U S E R MAN UAL
PAGE 1
f o r K i n e t i s C A PA C I T I V E
mikromedia 4 for Kinetis CAPACITIVE U S E R M A N U A L
Thank you for choosing Mikroe!
We present you the ultimate multimedia solution for embedded development.
Elegant on the surface, yet extremely powerful on the inside, we have designed it to inspire outstanding achievements.
And now, it’s all yours.
Enjoy premium.
Time-saving embedded tools
Ta b l e o f c o n t e n t s
Introduction
5
5.2 RF
20
1.Key microcontroller features
6
5.3 USB
21
1.1 MCU programming/debugging
8
5.4 1x26 pin headers
22
1.2 MCU reset
8
6. Sound-related peripherals
24
9
6.1 Piezo buzzer
24
2. Power supply unit
2.1 Detailed description
10
6.2 Audio CODEC
25
2.2 Voltage reference
10
6.3 Audio connectors
25
2.3 PSU connectors
11
7. Sensors and other peripherals
26
2.4 Power redundancy & UPS
14
7.1 Ambient light sensor
26
2.5 Powering up the board
14
7.2 Digital motion sensor
26
3. Capacitive display
16
7.3 IR receiver module
27
4. Data storage
18
7.4 RGB LED
27
4.1 microSD card slot
18
7.5 Temperature sensor
28
4.2 External flash storage
18
7.6 Real-time clock (RTC)
28
5. Connectivity
19
What’s next
19
5.1 Ethernet
30
mikromedia 4 for Kinetis CAPACITIVE is a compact
sensor, piezo-buzzer, battery charging functionality, SD-
development board designed as a complete solution for
Card reader, RTC, and much more, expanding its use beyond
the rapid development of multimedia and GUI-centric
the multimedia. Two standardized 1x26 pin headers expose
applications. By featuring a 4.3” capacitive touch screen
the available MCU pins to the user, adding another layer of
driven by the powerful graphics controller that can display
expandability. By using mikromedia 4 shield, connectivity
the 24-bit color palette (16.7 million colors), along with a
can be further expanded with several mikroBUS™ sockets,
DSP-powered embedded sound CODEC IC, represents a
additional connectors, peripherals, and so on.
perfect solution for any type of multimedia application.
The usability of mikromedia 4 does not end with its ability
At its core, there is a powerful 32-bit MK66FX1M0VLQ18
to accelerate the prototyping and application development
microcontroller (referred to as “host MCU” in the following
stages: it is designed as the complete solution which can
text), produced by NXP, which provides sufficient processing
be implemented directly into any project, with no additional
power for the most demanding tasks, ensuring fluid graphical
hardware modifications required. Four mounting holes
performance and glitch-free audio reproduction.
(3.2mm / 0.126”) at all four corners allow simple installation
with mounting screws. For most applications, a nice stylish
However, this development board is not limited to
casing is all that is needed to turn the mikromedia 4
multimedia-based applications only: mikromedia 4 for Kinetis
development board into a fully functional, high-performance,
CAPACITIVE (“mikromedia 4” in the following text) features
feature-rich design.
USB, Ethernet, RF connectivity options, digital motion
1. Key microcontroller features
At its core, mikromedia 4 for Kinetis CAPACITIVE uses the MK66FX1M0VLQ18 MCU.
MK66FX1M0VLQ18 is the 32-bit ARM® Cortex®-M4F core.
M CU s F E AT U RE S
unit (FPU), a complete set of DSP functions, and a memory
protection unit (MPU) for elevated application security.
/100
DMA
features include:
GPIO PORT
SDHC
∫ 1.25 MB of Flash memory
∫ 256 KB of SRAM
For the complete list of MCU features, please refer to the
MK66FX1M0VLQ18 datasheet
EXTERNAL BU
S
FLASH 1MB
ch)
2 x DAC (12-
bit)
4 x DAC (6-b
it)
2 x ADC (16-
ARM
Cortex™-M
4 x TIM (20
bit)
Floating-po
int unit
SRAM 256 KB
FlexMemory
Among many peripherals available on the host MCU, key
∫ Operating frequency up to 180 MHz
PAGE 6
JTAG & SW
ETH. MAC 10
MK64FN1M
4
SET
1 x I2S
WDG
RTC
0VDC12
POWER / RE
DSP
LS/FS
LS/FS/HS
65xxUA
UART
RT
3 x SPI
4 x I2C
2 x CAN
Figure 1: MK66FX1M0VLQ18 MCU block schematic
This MCU is produced by NXP, featuring a floating-point
mikromedia 4 for Kinetis CAPACITIVE U S E R M A N U A L
1.1 Microcontroller programming/debugging
The host MCU can be programmed and debugged over the JTAG/SWD
compatible 2x5 pin header (2), labeled as PROG/DEBUG. This header
allows an external programmer (e.g. CODEGRIP or mikroProg) to be used.
To enable the JTAG interface, SMD jumper labeled as JP4 (3) must be
populated. These jumpers are unpopulated by default, optimizing the pin
count so that more pins could be used for a large number of onboard
MC U s F E AT U RE S
modules and peripherals.
1
Programming the microcontroller can also be done by using the bootloader
which is preprogrammed into the device by default. All the informations
about the bootloader software can be found on the following page:
www.mikroe.com/mikrobootloader
PAGE 8
5
1.2 MCU reset
4
The board is equipped with the Reset button (4), which is located on the
front side of the board. It is used to generate a LOW logic level on the
3
microcontroller reset pin. The reset pin of the host MCU is also routed to
2
the pin 1 of the 1x26 pin header (5), allowing an external signal to reset
the device.
Figure 2: Front and back partial view
mikromedia 4 for Kinetis CAPACITIVE U S E R M A N U A L
2. Power supply unit
The power supply unit (PSU) provides clean and regulated
power, necessary for proper operation of the mikromedia 4
development board. The host MCU, along with the rest of the
peripherals, demands regulated and noise-free power supply.
Therefore, the PSU is carefully designed to regulate, filter,
POWE R S U P P LY
and distribute the power to all parts of mikromedia 4. It is
equipped with three different power supply inputs, offering all
the flexibility that mikromedia 4 needs, especially when used
on the field or as an integrated element of a larger system. In
the case when multiple power sources are used, an automatic
power switching circuit with predefined priorities ensures that
PAGE 9
the most appropriate will be used.
The PSU also contains a reliable and safe battery charging
circuit, which allows a single-cell Li-Po/Li-Ion battery to be
charged. Power OR-ing option is also supported, providing
an uninterrupted power supply (UPS) functionality when an
external or USB power source is used in combination with the
battery.
mikromedia 4 for Kinetis CAPACITIVE U S E R M A N U A L
Figure 3: Power supply unit view
POWE R S U P P LY
2.1 Detailed description
2.2 Voltage reference
The PSU has a very demanding task of providing power for the host MCU
The MCP1501, a high-precision buffered voltage reference from Microchip
and all the peripherals onboard, as well as for the externally connected
is used to provide a very precise voltage reference with no voltage drift. It
peripherals. One of the key requirements is to provide enough current,
can be used for various purposes: the most common uses include voltage
avoiding the voltage drop at the output. Also, the PSU must be able to
references for A/D converters, D/A converters, and comparator peripherals
support multiple power sources with different nominal voltages, allowing
on the host MCU. The MCP1501 can provide up to 20mA, limiting its use
switching between them by priority. The PSU design, based on a set of
exclusively to voltage comparator applications with high input impedance.
high-performance power switching ICs produced by Microchip, ensures a
Depending on the specific application, either 3.3V from the power rail,
very good quality of the output voltage, high current rating, and reduced
or 2.048V from the MCP1501 can be selected. An onboard SMD jumper
electromagnetic radiation.
labeled as REF SEL offers two voltage reference choices:
At the input stage of the PSU, the MIC2253, a high-efficiency boost regulator
∫ REF: 2.048V from the high-precision voltage reference IC
IC with overvoltage protection ensures that the voltage input at the next
∫ 3V3: 3.3V from the main power supply rail
stage is well-regulated and stable. It is used to boost the voltage of lowvoltage power sources (a Li-Po/Li-Ion battery and USB), allowing the next
stage to deliver well-regulated 3.3V and 5V to the development board. A set
of discrete components are used to determine if the input power source
requires a voltage boost. When multiple power sources are connected
P A G E 10
at once, this circuitry is also used to determine the input priority level:
externally connected 12V PSU, power over USB, and the Li-Po/Li-Ion battery.
The transition between available power sources is designed to provide
uninterrupted operation of the development board.
The next PSU stage uses two MCP16331, highly integrated, high-efficiency,
fixed frequency, step-down DC-DC converters, capable of providing up
to 1.2A. Each of the two buck regulators is used to supply power to the
corresponding power supply rail (3.3V and 5V), throughout the entire
development board and connected peripherals.
mikromedia 4 for Kinetis CAPACITIVE U S E R M A N U A L
2.3 PSU connectors
As explained, the advanced design of the PSU allows several types of power
sources to be used, offering unprecedented flexibility: when powered by
a Li-Po/Li-Ion battery, it offers an ultimate degree of autonomy. For
situations where the power is an issue, it can be powered by an external
12VDC power supply, connected over the 5.5mm barrel connector or over
the two-pole screw terminal. Power is not an issue even if it is powered
over the USB cable. It can be powered over the USB-C connector, using
power supply delivered by the USB HOST (i.e. personal computer), USB wall
There are three power supply connectors available, each with its unique
purpose:
∫ CN4: USB-C connector (1)
∫ TB1: Screw terminal for an external 12VDC PSU (2)
POWE R S U P P LY
adapter, or a battery power bank.
2.3.1 USB-C connector
The USB-C connector (labeled as CN4) provides power from the USB host
(typically PC), USB power bank, or USB wall adapter. When powered over the
USB connector, the available power will depend on the source capabilities.
Figure 4: Power supply connectors view
2
1
3
mikromedia 4 for Kinetis CAPACITIVE U S E R M A N U A L
P A G E 11
∫ CN6: Standard 2.5mm pitch XH battery connector (3)
Maximum power ratings, along with the allowed input voltage range in the
case when the USB power supply is used, are given in the table Figure 5:
An external 12V power supply can be connected over the 2-pole screw
USB power supply
Input Voltage [V]
MIN
4.4
terminal (labeled as TB1). When using an external power supply, it is
Output Voltage [V] Max Current [A] Max Power [W]
MAX
5.5
2.3.2 12VDC screw terminal
3.3
1.2
3.96
5
1.2
6
3.3 & 5
0.7 & 0.7
5.81
possible to obtain an optimal amount of power, since one external power
supply unit can be easily exchanged with another, while its power and
operating characteristics can be decided per application. The development
board allows a maximum current of 1.2A per power rail (3.3V and 5V) when
using an external 12V power supply. The screw terminal is a good choice
when there is no connector installed at the end of the PSU cable.
Figure 5: USB power supply table
POWE R S U P P LY
Maximum power ratings, along with the allowed input voltage range in the
When using a PC as the power source, the maximum power can be obtained
case when the external power supply is used, are given in the table Figure 6:
if the host PC supports the USB 3.2 interface, and is equipped with USB-C
connectors. If the host PC uses the USB 2.0 interface, it will be able to
External power supply
provide the least power, since only up to 500 mA (2.5W at 5V) is available
in that case. Note that when using longer USB cables or USB cables of low
quality, the voltage may drop outside the rated operating voltage range,
P A G E 12
causing unpredictable behavior of the development board.
Input Voltage [V]
MIN
MAX
10.6
14
Output Voltage [V] Max Current [A] Max Power [W]
3.3
1.2
3.96
5
1.2
6
3.3 & 5
1.2 & 1.2
9.96
Figure 6: External power supply table
NOTE
If the USB host is not equipped with the USB-C connector, a Type A to
Type C USB adapter may be used (included in the package).
When connecting an external power supply over the screw terminal,
make sure that the polarity of the wires is matched with the 12VDC
connector on the development board, according to the marked pins
of screw terminal.
mikromedia 4 for Kinetis CAPACITIVE U S E R M A N U A L
NOTE
2.3.3 Li-Po/Li-Ion XH battery connector
When powered by a single-cell Li-Po/Li-Ion battery, mikromedia 4 offers an
Maximum power ratings along with the allowed input voltage range when
option to be operated remotely. This allows complete autonomy, allowing
the battery power supply is used, are given in the table Figure 7:
it to be used in some very specific situations: hazardous environments,
agricultural applications, etc.
a range of single-cell Li-Po and Li-Ion batteries to be used. The PSU of
Input Voltage [V]
MIN
MAX
3.5
4.2
Output Voltage [V] Max Current [A] Max Power [W]
3.3
1.2
3.96
5
1.1
5.5
3.3 & 5
0.6 & 0.6
4.98
mikromedia 4 offers the battery charging functionality, from both the USB
connector and the 12VDC/external power supply. The battery charging
circuitry of the PSU manages the battery charging process, allowing the
optimal charging conditions and longer battery life. The charging process
is indicated by BATT LED indicator, located on the front of mikromedia 4.
The PSU module also includes the battery charger circuit. Depending on the
operational status of the mikromedia 4 development board, the charging
current can be either set to 100mA or 500mA. When the development
Figure 7: Battery power supply table
POWE R S U P P LY
The battery connector is a standard 2.5mm pitch XH connector. It allows
Battery power supply
board is powered OFF, the charger IC will allocate all available power for the
battery charging purpose. This results in faster charging, with the charging
charging current will be set to approximately 100 mA, reducing the overall
power consumption to a reasonable level.
NOTE
Using low-quality USB hubs, and too long or low-quality USB cables,
may cause a significant USB voltage drop, which can obstruct the
battery charging process.
mikromedia 4 for Kinetis CAPACITIVE U S E R M A N U A L
P A G E 13
current set to approximately 500mA. While powered ON, the available
2.4 Power redundancy and
uninterrupted power supply (UPS)
The PSU module supports power supply redundancy: it will automatically
switch to the most appropriate power source if one of the power sources
fails or becomes disconnected. The power supply redundancy also allows
for an uninterrupted operation (i.e. UPS functionality, the battery will still
provide power if the USB cable is removed, without resetting mikromedia 4
P A G E 14
POWE R S U P P LY
during the transition period).
2.5 Powering up the
mikromedia 4 board
After a valid power supply source is connected (1) in our case with a singlecell Li-Po/Li-Ion battery, mikromedia 4 can be powered ON. This can be
done by a small switch at the edge of the board, labeled as SW1 (2). By
switching it ON, the PSU module will be enabled, and the power will be
distributed throughout the board. A LED indicator labeled as PWR indicates
that the mikromedia 4 is powered ON.
mikromedia 4 for Kinetis CAPACITIVE U S E R M A N U A L
P A G E 15
POWE R S U P P LY
2
1
Figure 8: Battery power supply connection
mikromedia 4 for Kinetis CAPACITIVE U S E R M A N U A L
3. Capacitive display
A high-quality 4.3” TFT true-color display with a capacitive
with the host controller. This advanced multi-touch panel
touch panel is the most distinctive feature of the mikromedia 4.
controller supports gestures, including zoom and swipe in all
The display has a resolution of 480 by 272 pixels, and it can
four directions.
C APACIT IVE D ISP LAY
display up to 16.7M of colors (24-bit color depth). The display
of mikromedia 4 features a reasonably high contrast ratio
Equipped with high-quality 4.3” display (2) and the multi-
of 500:1, thanks to 10 high-brightness LEDs used for the
touch controller that supports gestures, mikromedia 4
backlighting.
represents a very powerful hardware environment for
building various GUI-centric Human Machine Interface (HMI)
The display module is controlled by the SSD1963 (1) graphics
applications.
driver IC from Solomon Systech. This is a powerful graphics
coprocessor, equipped with 1215KB of frame buffer memory.
It also includes some advanced features such as the hardware
P A G E 16
accelerated display rotation, display mirroring, hardware
windowing, dynamic backlight control, programmable color
and brightness control, and more.
The capacitive multi-touch panel, based on the FT5216 CTP
controller, allows the development of interactive applications,
offering a touch-driven control interface. The touch panel
controller uses the I2C interface for the communication
mikromedia 4 for Kinetis CAPACITIVE U S E R M A N U A L
2
1
Figure 9: Display and SSD1963 view
Figure 10: MicroSD card slot view
P A G E 18
DATA STO RAGE
4. Data storage
The mikromedia 4 development board is equipped with two
types of storage memory: with a microSD card slot and a
Flash memory module.
2
1
4.1 microSD card slot
4.2 External flash storage
The microSD card slot (1) allows storing large amounts of data externally,
on a microSD memory card. It uses the Secure digital input/output
interface (SDIO) for communication with the MCU. The microSD card
detection circuit is also provided on the board. The microSD card is the
smallest SD Card version, measuring only 5 x 11 mm. Despite its small
size, it allows tremendous amounts of data to be stored on it. In order to
read and write to the SD Card, a proper software/firmware running on the
host MCU is required.
mikromedia 4 is equipped with the SST26VF064B Flash memory (2). The
Flash memory module has a density of 64 Mbits. Its storage cells are
arranged in 8-bit words, resulting in 8Mb of non-volatile memory in total,
available for various applications. The most distinctive features of the
SST26VF064B Flash module are its high speed, very high endurance, and
very good data retention period. It can withstand up to 100,000 cycles, and
it can preserve the stored information for more than 100 years. It also uses
the SPI interface for the communication with the MCU.
mikromedia 4 for Kinetis CAPACITIVE U S E R M A N U A L
5. Connectivity
mikromedia 4 offers a huge number of connectivity options.
It allows mikromedia 4 to connect to an Ethernet network over its shield as
It includes support for the Ethernet, RF and USB (HOST/
TX and RX lines are routed to the 1x26 pin headers (2). mikromedia 4 is
DEVICE). Besides those options, it also offers two 1x26 pin
equipped with two LED indicators, which are located on the front side. They
are used to signal status and data traffic.
headers, which are used to directly access the MCU pins.
5.1 Ethernet
frame formats, loopback modes support, auto-negotiation, automatic
polarity detection and correction, link status change wake-up detection,
vendor specific register functions, support for the reduced pin count RMII
interface, and much more.
mikromedia 4 for Kinetis CAPACITIVE U S E R M A N U A L
1
Figure 11: 1x26 pins-header view
P A G E 19
Ethernet is a popular computer networking technology for local area
networks (LAN). Systems communicating over Ethernet divide a stream of
data into individual packets, known as frames. Each frame contains source
and destination addresses and error-checking data so that damaged data
can be detected and re-transmitted. This makes the Ethernet protocol very
popular for communication over longer distances or in noisy environments.
The host MCU features an integrated Ethernet peripheral module, which
contains the entire communication stack on-chip. The physical layer is
provided by the LAN8720A (1), an RMII 10/100 Mbit Ethernet PHY IC from
Microchip. This IC has many useful features, including flexPWR® technology
with a flexible power management architecture and a support for various
low-power modes, compliance with ISO 802-3/IEEE and IEEE802.3/802.3u
2
5.2 RF
mikromedia 4 offers communication over the world-wide ISM radio band.
The ISM band covers a frequency range between 2.4GHz and 2.4835GHz.
This frequency band is reserved for industrial, scientific, and medical use
(hence the ISM abbreviation). In addition, it is globally available, making it
a perfect alternative to WiFi, when the M2M communication over a short
distance is required.
mikromedia 4 uses the nRF24L01+ (1), a single-chip 2.4GHz transceiver
CO N N E CT IVIT Y
with an embedded baseband protocol engine, produced by Nordic
Semiconductors. It is a perfect solution for ultra-low power wireless
applications. This transceiver relies on the GFSK modulation, allowing data
rates in the range from 250 kbps, up to 2 Mbps. The GFSK modulation
is the most efficient RF signal modulation scheme, reducing the required
bandwidth, thus wasting less power. The nRF24L01+ also features a
proprietary Enhanced ShockBurst™, a packet-based data link layer.
Besides other functionalities, it offers a 6-channel MultiCeiver™ feature,
which allows using the nRF24L01+ in a star network topology. The
P A G E 20
nRF24L01+ uses the SPI interface to communicate with the host MCU.
Along the SPI lines, it uses additional GPIO pins for the SPI Chip Select,
Chip Enable, and for the interrupt. The RF section of the mikromedia 4
also features a small chip antenna (2), reducing the need for additional
hardware components.
2
1
mikromedia 4 for Kinetis CAPACITIVE U S E R M A N U A L
5.3 USB
The host MCU is equipped with the USB peripheral module, allowing
simple USB connectivity. USB (Universal Serial Bus) is a very popular
industry standard that defines cables, connectors, and protocols used
for communication and power supply between computers and other
devices. mikromedia 4 supports USB as HOST/DEVICE modes, allowing
the development of a wide range of various USB-based applications. It
is equipped with the USB-C connector, which offers many advantages,
compared to earlier types of USB connectors (symmetrical design, higher
CO N N E CT IVIT Y
current rating, compact size, etc).
The USB mode selection is done using a monolithic controller IC. This IC
provides Configuration Channel (CC) detection and indication functions.
To set up mikromedia 4 as the USB HOST, the USB PSW pin should be set to
a LOW logic level (0) by the MCU. If set to a HIGH logic level (1), mikromedia 4 acts
3
mikromedia 4 for Kinetis CAPACITIVE U S E R M A N U A L
USB-C connector (3) for the attached DEVICE. The USB PSW pin is driven
by the host MCU, allowing the software to control the USB mode.
The USB ID pin is used to detect the type of the device attached to the USB
P A G E 21
Figure 12: RF and WiFi view
as a DEVICE. While in HOST mode, mikromedia 4 provides power over the
port, according to the USB OTG specifications: the USB ID pin connected to
GND indicates a HOST device, while the USB ID pin set to a high impedance
state (HI-Z) indicates that the connected peripheral is a DEVICE.
When mikromedia 4 is working in USB HOST mode, it must not be
mounted to another USB HOST (such as PC).
NOTE
5.4 1x26 pin headers
Most of the host MCU pins are routed to the two 1x26 pin headers (1), making them available for further connectivity. In addition to MCU pins, some
additional peripheral pins are also routed to this header.
Besides the ability to connect various external devices and peripherals by using wire jumpers, these pins also allow using shields with the additional
mikroBUS™ sockets. This allows mikromedia 4 to be interfaced with a huge base of different Click boards™ adding many different functionalities and options,
including motor drivers, buck/boost converters, sensors, and much more. For the complete list of all the Click boards™ in our offer, please visit the following
PCO
RONGRAMMIN
N E CT IVIT YG
link: www.mikroe.com/click
5V pwr.
Ground
Analog
GPIO
SPI2
P A G E 22
CAN
SPI1
ETH
3.3V pwr.
Ground
5V
GND
PTB2
PTB3
PTB4
PTB5
PTB6
PTB7
PTC19
PTA2
PTB20
PTB21
PTB23
PTB22
PTB25
PTB24
PTB10
PTB11
PTB17
PTB16
TX-N
TX-P
RX-N
RX-P
3.3V
GND
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
PWM
Interrupt
I2C
UART
Analog lines
RST
3.3V
L
R
L
R
PTE7
PTE8
PTE11
PTE12
PTA10
PTA11
PTC5
PTC6
PTC7
PTC8
PTC10
PTC11
PTC14
PTC15
PTC3
PTC4
PTB0
PTB1
GND
VDC
Reset
3.3V pwr.
Audio OUT
Audio IN
PWM
INTERRUPT
I2C1
UART4
UART3
I2C0
Ground
VCC-EXT
SPI
Figure 13: 1x26 pin header view
mikromedia 4 for Kinetis CAPACITIVE U S E R M A N U A L
P A G E 23
CO N N E CT IVIT Y
1
Figure 14: mikromedia 4 back view
mikromedia 4 for Kinetis CAPACITIVE U S E R M A N U A L
1
6. Sound-related peripherals
By offering a pair of sound-related peripherals, mikromedia 4
rounds-up its multimedia concept. It features a piezo-buzzer,
which is extremely easy to program but can produce only the
simplest sounds, useful only for alarms or notifications.
The second audio option is the powerful VS1053B IC (1). It is
AU D IO
an Ogg Vorbis/MP3/AAC/WMA/FLAC/WAV/MIDI audio decoder,
and a PCM/IMA ADPCM/Ogg Vorbis encoder, both on a single
chip. It features a powerful DSP core, high-quality A/D and
2
D/A converters, stereo headphones driver capable of driving
a 30Ω load, zero-cross detection with the smooth volume
P A G E 24
change, bass and treble controls, and much more.
6.1 Piezo buzzer
A piezo buzzer (2) is a simple device capable of reproducing sound. It
is driven by a small pre-biased transistor. The buzzer can be driven by
applying a PWM signal from the MCU at the base of the transistor: the
pitch of the sound depends on the frequency of the PWM signal, while the
volume can be controlled by changing its duty cycle. Since it is very easy to
program, it can be very useful for simple alarms, notifications, and other
types of simple sound signalization.
Figure 15: mikromedia 4 back view
mikromedia 4 for Kinetis CAPACITIVE U S E R M A N U A L
decode audio streams independently while performing DSP-related tasks
in parallel. The VS1053B has several key features that make this IC very
popular choice when it comes to audio processing.
By offering high-quality hardware compression (encoding), the VS1053B
allows the audio to be recorded taking up much less space compared to
the same audio information in its raw format. In combination with highquality ADCs and DACs, headphones driver, integrated audio equalizer,
volume control, and more, it represents an all-around solution for any
type of audio application. Along with the powerful graphics processor, the
VS1053B audio processor completely rounds-up the multimedia aspects
6.3 Audio connectors
AU D IO
of the mikromedia 4 development board.
The mikromedia 4 board is equipped with the 3.5mm four-pole headphones
jack (3), allowing to connect a headset with a microphone. Two line-level
5
4
1
3
The microphone input from the 3.5mm four-pole headset jack is
multiplexed with two line-level audio inputs. By using an SMD jumper (5)
6.2 Audio CODEC
Resource-demanding and complex audio processing tasks can be
offloaded from the host MCU by utilizing a dedicated audio CODEC IC,
labeled as VS1053B (1). This IC supports many different audio formats,
commonly found on various digital audio devices. It can encode and
mikromedia 4 for Kinetis CAPACITIVE U S E R M A N U A L
located near the headphone jack, it is possible to select which audio input
will be used by the VS1053B. The choices are:
LIN: two line-level inputs form the 1x26 pin header
MIC: electret microphone, connected over the 3.5mm headphone jack
P A G E 25
audio outputs are also available over the 1x26 pin header (4).
7. Sensors and other peripherals
A set of additional onboard sensors and devices adds yet
Figure 16: mikromedia 4 partial front view
another layer of usability to the mikromedia 4 development
OTHE R P E RIP HE RALS
board.
7.1 Ambient light sensor
An ambient light sensor (ALS) (1) can be used for dimming the screen
intensity in low-light conditions, allowing for the lower power consumption.
It can also be used to detect the proximity and turn on the screen or
increase its brightness when the user approaches. The ALS sensor on the
mikromedia 7 can be utilized in many ways. The LTR-329ALS-01 sensor
uses the I2C interface to communicate with the host MCU.
P A G E 26
7.2 Digital motion sensor
The FXOS8700CQ, an advanced integrated 3-axis accelerometer and 3-axis
magnetometer, can detect many different motion-related events, including the
orientation event detection, freefall detection, shock detection, as well as tap,
and double-tap event detection. These events can be reported to the host MCU
over two dedicated interrupt pins, while the data transfer is performed over the
I2C communication interface. The FXOS8700CQ sensor can be very useful for
display orientation detection. It can also be used to turn mikromedia 4 into a
complete 6-axis e-compass solution. The I2C slave address can be changed by
4
3
1
using two SMD jumpers grouped under the ADDR SEL label (2).
mikromedia 4 for Kinetis CAPACITIVE U S E R M A N U A L
7.4 RGB LED
Figure 17: mikromedia 4 partial back view
2
mikromedia 4 for Kinetis CAPACITIVE U S E R M A N U A L
A high-brightness RGB LED (4) option can be used to provide visual feedback
in a very simple way. There are three pre-biased bipolar transistors on
each of the RGB LED segments (red, blue, and green), allowing them to be
individualy dimmed by PWM pins of the host MCU. Thanks to its reasonably
low power consumption compared to a TFT display, RGB LED can be used
in many situations when only simple visual feedback is required (e.g.
signaling that the application is in the Stand-By mode)
P A G E 27
An infrared (IR) receiver (3) with the integrated PIN diode and a
demodulation section allows simple control over an IR remote controller
to be implemented. Thanks to the integrated demodulation section,
the captured IR signal from the remote controller can be directly used
by the host MCU. The TSOP6238 IR receiver module allows very simple
implementation of the IR remote control option, for any application.
OTHE R P E RIP HE RALS
7.3 IR receiver module
7.5 Temperature sensor
The MCP9700A, an integrated low-power linear active thermistor allows
measurement of the ambient temperature. This sensor provides an analog
voltage which changes linearly with the applied temperature. This voltage
can be sampled by the A/D converter on the host MCU, making it available
for various user applications. The MCP9700A can measure the temperature
within the range from -40°C to +125°C, but the actual measurement range
is limited by the thermal endurance of the mikromedia 4 board itself.
OTHE R P E RIP HE RALS
Nevertheless, having a thermal sensor on board is very useful, allowing the
development of thermal monitoring applications, weather stations, and
similar.
DEVELOPMENT
7.6 Real-time clock (RTC)
OF MULTIMEDIA
The host MCU contains a real-time clock peripheral module (RTC). The
AND GUI-CENTRIC
RTC peripheral uses a separate power supply source, typically a battery. To
allow continuous tracking of time, mikromedia 4 is equipped with a button
P A G E 28
RAPID
cell battery that maintains RTC functionality even if the main power supply
is OFF. Extremely low power consumption of the RTC peripheral allows
these batteries to last very long. The mikromedia 4 development board is
equipped with the button cell battery holder, compatible with the CR1216,
APPLICATIONS
CR1220 and CR1225 button cell battery types, allowing it to include a real
time clock within the applications.
mikromedia 4 for Kinetis CAPACITIVE U S E R M A N U A L
What’s Next?
You have now completed the journey through each and every feature of mikromedia 4 for Kinetis CAPACITIVE development board.
You got to know its modules and organization. Now you are ready to start using your new board. We are suggesting several steps
which are probably the best way to begin.
1 COMPILERS
3 COMMUNITY
Easy programming, clean interface, powerful debugging, great support - our
compilers come in three different flavors: mikroC PRO for ARM, mikroBASIC
PRO for ARM and mikroPASCAL PRO for ARM, offering a complete rapid
embedded development solution for these 3 major programming languages.
www.mikroe.com/compilers/compilers-arm
We invite you to join thousands of users of Mikroe development tools. You will
find useful projects and tutorials and get help from a large user community.
If you want to download free projects and libraries, or share your own code,
please visit the Libstock website. With user profiles, you can get to know other
programmers, and subscribe to receive notifications on their code.
www.libstock.mikroe.com
2 PROJECTS
4 SUPPORT
Once you have chosen your compiler, and since you already got the board, you
are ready to start writing your first projects. We have equipped our compilers
with dozens of examples that demonstrate the use of each and every feature
of the mikromedia 4 for Kinetis CAPACITIVE development board. This makes an
excellent starting point for future custom projects. Just load the example, read
well commented code, and see how it works on hardware.
Mikroe offers free Tech Support to the end of its life span, so if anything goes
wrong, we are ready and willing to help. We know how important it is to be able
to rely on someone in the moments when we are stuck with our projects for
any reason, or facing a deadline. This is why our Support Department, as one
of the pillars upon which our company is based, now also offers the Premium
Technical Support to business users, ensuring even shorter time-frame for
solutions. www.mikroe.com/support
DISCLAIMER
All the products owned by MikroElektronika are protected by copyright law and international copyright treaty. Therefore, this manual is to be treated as any other copyright
material. No part of this manual, including product and software described herein, must be reproduced, stored in a retrieval system, translated or transmitted in any form or
by any means, without the prior written permission of MikroElektronika. The manual PDF edition can be printed for private or local use, but not for distribution. Any modification
of this manual is prohibited.
MikroElektronika provides this manual ‘as is’ without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties or conditions of
merchantability or fitness for a particular purpose.
MikroElektronika shall assume no responsibility or liability for any errors, omissions and inaccuracies that may appear in this manual. In no event shall MikroElektronika, its
directors, officers, employees or distributors be liable for any indirect, specific, incidental or consequential damages (including damages for loss of business profits and
business information, business interruption or any other pecuniary loss) arising out of the use of this manual or product, even if MikroElektronika has been advised of the
possibility of such damages. MikroElektronika reserves the right to change information contained in this manual at any time without prior notice, if necessary.
HIGH RISK ACTIVITIES
The products of MikroElektronika are not fault – tolerant nor designed, manufactured or intended for use or resale as on – line control equipment in hazardous
environments requiring fail – safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life
support machines or weapons systems in which the failure of Software could lead directly to death, personal injury or severe physical or environmental damage (‘High
Risk Activities’). MikroElektronika and its suppliers specifically disclaim any expressed or implied warranty of fitness for High Risk Activities.
TRADEMARKS
The MikroElektronika name and logo, the MikroElektronika logo, mikroC, mikroBasic, mikroPascal, mikroProg, mikromedia, Fusion, Click boards™ and mikroBUS™ are trademarks
of MikroElektronika. All other trademarks mentioned herein are property of their respective companies.
All other product and corporate names appearing in this manual may or may not be registered trademarks or copyrights of their respective companies, and are only used for
identification or explanation and to the owners’ benefit, with no intent to infringe.
Copyright © MikroElektronika, 2019, All Rights Reserved.
S U IT E
Time-saving embedded tools
mikromedia 4 for Kinetis CAPACITIVE
Manual (8. generacija)
3 5 0 0 0 0 0 2 4 7 5 3 7
If you want to learn more about our products, please visit our website at www.mikroe.com
If you are experiencing some problems with any of our products or just need additional information,
please place your ticket at www.mikroe.com/support
If you have any questions, comments or business proposals, do not hesitate to contact us at office@mikroe.com