Logic in IDES16 Mode
D
FCLK
IDES16
PCLK
16
Q[15:0]
CALIB
RESET
OSER16 Mode
Only GW1N-1S, GW1N-6, and GW1N-9 devices support this mode. In
OSER16 mode, the speed ratio of the PAD to FPGA internal logic is 16:1.
Figure 3-27 I/O Logic in OSER16 Mode
D[15:0]
FCLK
PCLK
16
OSER16
Q
RESET
DS100-1.8E
24(77)
3Architecture
3.4Block SRAM (B-SRAM)
3.4 Block SRAM (B-SRAM)
3.4.1 Introduction
The GW1N series of FPGA products provide abundant B-SRAMs. The
Block SRAM (B-SRAM) is embedded as a row in the FPGA array and is
different from S-SRAM (Shadow SRAM). Each B-SRAM occupies three
columns of CFU in the FPGA array. Each B-SRAM has 18,432 bits
(18Kbits). There are five operation modes: Single Port, Dual Port, Semi
Dual Port, ROM, and FIFO. The signals and functional descriptions of
B-SRAM are listed in Table 3-4.
An abundance of B-SRAM resources provide a guarantee for the
user's high-performance design. B-SRAM features include the following:
Max.18,432 bits per B-SRAM
B-SRAM itself can run at 190 MHz at max
Single Port
Dual Port
Semi Dual Port
Parity bits
ROM
Data width from 1 to 36 bits
Mixed clock mode
Mixed data width mode
Enable Byte operation for double byte or above
Asynchronous reset, Synchronous reset
Normal Read and Write Mode
Read-before-write Mode
Write-through Mode
Table 3-4 B-SRAM Signals
DS100-1.8E
Port Name
I/O
Description
DIA
I
Port A data input
DIB
I
Port B data input
ADA
I
Port A address
ADB
I
Port B address
CEA
I
Clock enable, Port A
CEB
I
Clock enable, Port B
RESETA
I
Register reset, Port A
RESETB
I
Register reset, Port B
WREA
I
Read/write enable, Port A
25(77)
3Architecture
3.4Block SRAM (B-SRAM)
Port Name
I/O
Description
WREB
I
Read/write enable, Port B
BLKSEL
I
Block select
CLKA
I
Read/write cycle clock for Port A input
registers
CLKB
I
Read/write cycle clock for Port B input
registers
OCEA
I
Clock enable for Port A output
registers
OCEB
I
Clock enable for Port B output
registers
DOA
O
Port A data output
DOB
O
Port B data output
3.4.2 Configuration Mode
The B-SRAM mode in the GW1N series of FPGA products supports
different data bus widths. See Table 3-5.
Table 3-5 Memory Size Configuration
Single
Mode
DS100-1.8E
Port
Dual Port Mode
Semi-Dual
Mode
Port
16 K x 1
16 K x 1
16 K x 1
16K x 1
8K x 2
8K x 2
8K x 2
8K x 2
4K x 4
4K x 4
4K x 4
4K x 4
2K x 8
2K x 8
2K x 8
2K x 8
1K x 16
1K x 16
1K x 16
1K x 16
512 x 32
-
512 x 32
512 x 32
2K x 9
2K x 9
2K x 9
2K x 9
1K x 18
1K x 18
1K x 18
1K x 18
512 x 36
-
512 x 36
512 x 36
Read Only
26(77)
3Architecture
3.4Block SRAM (B-SRAM)
3.4.3 Mixed Data Bus Width Configuration
The B-SRAM in the GW1N series of FPGA products supports mixed
data bus width operation. In the dual port and semi-dual port modes, the
data bus width for read and write can be different. For the configuration
options that are available, please see Table 3-6 and Table 3-7 below.
Table 3-6 Dual Port Mixed Read/Write Data Width Configuration
Read
Port
Write Port
16K x 1
8K x 2
4K x 4
2K x 8
1K x 16
16K x 1
*
*
*
*
*
8K x 2
*
*
*
*
*
4K x 4
*
*
*
*
*
2K x 8
*
*
*
*
*
1K x 16
*
*
*
*
*
2K x 9
1K x 18
2K x 9
*
*
1K x 18
*
*
Note!
”*”denotes the modes supported.
Table 3-7Semi Dual Port Mixed Read/Write Data Width Configuration
Read
Port
Write Port
16K x 1
8K x 2
4K x 4
2K x 8
1K x 16
512 x 32
16K x 1
*
*
*
*
*
*
8K x 2
*
*
*
*
*
*
4K x 4
*
*
*
*
*
*
2K x 8
*
*
*
*
*
*
1K x 16
*
*
*
*
*
*
512 x 32
*
*
*
*
*
*
2K x 9
1K x 18
512 x 36
2K x 9
*
*
*
1K x 18
*
*
*
Note!
”*”denotes the modes supported.
3.4.4 Byte-enable
The B-SRAM in the GW1N series of FPGA products supports
byte-enable. For data longer than a byte, the additional bits can be blocked,
and only the selected portion can be written into. The blocked bits will be
retained for future operation. Read/write enable ports (WREA, WREB), and
byte-enable parameter options can be used to control the B-SRAM write
DS100-1.8E
27(77)
3Architecture
3.4Block SRAM (B-SRAM)
operation.
3.4.5 Parity Bit
There are parity bits in B-SRAM. The 9th bit in each byte can be used
as a parity bit or for data storage. However, the parity operation is not yet
supported.
3.4.6 Synchronous Operation
All the input registers of B-SRAM support synchronous write;
The output registers can be used as pipeline register to improve design
performance;
The output registers are bypass-able.
3.4.7 Power up Conditions
B-SRAM initialization is supported when powering up. During the
power-up process, B-SRAM is in standby mode, and all the data outputs
are “0”. This also applies in ROM mode.
3.4.8 Operation Modes
The input registers of B-SRAM can be used for synchronous write. The
output registers can be used as pipeline register to improve design
performance. In the dual port mode, the two ports of B-SRAM can be
operated totally independently. Port A and Port B have their own clock and
are write-enabled; as such, both ports can be written to and read
independently from each other.
Single Port Mode
In the single port mode, as shown below, B-SRAM can write to or read
from one port at one clock edge. During the write operation, the data can
show up at the output of B-SRAM. Normal write mode (Normal-write Mode)
and write-through mode can be supported. When the output register is
bypassed, the new data will show at the same write clock rising edge. For
the single port 2 K x 9bit block memory, see Figure 3-28 below.
Figure 3-28 Single Port Block Memory
DI[8:0]
9
AD[10:0]
11
WRE
CE
B-SRAM
CLK
9
DO[8:0]
RESET
OCE
BLKSEL[2:0]
DS100-1.8E
3
BYTE_ENABLE
28(77)
3Architecture
3.4Block SRAM (B-SRAM)
The table below shows all the configuration options that are available
in the single port mode:
Table 3-8 Single Port Block Memory Configuration
Primitive
Configuration
RAM
(Bit)
Port
Mode
Memory
Depth
Data
Depth
B-SRAM_16K_S1
16 K
16 K x 1
16,384
1
B-SRAM_8K_S2
16K
8K x 2
8,192
2
B-SRAM_4K_S4
16K
4K x 4
4,096
4
B-SRAM_2K_S8
16K
2K x 8
2,048
8
B-SRAM_1K_S16
16K
1K x 16
1,024
16
B-SRAM_512_S32
16K
512 x 32
512
32
B-SRAM_2K_S9
18K
2K x 9
2,048
9
B-SRAM_1K_S18
18K
1K x 18
1,024
18
B-SRAM_512_S36
18K
512 x 36
512
36
SP
SPX9
Dual Port Mode
B-SRAM support Dual Port mode, as shown in Figure 3-29. The
applicable operations are as follows:
Two independent read
Two independent write
An independent read and an independent write at different clock
frequencies
Figure 3-29 Dual Port Block Memory
DIA[15:0]
16
ADA[9:0]
10
16
DIB[15:0]
10
ADB[9:0]
WREB
WREA
CEB
CEA
B-SRAM
CLKA
CLKB
RESETB
RESETA
OCEB
OCEA
DOA[15:0]
16
BYTE_ENABLE
16
DOB[15:0]
3
BLKSEL[2:0]
All the configuration options for the dual port mode are as shown in
Table 3-9 .
Table 3-9 Semi Dual Port Memory Configuration
Primitive
Configuration
RAM (Bit)
Port Mode
Memory
Depth
Data
Depth
B-SRAM_16K_D1
16K
16K x 1
16384
1
B-SRAM_8K_D2
16K
8K x 2
8192
2
DP
DS100-1.8E
29(77)
3Architecture
3.4Block SRAM (B-SRAM)
Primitive
Configuration
RAM (Bit)
Port Mode
Memory
Depth
Data
Depth
B-SRAM_4K_D4
16K
4K x 4
4096
4
B-SRAM_2K_D8
16K
2K x 8
2048
8
B-SRAM_1K_D16
16K
1K x 16
1024
16
B-SRAM_2K_D9
18K
2K x 9
2048
9
B-SRAM_1K_D18
18K
1K x 18
1024
18
DPX9
DS100-1.8E
30(77)
3Architecture
3.4Block SRAM (B-SRAM)
Semi-Dual Port Mode
The figure below shows the semi Dual Port 1K x 16bit mode. It
supports read and write at the same time on different ports. It is not
possible to write and read to the same port at the same time. The system
only supports write on Port A , read on Port B.
Figure 3-30 Semi Dual Port Block Memory 1
DIA[15:0]
16
ADA[9:0]
10
10
WREA
CEB
CEA
B-SRAM
CLKB
CLKA
RESETB
RESETA
BLKSEL[2:0]
ADB[9:0]
OCEB
3
BYTE_ENABLE
16
DOB[15:0]
All the configuration options for the dual port mode are as shown in
Table 3-10.
Table 3-10Semi Dual Port Memory Configuration
Primitive
Configuration
RAM (Bit)
Port Mode
Memory
Depth
Data
Depth
B-SRAM_16K_SD1
16K
16K x 1
16,384
1
B-SRAM_8K_SD2
16K
8K x 2
8,192
2
B-SRAM_4K_SD4
16K
4K x 4
4,096
4
B-SRAM_2K_SD8
16K
2K x 8
2,048
8
B-SRAM_1K_SD16
16K
1K x 16
1,024
16
B-SRAM_512_SD32
16K
512 x 32
512
32
B-SRAM_2K_SD9
18K
2K x 9
2,048
9
B-SRAM_1K_SD18
18K
1K x 18
1,024
18
B-SRAM_512_SD36
18K
512 x 36
512
36
SDP
SDPX9
DS100-1.8E
31(77)
3Architecture
3.4Block SRAM (B-SRAM)
Read Only
B-SRAM can be configured as ROM, as shown in Figure 3-31. The
ROM can be initialized during the device configuration stage, and the ROM
data needs to be provided in the initialization file. Initialization completes
during the device power-on process.
Figure 3-31 ROM Block Memory
AD[9:0]
16
CE
CLK
B-SRAM
RESET
BLKSEL[2:0]
3
DO[17:0]
18
Each B-SRAM can be configured as one 16 Kbits ROM. Table 3-11
lists all the configuration options for the ROM mode.
Table 3-11 Block ROM Configuration
Primitive
Configuration
RAM (Bit)
Port
Mode
Memory
Depth
Data
Depth
B-SRAM_16K_O1
16K
16K x 1
16,384
1
B-SRAM_8K_O2
16K
8K x 2
8,192
2
B-SRAM_4K_O4
16K
4K x 4
4,096
4
B-SRAM_2K_O8
16K
2K x 8
2,048
8
B-SRAM_1K_O16
16K
1K x 16
1,024
16
B-SRAM_512_O32
16K
512 x 32
512
32
B-SRAM_2K_O9
18K
2K x 9
2,048
9
B-SRAM_1K_O18
18K
1K x 18
1,024
18
B-SRAM_512_O36
18K
512 x 36
512
36
ROM
ROMX9
Note!
In the ROM mode, the RESET signal can only reset the input and output registers. It
cannot clear the ROM content.
3.4.9 B-SRAM Operation Modes
B-SRAM supports five different operations, including two read
operations (Bypass Mode and Pipeline Read Mode) and three write
operations (Normal Write Mode, Write-through Mode, and
Read-before-write Mode).
DS100-1.8E
32(77)
3Architecture
3.4Block SRAM (B-SRAM)
Read Mode
Read data from the B-SRAM via output registers or without using the
registers.
Pipeline Mode
While writing in the B-SRAM, the output register and pipeline register
are also being written. The data bus can be up to 36 bits in this mode.
Bypass Mode
The output register is not used. The data is kept in the output of
memory array.
Figure 3-32 Pipeline Mode in Single Port, Dual Port and Semi Dual Port
AD
DI
Input
Register
Memory
Array
Output
Register
ADA
WREB OCE
DO
CLK
WRE
OCE
WREA
ADB
DIA
Input
Register
Memory
Array
Output
Register
DOB
CLKA
CLKB
CLKA
ADA
DIA
ADB
Input
Register
WREA
CLKB
Input
Register
WREB
Memory
Array
Output
Register
Output
Register
OCEA
OCEB
DOA
DS100-1.8E
DIB
DOB
33(77)
3Architecture
3.4Block SRAM (B-SRAM)
Write Mode
NORMAL WRITE MODE
In this mode, when the user writes data to one port, and the output
data of this port does not change. The data written in will not appear at the
read port.
WRITE-THROUGH MODE
In this mode, when the user writes data to one port, and the data
written in will also appear at the output of this port.
READ-BEFORE-WRITE MODE
In this mode, when the user writes data to one port, and the data
written in will be stored in the memory according to the address. The
original data in this address will appear at the output of this port.
3.4.10 Clock Operations
Table 3-12 lists the clock operations in different B-SRAM modes:
Table 3-12 Clock Operations in Different B-SRAM Modes
Clock Operations
Dual Port Mode
Semi-Dual Port Mode
Single Port Mode
Independent
Clock Mode
Yes
No
No
Read/Write
Clock Mode
Yes
Yes
No
Single Port Clock
Mode
No
No
Yes
Independent Clock Mode
Figure 3-33 shows the independent clocks in the dual port mode with
each port with one clock. CLKA controls all the registers at Port A; CLKB
controls all the registers at Port B.
Figure 3-33 Independent Clock Mode
CLKA
ADA
DIA
ADB
Input
Register
WREA
CLKB
Input
Register
WREB
Memory
Array
Output
Register
Output
Register
OCEA
OCEB
DOA
DS100-1.8E
DIB
DOB
34(77)
3Architecture
3.5User Flash (GW1N-1 and GW1N-1S)
Read/Write Clock Operation
Figure 3-34 shows the read/write clock operations in the semi-dual
port mode with one clock at each port. The write clock (CLKA) controls Port
A data inputs, write address and read/write enable signals. The read clock
(CLKB) controls Port B data output, read address, and read enable signals.
Figure 3-34 Read/Write Clock Mode
WREA
ADA
ADB
WREB OCE
DIA
Input
Register
Memory
Array
Output
Register
DOB
CLKA
CLKB
Single Port Clock Mode
Figure 3-35shows the clock operation in single port mode.
Figure 3-35 Single Port Clock Mode
AD
DI
Input
Register
Memory
Array
Output
Register
DO
CLK
WRE
OCE
3.5 User Flash (GW1N-1 and GW1N-1S)
3.5.1 Introduction
GW1N-1 and GW1N-1S devices support User Flash with 12 Kbytes
(48 page x 256 Bytes). The features are as following:
100,000 write cycles
Greater than10 years Data Retention at +85 ℃
Selectable 8/16/32 bits data-in and data-out
Page size: 256 Bytes
3 μA standby current
Page Write Time: 8.2 ms
3.5.2 Port Signal
See Figure 3-36 for GW1N-1 and GW1N-1S user flash:
DS100-1.8E
35(77)
3Architecture
3.5User Flash (GW1N-1 and GW1N-1S)
Figure 3-36 GW1N-1/GW1N-1S User Flash Ports
Ra[5:0]
6
6
Pa[5:0]
Ca[5:0]
6
2
Wmod[1:0]
Mode[3:0]
4
2
Wbytesel[1:0]
Rmod[1:0]
2
Rbytesel[1:0]
2
Seq[1:0]
2
Oe
Din[31:0]
32
Sleep
Pw
GW1N-1
NVM
Aclk
Pe
32
Dout[31:0]
Reset
Table 3-13 Flash Module Signal Description
Pin name1
I/O
Ra[5:0]
I
Ca[5:0]
I
Pa[5:0]2
I
I
Mode[3:0]
I
Seq[1:0]
I
Aclk
I
Rmod[1:0]
I
Wmod[1:0]
I
Select operation mode.
Control operation sequence.
Synchronize clock for read-write operations.
Read data bit width selection.
Write data bit width selection.
Rbytesel[1:0]
I
Read data byte selection.
Wbytesel[1:0]
I
Write data bit width selection.
Pw
I
Write Page latch clock.
Reset
I
Pe
I
I
Reset signal, active-high.
Charge pump enabled.
Data output enable.
Sleep mode, active-high.
Din[31:0]
I
Data input bus.
Dout[31:0]
O
Data output bus.
3
Oe
I
Sleep
4
Description
X address bus, used to select one row within
memory block.
Y address bus, used to select one column
within memory block.
Note!
DS100-1.8E
[1] Port names of Control, address,and data signals.
[2] Pa signal has the same function as Ca signal, except that Pa signal is used for
programming operation of page latch data, and Ca signal is used for other
operations related to column selection in Flash.
[3] The high-level effective time of reset signal is not less than 20ns. Wait for 6μs
after that the reset signal changes to low-level, and then move on.
36(77)
3Architecture
3.5User Flash (GW1N-1 and GW1N-1S)
[4] Save power through flash memory resources entering into sleep mode. Wait for
6μs after that the sleep signal changes to low-level, and then move on.
3.5.3 Data Output Bit Selection
Change data I/O bit width by Rmod/Wmod and Rbytesel/ Wbytesel.
The correspondence between data bit width and control signal is shown in
Table 3-14 and Table 3-15.
Table 3-14 Data Output Bit Selection
Rmod[1:0]
Rbytesel
Dout
[1]
[0]
[31:24]
[23:16]
[15:8]
[7:0]
0.0
√
√
×
×
×
√
0.1
√
×
×
×
√
√
×
×
√
√
√
√
1X
Table 3-15s Data Input Bit Selection
Wbytesel
Din
[1]
[0]
[31:24]
[23:16]
[15:8]
[7:0]
0.0
√
√
×
×
×
√
0.1
√
×
×
×
√
√
1X
×
×
√
√
√
√
Wmod[1:0]
Note!
“√” means valid input; “×”means invalid input.
3.5.4 Operation Mode
User can set Mode [3: 0] to select different operation modes, as shown
in Table 3-16.
Table 3-16 Operation Modes Selection
Mode[3:0]
Description
0000
Normal read operation and page latch write operation
0001
0100
1000
1100
Set pre-program and clear after any program cycle
automatically
Clear page latches
Erase Page (or row)
Program Page (or row)
3.5.5 Read Operation
When the Mode input is set as "0000", the user flash enters into read
operation mode at the rising edge of Aclk. Seq [1: 0] should be "00" for read
operation mode. When the data access time (
2> 3> 0, which are long operations requiring milliseconds. It is forbidden to
program the same page twice after an erasure operation.
Before erasing and programming, program all the selected memory
locations to pseudo "1". To execute pre-program operation, set PEP
(pre-program) first (Mode "0001"), and then program (Mode "1100") the
selected locations with high-voltage duration in time of hundreds of
microseconds.
3.6 User Flash (GW1N-2/2B/4/4B/6/9)
3.6.1 Introduction
GW1N-2/2B/4/4B/6/9 offers User Flash. The capacity of the user Flash
in GW1N-2/2B/4/4B is 256Kbits. The capacity of the user flash in
GW1N-6/9 is 608Kbits. The user Flash memory is composed of row
memory and column memory. One row memory is composed of 64 column
memories. The capacity of one column memory is 32 bits, and the capacity
DS100-1.8E
38(77)
3Architecture
3.6User Flash (GW1N-2/2B/4/4B/6/9)
of one row memory is 64*32=2048 bits. Page erase is supported, and one
page capacity is 2048 bytes, i.e., one page includes 8 rows. The features
are shown below:
10,000 write cycles
Greater than10 years Data Retention at +85 ℃
Data Width: 32
GW1N-2/2B/4/4B capacity: 128 rows x 64 columns x 32 = 256kbits
GW1N-6/9 capacity: 304 rows x 64 columns x 32 = 608kbits
Page Erase Capability: 2,048 bytes per page
Fast Page Erasure/Word Programming Operation
Clock frequency: 40 MHz
Word Programming Time:≤16 μs
Page Erasure Time:≤120 ms
Electric current
- Read current/duration:2.19 mA/25 ns (VCC) & 0.5 mA/25 ns (VCCX)
(MAX)
- Program / Erase operation: 12/12 mA(MAX)
3.6.2 Port Signal
SeeFigure 3-37 for GW1N-2/4/2B/4B/6/9 user flash:
Figure 3-37 GW1N-2/4/2B/4B/6/9 Flash Port Signal
XADR[6:0]
7
YADR[5:0]
6
DIN[31:0]
32
DOUT[31:0]
32
XE
YE
GW1N-4
NVM
8K×32
NVSTR
SE
PROG
ERASE
Table 3-17 Flash Module Signal Description
Pin name1
XADR[5:0]2
I/O
Description
I
X address bus, used to access row address. XADR[n:3] is used to
select one page; XADR[2:0] is used to select one row on one page.
One page is composed of eight rows, and one row is composed of 64
columns.
GW1N-2/2B/4/4B: 128 rows in all, n=6
GW1N-6/9: 304 rows in all, n=8
DS100-1.8E
YADR[5:0]2
I
Y address bus, used to select one column within a row of memory
block. One row consists of 64 columns.
DIN[31:0]
I
Data input bus.
DOUT[31:0]
O
Data output bus.
39(77)
3Architecture
3.7DSP
Pin name1
I/O
Description
XE2
I
X address enable signal, if XE is 0, all of row addresses are not
enabled.
YE2
I
Y address enable signal, if YE is 0, all of column addresses are not
enabled.
SE2
I
Detect amplifier enable signal, active high.
ERASE
I
Erase port, active-high.
PROG
I
Programming port, active-high.
NVSTR
I
Flash data storage port, active-high.
Note!
[1] Port names of Control, address,and data signals.
[2] The read operation is valid only if XE = YE = V CC and SE meets the pulse timing
requirements (Tpws, Tnws). The address of read data is determined by XADR [5: 0] and
YADR [5: 0].
3.6.3 Operation Mode
Table 3-18 Truth Table in User Mode
Mode
XE
YE
SE
PROG
ERASE
NVSTR
Read Mode
H
H
H
L
L
L
Programming
Mode
H
H
L
H
L
H
Page Erasure
Mode
H
L
L
L
H
H
Note!
“H” and “L” means high level and low level of VCC.
3.7 DSP
3.7.1 Introduction
GW1N-2/4/2B/4B/6/9 devices offer abundant DSP modules. Gowin
DSP solutions can meet user demands for high performance digital signal
processing design, such as FIR, FFT, etc. DSP blocks have the
advantages of stable timing performance, high-usage, and low-power.
DSP offers the following functions:
DS100-1.8E
Multiplier with three widths: 9-bit, 18-bit, 36-bit
54-bit ALU
Multipliers cascading to support wider data
Barrel shifter
Adaptive filtering through signal feedback
Computing with options to round to a positive number or a prime
number
40(77)
3Architecture
3.7DSP
Supports pipeline mode and bypass mode.
Macro
DSP blocks are embedded as rows in the FPGA array. Each DSP
occupies nine CFU columns. Each DSP block contains two Macro, and
each Macro contains two pre-adders, two 18 x 18 bit multipliers, and one
three-input ALU.
Figure 3-38 shows the structure of one Macro.
DS100-1.8E
41(77)
3Architecture
3.7DSP
Figure 3-38 DSP Macro
B0[17:0]
A0[17:0]
18
A1[17:0]
PADDSUB[1:0]
18
2
“0” SDIA INC[17:0]
INC[44:27]
INA0
MUXA0
REGA0
54
18
MUXB1
REGC
REGB1
REGA1
54
18 INB1
18 INA1
INA0
“0”
C[53:0]
18
INA1
“0”
MUXA1
REG_PADDSUB
INA0
18
“0”
18
18
B1[17:0] SBI[17:0]
18
INC
MUXB0
REGB0
18 INB0
SBO[17:0] 18
PADDSUB[1]
PADDSUN[0]
+/-
18 PADD0
SIB[17:0]
SIA[17:0]
B0
18
A0
18
+/-
ALUSEL ALUMODE
18 PADD1
18
18
A1
BSEL[1:0]
ASIGN[1:0]
BSIGN[1:0]
18 MROB1
REGMA1
18 MROA0
ASEL[1:0]
REGMB1
MUXMA1
18 MROB0
REGMA0
MUXMB1
18
REGMB0
MUXMA0
INC[44:27]
B1 18 18
INC[17:0]
MUXMB0
18
Pre-adder
18
18 MROA1
4
REG_CNTLI
2
×
2
×
36 M0
2
4
REGSD
4
CLK[3:0]
CE[3:0]
RESET[3:0]
36 M1
18
2
REGP0
REG_CNTLP
REGP1
LOADA
“0”
alusel[6:4]
A_MUX
54
LOADA
C_MUX
CASI>>18
INC
MULT
LOADB MDI1,000V
HBM>1,000V
HBM>1,000V
HBM>1,000V
-
LQ144
HBM>1,000V
HBM>1,000V
HBM>1,000V
HBM>1,000V
HBM>1,000V
-
EQ144
HBM>1,000V
HBM>1,000V
HBM>1,000V
HBM>1,000V
HBM>1,000V
-
LQ176
-
-
-
HBM>1,000V
HBM>1,000V
-
EQ176
-
-
-
HBM>1,000V
HBM>1,000V
-
MG160
-
HBM>1,000V
HBM>1,000V
HBM>1,000V
HBM>1,000V
-
MG196
-
-
-
HBM>1,000V
HBM>1,000V
-
PG256
-
HBM>1,000V
HBM>1,000V
HBM>1,000V
HBM>1,000V
-
PG256
M
-
HBM>1,000V
HBM>1,000V
-
-
-
UG169
-
-
-
HBM>1,000V
HBM>1,000V
-
UG256
-
-
-
HBM>1,000V
HBM>1,000V
-
UG332
-
-
-
HBM>1,000V
HBM>1,000V
-
QN32
HBM>1,000V
HBM>1,000V
HBM>1,000V
-
-
-
QN48
HBM>1,000V
HBM>1,000V
HBM>1,000V
HBM>1,000V
HBM>1,000V
-
CS30
HBM>1,000V
-
-
-
-
-
CS72
-
HBM>1,000V
HBM>1,000V
-
-
-
QN88
-
HBM>1,000V
HBM>1,000V
HBM>1,000V
HBM>1,000V
-
FN32
-
-
-
-
-
HBM>1,000V
Table 4-5 GW1N ESD - CDM
Device
GW1N-1
GW1N-2/
GW1N-2B
GW1N-4/
GW1N-4B
GW1N-6
GW1N-9
GW1N-1S
LQ100
CDM>500V
CDM>500V
CDM>500V
CDM>500V
CDM>500V
-
LQ144
CDM>500V
CDM>500V
CDM>500V
CDM>500V
CDM>500V
-
EQ144
CDM>500V
CDM>500V
CDM>500V
CDM>500V
CDM>500V
-
LQ176
-
-
-
CDM>500V
CDM>500V
-
DS100-1.8E
56(77)
4AC/DC Characteristic
4.2ESD
Device
GW1N-1
GW1N-2/
GW1N-2B
GW1N-4/
GW1N-4B
GW1N-6
GW1N-9
GW1N-1S
EQ176
-
-
-
CDM>500V
CDM>500V
-
MG160
-
CDM>500V
CDM>500V
CDM>500V
CDM>500V
-
MG196
-
-
-
CDM>500V
CDM>500V
-
PG256
-
CDM>500V
CDM>500V
CDM>500V
CDM>500V
-
PG256M
-
CDM>500V
CDM>500V
-
-
-
CDM>500V
CDM>500V
UG169
UG256
-
-
-
CDM>500V
CDM>500V
-
UG332
-
-
-
CDM>500V
CDM>500V
-
QN32
CDM>500V
-
-
-
-
-
QN48
CDM>500V
CDM>500V
CDM>500V
CDM>500V
CDM>500V
-
CS30
CDM>500V
-
-
-
-
-
CS72
-
CDM>500V
CDM>500V
-
-
-
QN88
-
CDM>500V
CDM>500V
CDM>500V
CDM>500V
-
FN32
-
-
-
-
-
CDM>500V
Table 4-6 DC Electrical Characteristics over Recommended Operating Conditions
Name
Description
Condition
Min.
Typ.
Max.
Input or I/O
leakage
VCCO