0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
HX8632IDGKRG

HX8632IDGKRG

  • 厂商:

    HGC(汉芯半导体)

  • 封装:

    MSOP-8

  • 描述:

    6MHZ CMOS Rail-to-Rail IO Opamps运算放大器

  • 数据手册
  • 价格&库存
HX8632IDGKRG 数据手册
HX8631/HX8632/HX8634 HX8631/HX8632/HX8634 470µA, 6MHz, Rail-to-Rail I/O CMOS Operational Amplifier FEATURES PRODUCT DESCRIPTION y Low Cost y Rail-to-Rail Input and Output The HX8631(single), HX8632(dual), and HX8634 (quad) are low noise, low voltage, and low power power operational amplifiers, that can be designed into a wide range of applications. The HX8631/2/4 have a high gain-bandwidth product of 6MHz, a slew rate of 3.7V/ μs, and a quiescent current of 470μA/amplifier at 5V. 0.8mV Typical VOS y High Gain-Bandwidth Product: 6MHz y High Slew Rate: 3.7V/µs y Settling Time to 0.1% with 2V Step: 2.1µs y Overload Recovery Time: 0.9µs y Low Noise : 12 nV/ Hz y Operates on 2.5 V to 5.5V Supplies y Input Voltage Range = - 0.1 V to +5.6 V with VS = 5.5 V y Low Power The HX8631/2/4 are designed to provide optimal performance in low voltage and low noise systems. They provide rail-to-rail output swing into heavy loads. The input common-mode voltage range includes ground, and the maximum input offset voltage are 3.5mV for HX8631/2/4. They are sp ecified over the extended industrial temperature range (−40°C to +85°C). The operating range is from 2.5V to 5.5V. 470μA/Amplifier Typical Supply Current y Small Packaging HX8631 Available in SC70-5, SOT23-5 HX8632 Available in MSOP-8 and SO-8 HX8634 Available in TSSOP-16 and SO-16 The single version, HX8631, is available in SC70-5, and SOT23-5 packages. The dual version HX8632 is available in SO-8 and MSOP-8 packages. The quad PIN CONFIGURATIONS (Top View) version HX8634 is available in SO-16 and TSSOP-16 packages. HX8632 HX8631 APPLICATIONS OUT 1 -VS 2 5 8 +VS 2 7 OUT B +IN A 3 6 -IN B -VS 4 5 +IN B OUT A 1 -IN A +IN 3 Sensors Audio Active Filters A/D Converters Communications Test Equipment Cellular and Cordless Phones Laptops and PDAs Photodiode Amplification Battery-Powered Instrumentation +VS 4 -IN SOT23-5 / SC70-5 SO-8 / MSOP-8 HX8634 OUT A 16 OUT D 1 -IN A 2 15 -IND +IN A 3 14 +IND +VS 4 13 -VS +INB 5 12 +INC -INB 6 11 OUT B 7 10 NC 8 9 NC = NO CONNECT -INC OUT C NC TSSOP-16 / SO-16 深圳市汉芯半导体有限公司 http://www.hanschip.com 1 2022 JAN HX8631/HX8632/HX8634 ORDERING INFORMATION DEVICE Package Type MARKING Packing Packing Qty HX8631IDBVRG SOT23-5 C8631 REEL 3000pcs/reel HX8631IDCKRG SC70-5 C8631 REEL 3000pcs/reel HX8632IDRG SOP-8L C8632 REEL 2500pcs/reel HX8632IDGKRG MSOP-8L C8632 REEL 2500pcs/reel HX8634IDRG SOP-16L HX8634 REEL 2500pcs/reel C8634 REEL 2500pcs/reel HX8634IPWRG TSSOP-16L ABSOLUTE MAXIMUM RATINGS CAUTION Supply Voltage, V+ to V- ............................................ 7.5 V Common-Mode Input Voltage .................................... (–VS) – 0.5 V to (+VS) +0.5V Storage Temperature Range..................... –65℃ to +150℃ Junction Temperature.................................................160℃ Operating Temperature Range.................–40℃ to +85 ℃ Package Thermal Resistance @ TA = 25℃ SC70-5, θJA................................................................ 333℃/W SOT23-5, θJA.............................................................. 190℃/W SO-8, θJA......................................................................125℃/W MSOP-8, θJA.............................................................. 216℃/W SO-16, θJA..................................................................... 82℃/W TSSOP-16, θJA............................................................ 105℃/W Lead Temperature Range (Soldering 10 sec) .....................................................260℃ ESD Susceptibility HBM................................................................................1500V MM....................................................................................400V This integrated circuit can be damaged by ESD. Shengbang Micro-electronics recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. NOTES 1. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 深圳市汉芯半导体有限公司 http://www.hanschip.com 2 2022 JAN HX8631/HX8632/HX8634 ELECTRICAL CHARACTERISTICS :VS = +5V (At TA = +25℃,VCM = Vs/2, RL = 600Ω, unless otherwise noted) HX8631/2/4 PARAMETER TYP CONDITION MIN/MAX OVER TEMPERATURE +25℃ +25℃ 0℃ to 70℃ -40℃ to 85℃ UNITS MIN/ MAX 0.8 3.5 3.9 4.3 INPUT CHARACTERISTICS Input Offset Voltage (VOS) mV MAX Input Bias Current (IB) 1 pA TYP Input Offset Current (IOS) 1 pA TYP -0.1 to +5.6 V TYP dB MIN dB MIN dB MIN Common-Mode Voltage Range (VCM) VS = 5.5V Common-Mode Rejection Ratio(CMRR) VS = 5.5V, VCM = - 0.1V to 4 V 90 VS = 5.5V, VCM = - 0.1V to 5.6 V 83 Open-Loop Voltage Gain( AOL) 75 74 74 RL = 600Ω ,Vo = 0.15V to 4.85V 97 RL =10KΩ ,Vo = 0.05V to 4.95V 108 dB MIN 2.4 µV/℃ TYP RL = 600Ω 0.1 V TYP RL = 10KΩ 0.015 V Input Offset Voltage Drift (∆VOS/∆T) 90 87 86 OUTPUT CHARACTERISTICS Output Voltage Swing from Rail 53 49 45 40 mA MIN 3 Ω TYP Turn-On Time 4 µs TYP Turn-Off Time 1.2 µs TYP Output Current (IOUT) Closed-Loop Output Impedance POWER-DOWN DISABLE DISABLE F = 200KHz, G = 1 DISABLE Voltage-Off 0.8 V MAX Voltage-On 2 V MIN POWER SUPPLY Operating Voltage Range 2.5 2.5 2.5 V MIN 5.5 5.5 5.5 V MAX Power Supply Rejection Ratio (PSRR) Vs = +2.5 V to + 5.5 V VCM = (-VS) + 0.5V 91 80 78 78 dB MIN Quiescent Current/ Amplifier (IQ) IOUT = 0 470 590 660 680 µA MAX nA MAX MHz TYP Supply Current when Disabled 90 (SGM8633 only) DYNAMIC PERFORMANCE Gain-Bandwidth Product (GBP) RL = 10KΩ 6 60 Phase Margin(φO) degrees TYP Full Power Bandwidth(BWP) <1% distortion, RL = 600Ω 250 KHz TYP Slew Rate (SR) G = +1 , 2V Step, RL = 10KΩ 3.7 V/µs TYP Settling Time to 0.1%( tS) G = +1, 2 V Step, RL = 600Ω 2.1 µs TYP Overload Recovery Time VIN ·Gain = Vs, RL = 600Ω 0.9 µs TYP Voltage Noise Density (en) f = 1kHz 12 nV/ Hz TYP Current Noise Density( in) f = 1kHz 3 fA/ Hz TYP NOISE PERFORMANCE Specifications subject to change without notice. 深圳市汉芯半导体有限公司 http://www.hanschip.com 3 2022 JAN HX8631/HX8632/HX8634 TYPICAL PERFORMANCE CHARACTERISTICS At TA = +25℃,VCM = Vs/2, RL = 600Ω, unless otherwise noted. Closed-Loop Output Voltage Swing Output Impedance vs.Frequency 6 Vs = 5V VIN = 4.9VP-P TA = 25℃ RL = 10KΩ G=1 4 Vs = 5V 120 Output Impedance(Ω) 5 Output Voltage(Vp-p) 140 3 2 1 100 80 60 40 G = 100 G = 10 20 G =1 0 0 10 100 1000 Frequency(kHz) 1 10000 10 Positive Overload Recovery Vs = ±2.5V VIN = 50mV RL = 10KΩ G = 100 100 Frequency(kHz) 1000 10000 Negative Overload Recovery 2.5V 2.5V 0V 0V 0V 0V -50mV Vs = ±2.5V VIN = 50mV RL = 10KΩ G = 100 -50mV Time(2µs/div) Time(500ns/div) Large-Signal Step Response Small-Signal Step Response Vs = 5V G = +1 CL = 100pF RL = 10KΩ Voltage(1V/div) Voltage(50mV/div) Vs = 5V G = +1 CL = 100pF RL = 10KΩ Time(1µs/div) 深圳市汉芯半导体有限公司 http://www.hanschip.com Time(1µs/div) 4 2022 JAN HX8631/HX8632/HX8634 TYPICAL PERFORMANCE CHARACTERISTICS At TA = +25℃,VCM = Vs/2, RL = 600Ω, unless otherwise noted. CMRR vs.Frequency PSRR vs.Frequency 120 120 Vs = 5V Vs = 5V 100 100 CMRR(dB) PSRR(dB) 80 80 60 60 40 40 20 20 0.01 0.1 1 10 Frequency(kHz) 100 0 0.01 1000 Small-Signal Overshoot vs.Load Capacitance 1 10 Frequency(kHz) 1000 Vs = 5V RL = 10kΩ TA = 25℃ G=1 60 50 Channel Separation(dB) 140 +OS 40 -OS 30 20 10 0 VS = 5V RL = 620Ω TA = 25℃ G=1 130 120 110 100 90 1 10 100 Load Capacitance(pF) 1000 0.1 1 10 Frequency(kHz) 100 1000 PSRR vs.Temperature CMRR vs.Temperature 130 120 VS = 5.5V 110 VS = 2.5V to 5.5V 120 VCM = - 0.1V to 4 V 110 PSRR(dB) 100 CMRR(dB) 100 Channel Separation vs.Frequency 70 Small-Signal Overshoot(%) 0.1 90 100 90 80 VCM = - 0.1V to 5.6V 70 80 60 70 -50 -30 -10 10 30 50 70 Temperature(℃) 深圳市汉芯半导体有限公司 http://www.hanschip.com 90 110 130 -50 -30 -10 5 10 30 50 70 Temperature(℃) 90 110 130 2022 JAN HX8631/HX8632/HX8634 TYPICAL PERFORMANCE CHARACTERISTICS At TA = +25℃,VCM = Vs/2, RL = 600Ω, unless otherwise noted. Shutdown Current vs.Temperature 210 600 180 Shutdown Current(nA) Supply Current(μA) Supply Current vs.Temperature 650 550 500 450 VS = 2.5V 400 VS = 3V 350 VS = 5V VS = 5V 150 VS = 3V VS = 2.5V 120 90 60 30 300 250 0 -50 -30 -10 10 30 50 70 Temperature(℃) 90 110 130 -50 -30 -10 Open-Loop Gain vs.Temperature 90 110 130 Output Voltage Swing vs.Output Current 120 5 Sourcing Current RL = 10KΩ 110 Output Voltage(V) Open–Loop Gain(dB) 10 30 50 70 Temperature(℃) 100 RL = 600Ω 90 80 4 135℃ VS = 5V 3 25℃ 2 25℃ 135℃ -50℃ -50℃ 1 Sinking Current 0 70 -50 -30 -10 10 30 50 70 Temperature(℃) 90 0 110 130 10 30 40 50 60 70 80 Output Current(mA) Small-Signal Overshoot vs.Load Capacitance Output Voltage Swing vs.Output Current 3 70 Small-Signal Overshoot(%) Sourcing Current Output Voltage(V) 20 VS = 3V 2 25℃ 135℃ -50℃ 1 Sinking Current 0 0 10 20 30 40 50 深圳市汉芯半导体有限公司 50 40 +OS 30 -OS 20 10 0 60 1 Output Current(mA) http://www.hanschip.com Vs = 2.7V RL = 10kΩ TA = 25℃ G=1 60 6 10 100 Load Capacitance(pF) 1000 2022 JAN HX8631/HX8632/HX8634 TYPICAL PERFORMANCE CHARACTERISTICS At TA = +25℃,VCM = Vs/2, RL = 600Ω, unless otherwise noted. Closed-Loop Output Voltage Swing Output Impedance vs.Frequency 3 140 Vs = 2.7V 2.5 Output Voltage(Vp-p) Output Impedance(Ω) 120 100 80 60 40 G = 100 G = 10 G =1 20 2 1.5 1 0.5 0 1 10 100 1000 Frequency(kHz) Vs = 2.7V VIN = 2.6VP-P TA = 25℃ RL = 10KΩ G=1 0 10000 10 Large-Signal Step Response Voltage(50mV/div) Vs = 2.7V G = +1 CL = 100pF RL = 10KΩ Time(1µs/div) Time(1µs/div) Input Voltage Noise Spectral Density vs.Frequency Channel Separation vs.Frequency 1000 VS = 2.7V RL = 620Ω TA = 25℃ G=1 Voltage Noise(nV/√Hz) Channel Separation(dB) 140 130 10000 Small-Signal Step Response Vs = 2.7V G = +1 CL = 100pF RL = 10KΩ Voltage(500mV/div) 100 1000 Frequency(kHz) 120 110 100 Vs = 5V 100 10 1 90 0.1 1 10 100 10 1000 深圳市汉芯半导体有限公司 http://www.hanschip.com 100 1000 10000 Frequency(Hz) Frequency(kHz) 7 2022 JAN HX8631/HX8632/HX8634 TYPICAL PERFORMANCE CHARACTERISTICS At TA = +25℃,VCM = Vs/2, RL = 600Ω, unless otherwise noted. Offset Voltage Production Distribution Percent of Amplifiers(%) 50 45 40 Typical production distribution of packaged units. 35 30 25 20 15 10 5 3 2 2.5 1 1.5 0.5 0 -1 -0.5 -2 -1.5 -3 -2.5 0 Offset Voltage(mV) 深圳市汉芯半导体有限公司 http://www.hanschip.com 8 2022 JAN HX8631/HX8632/HX8634 Power-Supply Bypassing and Layout APPLICATION NOTES The HX863x family operates from either a single +2.5V to +5.5V supply or dual ±1.25V to ±2.75V supplies. For single-supply operation, bypass the power supply VDD with a 0.1µF ceramic capacitor which should be placed close to the VDD pin. For dual-supply operation, both the VDD and the VSS supplies should be bypassed to ground with separate 0.1µF ceramic capacitors. 2.2µF tantalum capacitor can be added for better performance. Driving Capacitive Loads The HX863x can directly drive 1000pF in unity-gain without oscillation. The unity-gain follower (buffer) is the most sensitive configuration to capacitive loading. Direct capacitive loading reduces the phase margin of amplifiers and this results in ringing or even oscillation. Applications that require greater capacitive drive capability should use an isolation resistor between the output and the capacitive load like the circuit in Figure 1. The isolation resistor RISO and the load capacitor CL form a zero to increase stability. The bigger the RISO resistor value, the more stable VOUT will be. Note that this method results in a loss of gain accuracy because RISO forms a voltage divider with the RLOAD. Good PC board layout techniques optimize performance by decreasing the amount of stray capacitance at the op amp’s inputs and output. To decrease stray capacitance, minimize trace lengths and widths by placing external components as close to the device as possible. Use surface-mount components whenever possible. For the operational amplifier, soldering the part to the board directly is strongly recommended. Try to keep the high frequency big current loop area small to minimize the EMI (electromagnetic interfacing). RISO HX8631 VOUT VIN CL VDD VDD Figure 1. Indirectly Driving Heavy Capacitive Load 10µF 10µF 0.1µF 0.1µF An improvement circuit is shown in Figure 2. It provides DC accuracy as well as AC stability. RF provides the DC accuracy by connecting the inverting signal with the output. CF and RIso serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier’s inverting input, thereby preserving phase margin in the overall feedback loop. Vn Vn HX8631 VOUT Vp 10µF Vp CF 0.1µF VSS(GND) RF VOUT HX8631 RISO HX8631 VIN VOUT CL VSS RL Figure 3. Amplifier with Bypass Capacitors Grounding Figure 2. Indirectly Driving Heavy Capacitive Load with DC Accuracy A ground plane layer is important for HX863x circuit design. The length of the current path speed currents in an inductive ground return will create an unwanted voltage noise. Broad ground plane areas will reduce the parasitic inductance. For no-buffer configuration, there are two others ways to increase the phase margin: (a) by increasing the amplifier’s gain or (b) by placing a capacitor in parallel with the feedback resistor to counteract the parasitic capacitance associated with inverting node. Input-to-Output Coupling To minimize capacitive coupling, the input and output signal traces should not be parallel. This helps reduce unwanted positive feedback. 深圳市汉芯半导体有限公司 http://www.hanschip.com 9 2022 JAN HX8631/HX8632/HX8634 Typical Application Circuits C Differential Amplifier The circuit shown in Figure 4 performs the difference function. If the resistors ratios are equal ( R4 / R3 = R2 / R1 ), then VOUT = ( Vp – Vn ) × R2 / R1 + Vref. VIN VOUT HX8631 R2 Vn R2 R1 R1 HX8631 R3=R1//R2 VOUT Vp R3 Figure 6. Low Pass Active Filter R4 Vref Figure 4. Differential Amplifier Instrumentation Amplifier The circuit in Figure 5 performs the same function as that in Figure 4 but with the high input impedance. R2 R1 HX8631 Vn HX8631 Vp R3 VOUT R4 HX8631 Vref Figure 5. Instrumentation Amplifier Low Pass Active Filter The low pass filter shown in Figure 6 has a DC gain of (-R2/R1) and the –3dB corner frequency is 1/2πR2C. Make sure the filter is within the bandwidth of the amplifier. The Large values of feedback resistors can couple with parasitic capacitance and cause undesired effects such as ringing or oscillation in high-speed amplifiers. Keep resistors value as low as possible and consistent with output loading consideration. 深圳市汉芯半导体有限公司 http://www.hanschip.com 10 2022 JAN HX8631/HX8632/HX8634 PACKAGE SOT23-5 Dimensions In Millimeters Symbol Min Max A 1.050 1.150 Symbol D Min 0.300 Max 0.600 A1 0.000 0.100 Q  B 2.820 3.020 a 0.400 C 2.650 2.950 b 0.950 C1 1.500 1.700 e 1.900 SC70-5 Dimensions In Millimeters 深圳市汉芯半导体有限公司 http://www.hanschip.com 11 Symbol Min Max A 0.900 1.000 Symbol D Min 0.260 Max 0.460 A1 0.000 0.100 Q  B 2.000 2.200 a 0.250 C 2.150 2.450 b 0.650 C1 1.150 1.350 e 1.300 2022 JAN HX8631/HX8632/HX8634 PACKAGE SOP8       Dimensions In Millimeters Symbol Min Max Symbol Min Max A 1.225 1.570 D   A1   Q  B    a  C    b  C1    A A2 MSOP8 D E E1 A1 e b © L 深圳市汉芯半导体有限公司 http://www.hanschip.com       0.25   12                                           2022 JAN HX8631/HX8632/HX8634 PACKAGE SOP16 Q A C1 C B D A1 a 0.25 b Dimensions In Millimeters Symbol: Min: Max: Symbol: Min: Max: A 1.225 1.570 D 0.400 0.950 A1 0.100 0.250 Q 0° 8° B 9.800 10.00 a 0.420 TYP C 5.800 6.250 b 1.270 TYP C1 3.800 4.000 TSSOP16 Dimensions In Millimeters Symbol: 深圳市汉芯半导体有限公司 http://www.hanschip.com 13 Min: Max: Symbol: Min: Max: A 0.800 1.000 D 0.400 0.850 A1 0.050 0.150 Q 0° 8° B 4.900 5.100 a 0.240 TYP C 6.250 6.550 b 0.650 TYP C1 4.300 4.500 2022 JAN HX8631/HX8632/HX8634 Important statement: Shenzhen Hanschip semiconductor co.,ltd. reserves the right to change the products and services provided without notice. Customers should obtain the latest relevant information before ordering, and verify the timeliness and accuracy of this information. Customers are responsible for complying with safety standards and taking safety measures when using our products for system design and machine manufacturing to avoid potential risks that may result in personal injury or property damage. Our products are not licensed for applications in life support, military, aerospace, etc., so we do not bear the consequences of the application of these products in these fields. Our documentation is only permitted to be copied without any tampering with the content, so we do not accept any responsibility or liability for the altered documents. 深圳市汉芯半导体有限公司 http://www.hanschip.com 14 2022 JAN
HX8632IDGKRG 价格&库存

很抱歉,暂时无法提供与“HX8632IDGKRG”相匹配的价格&库存,您可以联系我们找货

免费人工找货