0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
RP130N501D-TR-FE

RP130N501D-TR-FE

  • 厂商:

    NISSHINBO(日清纺)

  • 封装:

    SC-74A

  • 描述:

    PMIC - 稳压器 - 线性 正 固定 1 输出 150mA SOT-23-5

  • 数据手册
  • 价格&库存
RP130N501D-TR-FE 数据手册
RP130x Series Low Noise 150 mA LDO Regulator No. EA-173-230725 OUTLINE The RP130x is a voltage regulator IC with high ripple rejection, low dropout voltage, high output voltage accuracy and extremely low supply current. The IC consists of a voltage reference unit, an error amplifier, a resistor-net for voltage setting, a short current limit circuit and a chip enable circuit. This IC has an excellent low supply current performed by CMOS process, moreover they perform with low dropout voltage due to built-in low on-resistance. A chip enable function prolongs the battery life. The input transient response, the load transient response and the ripple rejection have been improved in the RP130x compared with the conventional products. Besides achieving low supply current (Typ.38 μA). The range of the operation voltage is capable from 1.7 V to 6.5 V and the range of the output voltage is capable from 1.2 V to 5.3 V for this product, which is wider range as our conventional product R1114x. The output voltage of this IC is fixed with high accuracy. Since the packages for this IC are DFN(PL)1010-4, SOT-23-5 and SC-82AB, therefore high density mounting of the IC on board is possible. FEATURES • • • • • • • • • • • • Supply Current ........................................................... Typ. 38 µA Standby Current ........................................................... Typ. 0.1 µA Ripple Rejection ........................................................... Typ. 80 dB (f = 1 kHz) Input Voltage Range (Maximum Rating) ...................... 1.7 V to 6.5 V (7.0 V) Output Voltage Range .................................................. 1.2 V to 5.3 V (0.1 V step(1)) Output Voltage Accuracy.............................................. ±1.0% (VOUT > 2.0 V, Ta = 25°C) Temperature-Drift Coefficient of Output Voltage .......... Typ. ±20 ppm/°C Dropout Voltage ........................................................... Typ. 0.32 V (IOUT = 150 mA, VOUT = 2.8 V) Line Regulation ............................................................ Typ. 0.02%/V Packages ..................................................................... DFN(PL)1010-4, SC-82AB, SOT-23-5 Built-in Fold Back Protection Circuit ............................ Typ. 40 mA Ceramic capacitors are recommended to be used with this IC ..... 0.47 µF or more APPLICATIONS • • • • (1) Power source for battery-powered equipment. Power source for portable communication equipment. Power source for electrical appliances such as cameras, VCRs and camcorders. Power source for high stable reference voltage. For other voltages, please refer to SELECTION GUIDE. 1 RP130x No. EA-173-230725 SELECTION GUIDE The set output voltage, chip enable polarity, auto-discharge function(1), and packages for the IC can be selected at the user’s request. Selection Guide Product Name Package Quantity per Reel Pb Free Halogen Free DFN(PL)1010-4 10,000 pcs Yes Yes RP130Qxx1∗-TR-FE SC-82AB 3,000 pcs Yes Yes RP130Nxx1∗-TR-FE SOT-23-5 3,000 pcs Yes Yes RP130Kxx1∗-TR xx : Set Output Voltage (VSET) Fixed Type: 12 to 53 Stepwise setting with 0.1 V increment in the range from 1.2 V to 5.3 V Exception: 1.25 V = RP130x121∗5 1.85 V = RP130x181∗5 2.85 V = RP130x281∗5 3.45 V = RP130x341∗5 4.25 V = RP130x421∗5 ∗ : CE pin polarity and auto-discharge function at off state are options as follows. A: active low, without auto-discharge function at off state. B: active high, without auto-discharge function at off state. D: active high, with auto-discharge function at off state. (1) Auto-discharge function quickly lowers the output voltage to 0 V by releasing the electrical charge in the external capacitor when the chip enable signal is switched from the active mode to the standby mode. 2 RP130x No. EA-173-230725 BLOCK DIAGRAMS VDD VOUT VDD VOUT Vref Vref Current Limit Current Limit CE GND GND RP130xxx1B Block Diagram RP130xxx1A Block Diagram VDD CE VOUT Vref Current Limit CE GND RP130xxx1D Block Diagram 3 RP130x No. EA-173-230725 PIN DESCRIPTIONS Top View 4 3 Bottom View 3 4 4 (1) 1 2 2 3 5 (mark side) 1 DFN(PL)1010-4 Pin Configuration 1 1 (mark side) 2 1 SC-82AB Pin Configuration DFN(PL)1010-4 Pin Description Pin No Symbol 4 2 3 SOT-23-5 Pin Configuration Pin Description 1 VOUT Output Pin 2 GND Ground Pin 3 CE / CE 4 VDD Chip Enable Pin ("L" Active / "H" Active) Input Pin SC-82AB Pin Description Pin No Symbol Pin Description 1 CE / CE Chip Enable Pin ("L" Active / "H" Active) 2 GND Ground Pin 3 VOUT Output Pin 4 VDD Input Pin SOT-23-5 Pin Description Pin No Symbol Pin Description 1 VDD Input Pin 2 GND Ground Pin 3 CE / CE 4 NC 5 VOUT Chip Enable Pin ("L" Active / "H" Active) No Connection Output Pin (1) Tab is GND level (they are connected to the reverse side of this IC). The tab is better to be connected to the GND, but leaving it open is also acceptable. 4 RP130x No. EA-173-230725 ABSOLUTE MAXIMUM RATINGS Absolute Maximum Ratings Symbol Item Rating Unit 7.0 V −0.3 to 7.0 V VIN Input Voltage VCE Input Voltage (CE Pin) VOUT Output Voltage −0.3 to VIN + 0.3 V IOUT Output Current 200 mA DFN(PL)1010-4 PD Power Dissipation(1) SC-82AB SOT-23-5 JEDEC STD. 51-7 Test Land Pattern Standard Test Land Pattern JEDEC STD. 51-7 Test Land Pattern 800 380 mW 660 Tj Junction Temperature Range −40 to 125 °C Tstg Storage Temperature Range −55 to 125 °C ABSOLUTE MAXIMUM RATINGS Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the lifetime and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings are not assured. RECOMMENDED OPERATING CONDITIONS Recommended Operating Conditions Symbol Item Rating Unit VIN Input Voltage 1.7 to 6.5 V Ta Operating Temperature Range −40 to 85 °C RECOMMENDED OPERATING CONDITIONS All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions. (1) Refer to POWER DISSIPATION for detailed information. 5 RP130x No. EA-173-230725 ELECTRICAL CHARACTERISTICS VIN = VSET + 1 V (VOUT > 1.5 V), VIN = 2.5 V (VOUT ≤ 1.5 V), IOUT = 1 mA, CIN = COUT = 0.47 µF, unless otherwise noted. The specifications surrounded by are guaranteed by design engineering at −40ºC ≤ Ta ≤ 85°C. RP130xxx1A Electrical Characteristics Symbol Item (Ta = 25°C) Conditions Ta = 25°C VOUT Output Voltage −40°C ≤ Ta ≤ 85°C ILIM ∆VOUT /∆IOUT VDIF Dropout Voltage ISS Supply Current Supply Current Istandby (Standby) ∆VOUT Line Regulation /∆VIN RR Ripple Rejection VIN Input Voltage ∆VOUT /∆Ta ISC Max. Unit x 0.99 x 1.01 V VSET ≤ 2.0 V −20 20 mV VSET > 2.0 V x0.985 x1.015 V VSET ≤ 2.0 V −30 30 mV 150 1 mA ≤ IOUT ≤ 150 mA mA 10 30 1.2 V ≤ VSET < 1.5 V 0.67 1.00 1.5 V ≤ VSET < 1.7 V 0.54 0.81 1.7 V ≤ VSET < 2.0 V 0.46 0.68 2.0 V ≤ VSET < 2.5 V 0.41 0.60 2.5 V ≤ VSET < 4.0 V 0.32 0.51 4.0 V ≤ VSET 0.24 0.37 IOUT = 0 mA 38 58 µA VCE = VIN 0.1 1.0 µA VSET + 0.5 V ≤ VIN ≤ 6.5 V 0.02 0.10 %/V IOUT = 150 mA f = 1 kHz, Ripple 0.2 Vp-p VIN = VSET + 1 V IOUT = 30 mA (In case that VOUT ≤ 2.0 V, VIN = 3.0 V) 80 1.7 mV V dB 6.5 V Output Voltage Temperature Coefficient −40°C ≤ Ta ≤ 85°C ±20 ppm /°C Short Current Limit VOUT = 0 V 40 mA VCEH CE Input Voltage "H" VCEL CE Input Voltage "L" en Typ. VSET > 2.0 V Output Current Limit Load Regulation Min. Output Noise 1.0 µA 0.4 BW = 10 Hz to 100 kHz IOUT = 30 mA 20 xVSET µVrms All test items listed under Electrical Characteristics are done under the pulse load condition (Tj ≈ Ta = 25°C) except for Output Noise, Ripple Rejection, and Output Voltage Temperature Coefficient. 6 RP130x No. EA-173-230725 ELECTRICAL CHARACTERISTICS (continued) VIN = VSET + 1 V (VOUT > 1.5 V), VIN = 2.5 V (VOUT ≤ 1.5 V), IOUT = 1 mA, CIN = COUT = 0.47 µF, unless otherwise noted. The specifications surrounded by are guaranteed by design engineering at −40ºC ≤ Ta ≤ 85°C. RP130xxx1B/D Electrical Characteristics Symbol Item (Ta = 25°C) Conditions Ta = 25°C VOUT Output Voltage −40°C ≤ Ta ≤ 85°C ILIM ∆VOUT /∆IOUT VDIF ISS Dropout Voltage Supply Current Istandby Standby Current V VSET ≤ 2.0 V −20 20 mV VSET > 2.0 V x 0.985 x 1.015 V VSET ≤ 2.0 V −30 30 mV 150 1 mA ≤ IOUT ≤ 150 mA mA 10 30 1.2 V ≤ VSET < 1.5 V 0.67 1.00 1.5 V ≤ VSET < 1.7 V 0.54 0.81 1.7 V ≤ VSET < 2.0 V 0.46 0.68 2.0 V ≤ VSET < 2.5 V 0.41 0.60 2.5 V ≤ VSET < 4.0 V 0.32 0.51 4.0 V ≤ VSET 0.24 0.37 IOUT = 0 mA 38 58 µA VCE = 0 V 0.1 1.0 µA 0.02 0.10 %/V IOUT = 150 mA VSET + 0.5 V ≤ VIN ≤ 6.5 V RR Ripple Rejection f = 1 kHz, Ripple 0.2 Vp-p VIN = VSET + 1 V, IOUT = 30 mA (In case that VOUT ≤ 2.0 V, VIN = 3.0 V) VIN Input Voltage 80 1.7 mV dB 6.5 V Output Voltage Temperature Coefficient −40°C ≤ Ta ≤ 85°C ±20 ppm /°C Short Current Limit VOUT = 0 V 40 mA 0.4 µA IPD CE Pull-down Current VCEH CE Input Voltage "H" VCEL CE Input Voltage "L" RLOW Unit x 1.01 Line Regulation en Max. x 0.99 ∆VOUT /∆VIN ∆VOUT /∆Ta ISC Typ. VSET > 2.0 V Output Current Limit Load Regulation Min. Output Noise Nch ON Resistance for Auto Discharge (RP130xxx1D) 1.0 µA 0.4 BW = 10 Hz to 100 kHz IOUT = 30 mA VIN = 4.0 V VCE = 0 V 20 xVSET µVrms 30 Ω All test items listed under Electrical Characteristics are done under the pulse load condition (Tj≈Ta=25ºC) except for Output Noise, Ripple Rejection, and Output Voltage Temperature Coefficient. 7 RP130x No. EA-173-230725 The specifications surrounded by are guaranteed by design engineering at −40ºC ≤ Ta ≤ 85°C. Product-specific Electrical Characteristics VOUT [V] (Ta = 25°C) Product Name Min. Typ. RP130x121x 1.180 1.2 RP130x121x5 1.230 1.25 RP130x131x 1.280 1.3 RP130x141x 1.380 1.4 RP130x151x 1.480 1.5 RP130x161x 1.580 1.6 RP130x171x 1.680 1.7 RP130x181x 1.780 1.8 RP130x181x5 1.830 1.85 RP130x191x 1.880 1.9 RP130x201x 1.980 2.0 RP130x211x 2.079 2.1 RP130x221x 2.178 2.2 RP130x231x 2.277 2.3 RP130x241x 2.376 2.4 RP130x251x 2.475 2.5 RP130x261x 2.574 2.6 RP130x271x 2.673 2.7 RP130x281x 2.772 2.8 RP130x281x5 2.822 2.85 RP130x291x 2.871 2.9 RP130x301x 2.970 3.0 RP130x311x 3.069 3.1 RP130x321x 3.168 3.2 RP130x331x 3.267 3.3 RP130x341x 3.366 3.4 RP130x341x5 3.416 3.45 RP130x351x 3.465 3.5 RP130x361x 3.564 3.6 RP130x371x 3.663 3.7 RP130x381x 3.762 3.8 RP130x391x 3.861 3.9 RP130x401x 3.960 4.0 RP130x411x 4.059 4.1 RP130x421x 4.158 4.2 RP130x421x5 4.208 4.25 RP130x431x 4.257 4.3 RP130x441x 4.356 4.4 RP130x451x 4.455 4.5 RP130x461x 4.554 4.6 RP130x471x 4.653 4.7 RP130x481x 4.752 4.8 RP130x491x 4.851 4.9 RP130x501x 4.950 5.0 RP130x511x 5.049 5.1 RP130x521x 5.148 5.2 RP130x531x 5.247 5.3 Max. 1.220 1.270 1.320 1.420 1.520 1.620 1.720 1.820 1.870 1.920 2.020 2.121 2.222 2.323 2.424 2.525 2.626 2.727 2.828 2.879 2.929 3.030 3.131 3.232 3.333 3.434 3.485 3.535 3.636 3.737 3.838 3.939 4.040 4.141 4.242 4.293 4.343 4.444 4.545 4.646 4.747 4.848 4.949 5.050 5.151 5.252 5.353 VOUT [V] (Ta = −40°C to 85°C) Min. Typ. Max. 1.170 1.230 1.2 1.220 1.280 1.25 1.270 1.330 1.3 1.370 1.430 1.4 1.470 1.530 1.5 1.570 1.630 1.6 1.670 1.730 1.7 1.770 1.830 1.8 1.820 1.880 1.85 1.870 1.930 1.9 1.970 2.030 2.0 2.069 2.132 2.1 2.167 2.233 2.2 2.266 2.335 2.3 2.364 2.436 2.4 2.463 2.538 2.5 2.561 2.639 2.6 2.660 2.741 2.7 2.758 2.842 2.8 2.807 2.893 2.85 2.857 2.944 2.9 2.955 3.045 3.0 3.054 3.147 3.1 3.152 3.248 3.2 3.251 3.350 3.3 3.349 3.451 3.4 3.398 3.502 3.45 3.448 3.553 3.5 3.546 3.654 3.6 3.645 3.756 3.7 3.743 3.857 3.8 3.842 3.959 3.9 3.940 4.060 4.0 4.039 4.162 4.1 4.137 4.263 4.2 4.186 4.314 4.25 4.236 4.365 4.3 4.334 4.466 4.4 4.433 4.568 4.5 4.531 4.669 4.6 4.630 4.771 4.7 4.728 4.872 4.8 4.827 4.974 4.9 4.925 5.075 5.0 5.024 5.177 5.1 5.122 5.278 5.2 5.221 5.380 5.3 (Ta = 25°C) VDIF [V] Typ. Max. 0.67 1.00 0.54 0.81 0.46 0.68 0.41 0.60 0.32 0.51 0.24 0.37 8 RP130x No. EA-173-230725 APPLICATION INFORMATION TYPICAL APPLICATION VDD VOUT RP130x C1 CE Control CE VOUT C2 GND RP130x Typical Application External Components Symbol C1, C2 Descriptions 0.47 µF, Ceramic Capacitor, Murata, GRM155B30J474KE18B TECHNICAL NOTES Phase Compensation In these ICs, phase compensation is made for securing stable operation even if the load current is varied. For this purpose, use a capacitor C2 with 0.47 µF or more. If a tantalum capacitor is used, and its ESR (Equivalent Series Resistance) of C2 is large, the loop oscillation may result. Because of this, select C2 carefully considering its frequency characteristics. PCB Layout Make VDD and GND lines sufficient. If their impedance is high, noise pickup or unstable operation may result. Connect a capacitor C1 with a capacitance value as much as 0.47 µF or more between VDD and GND pin, and as close as possible to the pins. Set external components, especially the output capacitor C2, as close as possible to the ICs, and make wiring as short as possible. 9 RP130x No. EA-173-230725 TYPICAL CHARACTERISTICS Typical characteristics are intended to be used as reference data, they are not guaranteed. 1) Output Voltage vs. Output Current (C1 = 0.47 µF, C2 = 0.47 µF, Ta = 25°C) RP130x121x RP130x281x RP130x501x 2) Output Voltage vs. Input Voltage (C1 = 0.47 µF, C2 = 0.47 µF, Ta = 25°C) RP130x121x RP130x281x 10 RP130x No. EA-173-230725 RP130x501x 3) Supply Current vs. Input Voltage (C1 = 0.47 µF, C2 = 0.47 µF, Ta = 25°C) RP130x121x RP130x281x RP130x501x 11 RP130x No. EA-173-230725 4) Output Voltage vs. Temperature (IOUT = 1 mA, C1 = 0.47 µF, C2 = 0.47 µF) RP130x121x RP130x281x RP130x501x 5) Supply Current vs. Temperature (IOUT = 0 mA, C1 = 0.47 µF, C2 = 0.47 µF) RP130x121x RP130x281x 12 RP130x No. EA-173-230725 RP130x501x 6) Dropout Voltage vs. Output Current (C1 = 0.47 µF, C2 = 0.47 µF) RP130x121x RP130x281x RP130x501x 13 RP130x No. EA-173-230725 7) Dropout Voltage vs. Set Output Voltage (C1 = 0.47 µF, C2 = 0.47 µF) RP130x501x 8) Ripple Rejection vs. Input Bias Voltage (C1 = none, C2 = 0.47 µF, Ripple = 0.2 Vp-p, Ta = 25°C) RP130x281x RP130x281x 9) Ripple Rejection vs. Frequency (C1 = none, C2 = 0.47 µF, Ripple = 0.2 Vp-p, Ta = 25°C) RP130x121x RP130x281x 14 RP130x No. EA-173-230725 RP130x501x 10) Input Transient Response (IOUT = 30 mA, tr = tf = 5 µs, C1 = none, C2 = 0.47 µF, Ta = 25°C) RP130x121x RP130x281x RP130x501x 15 RP130x No. EA-173-230725 11) Load Transient Response (tr = tf = 0.5 µs, C1 = 0.47 µF, C2 = 0.47 µF, IOUT = 50mA ↔ 100 mA, Ta = 25°C) RP130x121x RP130x281x RP130x501x 12) Load Transient Response (tr = tf = 0.5 µs, C1 = 0.47 µF, C2 = 0.47 µF, IOUT = 1 mA ↔ 150mA, Ta = 25°C) RP130x121x RP130x281x 16 RP130x No. EA-173-230725 RP130x501x 13) Turn On Speed with CE pin (C1 = 0.47 µF, C2 = 0.47 µF, Ta = 25°C) RP130x121x RP130x121x RP130x121x RP130x281x 17 RP130x No. EA-173-230725 RP130x281x RP130x281x RP130x501x RP130x501x RP130x501x 18 RP130x No. EA-173-230725 14) Turn Off Speed with CE pin (RP130xxx1D) (C1 = 0.47 µF, C2 = 0.47 µF, Ta = 25°C) RP130x121D RP130x121D RP130x121D RP130x281D RP130x281D RP130x281D 19 RP130x No. EA-173-230725 RP130x501D RP130x501D RP130x501D 15) Minimum Operating Voltage (C1 = 0.47 µF, C2 = 0.47 µF) Hatched area is available for 1.2 V output. 20 RP130x No. EA-173-230725 ESR vs. Output Current When using these ICs, consider the following points: The relations between IOUT (Output Current) and ESR of an output capacitor are shown below. The conditions when the white noise level is under 40 µV (Avg.) are marked as the hatched area in the graph. Measurement conditions Frequency Band : 10 Hz to 3 MHz Temperature : −40°C to 85°C C1, C2 : 0.47 µF RP130x121x RP130x281x RP130x501x 21 POWER DISSIPATION DFN(PL)1010-4 PD-DFN(PL)1010-4-(85125150)-JE-B The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51. Measurement Conditions Item Environment Board Material Board Dimensions Measurement Conditions Mounting on Board (Wind Velocity = 0 m/s) Glass Cloth Epoxy Plastic (Four-Layer Board) 76.2 mm × 114.3 mm × 0.8 mm Outer Layer (First Layer): Less than 95% of 50 mm Square Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square  0.2 mm × 21 pcs Copper Ratio Through-holes Measurement Result (Ta = 25°C, Tjmax = 125°C) Item Measurement Result Power Dissipation Thermal Resistance (ja) Thermal Characterization Parameter (ψjt) 800 mW ja = 125°C/W ψjt = 58°C/W ja: Junction-to-Ambient Thermal Resistance ψjt: Junction-to-Top Thermal Characterization Parameter 1200 1000 Power Dissipation (mW) 1000 800 800 600 400 200 0 0 25 50 75 85 100 Ambient Temperature (°C) 125 150 Power Dissipation vs. Ambient Temperature Measurement Board Pattern The above graph shows the power dissipation of the package at Tjmax = 125°C and Tjmax = 150°C. Operating the device in the hatched range might have a negative influence on its lifetime. The total hours of use and the total years of use must be limited as follows: Total Hours of Use 13,000 hours Total Years of Use (4 hours/day) 9 years i PACKAGE DIMENSIONS DFN(PL)1010-4 Ver. B DFN(PL)1010-4 Package Dimensions ∗ The tab on the bottom of the package shown by blue circle is a substrate potential (GND). It is recommended that this tab be connected to the ground plane on the board but it is possible to leave the tab floating. i POWER DISSIPATION SC-82AB Ver. A The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following conditions are used in this measurement. Measurement Conditions Item Standard Land Pattern Environment Mounting on Board (Wind Velocity = 0 m/s) Board Material Glass Cloth Epoxy Plastic (Double-Sided Board) Board Dimensions 40 mm × 40 mm × 1.6 mm Top Side: Approx. 50% Copper Ratio Bottom Side: Approx. 50% φ 0.5 mm × 44 pcs Through-holes Measurement Result (Ta = 25°C, Tjmax = 125°C) Item Standard Land Pattern Power Dissipation 380 mW Thermal Resistance (θja) θja = 263°C/W θja: Junction-to-Ambient Thermal Resistance 40 600 470 400 380 300 40 Power Dissipation (mW) 500 200 100 0 0 25 50 75 85 100 125 Ambient Temperature (°C) 150 Power Dissipation vs. Ambient Temperature Measurement Board Pattern The above graph shows the power dissipation of the package at Tjmax = 125°C and Tjmax = 150°C. Operating the device in the hatched range might have a negative influence on its lifetime. The total hours of use and the total years of use must be limited as follows: Total Hours of Use 13,000 hours Total Years of Use (4 hours/day) 9 years i PACKAGE DIMENSIONS SC-82AB Ver. A 1.3±0.2 0.9±0.1 0.3±0.1 0.3±0.1 3 +0.2 1.25-0.1 2.1±0.3 4 0 to 0.1 1 0.3±0.1 (0.7) 0.3±0.2 +0.05 1.0-0.2 2±0.2 2 0.4±0.1 +0.1 0.16-0.06 0.05 Unit : mm SC-82AB Package Dimensions i POWER DISSIPATION SOT-23-5 Ver. A The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7. Measurement Conditions Item Measurement Conditions Environment Board Material Mounting on Board (Wind Velocity = 0 m/s) Glass Cloth Epoxy Plastic (Four-Layer Board) Board Dimensions 76.2 mm × 114.3 mm × 0.8 mm Outer Layer (First Layer): Less than 95% of 50 mm Square Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square φ 0.3 mm × 7 pcs Copper Ratio Through-holes Measurement Result (Ta = 25°C, Tjmax = 125°C) Item Measurement Result Power Dissipation 660 mW Thermal Resistance (θja) θja = 150°C/W Thermal Characterization Parameter (ψjt) ψjt = 51°C/W θja: Junction-to-Ambient Thermal Resistance ψjt: Junction-to-Top Thermal Characterization Parameter 1000 900 830 Power Dissipation (mW) 800 700 600 660 500 400 300 200 100 0 0 25 50 75 85 100 125 Ambient Temperature (°C) 150 Power Dissipation vs. Ambient Temperature Measurement Board Pattern The above graph shows the power dissipation of the package at Tjmax = 125°C and Tjmax = 150°C. Operating the device in the hatched range might have a negative influence on its lifetime. The total hours of use and the total years of use must be limited as follows: Total Hours of Use Total Years of Use (4 hours/day) 13,000 hours 9 years i SOT-23-5 PACKAGE DIMENSIONS Ver. A 2.9±0.2 1.1±0.1 1.9±0.2 0.8±0.1 (0.95) 4 1 2 0~0.1 0.2min. +0.2 1.6-0.1 5 2.8±0.3 (0.95) 3 0.4±0.1 +0.1 0.15-0.05 SOT-23-5 Package Dimensions i 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to our sales representatives for the latest information thereon. The materials in this document may not be copied or otherwise reproduced in whole or in part without the prior written consent of us. This product and any technical information relating thereto are subject to complementary export controls (so-called KNOW controls) under the Foreign Exchange and Foreign Trade Law, and related politics ministerial ordinance of the law. (Note that the complementary export controls are inapplicable to any application-specific products, except rockets and pilotless aircraft, that are insusceptible to design or program changes.) Accordingly, when exporting or carrying abroad this product, follow the Foreign Exchange and Foreign Trade Control Law and its related regulations with respect to the complementary export controls. The technical information described in this document shows typical characteristics and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under our or any third party's intellectual property rights or any other rights. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death should first contact us. • Aerospace Equipment • Equipment Used in the Deep Sea • Power Generator Control Equipment (nuclear, steam, hydraulic, etc.) • Life Maintenance Medical Equipment • Fire Alarms / Intruder Detectors • Vehicle Control Equipment (automotive, airplane, railroad, ship, etc.) • Various Safety Devices • Traffic control system • Combustion equipment In case your company desires to use this product for any applications other than general electronic equipment mentioned above, make sure to contact our company in advance. Note that the important requirements mentioned in this section are not applicable to cases where operation requirements such as application conditions are confirmed by our company in writing after consultation with your company. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products. The products have been designed and tested to function within controlled environmental conditions. Do not use products under conditions that deviate from methods or applications specified in this datasheet. Failure to employ the products in the proper applications can lead to deterioration, destruction or failure of the products. We shall not be responsible for any bodily injury, fires or accident, property damage or any consequential damages resulting from misuse or misapplication of the products. Quality Warranty 8-1. Quality Warranty Period In the case of a product purchased through an authorized distributor or directly from us, the warranty period for this product shall be one (1) year after delivery to your company. For defective products that occurred during this period, we will take the quality warranty measures described in section 8-2. However, if there is an agreement on the warranty period in the basic transaction agreement, quality assurance agreement, delivery specifications, etc., it shall be followed. 8-2. Quality Warranty Remedies When it has been proved defective due to manufacturing factors as a result of defect analysis by us, we will either deliver a substitute for the defective product or refund the purchase price of the defective product. Note that such delivery or refund is sole and exclusive remedies to your company for the defective product. 8-3. Remedies after Quality Warranty Period With respect to any defect of this product found after the quality warranty period, the defect will be analyzed by us. On the basis of the defect analysis results, the scope and amounts of damage shall be determined by mutual agreement of both parties. Then we will deal with upper limit in Section 8-2. This provision is not intended to limit any legal rights of your company. Anti-radiation design is not implemented in the products described in this document. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage. Warning for handling Gallium and Arsenic (GaAs) products (Applying to GaAs MMIC, Photo Reflector). These products use Gallium (Ga) and Arsenic (As) which are specified as poisonous chemicals by law. For the prevention of a hazard, do not burn, destroy, or process chemically to make them as gas or power. When the product is disposed of, please follow the related regulation and do not mix this with general industrial waste or household waste. Please contact our sales representatives should you have any questions or comments concerning the products or the technical information. Official website https://www.nisshinbo-microdevices.co.jp/en/ Purchase information https://www.nisshinbo-microdevices.co.jp/en/buy/
RP130N501D-TR-FE 价格&库存

很抱歉,暂时无法提供与“RP130N501D-TR-FE”相匹配的价格&库存,您可以联系我们找货

免费人工找货