EAB450M12XM3
VDS
1200 V
IDS
450 A
Automotive Qualified 1200 V, 450 A All-Silicon Carbide
Conduction-Optimized, Half-Bridge Module
Technical Features
Package
80 x 53 x 19 mm
•
•
•
•
High Power Density Footprint
High Junction Temperature (175 °C) Operation
Low Inductance (6.7 nH) Design
Implements Conduction Optimized Third
Generation SiC MOSFET Technology
• Silicon Nitride Insulator and Copper Baseplate
Applications
• Motor & Traction Drives
• Vehicle Fast Chargers
• Automotive Test Equipment
System Benefits
• Terminal layout allows for direct bus bar connection without bends or bushings enabling a simple,
low inductance design.
• Isolated integrated temperature sensing enables high-level temperature protection.
• Dedicated drain Kelvin pin enables direct voltage sensing for gate driver overcurrent protection.
Maximum Parameters (Verified by Design)
Symbol
Parameter
VDS max
Drain-Source Voltage
VGS max
Gate-Source Voltage, Maximum Value
-8
+19
VGS op
Gate-Source Voltage, Recommended
Operating Value
-4
+15
Static
Typ.
Max.
450
VGS = 15 V, TC = 25 ˚C, TVJ ≤ 175 ˚C Fig. 20
DC Continuous Drain Current
ISD
DC Source-Drain Current
225
900
ISD pulsed Maximum Pulsed Source-Drain Current
900
Rev. A, 2020-10-07
EAB450M12XM3
Test Conditions
Note
-40
Transient < 100 ns
VGS = 15 V, TC = 90 ˚C, TVJ ≤ 175 ˚C
450
DC Source-Drain Current (Body Diode)
Maximum Virtual Junction
Temperature under Switching
Conditions
V
409
IDS pulsed Maximum Pulsed Drain-Source Current
TVJ op
Unit
1200
IDS
ISD BD
1
Min.
175
A
VGS = 15 V, TC = 25 ˚C, TVJ ≤ 175 ˚C
VGS = - 4 V, TC = 25 ˚C, TVJ ≤ 175 ˚C
tp max limited by TVJ op
VGS = 15 V, TC = 25 ˚C
°C
4600 Silicon Dr., Durham, NC 27703
Copyright ©2020 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, Wolfspeed®, and the Wolfspeed logo
are registered trademarks of Cree, Inc.
Fig. 32
MOSFET Characteristics (Per Position) (TVJ = 25˚C unless otherwise specified)
Symbol
Parameter
Min.
VBR DSS
Drain-Source Breakdown Voltage
1200
VGS th
Gate Threshold Voltage
IDSS
Zero Gate Voltage Drain Current
IGSS
RDS on
1.8
Typ.
2.5
3.6
5
500
Gate-Source Leakage Current
0.05
1.3
Drain-Source On-State Resistance
(MOSFET Only)
2.6
3.7
4.6
355
gfs
Transconductance
EOn
Turn-On Switching Energy, TJ = 25 °C
TJ = 125 °C
TJ = 175 °C
11.0
11.7
13.0
EOff
Turn-Off Switching Energy, TJ = 25 °C
TJ = 125 °C
TJ = 175 °C
10.1
11.3
12.1
RG int
Internal Gate Resistance
2.5
Ciss
Input Capacitance
38.0
Coss
Output Capacitance
1.5
Crss
Reverse Transfer Capacitance
90
QGS
Gate to Source Charge
355
QGD
Gate to Drain Charge
500
QG
Total Gate Charge
1330
FET Thermal Resistance, Junction to Case
0.110
RTH JC
Max.
Unit
V
μA
mΩ
S
360
mJ
Ω
nF
pF
nC
0.145
Test Conditions
Note
VGS = 0 V, TVJ = -40°C
VDS = VGS, IDS = 132 mA
VGS = 0 V, VDS = 1200 V
VGS = 15 V, VDS = 0 V
VGS = 15 V, IDS = 450 A
VGS = 15 V, IDS = 450 A, TVJ = 175 °C
VDS = 20 V, IDS = 450 A
VDS = 20 V, IDS = 450 A, TVJ = 175 °C
VDS = 600 V,
IDS = 450 A,
VGS = -4 V/15 V,
RG ext = 0.0 Ω,
L = 13.6 μH
VGS = 0 V, VDS = 800 V,
VAC = 25 mV, f = 100 kHz
Fig. 2
Fig. 3
Fig. 4
Fig. 11
Fig. 13
Fig. 9
VDS = 800 V, VGS = -4 V/15 V
IDS = 450 A
Per IEC 60747-8-4 pg. 21
°C/W
Fig. 17
Body Diode Characteristics (Per Position) (TVJ = 25˚C unless otherwise specified)
Symbol Parameter
Typ.
4.7
Max.
Unit
VSD
Body Diode Forward Voltage
tRR
Reverse Recovery Time
52
ns
QRR
Reverse Recovery Charge
6.6
IRR
Peak Reverse Recovery Current
195
μC
ERR
Reverse Recovery Energy TJ = 25 °C
TJ = 125 °C
TJ = 175 °C
0.2
1.1
1.9
Rev. A, 2020-10-07
2
Min.
EAB450M12XM3
4.2
V
A
mJ
Test Conditions
VGS = -4 V, ISD = 450 A
VGS = -4 V, ISD = 450 A, TJ = 175 °C
Note
Fig. 7
VGS = -4 V, ISD = 450 A, VDS = 600 V
di/dt = 8 A/ns, TJ = 175 °C
VDS = 600 V, IDS = 450 A,
VGS = -4 V/15 V, RG ext = 0.0 Ω,
L = 13.6 μH
4600 Silicon Dr., Durham, NC 27703
Copyright ©2020 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, Wolfspeed®, and the Wolfspeed logo
are registered trademarks of Cree, Inc.
Fig. 14
Temperature Sensor (NTC) Characteristics
Symbol Parameter
R25
∆R/R
P25
Min.
Typ.
Rated Resistance
Max.
4.7
Unit
kΩ
Tolerance of R25
±1
%
Maximum Power Dissipation
50
mW
Test Conditions
TNTC = 25 °C
Steinhart-Hart Modified Coefficients for R/T Computation:
A
B
C
D
TNTC < 25 °C
3.3540E-03
3.0013E-04
5.0852E-06
2.1877E-07
TNTC ≥ 25 °C
3.3540E-03
3.0013E-04
5.0852E-06
2.1877E-07
Module Physical Characteristics
Symbol Parameter
Min.
R3-1
Package Resistance, M1
0.72
R1-2
Package Resistance, M2
0.63
LStray
Stray Inductance
6.7
TC
Case Temperature
W
Weight
MS
Mounting Torque
Visol
Case Isolation Voltage
4.0
CTI
Comparative Tracking Index
600
-40
nH
125
Test Conditions
TC = 125 °C, Note11 & 2
TC = 125 °C, Note 1 & 2
Between Terminals 2 and 3
°C
g
3.0
4.0
2.0
4.0
5.0
N-m
kV
Baseplate, M4 bolts
Power Terminals, M5 bolts
AC, 50 Hz, 1 min
12.5
From 2 to 3, Note22
11.5
From 1 to Baseplate, Note 2
5.7
From 2 to 5, Note 2
14.7
Creepage Distance
Unit
mΩ
2.0
13.7
Note11
Note22
Max.
175
Clearance Distance
mm
From 5 to Baseplate, Note 2
From 2 to 3, Note 2
14.0
From 1 to Baseplate, Note 2
14.7
From 2 to 5, Note 2
14.3
From 5 to Baseplate, Note 2
Total effective resistance (per switch position) = MOSFET RDS(on) + switch position package resistance
Numbers reference the connections from the Schematic and Pin Out section of this document
Rev. A, 2020-10-07
3
Typ.
EAB450M12XM3
4600 Silicon Dr., Durham, NC 27703
Copyright ©2020 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, Wolfspeed®, and the Wolfspeed logo
are registered trademarks of Cree, Inc.
Typical Performance
900
700
600
Normalized On-Resistance (p.u.)
800
Drain-Source Current, IDS (A)
2.0
Conditions:
tp < 300 μs
VGS = 15 V
25 °C
-40 °C
500
400
100 °C
125 °C
150 °C
175 °C
300
200
100
0
1.8
1.0
2.0
3.0
4.0
175 °C
150 °C
1.6
125 °C
1.4
100 °C
1.2
-40 °C
1.0
0.8
0.0
Conditions:
tp < 300 μs
VGS = 15 V
5.0
25 °C
0
100
200
Figure 1. Output Characteristics for Various Junction
Temperatures
Normalized On-Resistance (p.u.)
1.8
1.6
1.4
700
Conditions:
tp < 300 μs
VGS = 15 V
ID = 450 A
1.2
1.0
0.8
0.6
0.4
0.2
0.0
-50
0
50
100
150
600
400
200
25 °C
-40 °C
100
900
800
25 °C
-40 °C
300
100 °C
125 °C
150 °C
175 °C
200
100
0
0.0
1.0
2.0
0.0
2.0
3.0
4.0
5.0
6.0
Figure 5. 3rd Quadrant Characteristic vs. Junction Temperatures at
VGS = 15 V
4
EAB450M12XM3
4.0
6.0
8.0
10.0
700
Conditions:
tp < 300 μs
VGS = 0.0 V
175 °C
150 °C
125 °C
100 °C
600
500
400
25 °C
300
-40 °C
200
100
Source-Drain Voltage, VSD (V)
Rev. A, 2020-10-07
900
Figure 4. Transfer Characteristic for Various Junction
Temperatures
600
400
800
Gate-Source Voltage, VGS (V)
Conditions:
tp < 300 μs
VGS = 15 V
500
700
300
0
200
Source-Drain Current, ISD (A)
Source-Drain Current, ISD (A)
700
600
175 °C
150 °C
125 °C
100 °C
500
Figure 3. Normalized On-State Resistance vs.
Junction Temperature
800
500
Conditions:
tp < 300 μs
VDS = 20 V
Virtual Junction Temperature, TVJ (°C)
900
400
Figure 2. Normalized On-State Resistance vs. Drain Current for Various
Junction Temperatures
Drain-Source Current, IDS (A)
2.0
300
Drain-Source Current, IDS (A)
Drain-Source Voltage, VDS (V)
0
0.0
1.0
2.0
3.0
4.0
5.0
Source-Drain Voltage, VSD (V)
Figure 6. 3rd Quadrant Characteristic vs. Junction Temperatures,
VGS = 0 V (Body Diode)
4600 Silicon Dr., Durham, NC 27703
Copyright ©2020 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, Wolfspeed®, and the Wolfspeed logo
are registered trademarks of Cree, Inc.
6.0
Typical Performance
900
100.00
Conditions:
tp < 300 μs
VGS = - 4.0 V
Source-Drain Current, ISD (A)
800
700
Conditions:
TJ = 25 °C
VAC = 25 mV
f = 100 kHz
Ciss
10.00
500
Capacitance (nF)
175 °C
150 °C
125 °C
100 °C
600
400
300
25 °C
-40 °C
200
Coss
1.00
0.10
Crss
100
0
0.0
1.0
2.0
3.0
4.0
5.0
6.0
0.01
7.0
0
Source-Drain Voltage, VSD (V)
Crss
150
Threshold Voltage, VGS th (V)
Capacitance (nF)
0.10
100
3.0
2.0
1.5
1.0
0.5
0.0
200
-50
0
100
150
200
Figure 10. Threshold Voltage vs. Junction Temperature
60
80
Conditions:
TVJ = 25 °C
VDS = 600 V
RG(ext) = 0.0 Ω
VGS = -4/+15 V
L = 13.6 µH
40
EOn + EOff
30
EOff
EOn
20
10
ERR
0
200
400
600
800
Drain-Source Current, IDS (A)
Figure 11. Switching Energy vs. Drain Current
(VDS = 600 V)
Rev. A, 2020-10-07
EAB450M12XM3
Conditions:
TVJ = 25 °C
VDS = 800 V
RG ext = 0.0 Ω
VGS = -4/+15 V
L = 13.6 µH
70
Switching Energy (mJ)
50
Switching Energy (mJ)
50
Junction Temperature, TJ (°C)
Figure 9. Typical Capacitances vs. Drain to Source Voltage
(0 - 1200 V)
5
1,200
2.5
Drain-Source Voltage, VDS (V)
0
1,000
Conditions:
VGS = VDS
IDS = 132 mA
3.5
1.00
50
800
4.0
Coss
0
600
Figure 8. Typical Capacitances vs. Drain to Source Voltage
(0 - 200 V)
Conditions:
TJ = 25 °C
VAC = 25 mV
f = 100 kHz
Ciss
10.00
0.01
400
Drain-Source Voltage, VDS (V)
Figure 7. 3rd Quadrant Characteristic vs. Junction Temperatures,
VGS = - 4 V (Body Diode)
100.00
200
1000
60
50
EOn + EOff
40
EOff
30
EOn
20
10
0
ERR
0
200
400
600
800
Drain-Source Current, IDS (A)
Figure 12. Switching Energy vs. Drain Current
(VDS = 800 V)
4600 Silicon Dr., Durham, NC 27703
Copyright ©2020 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, Wolfspeed®, and the Wolfspeed logo
are registered trademarks of Cree, Inc.
1000
Typical Performance
30
2.5
Reverse Recovery Energy, ERR (mJ)
Switching Energy (mJ)
25
20
15
EOn
EOff
10
Conditions:
IDS = 450 A, VDS =600 V
RG ext = 0.0 Ω, VGS = -4/+15 V
L = 13.6 µH
5
0
Conditions:
IDS = 450 A,
RG ext = 0.0 Ω,
VGS = -4/+15 V
L = 13.6 µH
EOn + EOff
0
50
100
150
200
2.0
1.5
ERR (VDS = 600 V)
1.0
0.5
0.0
0
50
Junction Temperature, TVJ (°C)
EOn + EOff
Conditions:
IDS = 450 A, VDS = 600 V
TVJ = 25 °C, VGS = -4/+15 V
L = 13.6 µH
0.20
60
0.15
50
EOn
40
0.10
EOff
30
20
0.05
10
0
200
Figure 14. Reverse Recovery Energy vs. Junction Temperature
Reverse Recovery Energy, ERR (mJ)
Switching Energy (mJ)
70
150
0.25
Conditions:
IDS = 450 A, VDS =600 V
TJV = 25 °C, VGS = -4/+15 V
L = 13.6 µH
80
100
Junction Temperature, TVJ (°C)
Figure 13. MOSFET Switching Energy vs. Junction Temperature
90
ERR (VDS = 800 V)
ERR
0
2
4
6
8
10
0.00
12
0
2
External Gate Resistor, RG ext (Ω)
4
6
8
10
12
External Gate Resistor, RG ext (Ω)
Figure 15. MOSFET Switching Energy vs. External Gate Resistance
Figure 16. Reserve Recovery Energy vs. External Gate Resistance
1000.00
1.0E-01
1.0E-02
1.0E-03
0.5
0.3
Drain-Source Current, IDS (A)
Transient Thermal Impedance Junction
to Case, ZTH JC (°C/W)
1.0E+00
0.1
0.05
0.02
0.01
1.0E-04
Single Pulse
1.0E-05
1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00
Time, tp (s)
Figure 17. MOSFET Junction to Case Transient Thermal Impedance,
ZTH JC (°C/W)
Rev. A, 2020-10-07
6
EAB450M12XM3
10 μs
Limited by
RDS(on)
100.00
100 μs
1 ms
100 ms
10.00
1.00
Conditions:
TC = 25 °C
D=0
Parameter: tp
0.10
0.01
0.1
1
10
100
Drain-Source Voltage, VDS (V)
Figure 18. Forward Bias Safe Operating Area (FBSOA)
4600 Silicon Dr., Durham, NC 27703
Copyright ©2020 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, Wolfspeed®, and the Wolfspeed logo
are registered trademarks of Cree, Inc.
1000
Typical Performance
600
Drain-Source DC Current, IDS (DC) (A)
1000
Drain-Source Current, IDS (A)
900
800
Chip
700
Module
600
500
400
Conditions:
TVJ = 175 °C
RG(ext) = 0.0 Ω
LStray-system = 6.0 nH
LStray-module = 6.7 nH
300
200
100
0
500
200
400
600
800
1000
Drain-Source Voltage, VDS (V)
Wirebond Limit
400
300
200
100
0
0
Conditions:
TVJ ≤ 175 °C
1200
-50
Output Current, IOut (Arms)
FET Power Dissipation, PD (W)
800
600
400
200
0
50
100
150
Case Temperature, TC (°C)
Figure 21. Maximum Power Dissipation Derating vs.
Case Temperature (Per Position)
Rev. A, 2020-10-07
7
EAB450M12XM3
200
Conditions:
VDS = 800 V
TC = 90 °C
TVJ = 175 °C
RG ext = 0.0 Ω
MF = 1
500
1000
-50
150
600
1200
0
100
Figure 20. Continuous Drain Current Derating vs.
Case Temperature
Conditions:
TVJ ≤ 175 °C
1400
50
Case Temperature, TC (°C)
Figure 19. Reverse Bias Safe Operating Area (RBSOA)
1600
0
200
400
300
200
100
0
0
20
40
60
80
Switching Frequency, FS (kHz)
Figure 22. Typical Output Current Capability vs. Switching Frequency
(Inverter Application)
4600 Silicon Dr., Durham, NC 27703
Copyright ©2020 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, Wolfspeed®, and the Wolfspeed logo
are registered trademarks of Cree, Inc.
Typical Timing Characteristics
300
250
200
700
600
td(off)
150
100
500
400
300
tr
tf
50
td(on)
200
td(on)
tr
tf
100
0
0
0
200
400
600
Source Current, IS (A)
800
1000
0
Figure 23. Timing vs. Source Current
300
150
100
tf
50
10
20
dv/dtON
dv/dtOFF
15
di/dtOFF
10
di/dtON
5
tr
td(on)
0
0
0
50
100
150
Junction Temperature, TVJ (°C)
0
200
Figure 25. Timing vs. Junction Temperature
Conditions:
TVJ = 25°C
VDD = 600 V
IS = 450 A
LStray-Bussing = 6.0 nH
16
14
12
dv/dtOFF
10
8
dv/dtON
6
di/dtOFF
4
di/dtON
2
200
400
600
Source Current, IS (A)
800
1000
Figure 26. dv/dt and di/dt vs. Source Current
30
Conditions:
IS = 450 A
VDD = 600 V
RG(ext) = 0.0 Ω
LStray-Bussing = 6.0 nH
25
di/dt (A/ns) and dv/dt (V/ns)
18
di/dt (A/ns) and dv/dt (V/ns)
4
6
8
External Gate Resistance, RG-EXT (Ω)
Conditions:
TVJ = 25°C
VDD = 600 V
RG(ext) = 0.0 Ω
LStray-Bussing = 6.0 nH
25
td(off)
di/dt (A/ns) and dv/dt (V/ns)
Time (ns)
200
2
Figure 24. Timing vs. External Gate Resistance
30
Conditions:
VDD = 600 V
IS = 450 A
RG(ext) = 0.0 Ω
VGS = -4/+15 V
250
20
dv/dtON
dv/dtOFF
15
di/dtOFF
10
di/dtON
5
0
0
0
2
4
6
8
External Gate Resistance, RG-EXT (Ω)
Figure 27. dv/dt and di/dt vs. External Gate Resistance
Rev. A, 2020-10-07
8
td(off)
Conditions:
TVJ = 25°C
VDD = 600 V
IS = 450 A
VGS = -4/+15 V
800
Time (ns)
Time (ns)
900
Conditions:
TVJ = 25°C
VDD = 600 V
RG(ext) = 0.0 Ω
VGS = -4/+15 V
EAB450M12XM3
10
0
50
100
Junction Temperature, TVJ (°C)
150
Figure 28. dv/dt and di/dt vs. Junction Temperature
4600 Silicon Dr., Durham, NC 27703
Copyright ©2020 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, Wolfspeed®, and the Wolfspeed logo
are registered trademarks of Cree, Inc.
200
Definitions
Figure 29. Turn-off Transient Definitions
Figure 30. Turn-on Transient Definitions
Figure 31. Reverse Recovery Definitions
Figure 32. VGS Transient Definitions
Rev. A, 2020-10-07
9
EAB450M12XM3
4600 Silicon Dr., Durham, NC 27703
Copyright ©2020 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, Wolfspeed®, and the Wolfspeed logo
are registered trademarks of Cree, Inc.
Schematic and Pin Out
3
4
8
5
9
1
2
3
4
5
6
7
8
9
10
11
2
6
10
7
11
1
Mid
VV+
G1
K1
G2
K2
V+ (Overcurrent)
V+ (Overcurrent)
NTC2
NTC1
PIN NUMBER DESIGNATION
Package Dimension (mm)
DIMENSION TABLE
M5x0.8mm HEX NUT x 3
MAXIMUM BOLT PENETRATION DEPTH: 5.50mm
4.50 ±0.25 X4
A2
B2
PART NUMBER
0.6
E6
D5
E1
D2
D6
C2
B1
0.6
E1
A1
D4
D1
C2
XXXXXXXXXXXX
XXXXXXXXXX
D2
SERIAL NUMBER
0.6
DIMENSION (mm)
A1
80.00
0.30
A2
53.00
0.30
A3
3.00
0.30
B1
71.75
0.30
B2
44.75
0.30
C1
12.00
0.50
C2
24.00
0.50
C3
15.75
D1
(5.50)
REF.
D2
(31.00)
REF.
D3
29.50
D4
(12.50) TYP
D5
12.50
D6
1.50
E1
(13.50)
E2
44.00
E3
2.54
E4
(0.64)
E5
18.26
E6
(17.00)
DM CODE
E3
E3
A3
E4
C1
E5
C3
D3
E2
SYMBOL
E4
Rev. A, 2020-10-07
10
EAB450M12XM3
4600 Silicon Dr., Durham, NC 27703
Copyright ©2020 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, Wolfspeed®, and the Wolfspeed logo
are registered trademarks of Cree, Inc.
TOLERANCE (mm)
0.40
0.30
REF.
0.30
0.30
REF.
0.30
0.50
REF.
0.30
REF.
Supporting Links & Tools
•
•
•
•
•
•
CGD12HBXMP: XM3 Evaluation Gate Driver
CGD12HB00D: Differential Transceiver Board for CGD12HBXMP
CRD300DA12E-XM3: 300 kW Inverter Kit for Conduction-Optimized XM3 (CPWR-AN30)
KIT-CRD-CIL12N-XM3: Dynamic Performance Evaluation Board for the XM3 Module (CPWR-AN31)
CPWR-AN28: Module Mounting Application Note
CPWR-AN29: Thermal Interface Material Application Note
Notes
• All parameters are indicative of the product as delivered.
• This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human
body nor in applications in which failure of the product could lead to death, personal injury or property damage, including
but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar
emergency medical equipment, aircraft navigation or communication or control systems, or air traffic control systems.
• The SiC MOSFET module switches at speeds beyond what is customarily associated with IGBT-based modules. Therefore, special
precautions are required to realize optimal performance. The interconnection between the gate driver and module housing
needs to be as short as possible. This will afford optimal switching time and avoid the potential for device oscillation. Also, great
care is required to insure minimum inductance between the module and DC link capacitors to avoid excessive VDS overshoot.
• This product is qualified for automotive applications by Wolfspeed standards as documented in the EAB450M12XM3 qualification
report. The product validation test procedure was completed using AQG-324 guidelines as documented.
Rev. A, 2020-10-07
11
EAB450M12XM3
4600 Silicon Dr., Durham, NC 27703
Copyright ©2020 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, Wolfspeed®, and the Wolfspeed logo
are registered trademarks of Cree, Inc.