AS3722
Multi-Phase DCDC Controller PMIC
General Description
The AS3722 is a compact System PMU supporting up to 20 high
current rails.
The device offers advanced power management functions. All
necessary ICs and peripherals in a battery powered mobile
device are supplied by the AS3722. It features 4 DCDC buck
converters as well as 11 low noise LDOs. The different regulated
supply voltages are programmable via the serial control
interface. 3-4MHz operation with 0.47uH coils is reducing cost
and PCB space.
AS3722 further features 3 DCDC buck controller which are ideal
to support processor currents ranging from 5A up to 32A
depending on the used power stages. The multi-phase
topology operating on 3MHz ensures fast load transient
responses and reduces the footprint for external components.
The single supply voltage may vary from 2.7V to 5.5V.
Ordering Information and Content Guide appear at end of
datasheet.
Key Benefits & Features
The benefits and features of AS3722, Multi-Phase DCDC
Controller PMIC are listed below:
Figure 1:
Added Value of Using AS3722
Benefits
Features
• Compact design due to small coils for IO and
memory voltage generation
• 4 DCDC step down regulators (3-4MHz)
• Output (0.6V-3.35V; 1x5A, 1x2A, 2x1.5A)
• High current generation with external power
stages to minimize PMIC power dissipation
• 3 DCDC step down controller
• DVM (0.6V-1.5V; 1x6A, 1x12A, 1x24A)
• Multiple independent voltage rails for general
purpose IO supplies
• 11 universal LDOs
• 9x universal IO range(0.8-3.3V; 0.3A)
• 1x low output range (0.6-1.5V; 0.3A)
• 1x extended input range (0.8-1.2V; 0.3A)
• Ultra low-power oscillator and no external caps
needed
• RTC
•
•
•
•
ams Datasheet
[v1-01] 2015-Sep-07
1μA total power consumption
Programmable alarm
Auto wake-up, repeating alarms
32kHz output to peripherals
Page 1
Document Feedback
AS3722 − General Description
Benefits
Features
• Safe supervision in HW which works also without
a processor
• Supervisor with interrupt generation and
selectable warning levels
• Automatic battery monitoring
• Automatic temperature monitoring
• Automatic over-current monitoring
• Power supply supervision for DCDC
• Flexible multi-purpose IOs for general control
tasks
• General Purpose IOs
• ADC input
• Wake-up/stand-by input
• PWM input/output
• Low battery and power good status
• Enables the processor to check the actual system
state in detail
• ADC with internal and external sources
• Flexible and fast adaptation to different
processors/applications
• OTP programmable Boot and Power-down
sequence
• Power saving control according to the processor
needs
• Stand-by function with programmable sequence
and voltages
• Self-contained start-up and control for single and
multi-cell battery applications. Safety shutdown
feature
• Control Interface
• I2C/SPI control lines with watchdog
• ONKEY with 4/8s emergency shut-down
• POR with RESET I/O
• 5V pre-regulator enable
• Dedicated packages for specific applications.
Optimization for PCB cost or size
• Package
• 124-pin CTBGA (8x8mm), 0.5mm pitch
• 108-pin WL-CSP (4.8x3.6mm), 0.4mm pitch
Applications
The device is suitable for:
• Mobile Phones
• Tablet PCs
• NetBooks
• Portable Media Players
• Portable Navigation Devices
• Mobile Internet Devices
Page 2
Document Feedback
ams Datasheet
[v1-01] 2015-Sep-07
220k
LDO0
1.7V input
Overtemp
Protection
VIN_LDO3_4
VIN_LDO3_SW
1.7V input
AS3722
1.7V input
LDO2
PMOS_1
0.8-3.3V
300mA
LDO4
LDO4
VIN_LDO2_5_7
PMOS_1
0.8-3.3V
150mA
2.2uF
LDO5
1.7V input
PMOS_1
0.8-3.3V
300mA
LDO5
2.2uF
LDO7
1.7V input
PMOS_1
0.8-3.3V
300mA
LDO7
2.2uF
VIN_LDO9_10
VIN_LDO0
2.2uF
1.7V input
PMOS_1
0.8-3.3V
300mA
LDO9
2.2uF
1.7V input
PMOS_1
0.8-3.3V
300mA
LDO10
2.2uF
2.2uF
0.6V-1.5V
DCDC6
1.7V input
PMOS_1
0.8-3.3V
300mA
LDO11
0v40
2.2uF
FB_SD6 (diff)
CTRL2_SD6
CTRL1_SD6
TEMP1/2_SD6
Voltage
Monitor
ADC
SCSB
ENABLE3_SDO
SDA/SDI
SCL/SCLK
GPIO7
GPIO6
GPIO5
SPI/I2C
Output:
VSUPlow, PWRGOOD,
PWM, INT, OSC32K
PWM_CLK1
GPIO4
(SD0 & SD6)
PWM_DAT1
GPIO3
PWM_CLK2_ADC1
GPIO2
VBACKUP
Charger
Interrupt
(OTP)
VBAT_BKUP
Input:
ADC, INT, wtdg,
Stand-by, REGenable
RTC
&
Alarm
Reset
Watchdog
Standby
Control
General Purpose
0.6V-3.3V
0.7-1.5A
DCDC5
0.6V-3.3V
0.7-1.5A
DCDC4
0.6V-3.3V
1.2-2A
DCDC3
0.6V-3.3V
1.5-4A (5A)
GPIO0
XIN32
GPIO1
DCDC2
VSUP_GPIO
VDD_GPIO_lv
VSSA
GNDSENSE
GPIO
FB_SD0 (diff)
1µF
0.6V-1.5V
CTRL1_SD0
V2_5
XOUT32
1uH
1uH
1uH
VSS_SD5
FB_SD5
LX_SD5
1uH
VSUP_SD5
VSS_SD4
FB_SD4
LX_SD4
VSUP_SD4
PVSS_SD3
FB_SD3
LX_SD3
VSUP_SD3
VSS_SD2
FB_SD2
LX_SD2
VSUP_SD2
FB_SD1 (diff)
CTRL2_SD1
CTRL1_SD1
TEMP1_SD1
CTRL2_SD0
CREF
100nF
CTRL3_SD0
RBIAS
DCDC1
CTRL5_SD0
0.6V-1.5V
CTRL4_SD0
CTRL6_SD0
DCDC0
CTRL7_SD0
CTRL8_SD0
TEMP1_SD0
TEMP2_SD0
VSUP_ANA
VBAT
OC_PG
LID
AC_OK
THERM
EN5V
TEMP3_SD0
Boot ROM
1.7V input
LDO3
SW
350mOhm
LDO2
2.2uF
LDO9
TEMP4_SD0
PWM
control
1.7V input
PMOS
0.6-1.5V
300mA
(0.6-1.5V)
2.2uF
LDO10
ENABLE2
System
Control
&
References
1.15V input
LDO3
2.2uF
NMOS
0.6-1.0V
100mA
VIN_LDO3_LV
LDO3
VIN_LDO3_4
LDO6
(1.7-5.5V)
2.2uF
LDO3
PMOS_1
0.8-3.3V
300mA
(1.2-3.3V)
2.2uF
VIN_LDO11
ENABLE1
XINT
XRES_OUT
XRES_IN
ONKEY
VIN_LDO1_6
LDO1
LDO1
PMOS_1
0.8-3.3V
300mA
LDO6
PWM_DAT2_ADC2
LDO0
bypass
NMOS_1
0.8-1.2V
300mA
2.2uF
lv_mode
2.2uF
DCDC1/6
tracking
LDO11
2.2uF
sw_mode
2.2uF
CLK32K
10uF
2.2uF
10uF
2.2uF
22uF
2.2uF
33uF
2.2uF
max. 2 sub die
(2 phases)
max. 4 sub dies
(8 phases)
ams Datasheet
[v1-01] 2015-Sep-07
max. 1 sub die
(2 phases)
2.2uF
AS3722 − General Description
Block Diagram
The functional blocks of this device are shown below:
Figure 2:
AS3722 Block Diagram (CTBGA)
Block Diagram: Shows the main function blocks of the AS3722 including basic external components.
Page 3
Document Feedback
220k
LDO0
1.7V input
Overtemp
Protection
1.7V input
2.2uF
1.7V input
PMOS_1
0.8-3.3V
300mA
LDO5
LDO5
VIN_LDO3_4
VIN_LDO3_SW
AS3722
(:/CSP)
1.7V input
LDO2
PMOS_1
0.8-3.3V
300mA
LDO4
LDO4
VIN_LDO2_5_7
PMOS_1
0.8-3.3V
150mA
2.2uF
LDO7
1.7V input
PMOS_1
0.8-3.3V
300mA
LDO7
2.2uF
VIN_LDO9_10
VIN_LDO0
2.2uF
1.7V input
PMOS_1
0.8-3.3V
300mA
LDO9
2.2uF
1.7V input
PMOS_!
0.8-3.3V
300mA
LDO10
2.2uF
2.2uF
0.6V-1.5V
DCDC6
1.7V input
PMOS_1
0.8-3.3V
300mA
LDO11
0v40
2.2uF
FB_SD6 (diff)
CTRL2_SD6
CTRL1_SD6
TEMP1/2_SD6
GPIO
Voltage
Monitor
ADC
SCSB
ENABLE3_SDO
SDA/SDI
SCL/SCLK
GPIO7
GPIO6
GPIO5
GPIO4
SPI/I2C
Output:
VSUPlow, PWRGOOD,
PWM, INT, OSC32K
PWM_CLK1
GPIO3
(SD0 & SD6)
PWM_DAT1
GPIO2
PWM_CLK2_ADC1
Input:
ADC, INT, wtdg,
Stand-by, REGenable
VBACKUP
Charger
Interrupt
(OTP)
RTC
&
Alarm
Reset
Watchdog
Standby
Control
General Purpose
0.6V-3.3V
0.7-1.5A
DCDC5
0.6V-3.3V
0.7-1.5A
DCDC4
0.6V-3.3V
1.2-2A
DCDC3
0.6V-3.3V
1.5-4A (5A)
GPIO0
VBAT_BKUP
GPIO1
DCDC2
VSUP_GPIO
VDD_GPIO_lv
VSSA
0.6V-1.5V
FB_SD0 (diff)
XIN32
1uH
1uH
1uH
VSS_SD5
FB_SD5
LX_SD5
1uH
VSUP_SD5
VSS_SD4
FB_SD4
LX_SD4
VSUP_SD4
PVSS_SD3
FB_SD3
LX_SD3
VSUP_SD3
VSS_SD2
FB_SD2
LX_SD2
VSUP_SD2
FB_SD1 (diff)
CTRL2_SD1
CTRL1_SD1
TEMP1_SD1
CTRL1_SD0
V2_5
DCDC1
CTRL2_SD0
CTRL3_SD0
CREF
GNDSENSE
1μF
100nF
CTRL5_SD0
0.6V-1.5V
CTRL4_SD0
CTRL6_SD0
DCDC0
CTRL7_SD0
CTRL8_SD0
TEMP1_SD0
TEMP2_SD0
RBIAS
VSUP_ANA
VBAT
OC_PG
LID
AC_OK
THERM
EN5V
TEMP3_SD0
Boot ROM
1.7V input
LDO3
SW
350mOhm
LDO2
2.2uF
LDO9
TEMP4_SD0
PWM
control
1.7V input
PMOS
0.6-1.5V
300mA
(0.6-1.5V)
2.2uF
LDO10
ENABLE2
System
Control
&
References
1.15V input
LDO3
2.2uF
NMOS
0.6-1.0V
100mA
VIN_LDO3_LV
LDO3
VIN_LDO3_4
LDO6
(1.7-5.5V)
LDO3
PMOS_1
0.8-3.3V
300mA
(1.2-3.3V)
2.2uF
XOUT32
2.2uF
VIN_LDO11
ENABLE1
XINT
XRES_OUT
XRES_IN
ONKEY
VIN_LDO1_6
LDO1
LDO1
PMOS_1
0.8-3.3V
300mA
bypass
LDO0
LDO6
PWM_DAT2_ADC2
NMOS_1
0.8-1.2V
300mA
2.2uF
lv_mode
2.2uF
DCDC1/6
tracking
LDO11
2.2uF
sw_mode
2.2uF
CLK32K
10uF
2.2uF
10uF
2.2uF
22uF
2.2uF
33uF
2.2uF
max. 2 sub die
(2 phases)
max. 4 sub dies
(8 phases)
Page 4
Document Feedback
max. 1 sub die
(2 phases)
2.2uF
AS3722 − General Description
Figure 3:
AS3722 Block Diagram (WL-CSP)
Block Diagram: Shows the main function blocks of the AS3722 in WL-CSP package.
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Pin Assignment
Pin Assignment
Figure 4:
Pin Assignment (CTBGA124)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
A
VSSA
LDO4
VIN_
LDO3_
4
VIN_
LDO3_
SW
LDO9
VIN_
LDO9_
10
LDO6
VIN_
LDO1_
6
LDO2
LDO5
LDO7
VIN_
LDO2_
5_7
LDO0
VSSA
B
VIN_
LDO11
GPIO4
GPIO6
LDO11
VIN_
LDO3_
LV
LDO3
LDO10
LDO1
ONKEY
PWM_
CLK2_
ADC1
PWM_
DAT2_
ADC2
C
XINT
GPIO5
D
CLK
32K
GPIO7
E
OC_PG
ENABLE
3_SDO
GPIO3
F
VSS_
GPIO
VDD_
GPIO_
LV
SDA_
SDI
G
XIN32K
XOUT
32K
SCL_
SCLK
GPIO1
H
VSUP_
ANA
V2_5
VBAT_
BKUP
SCSB
J
FB_SD
5
RBIAS
CREF
K
FB_SD
2
FB_SD
3
GND
SENSE
L
VSUP_
SD3
VSUP_
SD3
M
LX_
SD3
LX_
SD3
N
LX_
SD3
P
VSSA
VSS_
SD3
GPIO2
GPIO0
LID
VSSA
VSSA
XRES_
OUT
EN5V
VBAT
THERM
CTRL1
_SD6
CTRL2
_SD6
CTRL1
_SD1
CTRL2
_SD1
ENABL
E2
CTRL1
_SD0
CTRL2
_SD0
FB_
SD6_P
CTRL3
_SD0
CTRL4
_SD0
FB_
SD1_P
FB_
SD6_N
CTRL5
_SD0
CTRL6
_SD0
FB_
SD1_N
FB_
SD0_P
CTRL7
_SD0
CTRL8
_SD0
FB_
SD0_N
TEMP2
_SD0
TEMP
1_SD0
TEMP4
_SD0
TEMP3
_SD0
TEMP
_SD1
TEMP2
_SD6
TEMP
1_SD6
VSS_
SD4
VSS_
SD4
PWM_
CLK1
PWM_
DAT1
ENABL
E1
XRES_
IN
AC_OK
VIN_
LDO0
VSUP_
GPIO
FB_SD
4
VSS_
SD3
VSS_
SD2
LX_
SD2
VSUP_
SD2
LX_
SD2
VSS_
SD2
VSS_
SD5
LX_
SD5
VSUP_
SD5
VSUP_
SD4
VSS_
SD3
VSS_
SD2
LX_
SD2
VSUP_
SD2
LX_
SD2
VSS_
SD2
VSS_
SD5
LX_
SD5
VSUP_
SD5
VSUP_
SD4
LX_
SD4
LX_
SD4
VSSA
Pin Assignment: Shows the top view pin assignment of the AS3722 in the CTBGA124.
ams Datasheet
[v1-01] 2015-Sep-07
Page 5
Document Feedback
AS3722 − Pin Assignment
Figure 5:
Ball Assignment (WL-CSP108)
1
2
3
4
5
6
7
8
9
10
11
12
A
PWM_
DAT2_
ADC1
ONKEY
LDO7
LDO5
LDO6
LDO1
LDO9
LDO3
LDO4
GPIO0
GPIO5
XINT
B
PWM_
CLK2_
ADC1
THERM
VIN_LDO
0
VIN_LDO
2_5_7
LDO2
VIN_LDO
1_6
VIN_LDO
9_10
VIN_LDO
3_SW
VIN_LDO
11
GPIO4
CLK32K
GPIO7
C
CTRL1_
SD6
ENABLE
1
XRES_IN
LDO0
PWM_
DAT1
PWM_
CLK1
VIN_LDO
3_LV
LDO11
GPIO3
VSUP_
GPIO
OC_PG
SCL_
SCLK
D
CTRL2_
SD6
CTRL1_
SD1
ENABLE2
AC_OK
CTRL2_
SD1
LDO10
VIN_LDO
3_4
GPIO2
VBAT
VDD_
GPIO_LV
SDA_SDI
V2_5
E
CTRL5_
SD0
CTRL2_
SD0
CTRL1_
SD0
CTRL3_
SD0
CTRL4_
SD0
VSSA
GPIO1
EN5V
XOUT
32K
XIN32K
CREF
VSUP_
ANA
F
TEMP2_
SD0
CTRL6_
SD0
VSUP_
GPIO
TEMP1_
SD0
TEMP3_
SD0
FB_SD0_
P
GPIO6
XRES_
OUT
VSSA
FB_SD5
RBIAS
FB_SD2
G
FB_SD6
_N
FB_SD6
_P
TEMP_
SD1
FB_SD1_
P
FB_SD1
_N
VSSA
VSSA
LX_SD2
LX_SD2
FB_SD3
VSS_
SD3
VSS_
SD3
H
TEMP1_
SD6
FB_SD4
FB_SD0_
N
VSUP_
SD4_5
LX_SD5
VSS_
SD5
VSS_
SD2
VSUP_
SD2
LX_SD2
VSS_
SD2
LX_SD3
VSUP_
SD3
J
TEMP2_
SD6
VSS_
SD4
LX_SD4
VSUP_
SD4_5
LX_SD5
VSS_
SD5
VSS_
SD2
VSUP_
SD2
LX_SD2
VSS_
SD2
LX_SD3
VSUP_
SD3
Ball Assignment: Shows the top view pin assignment of the AS3722 in the WL-CSP108.
Page 6
Document Feedback
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Pin Assignment
Pin Description
Figure 6:
Pin Description
Pin Number
Pin Name
I/O
Description
Maximum
Voltage
If Not Used
CTBGA
WL-CSP
F4
D11
SDA_SDI
DI
SPI digital input in SPI
mode; Data IO in I2C mode.
VSUP
Open
G4
C12
SCL_SCLK
DI
SPI clock input in SPI mode;
SCK input in I2C mode.
VSUP
Open
E2
ENABLE3_SDO
DIO
SPI digital output in SPI
mode
VSUP
Define level
H6
SCSB
DI
SPI chip-select in SPI mode;
connect to VSS in I2C mode.
VSUP
VSS
B14
B3
VIN_LDO0
S
Supply pad for LDOs
5.5V
Mandatory
A8
B6
VIN_LDO1_6
S
Supply pad for LDOs
5.5V
Mandatory
A6
B7
VIN_LDO9_10
S
Supply pad for LDOs
5.5V
Mandatory
A3
D7
VIN_LDO3_4
S
Supply pad for LDOs
5.5V
Mandatory
A12
B4
VIN_LDO2_5_7
S
Supply pad for LDOs
5.5V
Mandatory
A4
B8
VIN_LDO3_SW
S
Supply pad for LDO3 switch
function
3.6V
Mandatory
B1
B9
VIN_LDO11
S
Supply pad for LDOs
5.5V
Mandatory
A13
C4
LDO0
AO
Output voltage of LDO NMOS_0.6
VIN_LDO0
Open
B9
A6
LDO1
AO
Output voltage of LDO PMOS_1
VIN_LDO1_
6
Open
A9
B5
LDO2
AO
Output voltage of LDO PMOS_1
VIN_LDO2_
5_7
Open
B6
C7
VIN_LDO3_LV
S
3.6V
Open
A2
A9
LDO4
AO
Output voltage of LDO PMOS_0.6
VIN_LDO3_
4
Open
A10
A4
LDO5
AO
Output voltage of LDO PMOS_0.6
VIN_LDO2_
5_7
Open
A7
A5
LDO6
AO
Output voltage of LDO PMOS_0.6
VIN_LDO1_
6
Open
A11
A3
LDO7
AO
Output voltage of LDO PMOS_0.6
VIN_LDO2_
5_7
Open
ams Datasheet
[v1-01] 2015-Sep-07
Supply pad for LDO3 NMOS
function
Page 7
Document Feedback
AS3722 − Pin Assignment
Pin Number
Pin Name
I/O
Description
Maximum
Voltage
If Not Used
CTBGA
WL-CSP
B7
A8
LDO3
AO
Output voltage of LDO PMOS_1
VIN_LDO8
Open
A5
A7
LDO9
AO
Output voltage of LDO PMOS_1
VIN_LDO9_
10
Open
B8
D6
LDO10
AO
Output voltage of LDO PMOS_1
VIN_LDO9_
10
Open
B5
C8
LDO11
AO
Output voltage of LDO PMOS_1
VIN_LDO11
Open
B10
A2
ONKEY
DI
Input pin to startup (no
pullup/pull down)
5.5V
Define level
F8
C2
ENABLE1
DI
Input pin for transition into
and out of deep-sleep
mode
VSUP
Define level
E11
D3
ENABLE2
DI
Input pin for control of
DCDC0
VSUP
Define level
D8
B2
THERM
DI
Input pin for thermal event
5.5V
Define level
J8
C3
XRES_IN
DI
Input pin for reset during
active and stand-by state
VSUP
Define level
L5
F8
XRES_OUT
DO
Push pull to VDD_GPIO_lv
VSUP
Open
L8
D4
AC_OK
DI
Pin to indicate, that the AC
adaptor is present
5.5V
Define level
LID
DI
Input pin to indicates LID
status of Device
5.5V
Define level
D7
C1
A12
XINT
DO
Push-Pull or open drain
output for interrupt
detection
VSUP
Open
L9
C10, F3
VSUP_GPIO
S
Supply pin for GPIOs
(connect to other VSUP
pins)
5.5V
Mandatory
F2
D10
VDD_GPIO_lv
S
Supply pin for GPIOs
(connect to typical 1.8V or
3.3)
VSUP
Mandatory
VSS_GPIO
AIO
Analog GND input
-
Mandatory
F1
D6
A10
GPIO0
DIO
General purpose
input/output pin
VSUP
Open
G6
E7
GPIO1
DIO
General purpose
input/output pin
VSUP
Open
Page 8
Document Feedback
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Pin Assignment
Pin Number
Pin Name
I/O
Description
Maximum
Voltage
If Not Used
CTBGA
WL-CSP
D5
D8
GPIO2
DIO
General purpose
input/output pin
VSUP
Open
E4
C9
GPIO3
DIO
General purpose
input/output pin
VSUP
Open
B3
B10
GPIO4
DIO
General purpose
input/output pin
VSUP
Open
C2
A11
GPIO5
DIO
General purpose
input/output pin
VSUP
Open
B4
F7
GPIO6
DIO
General purpose
input/output pin
VSUP
Open
D2
B12
GPIO7
DIO
General purpose
input/output pin
VSUP
Open
H2
D12
V2_5
AO
Output voltage of low
power LDO V2_5
3.6V
Mandatory
J4
E11
CREF
AIO
Bypass capacitor for the
internal voltage reference;
connect 100nF
V2_5
Mandatory
J2
F11
RBIAS
AIO
External resistor; always
connect a resistor of 220kΩ
(±1%) to VSSA
V2_5
Mandatory
VBAT_BKUP
AIO
Backup battery input
3.6V
Open
H4
A1
G7
VSSA
AIO
Analog GND input
-
Mandatory
A14
G6
VSSA
AIO
Analog GND input
-
Mandatory
J7
E6
VSSA
AIO
Analog GND input
-
Mandatory
P1
F9
VSSA
AIO
Analog GND input
-
Mandatory
P14
VSSA
AIO
Analog GND input
-
Mandatory
F7
VSSA
AIO
Analog GND input
-
Mandatory
D1
B11
CLK32K
DO
32kHz clk output push/pull
to VDD_GPIO_lv
VSUP
Open
G1
E10
XIN32K
AIO
Connect to 32kHz crystal
oscillator
V2_5
Open
G2
E9
XOUT32K
AIO
Connect to 32kHz crystal
oscillator
V2_5
Open
GNDSENSE
AIO
Analog sense GND input
(connect to VSSA on
WL-CSP)
-
Mandatory
K4
ams Datasheet
[v1-01] 2015-Sep-07
Page 9
Document Feedback
AS3722 − Pin Assignment
Pin Number
Pin Name
I/O
Maximum
Voltage
If Not Used
Digital Output open drain
to indicate over-current/
power_good
VSUP
Open
Description
CTBGA
WL-CSP
E1
C11
OC_PG
DO
H1
E12
VSUP_ANA
S
System supply voltage
input (connect to other
VSUP pins)
5.5V
Mandatory
S
System supply voltage
input of Stepdown2
(connect to other VSUP
pins)
5.5V
Mandatory
5.5V
Mandatory
N6
H8
VSUP_SD2
P6
J8
VSUP_SD2
S
System supply voltage
input of Stepdown2
(connect to other VSUP
pins)
N5
G8
LX_SD2
AIO
LX node of Stepdown2
VSUP
Open
N7
G9
LX_SD2
AIO
LX node of Stepdown2
VSUP
Open
P5
H9
LX_SD2
AIO
LX node of Stepdown2
VSUP
Open
P7
J9
LX_SD2
AIO
LX node of Stepdown2
VSUP
Open
N4
H7
VSS_SD2
AIO
Power GND pin of
Stepdown2
-
Mandatory
N8
J7
VSS_SD2
AIO
Power GND pin of
Stepdown2
-
Mandatory
P4
H10
VSS_SD2
AIO
Power GND pin of
Stepdown2
-
Mandatory
P8
J10
VSS_SD2
AIO
Power GND pin of
Stepdown2
-
Mandatory
K1
F12
FB_SD2
AIO
Analog Feedback pin of SD2
3.6V
Open
S
System supply voltage
input of Stepdown3
(connect to other VSUP
pins)
5.5V
Mandatory
5.5V
Mandatory
L1
H12
VSUP_SD3
L2
J12
VSUP_SD3
S
System supply voltage
input of Stepdown3
(connect to other VSUP
pins)
M1
H11
LX_SD3
AIO
LX node of Stepdown3
VSUP
Open
M2
J11
LX_SD3
AIO
LX node of Stepdown3
VSUP
Open
LX_SD3
AIO
LX node of Stepdown3
VSUP
Open
N1
Page 10
Document Feedback
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Pin Assignment
Pin Number
Pin Name
I/O
Description
Maximum
Voltage
If Not Used
CTBGA
WL-CSP
N3
G11
VSS_SD3
AIO
Power GND pin of
Stepdown3
-
Mandatory
P2
G12
VSS_SD3
AIO
Power GND pin of
Stepdown3
-
Mandatory
VSS_SD3
AIO
Power GND pin of
Stepdown3
-
Mandatory
FB_SD3
AIO
Analog Feedback pin of SD3
3.6V
Open
S
System supply voltage
input of Stepdown4
(connect to other VSUP
pins)
5.5V
Mandatory
System supply voltage
input of Stepdown4
(connect to other VSUP
pins)
5.5V
Mandatory
P3
K2
N12
G10
H4
VSUP_SD4
P12
J4
VSUP_SD4
S
L10
H2
FB_SD4
AIO
Analog Feedback pin of SD4
3.6V
Open
N14
J3
LX_SD4
AIO
LX node of Stepdown4
VSUP
Open
LX_SD4
AIO
LX node of Stepdown4
VSUP
Open
VSS_SD4
AIO
Power GND pin of
Stepdown4
-
Mandatory
VSS_SD4
AIO
Power GND pin of
Stepdown4
-
Mandatory
S
System supply voltage
input of Stepdown5
(connect to other VSUP
pins)
5.5V
Mandatory
System supply voltage
input of Stepdown5
(connect to other VSUP
pins)
5.5V
Mandatory
P13
M13
J2
M14
N11
H4
VSUP_SD5
P11
J4
VSUP_SD5
S
J1
F10
FB_SD5
AIO
Analog Feedback pin of SD5
3.6V
Open
N10
H5
LX_SD5
AIO
LX node of Stepdown5
VSUP
Open
P10
J5
LX_SD5
AIO
LX node of Stepdown5
VSUP
Open
P9
H6
VSS_SD5
AIO
Power GND pin of
Stepdown5
-
Mandatory
N9
J6
VSS_SD5
AIO
Power GND pin of
Stepdown5
-
Mandatory
H11
F6
FB_SD0_P
AIO
Positive Feedback of SD0
3.6V
Open
ams Datasheet
[v1-01] 2015-Sep-07
Page 11
Document Feedback
AS3722 − Pin Assignment
Pin Number
Pin Name
I/O
Description
Maximum
Voltage
If Not Used
CTBGA
WL-CSP
J11
H3
FB_SD0_N
AIO
Negative Feedback of SD0
3.6V
Open
E13
E3
CTRL1_SD0
AIO
Bidirectional control pin of
SD0, phase 1
VSUP
Open
E14
E2
CTRL2_SD0
AIO
Bidirectional control pin of
SD0, phase 2
VSUP
Open
F13
E4
CTRL3_SD0
AIO
Bidirectional control pin of
SD0, phase 3
VSUP
Open
F14
E5
CTRL4_SD0
AIO
Bidirectional control pin of
SD0, phase 4
VSUP
Open
G13
E1
CTRL5_SD0
AIO
Bidirectional control pin of
SD0, phase 5
VSUP
Open
G14
F2
CTRL6_SD0
AIO
Bidirectional control pin of
SD0, phase 6
VSUP
Open
H13
CTRL7_SD0
AIO
Bidirectional control pin of
SD0, phase 7
VSUP
Open
H14
CTRL8_SD0
AIO
Bidirectional control pin of
SD0, phase 8
VSUP
Open
J14
F4
TEMP1_SD0
AIO
Temperature control pin of
subdie1 for SD0
VSUP
Open
J13
F1
TEMP2_SD0
AIO
Temperature control pin of
subdie2 for SD0
VSUP
Open
K13
F5
TEMP3_SD0
AIO
Temperature control pin of
subdie3 for SD0
VSUP
Open
TEMP4_SD0
AIO
Temperature control pin of
subdie4 for SD0
VSUP
Open
K11
G9
G4
FB_SD1_P
AIO
Positive Feedback of SD1
3.6V
Open
H9
G5
FB_SD1_N
AIO
Negative Feedback of SD1
3.6V
Open
D13
D2
CTRL1_SD1
AIO
Bidirectional control pin of
SD1, phase 1
VSUP
Open
D14
D5
CTRL2_SD1
AIO
Bidirectional control pin of
SD1, phase 2
VSUP
Open
Page 12
Document Feedback
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Pin Assignment
Pin Number
Pin Name
I/O
Description
Maximum
Voltage
If Not Used
CTBGA
WL-CSP
K14
G3
TEMP_SD1
AIO
Temperature control pin of
subdie1 for SD1
VSUP
Open
F11
G2
FB_SD6_P
AIO
Positive Feedback of SD6
3.6V
Open
G11
G1
FB_SD6_N
AIO
Negative Feedback of SD6
3.6V
Open
C13
C1
CTRL1_SD6
AIO
Bidirectional control pin of
SD6, phase 1
VSUP
Open
C14
D1
CTRL2_SD6
AIO
Bidirectional control pin of
SD6, phase 2
VSUP
Open
L14
H1
TEMP1_SD6
AIO
Temperature control pin of
subdie1 for SD6
VSUP
Open
L13
J1
TEMP2_SD6
AIO
Temperature control pin of
subdie2 for SD6
VSUP
Open
D9
C6
PWM_CLK1
DI
PWM input pin for DVM
control of SD0
VSUP
Define level
D10
C5
PWM_DAT1
DI
PWM input pin for DVM
control of SD0
VSUP
Define level
B11
B1
PWM_CLK2_
ADC1
DI
PWM input pin for DVM
control of SD6 or ADC input
pin
VSUP
Define level
B12
A1
PWM_DAT2_
ADC2
DI
PWM input pin for DVM
control of SD6 or ADC input
pin
VSUP
Define level
L7
D9
VBAT
S
High Voltage Supply pin for
RTC, and voltage detection
30V
Connect to
VSUP
L6
E8
EN5V
DO
Enable pin for external 5V
HV stepdown to supply
VSUP rails
V2_5
Open
Pin Description: This table shows the pin description for the CTBGA as well as the WL-CSP package including
information of the I/O type, protection and handling if the function block is not used.
ams Datasheet
[v1-01] 2015-Sep-07
Page 13
Document Feedback
AS3722 − Absolute Maximum Ratings
Absolute Maximum Ratings
Stresses beyond those listed in Absolute Maximum Ratings may
cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any
other conditions beyond those indicated in Electrical
Characteristics is not implied. Exposure to absolute maximum
rating conditions for periods may affect device reliability.
Figure 7:
Absolute Maximum Ratings
Symbol
Parameter
Min
Max
Units
Comments
Electrical Parameters
Supply Voltage to Ground
30V pins
Supply Voltage to Ground
5V pins
ISCR
-0.5
-0.5
32
7.0
V
Applicable for pin VBAT
V
Applicable for pins
VSUP_SDx, VSUP_ANA,
ONKEY, VSUP_GPIO,
VIN_LDOx, LDO6 (switch
mode), THERM, AC_OK, LID
5V pins with protection to
VSUP
-0.5
VSUP_x
V
Applicable for pins
SCL_SCLK, SDA_SDI, SCSB,
SDO, XINT, VDD_GPIO_LV,
GPIOx, CLK32K, OC_PG,
LX_SDx, CTRLx,
XRES_IN/OUT, ENABLEx,
PWMx
Supply Voltage to Ground
3V pins
-0.5
5.0
V
Applicable for pins V2_5,
VBAT_BKUP,
VIN_LDO3_LV/SW
3V pins with protection to
VIN_LDOx
-0.5
5.0 or
VIN_LDOx
V
Applicable for pins LDOx
3V pins with protection to
VSUP
-0.5
5.0 or
VSUP_x
V
Applicable for pins TEMPx,
FB_SDx
3V pins with protection to
V2_5
-0.5
V2_5
V
Applicable for pins CREF,
RBIAS, XIN32K, XOUT32K,
EN5V
Voltage Difference
between Ground
Terminals
-0.3
0.3
V
Applicable for pins VSSx,
VSSA, GNDSENSE
Input Current (latch-up
immunity)
-100
100
mA
Page 14
Document Feedback
Norm: JEDEC JESD78
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Absolute Maximum Ratings
Symbol
Parameter
Min
Max
Units
Comments
Continuous Power Dissipation (TA = 70°C)
PT
Continuous power
dissipation
1.4
W
PT(1) for CTBGA124 package
(RTHJA ~ 38K/W)
PT
Continuous power
dissipation
1.3
W
PT(1) for WL-CSP108 package
(RTHJA ~ 40K/W)
kV
Norm:
JEDEC JESD22-A114F
Electrostatic Discharge
ESDHBM
Electrostatic Discharge
HBM
±1.5
Temperature Ranges and Storage Conditions
TA
Operating Temperature
TJ
Junction Temperature
TSTRG
Storage Temperature
Range
TBODY
Package Body
Temperature
RHNC
Relative Humidity
non-condensing
MSL
-40
-55
5
85
°C
125
°C
125
°C
260
°C
85
%
Norm IPC/JEDEC
J-STD-020(2)
3
for CTBGA, represents a
max. floor life time of 168h
1
for WL-CSP, represents an
unlimited max. floor life
time
Moisture Sensitivity Level
Bump Temperature (CTBGA Soldering)
TPEAK
235
245
°C
Peak Temperature
30
45
s
Well Time above 217°C
Soldering Profile
tWELL
Note(s) and/or Footnote(s):
1. Depending on actual PCB layout and PCB used
2. The reflow peak soldering temperature (body temperature) is specified according IPC/JEDEC J-STD-020 “Moisture/Reflow Sensitivity
Classification for Nonhermetic Solid State Surface Mount Devices”
ams Datasheet
[v1-01] 2015-Sep-07
Page 15
Document Feedback
AS3722 − Electrical Characteristics
Electrical Characteristics
All limits are guaranteed. The parameters with min and max
values are guaranteed with production tests or SQC (Statistical
Quality Control) methods.
Figure 8:
Electrical Characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
VBAT
Battery Voltage
2.5
3.6
30
V
VSUPx
Supply Voltage
2.5
3.6
5.5
V
VBAT_BKUP
Backup-Battery
Voltage
2.5
3
3.6
V
VDD_GPIO_lv
Alternative GPIO
Supply Voltage
1.7
1.8
3.6
V
VINLDO0
Supply Voltage for
LDO0
1.15
3.6
5.5
V
VINLDO1-11
Supply Voltage for
LDO1 to LDO11
1.7
3.6
5.5
V
VINLDO3_LV
Supply Voltage for
LDO3 NMOS
1.2
3.6V
V
VINLDO3_SW
Supply Voltage for
LDO3 switch
0.6
1.5V
V
Voltage on Pin V2_5
2.4
2.6
V
V2_5
2.5
Iquiescent
Quiescent current
@ VSUPx = 3.8V, no
regulator enabled only
V2_5 on, digital part,
bias and references
running
Ilow_power1
Low Power current
as above but,
low_power=1
265
μA
Ilow_power2
Low Power current
As above, but
low_power=1; clk_div=1
160
μA
Ipower_off
Power-Off current
All regulators off
V2_5 on
10
μA
Page 16
Document Feedback
310
μA
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Electrical Characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
Digital Input Pin Characteristics
VIL
Low Level input
voltage
ONKEY, XRES_IN
–0.3
0.4
V
VIH
High Level input
XRES_IN, ENABLEx
1.4
VVSUP_
V
VIH_noprot
High Level input
ONKEY, THERM, AC_OK,
LID
1.4
5.5V
V
0.2 x
VVDD_G
V
GPIO
Digital Output Pin Characteristics
XRES_OUT
Low-Level Output
Voltage
XRES_OUT; XINT, OC_PG
at 2.0mA
XRES_OUT
High-Level Output
Voltage
XRES_OUT; XINT (if on
push pull mode),
OC_PG, SDO
at -1.0mA
VOL_EN5V
Low-Level Output
Voltage
EN_5V
at 0.1mA
VOH_EN5V
High-Level Output
Voltage
EN_5V
at -0.1mA
ILEAKAGE
Leakage current
high impedance
RPULLUP
Internal pull-up to
VDD_GPIO_lv
XINT=2V,
VDD_GPIO_LV=3V
(XINT in open-drain
mode)
VOL
VOH
ams Datasheet
[v1-01] 2015-Sep-07
PIO_lv
0.8 x
VVDD_GPIO_
V
lv
0.2 x
VV2_5
0.8 x VV2_5
33
V
V
10
μA
91
kΩ
Page 17
Document Feedback
AS3722 − Electrical Characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
-0.3
0.4
V
1.4
VVDD_G
PIO_lv or
VVSUP_
V
GPIO Pin Characteristics
VIL
VIH
Low level input
voltage
High level input
voltage
digital input
digital input
GPIO
VOL
Low level output
voltage
0.2 x
VVDD_G
PIO_lv or
VVSUP_
GPIO, IOL=+2mA; digital
output
V
GPIO
VOH
High level output
voltage
GPIO, IOH=–1mA; digital
push-pull output
0.8
xVVDD_GPIO
_lv or
VVSUP_GPIO
VVDD_G
PIO_lv or
VVSUP_
V
GPIO
μA
ILEAKAGE
Leakage current
high impedance
Rpull-up
Pull-up resistance
if enabled;
VSUP_GPIO=3.6V
300
kΩ
Pull-down resistance
if enabled;
VSUP_GPIO=3.6V
300
kΩ
NMOS resistance
VSUP_GPIO>=3.3V
Rpull-down
RNMOS
10
50
Ω
Electrical Characteristics: VSUPx=+2.7V...+5.5V, TA = -40ºC...85ºC. Typical values are at VSUPx=+3.6V, TA= 25ºC,
unless otherwise specified.
Page 18
Document Feedback
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Typical Operating Characteristics
Typical Operating
Characteristics
ams Datasheet
[v1-01] 2015-Sep-07
This page is intentionally left blank.
Page 19
Document Feedback
AS3722 − Detailed Descriptions- Power Management Functions
Detailed DescriptionsPower Management Functions
DCDC Step-Down Converter
Description
The step-down converter is a high efficiency fixed frequency
current mode regulator. By using low resistance internal PMOS
and NMOS switches efficiency up to 95% can be achieved. The
fast switching frequency allows using small inductors, without
increasing the current ripple. The unique feedback and
regulation circuit guarantees optimum load and line regulation
over the whole output voltage range, up to an output current
of 1.5A (SD4, SD5), 2A (SD3) and 5A for SD2, with an output
capacitor of only 8-27μF. The implemented current limitation
protects the DCDC and the coil during overload condition.
Figure 9:
Step Down DC/DC Converter Block Diagram
Imin
250/400/600mA
sdx_low_noise
Ilimit
clk
1.2/1.8/2.9A
VSUP_SDx
IsenseP
Overvoltage
Comp
skip
LOGIC
Ref +8%
LX_SDx
Ref -5%
IsenseN
sdX_lv
PWM
Comp
VSS_SDx
Zero Comp
FB_SDx
skip
Ref=0.6V
softstart
Slope
Compensation
DCDC Step Down Converter Block Diagram: Shows the internal structure of the DCDC bucks.
Page 20
Document Feedback
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Detailed Descriptions- Power Management Functions
Mode Settings
Low Ripple, Low Noise Operation
Bit settings: sdX_low_noise=1
In this mode there is no minimum coil current necessary before
switching off the PMOS. As long as the load current is superior
to the ripple current the device operates in continuous mode.
Figure 10:
DC/DC Buck Continuous Mode
DC/DC Buck Continuous Mode: Shows the DC/DC switching waveforms of for SD5 at about 500mA.
When the load current gets lower, the discontinuous mode is
triggered. As result, the auto-zero comparator stops the NMOS
conduction to avoid load discharger and the duty cycle is
reduced down to tmin_on to keep the regulation loop stable.
This results in a very low ripple and noise, but decreased
efficiency, at light loads, especially at low input to output
voltage differences.
ams Datasheet
[v1-01] 2015-Sep-07
Page 21
Document Feedback
AS3722 − Detailed Descriptions- Power Management Functions
Figure 11:
DC/DC Buck Dis-Continuous Mode
DC/DC Buck Dis-Continuous Mode: Shows the DC/DC switching waveforms of for SD5 at about 60mA.
Only in the case the load current gets so small that less than the
minimum on-time of the PMOS would be needed to keep the
loop in regulation the regulator will enter power save operation
and skip pulses during this time. The crossover point is about
~1% of the DCDC current limit.
Figure 12:
DC/DC Buck Dis-Continuous & Low Power Mode
DC/DC Buck Dis-Continuous & Low Power Mode: Shows the DC/DC switching waveforms of for SD5 at about
10mA.High efficiency operation (default setting):
Page 22
Document Feedback
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Detailed Descriptions- Power Management Functions
Bit settings: sdX_low_noise=0
In this mode there is a minimum coil current necessary before
switching off the PMOS. As a result there are less pulses
necessary at low output loads, and therefore the efficiency at
low output load is increased. As drawback this mode increases
the ripple up to higher output currents.
The crossover point to power save operation is already reached
at reasonable high output currents (~10% of the DCDC current
limit).
Figure 13:
DC/DC Buck Dis-Continuous Mode & High Efficiency 1/2
DC/DC Buck Dis-Continuous Mode: Shows the DC/DC switching waveforms of for SD5 at about 60mA with the
low_noise bit deactivated.
Figure 14:
DC/DC Buck Dis-Continuous Mode & High Efficiency 2/2
DC/DC Buck Dis-Continuous Mode: Shows the DC/DC switching waveforms of for SD5 at about 10mA with the
low_noise bit deactivated.
ams Datasheet
[v1-01] 2015-Sep-07
Page 23
Document Feedback
AS3722 − Detailed Descriptions- Power Management Functions
It’s possible to switch between these two modes during
operation.
Power Save Operation (Automatically Controlled)
As soon as the output voltage stays above the desired target
value for a certain time, some internal blocks will be powered
down leaving the output floating to lower the power
consumption. Normal operation starts as soon as the output
drops below the target value for a similar amount of time. To
minimize the accuracy error some internal circuits are kept
powered to assure a minimized output voltage ripple.
Two addition guard bands, based on comparators, are set at
±5% of the target value to react quickly on large
over/under-shoots by immediately turning on the output
drivers without the normal time delays. This ensures a
minimized ripple also in very extreme load conditions.
Fast Regulation Mode
This mode can be used to react faster on sudden load changes
and thus minimize the over-/undershoot of the output voltage.
This mode needs a bigger output capacitor to guarantee the
stability of the regulator. The mode is enabled by setting
sdX_fast =1.
Selectable Frequency Operation
Especially for very low load conditions, e.g. during a sleep mode
of a processor, the switching frequency can be reduced to
achieve a higher efficiency. The frequency for SD2, SD3, SD4
and SD5 can be set to 3 or 4MHz. This mode is selected by setting
sdX_freq to the appropriate value.
100% PMOS ON Mode for Low Dropout Regulation
For low input to output voltage difference the DCDC converter
can use 100% duty cycle for the PMOS transistor, which is then
in LDO mode.
Step-Down Converter Configuration Modes
The step down dc/dc converters have two configuration modes
to deliver different output currents for the applications. The
operating mode is selected by setting the bit sd3_slave,
sd4_slave and sd5_slave (the default is set by the Boot-OTP). It’s
not allowed to set sd3_slave and sd4_slave at the same time.
Page 24
Document Feedback
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Detailed Descriptions- Power Management Functions
Figure 15:
DC/DC Buck Converter Normal Operation
DC/DC Buck Normal Operation: Shows
the internal DC/DC buck converters in
normal operation independent from
each other; no slave mode set
VSUP_SD3
DCDC3
0.6V-3.3V
1.5-2A
VSD3
DCDC2
PVSS_SD3
DCDC4
DCDC5
2.2uF
VSD2
12.5mV steps
1uH
FB_SD2
33uF
VSS_SD2
2.2uF
LX_SD4
VSD4
12.5mV steps
1uH
FB_SD4
10uF
VSS_SD4
VSUP_SD5
0.6V-3.3V
1-1.5A
22uF
LX_SD2
VSUP_SD4
0.6V-3.3V
1-1.5A
12.5mV steps
1uH
FB_SD3
VSUP_SD2
0.6V-3.3V
3-4A
2.2uF
LX_SD3
2.2uF
LX_SD5
VSD5
12.5mV steps
1uH
FB_SD5
VSS_SD5
10uF
Figure 16:
DC/DC Buck Converter SD4+SD5 (2-3A) Mode
DC/DC Buck Slave Operation: Shows
the internal DC/DC buck converters with
SD5 operating as slave of SD4 to
increase the output current.
(sd5_slave = 1)
VSUP_SD3
DCDC3
0.6V-3.3V
1.5-2A
FB_SD3
VSD3
DCDC2
12.5mV steps
1uH
PVSS_SD3
VSUP_SD2
0.6V-3.3V
3-4A
2.2uF
LX_SD3
22uF
2.2uF
LX_SD2
FB_SD2
VSD2
12.5mV steps
1uH
VSS_SD2
33uF
VSUP_SD4
DCDC4
0.6V-3.3V
1-1.5A
4.7uF
LX_SD4
FB_SD4
VSS_SD4
VSD4 (2-3A)
12.5mV steps
1uH
22uF
VSUP_SD5
DCDC5
0.6V-3.3V
1-1.5A
ams Datasheet
[v1-01] 2015-Sep-07
LX_SD5
FB_SD5
VSS_SD5
Page 25
Document Feedback
AS3722 − Detailed Descriptions- Power Management Functions
Figure 17:
DC/DC Buck Converter SD2+SD4 (4-5.5A) Mode
DC/DC Buck Slave Operation: Shows
the internal DC/DC buck converters with
SD4 operating as slave of SD2 to
increase the output current.
(sd4_slave = 1)
VSUP_SD3
DCDC3
0.6V-3.3V
1.5-2A
2.2uF
LX_SD3
FB_SD3
VSD3
DVM, 12.5mV steps
1uH
PVSS_SD3
22uF
VSUP_SD2
DCDC2
0.6V-3.3V
3-4A
4.7uF
LX_SD2
VSD2 (4-5.5A)
12.5mV steps
0.47uH
FB_SD2
47uF
VSS_SD2
VSUP_SD4
DCDC4
0.6V-3.3V
1-1.5A
LX_SD4
FB_SD4
VSS_SD4
VSUP_SD5
DCDC5
0.6V-3.3V
1-1.5A
2.2uF
LX_SD5
FB_SD5
VSD5
DVM, 12.5mV steps
1uH
10uF
VSS_SD5
Figure 18:
DC/DC Buck Converter SD2+SD3 (4.5-6A) Mode
DC/DC Buck Slave Operation: Shows
the internal DC/DC buck converters with
SD3 operating as slave of SD2 to
increase the output current.
(sd3_slave = 1)
VSUP_SD3
DCDC3
0.6V-3.3V
1.5-2A
LX_SD3
FB_SD3
PVSS_SD3
VSUP_SD2
DCDC2
0.6V-3.3V
3-4A
VSD2 (4.5-6A)
DCDC4
47uF
VSS_SD2
VSD4
DCDC5
Page 26
Document Feedback
12.5mV steps
1uH
10uF
VSS_SD4
VSUP_SD5
0.6V-3.3V
1-1.5A
2.2uF
LX_SD4
FB_SD4
2.2uF
LX_SD5
FB_SD5
VSS_SD5
12.5mV steps
0.47uH
FB_SD2
VSUP_SD4
0.6V-3.3V
1-1.5A
4.7uF
LX_SD2
VSD5
12.5mV steps
1uH
10uF
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Detailed Descriptions- Power Management Functions
Figure 19:
DC/DC Buck Converter SD2+SD3 & SD4+SD5 Mode
DC/DC Buck Slave Operation: Shows
the internal DC/DC buck converters with
SD3 operating as slave of SD2 and SD5
operating as a slave from SD4 to increase
the output current.
(sd3_slave = 1 & sd5_slave=1)
VSUP_SD3
DCDC3
0.6V-3.3V
1.5-2A
LX_SD3
FB_SD3
PVSS_SD3
VSUP_SD2
DCDC2
0.6V-3.3V
3-4A
4.7uF
LX_SD2
FB_SD2
VSD2 (4.5-6A)
47uF
VSS_SD2
VSUP_SD4
DCDC4
0.6V-3.3V
1-1.5A
12.5mV steps
0.47uH
4.7uF
LX_SD4
VSD4 (2-3A)
12.5mV steps
1uH
FB_SD4
22uF
VSS_SD4
VSUP_SD5
DCDC5
0.6V-3.3V
1-1.5A
LX_SD5
FB_SD5
VSS_SD5
Parameter
Figure 20:
DC/DC Buck Converter Parameter
Symbol
VIN
Parameter
Input voltage
Conditions
Pin VSUP_SDx
Min
Typ
Max
Unit
2.7
5.5
V
0.6125
3.35
V
VOUT
Regulated output voltage
VOUT_tol
Output voltage tolerance
min. 30mV
-3
+3
%
ILOAD_SD2
Load current SD2
VSD2 ≤1.8V
0
5
A
VSD2 >1.8V
0
3
A
VSD3 ≤1.8V
0
2
A
VSD3 >1.8V
0
1.5
A
VSD4/5 ≤1.8V
0
1.5
A
VSD4/5 >1.8V
0
1
A
ILOAD_SD3
ILOAD_SD45
ILIMIT
Load current SD3
Load current SD4,5
Current limit
SD2 (sd2_hicurr=1)
SD3
ams Datasheet
[v1-01] 2015-Sep-07
6
A
2.5
A
Page 27
Document Feedback
AS3722 − Detailed Descriptions- Power Management Functions
Symbol
RPSW
RNSW
fSW
Parameter
P-Switch ON resistance
incl. bonds, substrate, etc
N-Switch ON resistance
incl. bonds, substrate, etc
Switching frequency
Conditions
Min
Typ
Max
Unit
SD4, SD5
1.8
A
SD2; VSUP_SDx=3.0V
78
100
mΩ
SD3; VSUP_SDx=3.0V
156
200
mΩ
SD4, SD5;
VSUP_SDx=3.0V
225
300
mΩ
SD2; VSUP_SDx=3.0V
50
70
mΩ
SD3; VSUP_SDx=3.0V
100
130
mΩ
SD4, SD5;
VSUP_SDx=3.0V
140
190
mΩ
sdX_frequ=1;
fclk_int =4MHz
4
MHz
sdX_frequ=0;
fclk_int =4MHz
3
MHz
ηeff
Efficiency
see figures below
IVDD
Current consumption
Operating current
without load
60
μA
RDIS
discharge resistance
SD2 off; Vout=1V
90
Ω
SD3/4/5 off; Vout=1V
160
Ω
%
DC/DC Buck Converter Parameter: Shows the key electrical parameter of the internal DC/DC buck converters
Page 28
Document Feedback
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Detailed Descriptions- Power Management Functions
Figure 21:
DC/DC Buck Converter External Components
Symbol
CFB_SD2
Parameter
Conditions
Min
Typ
Max
Unit
Output capacitor
Ceramic X5R or X7R
27
μF
Output capacitor,
sd2_fast=1
Ceramic X5R or X7R
54
μF
Output capacitor
Ceramic X5R or X7R
12
μF
Output capacitor,
sd3_fast=1
Ceramic X5R or X7R
27
μF
Output capacitor
Ceramic X5R or X7R
8
μF
Output capacitor
sd4_fast=1 or
sd5_fast=1
Ceramic X5R or X7R
18
μF
CVSUP_SD2
Input capacitor
Ceramic X5R or X7R
7
μF
CVSUP_SD3
Input capacitor
Ceramic X5R or X7R
3.5
μF
CVSUP_SD4-5
Input capacitor
Ceramic X5R or X7R
2.2
μF
CFB_SD3
CFB_SD4-5
LSD2-SD5
Inductor
LSD2-SD3
Inductor
VOUTResVoltRise
&
VSUP>VSUP_min
Y
Y
ONKEY=1 OR
RTC alarm OR
(LID =1 and lid _pwr_on and li _rising_en=0)
OR (lid_rise/fall and lid _pwr_on=1) OR
OR (ac_ok_rise/fall and ac _ok_pwr_on=1) OR
(AC _OK=1 and ac _ok _pwr_on and
bg_pd is 1 if
ac_ok_rising_en=0)
vbat_is_alive=0
OR RTC wakeup
Y
ON=1 or AC_OK=1
DCDC calibrate
calibrate currentsense
of SD0, SD1 and SD6
N
N
N
VBAT 0
res_timer (if stby_reset_enable=1)
XRES_OUT
low if stby_reset_enable=1
Power up sequence controlled
I2C/SPI controlled
Caution! No I2C/SPI command allowed as
long as the sequence is not finished
Regulator Stand-By Exit Sequence: Shows timing relationships of the regulators and corresponding control
signals during exiting stand-by mode
Page 62
Document Feedback
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Detailed Descriptions- System Functions
Internal References
Description
The internal reference is power by the V2_5 always on LDO. It
uses an external capacitor and resistor for filtering and current
setting. In power_off mode the V2_5 stays alive but the
reference will be disabled.
Low Power Mode
Use bit low_power_on to activate the Low Power Mode. In this
mode the on-chip voltage reference and the temperature
supervision comparators are operating in pulsed mode. This
reduces the quiescent current of the AS3722 by 45uA (typ.).
Because of the pulsed function some specifications are not
fulfilled in this mode (e.g. increased noise), but still the full
functionality is available.
For disabling the Low Power Mode low_power_on has to be
cleared via the serial interface.
Parameter
Figure 61:
Reference Parameter
Symbol
VCEXT
fCLK
Parameter
Conditions
Min
Typ
Max
Unit
Reference Voltage
Low noise trimmed voltage
reference – connected to Pad
CREF; do not load
1.58
1.6
1.62
V
Accuracy of Internal
reference clock
Adjustable by serial interface
register clk_int
-12
fCLK
+12
%
Min
Typ
Max
Unit
Reference Parameter: Shows the key electrical parameter of the on-chip reference
Figure 62:
Reference External Components
Symbol
Parameter
Conditions
CEXT
External filter capacitor
Ceramic low-ESR capacitor
between CREF and VSS
-10%
100
+10%
nF
RBIAS
External bias current
set resistor
Bias Current set resistor
between RBIAS and VSS
-1%
220
+1%
kΩ
Reference External Components: Shows the external component parameter of the on-chip reference
ams Datasheet
[v1-01] 2015-Sep-07
Page 63
Document Feedback
AS3722 − Detailed Descriptions- System Functions
Digital IO Supply Concept
Description
GPIOs can be switched between VSUP_GPIO and VDD_GPIO_lv
supply for the output function. All other digital outputs are
supplied with VDD_GPIO_lv.
Figure 63:
Digital IO Supply Concept
VDD_GPIO_lv
1.7 … 3.6V
AS3722
VSUP_GPIO
2.5 … 5.5V
GPIOs
GPIO
Outputs
XRES_OUT
XINT
CLK32K
OC_PG
Digital Core
EN5V
Inputs
ENABLEx
THERM
XRES_IN
AC_OK
LID
PWM_CLK
PWM_DAT
V2_5
Digital IO Supply Concept: Shows the supply concept for digital inputs and outputs.
GPIO Pins
Description
The device contains 8 GPIO pins. Each of the pins can be
configured as digital input, digital input (with pull-up or
pull-down), ADC input (tri-state), push-pull output (selectable
lower or higher GPIO supply), or open drain output (with or
without pull-up). When configured as output the output source
can be a register bit, or the PWM generator.
The polarity of the input and output signals can be inverted
with the corresponding gpioX_invert bit, all further descriptions
refer to normal (non-inverted) mode.
Page 64
Document Feedback
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Detailed Descriptions- System Functions
Figure 64:
GPIO Block Diagram
VDD_GPIO_lv
gpioX_out: 0
Interrupt output: 1
VSUP_VBAT_low output: 2
OC_PG_SD0: 6
pwr_good output: 7
Q32k output: 8
PWM output: 12
VSUP_VBAT_low (debounced): 13
OC_PG_SD6 low output: 14
gpioX_mode = 4, 6 or 7
VSUP_GPIO
gpioX_mode = 1 or 7
=1
&
gpioX_iosf
gpioX_mode = 4 or 6
gpioX_invert
gpioX_in: 0
GPIO interrupt input: 3
PWM input: 4
vselect_stdby input: 5
watchdog input: 9
n/a: 10
Soft reset input: 11
n/a: 15
gpioX_mode = 1
300k
gpioX_mode = 0,2,4,5 or 6
=1
GPIOx
&
gpioX_iosf
300k
gpioX_mode = 5
gpioX_mode = 1, 2 or 6
&
GPIO Block Diagram: Shows the internal structure of the IO pads
IO Functions
Normal IO Operation
If set to input, the logic level of the signal present at the GPIOx
pin can be read from gpioX_in. If the output mode is chosen,
gpioX_out specifies the logic level of the GPIOx pin.
This mode is also used for the on/off control of the DCDC and
LDOs. The selection which regulator is controlled by which
GPIO, is done with the gpio_ctrl_sdX or gpio_ctrl_ldoX bits. The
gpioX_mode should be set to input.
Interrupt Output
GPIOx pin logic state is derived from the interrupt signal INT.
Whenever an interrupt is present, the GPIOx pin is pulled high.
The gpioX_mode should be set to output.
VSUP_VBAT_Low Output (not de-bounced)
GPIOx pin will go high if VSUP falls below vsup_min or VBAT falls
below ResVoltFall and SupResEn = 0. The gpioX_mode should
be set to output.
GPIO Interrupt Input
A falling or rising edge will set the gpio_int bit. The gpioX_mode
should be set to input.
ams Datasheet
[v1-01] 2015-Sep-07
Page 65
Document Feedback
AS3722 − Detailed Descriptions- System Functions
PWM Input
With this input the PWM signal of the internal PWM generator
can be over-ruled. This input is then used to drive the PWM
output function of a GPIO if selected. The gpioX_mode should
be set to input.
Voltage_sdtby + Restart Input
As long as the GPIOx pin is high the DCDC/LDOs operate with
the normal register settings. If the GPIOx pin goes low the
settings will change to the ones stored in regX_voltage_stby. In
addition the chip is set into stand-by mode. regX_select_stby
defines the order of the regulators for going into stand_by. All
other regulators not defined in sdX_stby_on or ldoX_stdby_on
will be put into stand_by simultaneously at the end of the
sequence.
Pulling GPIOx pin high will wake-up the chip. The sequence is
reversed to going into stand_by.
Delays for the sequence can be set with regX_stby_delay and
delay_time_stby.
The gpioX_mode should be set to input.
OC_PG_SD0 Output
Please see section OC_PG pin function description in chapter
OC_PG (Output Pins) for a detailed description.
PWRGOOD Output
This signal will go high at the end of the start-up sequence. This
can be used as a second reset signal to the processor to e.g.
start oscillators. The gpioX_mode should be set to output.
Q32k Output
When selected the GPIOx will provide the 32kHz RTC crystal
frequency. If the oscillator is not enabled or not assembled an
internal RC oscillator based clock will be used for the output.
The gpioX_mode should be set to output.
Watchdog Input
When pulling the GPIO high the watchdog will be triggered to
avoid a reset cycle initiated by the watchdog. The gpioX_mode
should be set to input.
Soft-Reset Input
This will perform a start-up sequence to reset all voltage
registers. The gpioX_mode should be set to input.
PWM Output
The GPIO block includes an internal programmable PWM
generator (can be connected to any of the GPIO outputs). Its
timing is defined by pwm_h_time, pwm_l_time and pwm_div.
The gpioX_mode should be set to output.
Page 66
Document Feedback
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Detailed Descriptions- System Functions
Vsup_vbat_low Output (de-bounced)
GPIOx pin will go high if VSUP falls below vsup_min or VBAT falls
below ResVoltFall and SupResEn = 0. The gpioX_mode should be
set to output.
OC_PG_SD6 Output
GPIOx pin will go high if DCDC6 is disabled. GPIOx pin will be
low during start-up of DCDC6.
After start-up of DCDC6 the GPIOx pin will be high as long
DCDC6 is not in a low voltage or overcurrent operation. The
inputs may be masked with pg_powergood_sd6_mask and
pg_ovcurr_sd6_mask. There is no 90us black-out time like for
DCDC0. The gpioX_mode should be set to output.
ADC_reference Output
By setting adc_buf_on the buffered 1.6V ADC reference is
available on GPIO7. The gpio7_mode should be set to “3”
(tristate) gpio7_iosf should be set to “0” (normal).
Dedicated IO Pins
Input Pins
ENABLE1/CORE_PWRREQ
As long as the ENABLE1 pin is high the DCDC/LDOs operate with
the normal register settings. If the ENABLE1 pin goes low the
settings will change to the ones stored in regX_voltage_stby. In
addition the chip is set into stand-by mode. regX_select_stby
defines the order of the regulators for going into stand_by. All
other regulators not defined in sdX_stby_on or ldoX_stdby_on
will be put into stand_by simultaneously at the end of the
sequence.
Pulling ENABLE1 pin high will wake-up the chip. The sequence
is reversed to going into stand_by.
Delays for the sequence can be set with regX_stby_delay and
delay_time_stby.
ENABLE1 pin is default disabled after start-up from off state.
enable1_stby_en and enable1_inv will enable the input and set
the polarity.
ENABLE2/CPU_PWRREQ
ENABLE2 is a dedicated pin to on/off control of SD0.
enable2_enable and enable2_inv will enable the input and set
the polarity.
THERM
Is an external signal which triggers an immediate power down
similar to VSUP_low or a chip over-temperature event. The chip
will not power-on again before the THERM signal is de-asserted.
ams Datasheet
[v1-01] 2015-Sep-07
Page 67
Document Feedback
AS3722 − Detailed Descriptions- System Functions
AC_OK
Additional power_on input which is used to e.g. detect a
charger adapter.
With ac_ok_rising_en the detection can be switched between
edge and level, while ac_ok_pwr_on will disable/enable the
input. ac_ok_pwr can be used to check the status. An interrupt
can be generated on rising and falling edges.
In addition this input is also used to generate the OC_PG output.
LID
Additional power_on input which is used to e.g. detect the
open/close stated of the lid from a clam shell device.
With lid_rising_en the detection can be switched between edge
and level, while lid_pwr_on will disable/enable the input.
lid_pwr can be used to check the status. An interrupt can be
generated on rising and falling edges.
Output Pins
VBAT_ALARM (not de-bounced)
Will go high if VSUP falls below ResVoltFall and SupResEn = 0.
CLK32K
Dedicated pin for providing a 32kHz clock from the RTC
oscillator. The pin can be disabled with clk32out_en.
XINT
Dedicated pin for providing an active low output signal on any
enabled (un-masked) interrupt event. For XINT pin an internal
pull-up can be enabled to VDD_GPIO_lv (INT_pullup). This bit
also switches the output driver to open drain.
OC_PG
Is a dedicated output pin signaling over-current and power
good events of SD0 plus additional inputs (see block diagram
below).
Page 68
Document Feedback
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Detailed Descriptions- System Functions
Figure 65:
OC_PG Block Diagram
pg_ac_ok_mask
AC_OK
ac_ok_pwr
Startup FSM & interrupt logic
&
=1
pg_ac_ok_inv
pg_gpio3_mask
GPIO3
=1
gpio3_in
=1
gpio4_in
=1
gpio5_in
&
gpio3_invert
pg_gpio4_mask
GPIO4
&
OC_PG
1
gpio4_invert
pg_gpio5_mask
GPIO5
&
gpio5_invert
pg_vresfall_mask
VBAT < ResVoltFall or VSUP < vsup_min
&
pg_ovcurr_sd0_mask
ov_curr SD0
&
sd0_on
sd0_vsel
pg_pwrgood_sd0_mask
sd0_lv
&
OC_PG Block Diagram: Shows the internal structure of the overcurrent-power-good output.
ams Datasheet
[v1-01] 2015-Sep-07
Page 69
Document Feedback
AS3722 − Detailed Descriptions- System Functions
Figure 66:
OC_PG Timing Diagram
sd0_on
Vout
Tstart = 250usec max.
OC_PG>90usec high
(typ. 120usec).
OC_PG
AC_OK or
GPIO3,4,5
if enalbed
10nsec delay
100nsec delay done in analog
10nsec delay
100nsec
delay done in analog
sd0_vsel
mask
pg_vmask_time=4/8usec
sd0_lv or ov_curr
OC_PG Timing Diagram: Shows the signal timing of the overcurrent-power-good output.
Supervisor
The PMIC has a build in over-temperature protection, which
could be switched off with the serial interface signal
temp_pmc_on (enabled by default; it is not recommended to
disable the over-temperature protection).
Temperature Supervision
The chip has three signals for the serial interface:
ov_temp_alarm0, ov_temp_alarm1 and ov_temp_shutdown.
The flags ov_temp_alarm0/1 are automatically reset if the
over-temperature condition is removed, whereas
ov_temp_shutdown has to be reset by the serial interface with
the signal rst_ov_temp_shutdown.
If the flag ov_temp_shutdown is set, an automatic reset of the
complete chip is initiated. The chip will only start-up when the
temperature falls below the Talarm0 level (including hysteresis).
The flag ov_temp_shutdown is not affected by this reset cycle
allowing the software to detect the reason for this unexpected
shutdown:
A similar supervision is done for the power-stage dies. The
over-temperature alarm flag (temp_sdX_alarm)is set, when a
sub die reaches the alarm level. The over-temperature alarm
flag is set anyway and cleared when the temperature falls below
the threshold. When reaching the shutdown level an automatic
reset (can be masked) of the AS3722 is initiated. The
Page 70
Document Feedback
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Detailed Descriptions- System Functions
corresponding status bit (temp_sdX_shutdown) can only be
cleared by reading the register. It’s possible to generate an
interrupt (mask able) on reaching both the alarm and the
shutdown level.
Figure 67:
Temperature Supervision Characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
Talarm0
ov_temp_alarm0 rising
threshold
79
94
109
ºC
Talarm1
ov_temp_alarm1 rising
threshold
98
113
128
ºC
ov_temp_shutdown
rising threshold
125
140
155
ºC
Tshutdown
Thyst
TSDx_alarm
TSDx_shutdown
ov_temp_110/140
hysteresis
5
ºC
temp_sdX_alarm rising
threshold
95
110
1125
ºC
temp_sdX_shutdown
rising threshold
125
140
155
ºC
Temperature Supervision Characteristic: Shows the key electrical parameter of the over-temperature
supervision.
Current Supervision
All LDO’s and DCDC step downs have an integrated over-current
protection.
When a regulator runs into its current limit, the output voltage
will drop and trigger a “low voltage” interrupt when hitting the
threshold (-5% for SD0-6).
ams Datasheet
[v1-01] 2015-Sep-07
Page 71
Document Feedback
AS3722 − Detailed Descriptions- System Functions
Watchdog
Description
The purpose of the watchdog is to detect a deadlock of the
software. If the watchdog is active, it must receive a continuous
trigger signal within a programmable time window. If there is
no signal anymore for a certain time period from a defined pad
or special serial interface bit, it starts either a complete reset
cycle or initiates the power off sequence.
The watchdog is highly configurable by the following register
bits:
• The complete block can be switched on by wtdg_on = 1
and off by wtdg_on = 0.
• The watchdog time window is defined by the register
wtdg_timer between 1s and 128s.
• The trigger signal can be either triggered by setting
wtdg_sw_sig or using a HW signal on one of the GPIO pins
(gpioX_iosf=9).
• If the watchdog expires, the system waits another second
before reacting according to wtdg_mode (OTP setting)
• 0: interrupt 8s before the watchdog expires, only if the
interrupt is not masked
• 1: reset_cycle with re-start
• 2: power_off
• 3: reset_cycle with re-start up to two times, if the
watchdog expires a third time the systems goes into
power_off
• Whether the watchdog caused a reset can be seen in the
reset_reason.
Figure 68:
Watchdog Timing
counter reset by
setting bit
wtdg_sw_sig
counter set to n
seconds
watchdog
counter
0
n
n-1
n-2
watchdog expires
action according
to wtdg_mode
interrupt triggered
if enalbed
n
n-1
9
8
2
1
0
wdtg_sw_sig
XINT
Watchdog Timing: Shows the basic timing relations of the watchdog counter and related signals.
Page 72
Document Feedback
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Detailed Descriptions- System Functions
Interrupt Generation
Description
The interrupt controller generates an interrupt request for the
host controller as soon as one or more of the bits in the Interrupt
1…3 register are set by pulling low pin XINT. All the interrupt
sources can be enabled in the Interrupt Mask 1…3 register. The
Interrupt 1…3 registers are cleared automatically after the host
controller has read them. To prevent the AS3722device from
losing an interrupt event, the register that is read is captured
before it is transmitted to the host controller via the serial
interface. As soon as the transmission of the captured value is
complete a logical AND operation with the bit wise inverted
captured value is applied to the register to clear all interrupt
bits that have already been transmitted. Clearing the read
interrupt bits takes 2 clock cycles, a read access to the same
register before the clearing process has completed will yield a
value of ‘0’. Note that an interrupt that has been present at the
previous read access will be cleared as well in case it occurs
again before the clearing process has completed.
ams Datasheet
[v1-01] 2015-Sep-07
Page 73
Document Feedback
AS3722 − Detailed Descriptions- System Functions
10-Bit ADC
Description
This general purpose ADC can be used for measuring several
voltages and currents to perform functions like battery monitor,
temperature supervision, button press detection, etc.
Figure 69:
ADC Input Sources
#
Source
Range
LSB
Mode
Description
0
SD0_current
1.6V
1.56mV
1:1
output current of SD0
1
SD1_current
1.6V
1.56mV
1:1
output current of SD1
2
SD6_current
1.6V
1.56mV
1:1
output current of SD6
3
DIE temperature
1.6V
1.56mV
1:1
Tj = (0.7698 * ADC10) - 274
4
VSUP
5.5V
6.25mV
4:1
check main system supply voltage
5
GPIO1
1.6V / 5.5V
1.56 /
6.25mV
1:1 / 4:1
6
GPIO2
1.6V / 5.5V
1.56 /
6.25mV
1:1 / 4:1
7
GPIO3
1.6V / 5.5V
1.56 /
6.25mV
1:1 / 4:1
8
GPIO4
1.6V / 5.5V
1.56 /
6.25mV
1:1 / 4:1
9
GPIO6
1.6V / 5.5V
1.56 /
6.25mV
1:1 / 4:1
10
GPIO7
1.6V / 5.5V
1.56 /
6.25mV
1:1 / 4:1
11
VBAT
15V
23.44mV
15:1
12
PWM_CLK2/
ADC1
1.6V / 5.5V
1.56 /
6.25mV
1:1 / 4:1
13
PWM_DAT2/
ADC2
1.6V / 5.5V
1.56 /
6.25mV
1:1 / 4:1
14
-
reserved
15
-
reserved
16
TEMP1_SD0
1.56mV
Tj = 326.5 - ADC10 * 0.3734
17
TEMP2_SD0
1.56mV
Tj = 326.5 - ADC10 * 0.3734
18
TEMP3_SD0
1.56mV
Tj = 326.5 - ADC10 * 0.3734
19
TEMP4_SD0
1.56mV
Tj = 326.5 - ADC10 * 0.3734
Page 74
Document Feedback
value valid below 15V only
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Detailed Descriptions- System Functions
#
Source
Range
LSB
Mode
Description
20
TEMP_SD1
1.56mV
Tj = 326.5 - ADC10 * 0.3734
21
TEMP1_SD6
1.56mV
Tj = 326.5 - ADC10 * 0.3734
22
TEMP2_SD6
1.56mV
Tj = 326.5 - ADC10 * 0.3734
ADC Input Sources: Shows the various inputs with the corresponding resolution which can be measured by the
internal ADC.
The ADC-10 features 2 control register for measuring 2 different
sources. By writing to the control register of channel 0 or
channel 1 the selected measurement will be performed and the
result placed in the corresponding result register. ADC10 has
only one conversion unit, meaning measurements for source 1
and source 2 will be done time multiplexed.
ADC channel 1 is capable to perform automatic conversion in
0.5s or 1s intervals of the selected source. In addition a free
programmable threshold with hysteresis
(ADC1_threshold_lo/hi) can be set to generate interrupts once
the threshold is passed.
adc1_interrupt_mode defines if an interrupt is generated on
every threshold passing or only if the measured value rises
above the high threshold or fall below the low threshold. The
ADC interrupt can be masked as every other interrupt.
By setting adc_buf_on the buffered 1.6V ADC reference is
available on GPIO7 during the conversion time. To give the ADC
reference output enough time to settle the pre-sample time
gets stretched from 32us to 62us. The gpio7_mode should be
set to “3” (tristate) gpio7_iosf should be set to “0” (normal).
ams Datasheet
[v1-01] 2015-Sep-07
Page 75
Document Feedback
AS3722 − Detailed Descriptions- System Functions
Parameter
Figure 70:
ADC Characteristics
Symbol
Parameter
Conditions
Resolution
Min
Typ
Max
10
Vin
Input Voltage Range
for 1:1 mode
DNL
Differential Nonlinearity
1LSB 1.56mV for 1:1
(depending on selected
channel)
INL
Unit
Bit
0
1.6
V
± 0.3
LSB
Integral Nonlinearity
± 0.9
LSB
Vos
Input Offset Voltage
2
LSB
Rin
Input Impedance
1:1
100
4:1
Cin
Input Capacitance
Idd
Power Supply Current
Idd
Power Down Current
MΩ
200
kΩ
9
during conversion only
pF
500
μA
100
nA
40
μs
fclk_int/
8
kHz
Transient Parameters (25°C)
Tc
Conversion Time
fc
Clock Frequency
ts
Settling time of S&H
internal CLK frequency/8
1
μs
ADC Reference Buffer
VOUT
Output voltage
IOUT
Output current
COUT
Output capacitor
tSTART
Start-up time
-1.2%
ROUT>6.4kΩ
1.6
+1.2%
V
0
250
uA
0
50
pF
10
us
ADC Characteristics: Shows the key electrical parameter of the internal ADC.
Page 76
Document Feedback
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Detailed Descriptions- System Functions
Figure 71:
ADC Timing Diagram
adc0_start_conversion
ADC on
16us if adc_buf_on = 0
else 96us
16us if adc_buf_on = 0
else 96us
ADC start
0
1
11
12
0
1
11
12
ADC clock
ADC eoc
adc0_result_not_ready
adc0_D[9:0]
result not valid
result ready
adc1_start_conversion
adc1_result_not_ready
adc1_D[9:0]
result not valid
result ready
ADC Timing Diagram: Shows timing of the control and data signals of the internal ADC.
Real Time Clock
Description
The RTC module provides time information to the system. It is
implemented as second counter derived from the 32kHz
oscillator delivering the necessary accurate time base. The
actual time can be read from the second, minute, hour, day
month year registers in BCD format. Both 24h and am/pm mode
is supported. All counters are set to 0 at a power-on-reset. The
host controller can set the counter to any value by setting the
RTC registers.
To prevent ambiguous time information because some of the
registers being incremented before all of the registers have
been read or written, a parallel shadow register is implemented.
Every time a write/read access via the serial interface occurs the
parallel shadow register is updated with the current value of
the RTC counter. Any write access to the RTCsecond register will
disable the update of the parallel shadow register and set the
value of the appropriate byte of the parallel shadow register.
Any subsequent write access to the RTCyear register will
transfer the current value of the parallel shadow register to the
RTCsecond/minute/hour/…/year register and the update of the
parallel shadow register is enabled again. Similarly, any read
access to the RTCsecond register will freeze the current value
of the parallel shadow register and submit the appropriate byte
ams Datasheet
[v1-01] 2015-Sep-07
Page 77
Document Feedback
AS3722 − Detailed Descriptions- System Functions
to the host controller via the serial interface. Any subsequent
read access to the RTCyear register will enable the update of
the parallel register again. This mechanism makes sure that the
maximum error of the value that is written to or read from the
registers is 1 second.
With the rtc_lock bit in OTP, the write access to the RTC registers
can be locked and only be eabled by writing a “magic” word to
the appropriate address.
To start the RTC, rtc_on bit has to be set to 1.
The RTC stops automatically at its highest value to prevent
overrun.
Alarm
The RTC module includes an alarm function. When the content
of the RTCAlarm registers equals the content of the RTC
registers bit rtc_alarm will be set in the interrupt register.
Furthermore the RTC module can generate a repeating
interrupt every second, every minute, every 2 minutes or every
8 minutes.
To avoid ambiguous behavior during write access to the
RTCAlarm registers any write access to the RTCAlarmSecond
register will disable the alarm function; any subsequent write
access to the RTCAlarmyear will enable the alarm function
again.
Page 78
Document Feedback
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Detailed Descriptions- System Functions
Serial Control Interfaces
AS3722 features an I2C and SPI interface. Both interfaces are
sharing the same pins and can therefore not be used at the same
time.
Figure 72:
I2C-SPI Block Diagram
I2C
V2_5
SDA/SDI
SCL/SCLK
SPI
SCSB
SDO
VDD_GPIO_lv
1.5 … 3.6V
For I2C mode,
PIN SCSB must be
grounded externally.
MODE
DETECT
mode
I2C-SPI Block Diagram: Shows the internal structure and connections between the I2C and SPI interface.
I2C-SPI Mode Selection
The AS3722 provides automatic selection of serial interface
modes SPI and I2C. I2C/SPI configuration is chosen by the SPI
chip select pin SCSB. Initially after power-on-reset the chip is in
I2C mode. As soon as SCSB goes high for more than 1ms (with
an internal de-bouncer in MODE DEDECT block), the device
switches to SPI mode and stays in SPI mode till the next reset.
For SPI that means that the interface must go inactive (high) for
>1ms before the first SPI access can be done.
For I2C mode operation the device pin SCSB must always be
connected to ground.
Figure 73:
I2C-SPI Mode Selection
POR
SCSB==1 for > 1ms
SPI mode
I2C mode
RESET_N==0
I2C-SPI Mode Selection: Shows the state diagram on how to change between the I2C and SPI interface.
ams Datasheet
[v1-01] 2015-Sep-07
Page 79
Document Feedback
AS3722 − Detailed Descriptions- System Functions
I2C Feature List
• High Speed mode capability [max. SCL-frequency is
3.4MHz (2.7MHz for sequential reads)]
• 7+1-bit addressing mode
• 60h x 8-bit data registers (word address 0x00 - 0x60)
• Write formats: Single-Byte-Write, Page-Write
• Read formats: Current-Address-Read, Random-Read,
Sequential-Read
• SDA input delay and SCL spike filtering by integrated
RC-components
I2C Protocol
Figure 74:
I2C Symbol Definition
Symbol
Definition
RW
Note
S
Start condition after stop
R
1 bit
Sr
Repeated start
R
1 bit
DW
Device address for write
R
1000 0000b (80h)
DR
Device address for read
R
1000 0001b (81h)
WA
Word address
R
8 bit
A
Acknowledge
W
1 bit
N
No Acknowledge
R
1 bit
reg_data
Register data/write
R
8 bit
data (n)
Register data/read
W
8 bit
Stop condition
R
1 bit
Increment word address internally
R
during acknowledge
P
WA++
I2C Symbol Definition: Shows the symbols used in the following mode descriptions.
Page 80
Document Feedback
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Detailed Descriptions- System Functions
I2C Write Access
Byte Write and Page Write formats are used to write data to the
slave.
Figure 75:
I2C Page Write
S
DW
A
WA
A
data
AP
WA++
I2C Byte Write: Shows the format of an I2C byte write access.
Figure 76:
I2C Page Write
S
DW
A
WA
A data 1 A data 2 A
WA++
WA++
...
data n A P
WA++
I2C Page Write: Shows the format of an I2C page write access.
The transmission begins with the START condition, which is
generated by the master when the bus is in IDLE state (the bus
is free). The device-write address is followed by the word
address. After the word address any number of data bytes can
be sent to the slave. The word address is incremented internally,
in order to write subsequent data bytes on subsequent address
locations.
For reading data from the slave device, the master has to change
the transfer direction. This can be done either with a repeated
START condition followed by the device-read address, or simply
with a new transmission START followed by the device-read
address, when the bus is in IDLE state. The device-read address
is always followed by the 1st register byte transmitted from the
slave. In Read Mode any number of subsequent register bytes
can be read from the slave. The word address is incremented
internally.
I2C Read Access
Random, Sequential and Current Address Read are used to read
data from the slave.
ams Datasheet
[v1-01] 2015-Sep-07
Page 81
Document Feedback
AS3722 − Detailed Descriptions- System Functions
Figure 77:
I2C Random Read
S
DW
A
WA
A Sr
DR
A
data N P
RA++
I2C Random Read: Shows the format of an I2C random read access.
Random Read and Sequential Read are combined formats. The
repeated START condition is used to change the direction after
the data transfer from the master.
The word address transfer is initiated with a START condition
issued by the master while the bus is idle. The START condition
is followed by the device-write address and the word address.
In order to change the data direction a repeated START
condition is issued on the 1st SCL pulse after the acknowledge
bit of the word address transfer. After the reception of the
device-read address, the slave becomes the transmitter. In this
state the slave transmits register data located by the previous
received word address vector. The master responds to the data
byte with a not-acknowledge, and issues a STOP condition on
the bus.
Figure 78:
I2C Sequential Read
S
DW
A
WA
A Sr
DR
A data 1 A data 2 A
RA++
RA++
...
data n N P
RA++
I2C Sequential Read: Shows the format of an I2C sequential read access.
Sequential Read is the extended form of Random Read, as more
than one register-data bytes are transferred subsequently. In
difference to the Random Read, for a sequential read the
transferred register-data bytes are responded by an
acknowledge from the master. The number of data bytes
transferred in one sequence is unlimited (consider the behavior
of the word-address counter). To terminate the transmission the
master has to send a not-acknowledge following the last data
byte and generate the STOP condition subsequently.
Page 82
Document Feedback
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Detailed Descriptions- System Functions
Figure 79:
I2C Current Address Read
S
DR
A data 1 A data 2 A
RA++
...
data n N P
RA++
RA++
I2C Current Address Read: Shows the format of an I2C current address read access.
To keep the access time as small as possible, this format allows
a read access without the word address transfer in advance to
the data transfer. The bus is idle and the master issues a START
condition followed by the Device-Read address. Analogous to
Random Read, a single byte transfer is terminated with a
not-acknowledge after the 1st register byte. Analogous to
Sequential Read an unlimited number of data bytes can be
transferred, where the data bytes has to be responded with an
acknowledge from the master. For termination of the
transmission the master sends a not-acknowledge following
the last data byte and a subsequent STOP condition.
I2C Parameter
Figure 80:
I2C Characteristics
Symbol
Parameter
VIL
SCL,SDA Low Level input voltage
VIH
SCL,SDA High Level input voltage
VOH
High-Level Output Voltage
at -2.0mA
VOL
Low-Level Output Voltage
at 2.0mA
0.2x
VDD_
GPIO_lv
V
Capacitive Load
FS mode
400
pF
HS mode
100
pF
2.9
kΩ
CLOAD
RPULLUP
Conditions
Internal pull-up to VDD_GPIO_lv
SCL, SDA =2V,
VDD_GPIO_LV=3V
external pull-up
HS mode
Min
Typ
Max
Unit
-0.3
0.4
V
1.4
VSUP_
GPIO
V
0.8x
VDD_
GPIO_lv
V
1.5
1
kΩ
I2C Characteristic: Shows the key electrical parameter of the I2C interface.
ams Datasheet
[v1-01] 2015-Sep-07
Page 83
Document Feedback
AS3722 − Detailed Descriptions- System Functions
The AS3722 is compatible to the NXP two wire specification
http://www.nxp.com/documents/user_manual/UM10204.pdf
Version 4.0 Feb 2012 for standard mode, fast mode, fast mode
plus and high speed mode (up to 2.7MHz for sequential reads).
SPI Protocol
Figure 81:
SPI Single Write
SPI interface single write
SCSB
0
8
16
24
31
10MHz max.
SCLK
SDI
X
SDO
X
RW
1
0
0
A7
A6 A5
A4
A3
A2
A1
A0
X
X
X
B
X
D7 D6
D5
D4
D3
D2
D1 D0
X
X
X
X
X
X
X
X
0
SPI Single Write: Shows the timing of an SPI single write access.
Figure 82:
SPI Single Read
SPI interface single read
SCSB
0
8
16
24
31
10MHz max.
SCLK
SDI
X
SDO
X
RW
0
B
0
0
A7
A6 A5
A4
A3
A2
A1
A0
X
X
X
X
0
X
D7 D6
D5
D4
D3
D2
D1 D0
SPI Single Read: Shows the timing of an SPI single write read.
Data is captured at the falling edge of SCLK and written to SDO
at the falling edge of SCLK. The maximum clock rate is 10MHz.
Page 84
Document Feedback
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Detailed Descriptions- System Functions
SPI Parameter
Figure 83:
SPI Characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
VSUP_GPIO
V
0.4
V
SCLK/SDI/SCSB Pins
VIH
High-Level Input Voltage
VIL
Low-Level Input Voltage
VHYS
Hysteresis
ILEAK
Input Leakage Current
1.4
0.2 x
VSUP_GP
IO
to VSUP_GPIO and
GND_PAD
-5
V
5
μA
SDO Pin
VOH
High-Level Output
Voltage
at -2.0mA
VOL
Low-Level Output
Voltage
at 2.0mA
CLOAD
0.8 x
VDD_GPI
O_lv
Capacitive Load
V
0.2 x
VDD_GPIO_lv
V
50
pF
SPI Characteristic: Shows the key electrical parameter of the SPI interface.
PMW DVS Control Interfaces
Description
Two dedicated PMW interfaces can be used to perform DVS on
SD0 and SD6.
The voltage is determined by a base value (vpwmX_base) and
the increments according to the duty cycle of the pwm signal.
The step-size and reset behavior can be programmed
individually for both interfaces.
A threshold value of 0.6-to 1.84V can be set in the OTP to limit
the maximum allowed output voltage for each of the two
regulators.
ams Datasheet
[v1-01] 2015-Sep-07
Page 85
Document Feedback
AS3722 − Detailed Descriptions- System Functions
Figure 84:
PWM DVS Control
0
1
2
4
5
30
31
0
.....
PWM_CLK
33MHz max.
PWM_DAT
Vout=Vbase
0/31
PWM_DAT
Vout=Vbase + 1*vpwmX_step
1/31
PWM_DAT
Vout=Vbase + 2*vpwmX_step
2/30
PWM_DAT
Vout=Vbase + 31*vpwmX_step
31/1
PWM_DAT
Vout=Vbase + 32*vpwmX_step
32/0
PWM DVS Control: Shows the PWM timing of the DVS interface for SD0 and SD6.
Parameter
Figure 85:
PWM Pin Characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
VIL
Low level input voltage
digital input
–0.3
0.4
V
VIH
High level input voltage
digital input
1.4
VSUP_GP
IO
V
PWM Pin Characteristics: Shows the key electrical parameter of the PWM control pins. VSUP=2.7 to 5.5V; T
amb = -20 to 70°C; unless otherwise mentioned
Page 86
Document Feedback
ams Datasheet
[v1-01] 2015-Sep-07
A S 3 7 2 2 − Register Description
Register Description
Register Overview
Figure 86:
Register Overview
Addr
Name
00h
SD0Voltage
sd0_low_power
sd0_vsel
01h
SD1Voltage
sd0_low_power
sd1_vsel
02h
SD2Voltage
sd2_frequ
sd2_vsel
03h
SD3Voltage
sd3_frequ
sd3_vsel
04h
SD4Voltage
sd4_frequ
sd4_vsel
05h
SD5Voltage
sd5_frequ
sd5_vsel
06h
SD6Voltage
sd6_low_power
sd6_vsel
08h
GPIO0control
gpio0_invert
gpio0_iosf
gpio0_mode
09h
GPIO1control
gpio1_invert
gpio1_iosf
gpio1_mode
0Ah
GPIO2control
gpio2_invert
gpio2_iosf
gpio2_mode
0Bh
GPIO3control
gpio3_invert
gpio3_iosf
gpio3_mode
0Ch
GPIO4control
gpio4_invert
gpio4_iosf
gpio4_mode
0Dh
GPIO5control
gpio5_invert
gpio5_iosf
gpio5_mode
0Eh
GPIO6control
gpio6_invert
gpio6_iosf
gpio6_mode
0Fh
GPIO7control
gpio7_invert
gpio7_iosf
gpio7_mode
10h
LDO0Voltage
ldo0_ilimit
ams Datasheet
[v1-01] 2015-Sep-07
-
ldo0_vsel
Page 87
Document Feedback
A S 3 7 2 2 − Register Description
Addr
Name
11h
LDO1Voltage
ldo1_ilimit
ldo1_vsel
12h
LDO2Voltage
ldo2_ilimit
ldo2_vsel
13h
LDO3Voltage
14h
LDO4Voltage
ldo4_ilimit
ldo4_vsel
15h
LDO5Voltage
ldo5_ilimit
ldo5_vsel
16h
LDO6Voltage
ldo6_ilimit
ldo6_vsel
17h
LDO7Voltage
ldo7_ilimit
ldo7_vsel
19h
LDO9Voltage
ldo9_ilimit
ldo9_vsel
1Ah
LDO10Voltage
ldo10_ilimit
ldo10_vsel
1Bh
LDO11Voltage
ldo11_ilimit
ldo11_vsel
1Dh
LDO3_settings
1Eh
GPIO_deb1
gpio3_deb
gpio2_deb
gpio1_deb
gpio0_deb
1Fh
GPIO_deb2
gpio7_deb
gpio6_deb
gpio5_deb
gpio4_deb
20h
GPIOsignal_out
gpio7_out
gpio6_out
gpio5_o
ut
gpio4_out
gpio3_
out
gpio2_out
gpio1_out
gpio0_out
21h
GPIOsignal_in
gpio7_in
gpio6_in
gpio5_in
gpio4_in
gpio3_i
n
gpio2_in
gpio1_in
gpio0_in
22h
Reg_sequ_mod1
-
sd6_sequ
_on
sd5_seq
u_on
sd4_sequ_
on
sd3_se
qu_on
sd2_sequ_on
sd1_sequ_on
sd0_sequ_on
23h
Reg_sequ_mod2
ldo7_sequ_on
ldo6_seq
u_on
ldo5_se
qu_on
ldo4_sequ
_on
ldo3_se
qu_on
ldo2_sequ_on
ldo1_sequ_on
ldo0_sequ_on
24h
Reg_sequ_mod3
ldo11_s
equ_on
ldo10_sequ_on
ldo9_sequ_on
-
Page 88
Document Feedback
ldo3_mode
ldo3_vsel
-
-
ldo3_vtrack_tr
ams Datasheet
[v1-01] 2015-Sep-07
A S 3 7 2 2 − Register Description
Addr
Name
27h
SD_phsw_ctrl
-
28h
SD_phsw_status
sdmph_clk_div
-
sd6_nph_a
uto
sd1_np
h_auto
sd0_nph_auto
29h
SD0_control
sd0_trim_gm
sd0_forc
e_pwm
sd0_fast
sd0_co
mbine_
phase
sd0_phases
2Ah
SD1_control
sd1_trim_gm
sd1_forc
e_pwm
sd1_fast
sd1_co
mbine_
phase
2Bh
SDmph_control
disable_sd0_pull
d
-
2Ch
SD23_control
-
sd3_fast
2Dh
SD4_control
2Eh
SD5_control
2Fh
SD6_control
sd6_trim_gm
30h
SD_dvm
-
31h
Resetreason
32h
Battery_voltage_monit
or
33h
Startup_Control
34h
ResetTimer
ams Datasheet
[v1-01] 2015-Sep-07
sd0_nph_min
sd6_startslew
sd3_forc
e_pwm
sd3_low_n
oise
sd6_phsw_on
sd1_phsw_on
sd1_phsw_on
sd0_low_noise
sd1_startslew
sd2_low_noise
-
sd4_fast
sd4_force_pwm
sd4_low_noise
-
sd5_fast
sd5_force_pwm
sd5_low_noise
sd6_ph2c_on
sd6_low_noise
sd6_phases
sd6_fast
dvm_time_sd6
SupResEn
sd6_co
mbine_
phase
dvm_time_sd1
stby_reset
_enable
ResVoltRise
onkey_l
press_r
eset
auto_off
dvm_time_sd0
startup_reason
ResVoltFall
-
-
sd0_startslew
sd2_force_pwm
reset_reason
FastResEn
sd1_phases
sd2_fast
sd6_forc
e_pwm
-
sd1_low_noise
off_delay
lid_rising_en
-
Page 89
Document Feedback
ac_ok_rising_en
power_off_at_vsuplo
w
res_timer
A S 3 7 2 2 − Register Description
Addr
Name
35h
ReferenceControl
force_softreset
-
clk_div2
standby_m
ode_on
36h
ResetControl
37h
OvertemperatureContr
ol
38h
WatchdogControl
39h
Reg_standby_mod1
disable_regpd
sd6_stby_
on
sd5_stb
y_on
sd4_stby_
on
sd3_stb
y_on
sd2_stby_on
sd1_stby_on
sd0_stby_on
3Ah
Reg_standby_mod2
ldo7_stby_on
ldo6_stby
_on
ldo5_stb
y_on
ldo4_stby_
on
ldo3_st
by_on
ldo2_stby_on
ldo1_stby_on
ldo0_stby_on
3Bh
Reg_standby_mod3
ldo11_s
tby_on
ldo10_stby_on
ldo9_stby_on
-
3Ch
ENABLEctrl1
enable_ctrl_sd3
enable_ctrl_sd2
enable_ctrl_sd1
enable_ctrl_sd0
3Dh
ENABLEctrl2
-
enable_ctrl_sd6
enable_ctrl_sd5
enable_ctrl_sd4
3Eh
ENABLEctrl3
enable_ctrl_ldo3
enable_ctrl_ldo2
enable_ctrl_ldo1
enable_ctrl_ldo0
3Fh
ENABLEctrl4
enable_ctrl_ldo7
enable_ctrl_ldo6
enable_ctrl_ldo5
enable_ctrl_ldo4
40h
ENABLEctrl5
enable_ctrl_ldo11
enable_ctrl_ldo10
enable_ctrl_ldo9
-
41h
pwm_control_l
pwm_l_time
42h
pwm_control_h
pwm_h_time
46h
Watchdog_timer
48h
WatchdogSoftwareSig
nal
Page 90
Document Feedback
reset_debounce
-
ov_temp_
alarm0
rst_ov_
temp_s
hutdow
n
low_power_on
onkey_input
power_off
force_reset
ov_temp_shutd
own
ov_temp_alarm1
temp_pmc_on
-
wtdg_mode
-
pwm_div
clk_int
-
-
wtdg_on
wtdg_timer
-
wtdg_sw_sig
ams Datasheet
[v1-01] 2015-Sep-07
A S 3 7 2 2 − Register Description
Addr
Name
49h
IOVoltage
4Ah
Battery_voltage_monit
or2
4Dh
SDcontrol
-
sd6_enabl
e
sd5_ena
ble
sd4_enabl
e
sd3_en
able
sd2_enable
sd1_enable
sd0_enable
4Eh
LDOcontrol0
ldo7_enable
ldo6_ena
ble
ldo5_en
able
ldo4_enab
le
ldo3_e
nable
ldo2_enable
ldo1_enable
ldo0_enable
4Fh
LDOcontrol1
ldo11_
enable
ldo10_enable
ldo9_enable
-
50h
SD0_protect
-
sd0_vmax
51h
SD6_protect
-
sd6_vmax
52h
PWM_vcontrol1
vpwm1_step
vpwm1_o
n
vpwm1_vbase
53h
PWM_vcontrol2
vpwm2_step
vpwm2_o
n
vpwm2_vbase
54h
PWM_vcontrol3
vpwm1_reset
vpwm1_value
55h
PWM_vcontrol4
vpwm2_reset
vpwm2_value
57h
BBcharger
BBCActive
BBCPwrSa
ve
BBCVolt
58h
CTRLsequ1
enable3_inv
onkey_no
debounce
enable1
_stby_e
n
59h
CTRLsequ2
lid_invert
ac_ok_inv
ert
5Ah
OVcurrent
-
ams Datasheet
[v1-01] 2015-Sep-07
-
INT_pull
up
I2C_bus_p
ullup
-
-
level33
vsup_min
-
BBCCur
enable1_in
v
enable
2_inv
on_shutdown_delay
sd1_ilimit
ncells
BBCResOff
therm_inv
onkey_invert
sd0_ilimit
Page 91
Document Feedback
BBCMode
lid_pwr_on
ac_ok_pwr_on
on_shutdown_delay
sd0_ovc_alarm
A S 3 7 2 2 − Register Description
Addr
Name
5Bh
OVcurrent_deb
5Ch
SDlv_deb
5Dh
OC_pg_ctrl
pg_vresfall_mask
pg_ovcurr
_sd0_mas
k
5Eh
OC_pg_ctrl2
pg_ovcurr_sd6_
mask
pg_pwrgo
od_sd6_
mask
5Fh
CTRLstatus
sd0_pwr_ok
enable3
enable2
enable1
60h
RTCcontrol
am_pm_mode
-
clk32out
_en
rtc_irq_mode
61h
RTCsecond
-
second1
second0
62h
RTCminute
-
minute1
minute0
63h
RTChour
pm
64h
RTCday
65h
RTCmonth
66h
RTCyear
-
year1
year0
67h
RTCAlarmSecond
-
Alarmsecond1
Alarmsecond0
68h
RTCAlarmMinute
-
Alarmminute1
Alarmminute0
69h
RTCAlarmHour
Alarmpm
6Ah
RTCAlarmday
6Bh
RTCAlarmmonth
Page 92
Document Feedback
-
sd6_ilimit
pg_sd6_vmask_time
-
sd6_lv_deb
pg_pwr
good_sd
0_mask
-
pg_gpi
o4_mas
k
ov_curr
sd06_ovc_alarm_deb
sd1_lv_deb
pg_gpio3_mask
sd0_lv_deb
pg_ac_ok_mask
pg_vmask_time
pg_ac_ok_inv
-
therm
lid
ac_ok
rtc_on
rtc_alarm_wakeup_e
n
rtc_rep_wakeup_en
hour1
hour0
day1
day0
month1
-
-
pg_gpio5_
mask
pg_sd6_ovc_alarm
-
-
month0
Alarmhour1
Alarmhour0
Alarmday1
Alarmday0
Alarmmon
th1
Alarmmonth0
ams Datasheet
[v1-01] 2015-Sep-07
A S 3 7 2 2 − Register Description
Addr
Name
6Ch
RTCAlarmyear
-
6Dh
SRAM
6Fh
RTC_Access
rtc_write_ena
73h
RegStatus
-
sd6_lv
sd5_lv
sd4_lv
sd3_lv
sd2_lv
sd1_lv
sd0_lv
onkey_i
nt_m
onkey_lpre
ss_int_m
occur_a
larm_s
d0_int_
m
enable1_int_m
acok_int_m
lid_int_m
Alarmyear1
Alarmyear0
SRAM
-
74h
InterruptMask1
LowBat_int_m
ovtmp_in
t_m
75h
InterruptMask2
rtc_rep_int_m
sd6_lv_int
_m
enable2
_int_m
PWM2_ov
prot_int_
m
PWM1_
ovprot_
int_m
sd2345_lv_int_
m
sd1_lv_int_m
sd0_lv_int_m
76h
InterruptMask3
enable3_int_m
wtdg_int_
m
gpio5_in
t_m
gpio4_int_
m
gpio3_i
nt_m
gpio2_int_m
gpio1_int_m
rtc_alarm_int_m
adc_int_m
occur_ala
rm_sd6_i
nt_m
temp_sd
6_alarm
_int_m
temp_sd1_
alarm_int_
m
temp_s
d0_alar
m_int_
m
temp_sd6_shut
down_int_m
temp_sd1_shutdown
_int_m
temp_sd0_shutdown
_int_m
onkey_i
nt_i
onkey_lpre
ss_int_i
occur_a
larm_s
d0_int_
i
enable1_int_i
acok_int_i
lid_int_i
77h
InterruptMask4
78h
InterruptStatus1
LowBat_int_i
ovtmp_in
t_i
79h
InterruptStatus2
rtc_rep_int_i
sd6_lv_int
_i
enable2
_int_i
PWM2_ov
prot_int_i
PWM1_
ovprot_
int_i
sd2345_lv_int_i
sd1_lv_int_i
sd0_lv_int_i
7Ah
InterruptStatus3
enable3_int_i
wtdg_int_
i
gpio5_in
t_i
gpio4_int_
i
gpio3_i
nt_i
gpio2_int_i
gpio1_int_i
rtc_alarm_int_i
7Bh
InterruptStatus4
adc_int_i
occur_ala
rm_sd6_i
nt_i
temp_sd
6_alarm
_int_i
temp_sd1_
alarm_int_
i
temp_s
d0_alar
m_int_i
temp_sd6_shut
down_int_i
temp_sd1_shutdown
_int_i
temp_sd0_shutdown
_int_i
ams Datasheet
[v1-01] 2015-Sep-07
Page 93
Document Feedback
A S 3 7 2 2 − Register Description
Addr
Name
7Dh
Temp_Status
-
temp_sd6
_alarm
temp_sd
1_alarm
temp_sd0_
alarm
mask_o
vtemp
temp_sd6_shut
down
temp_sd1_shutdown
temp_sd0_shutdown
80h
ADC0_control
adc0_start_conv
ersion
-
adc0_gp
io_lv
adc0_select
81h
ADC1_control
adc1_start_conv
ersion
adc1_inte
rval_scan
adc1_gp
io_lv
adc1_select
82h
ADC0_MSB_result
adc0_result_not_
ready
83h
ADC0_LSB_result
84h
ADC1_MSB_result
85h
ADC1_LSB_result
86h
ADC1_threshold_hi_
MSB
87h
ADC1_threshold_hi_
LSB
88h
ADC1_threshold_lo_
MSB
89h
ADC1_threshold_lo_
LSB
-
8Ah
ADC_configuration
-
90h
ASIC_ID1
91h
ASIC_ID2
9Eh
LockRegister
Page 94
Document Feedback
adc0_D[9:3]
-
adc0_D[2:0]
adc1_result_not_
ready
adc1_D[9:3]
-
adc1_D[2:0]
-
adc1_threshold_hi[9:3]
-
adc1_threshold_hi[2:0]
-
adc1_threshold_lo[9:3]
adc1_threshold_lo[2:0]
adc_buf_on
adc1_interrupt_mod
e
adc1_interval_time
ID1
-
revision
-
reg_lock
ams Datasheet
[v1-01] 2015-Sep-07
A S 3 7 2 2 − Register Description
Addr
Name
Fuse7
sd5_slave
sd4_slave
sd3_slav
e
Fuse8
-
sd2_hcurr
_tr
ldo3_vtrack_tr
Fuse9
auto_off
em_shutd
own_dire
ct
res_timer
Fuse10
unique_id
power_off
_at_vsupl
ow
Fuse11
onkey_lpress_res
et
A7h
A8h
A9h
AAh
Abh
i2c_deva
_bit1
onkey_shutdown_del
ay
sd0_v_minus_200mV
sd5_fas
t
-
-
sd4_fast
sd3_fast
sd2_fast
ResVoltRise
-
rtc_on
lid_pwr
_on
ac_ok_pwr_on
del_time
sequ_on
ac_ok_inv
ert
onkey_i
nvert
SupResEn
gpio12_in_en
lid_invert
wtdg_o
n
enable3_inv
enable2_inv
therm_inv
Fuse12
sdmph_clk_div
wtdg_mode
Fuse13
sd0_vmax_0
sd6_trim_gm
Ach
sd1_trim_gm
Adh
ams Datasheet
[v1-01] 2015-Sep-07
Page 95
Document Feedback
sd0_trim_gm
A S 3 7 2 2 − Register Description
Addr
Name
Fuse14
sd6_vmax_1
sd0_vmax_1
Aeh
Fuse15
rtc_lock
-
I2C_bus
_pullup
Fuse16
Reg3_delay
Reg3_sele
ct_MSB
Reg2_de
lay
Afh
B0h
Fuse17
vsup_min
Reg2_sele
ct_MSB
Reg1_d
elay
Reg1_select_M
SB
Reg1_select_LSB
ncells
Reg0_delay
Reg0_select_MSB
Reg0_select_LSB
B1h
Fuse18
reg0_v
Fuse19
reg1_v
B2h
B3h
Fuse20
Reg3_select_LSB
Reg2_select_LSB
B4h
Fuse21
reg2_v
Fuse22
reg3_v
B5h
B6h
Page 96
Document Feedback
ams Datasheet
[v1-01] 2015-Sep-07
A S 3 7 2 2 − Register Description
Addr
Name
Fuse23
Reg7_delay
Reg7_sele
ct_MSB
Reg6_del
ay
Reg6_selec
t_MSB
Reg5_d
elay
Reg5_select_MS
B
Reg4_delay
Reg4_select_MSB
B7h
Fuse24
Reg5_select_LSB
Reg4_select_LSB
B8h
Fuse25
reg4_v
Fuse26
reg5_v
B9h
Bah
Fuse27
Reg7_select_LSB
Reg6_select_LSB
BBh
Fuse28
reg6_v
Fuse29
reg7_v
BCh
BDh
Fuse30
Beh
Fuse31
Reg11_delay
Reg11_sel
ect_MSB
Reg10_d
elay
Reg10_sele
ct_MSB
Reg9_d
elay
Reg9_select_MS
B
Reg9_select_LSB
Reg8_select_LSB
BFh
ams Datasheet
[v1-01] 2015-Sep-07
Reg8_delay
Page 97
Document Feedback
Reg8_select_MSB
A S 3 7 2 2 − Register Description
Addr
Name
Fuse32
reg8_v
Fuse33
reg9_v
C0h
C1h
Fuse34
Reg11_select_LSB
Reg10_select_LSB
C2h
Fuse35
reg10_v
Fuse36
reg11_v
C3h
C4h
Fuse37
C5h
Fuse38
Reg15_delay
Reg15_sel
ect_MSB
Reg14_d
elay
Reg14_sele
ct_MSB
Reg13_
delay
Reg13_select_M
SB
Reg13_select_LSB
Reg12_delay
Reg12_select_MSB
Reg12_select_LSB
C6h
Fuse39
reg12_v
Fuse40
reg13_v
C7h
C8h
Fuse41
Reg15_select_LSB
Reg14_select_LSB
C9h
Page 98
Document Feedback
ams Datasheet
[v1-01] 2015-Sep-07
A S 3 7 2 2 − Register Description
Addr
Name
Reg17_select_
MSB
Reg16_delay
Reg16_select_MSB
Fuse42_uniqueID0
reg14_v
Fuse43_uniqueID1
reg15_v
Cah
CBh
Reg17_
delay
Fuse44_uniqueID2
ASIC_ID3
Fuse45_uniqueID3
Reg17_select_LSB
CCh
Reg16_select_LSB
CDh
Fuse46_uniqueID4
reg16_v
Fuse47_uniqueID5
reg17_v
Ceh
CFh
Reg0_de
lay_stby
Reg0_select_stby
-
Reg1_de
lay_stby
Reg1_select_stby
Reg2_control
-
Reg2_del
ay_stby
Reg2_select_stby
E3h
Reg3_control
-
Reg3_del
ay_stby
Reg3_select_stby
E4h
Reg4_control
-
Reg4_del
ay_stby
Reg4_select_stby
E0h
Reg0_control
E1h
Reg1_control
E2h
ams Datasheet
[v1-01] 2015-Sep-07
delay_tim
e_stby
-
Page 99
Document Feedback
A S 3 7 2 2 − Register Description
Addr
Name
E5h
Reg5_control
-
Reg5_del
ay_stby
Reg5_select_stby
E6h
Reg6_control
-
Reg6_del
ay_stby
Reg6_select_stby
E7h
Reg7_control
-
Reg7_del
ay_stby
Reg7_select_stby
E8h
Reg8_control
-
Reg8_del
ay_stby
Reg8_select_stby
E9h
Reg9_control
-
Reg9_del
ay_stby
Reg9_select_stby
Eah
Reg0_Voltage
Reg0_voltage_stby
Ebh
Reg1_Voltage
Reg1_voltage_stby
Ech
Reg2_Voltage
Reg2_voltage_stby
Edh
Reg3_Voltage
Reg3_voltage_stby
Eeh
Reg4_Voltage
Reg4_voltage_stby
Efh
Reg5_Voltage
Reg5_voltage_stby
F0h
Reg6_Voltage
Reg6_voltage_stby
F1h
Reg7_Voltage
Reg7_voltage_stby
F2h
Reg8_Voltage
Reg8_voltage_stby
F3h
Reg9_Voltage
Reg9_voltage_stby
F4h
SpareRegister1
disable_stby_lid_int
Register Overview: Shows all the available registers.
Page 100
Document Feedback
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Register Description
Detailed Register Description
Figure 87:
Chip Revision ID
Chip Revision
ASIC_ID1 (90h)
ASIC_ID2 (91h)
ASIC_ID3 (CCh)
1v0
0Ch
0h
0h
1v1
0Ch
1h
0h
1v2
0Ch
1h
0h
1v21
0Ch
1h
1h
Figure 88:
SD0Voltage
Addr:00h
Bit
7
6:0
Bit Name
sd0_low_power
sd0_vsel
ams Datasheet
[v1-01] 2015-Sep-07
SD0Voltage
Default
0
0
Access
Bit Description
RW
Controls low power mode for sd0
0 : normal mode
1 : low power mode. Reduced current capability
only 1 phase enabled and reduced output
current on that phase
RW
The voltage select bits set the DC/DC output
voltage
level and power the DC/DC converter down.
(0.61..1.5V)
00h : DC/DC powered down
01h-5Ah : V_SD0=0.6V+sd0_vsel*10mV
5Bh-7Fh : NA
if sd0_v_minus_200mV=1 then (0.41..1.5V)
01h-6Eh : V_SD0=0.4V+sd0_vsel*10mV
6Fh-7Fh : NA
Page 101
Document Feedback
AS3722 − Register Description
Figure 89:
SD1Voltage
Addr:01h
Bit
Bit Name
7
sd1_low_power
6:0
sd1_vsel
SD1Voltage
Default
0
0
Access
Bit Description
RW
Controls low power mode for sd1
0 : normal mode
1 : low power mode. Reduced current capability
only 1 phase enabled and reduced output
current on that phase
RW
The voltage select bits set the DC/DC output
voltage
level and power the DC/DC converter down.
(0.61..1.5V)
00h : DC/DC powered down
01h-5Ah : V_SD1=0.6V+sd1_vsel*10mV
5Bh-7Fh : NA
Figure 90:
SD2Voltage
Addr:02h
SD2Voltage
Bit
Bit Name
Default
Access
7
sd2_frequ
0
RW
Selects between high and low frequency
0 : 3 MHz
1 : 4 MHz
RW
The voltage select bits set the DC/DC output
voltage
level and power the DC/DC converter down.
00h : DC/DC powered down
01h-40h : V_SD2=0.6V+sd2_vsel*12.5mV
41h-70h : V_SD2=1.4V+(sd2_vsel-40h)*25mV
71h-7Fh : V_SD2=2.6V+(sd2_vsel-70h)*50mV
6:0
sd2_vsel
Page 102
Document Feedback
0
Bit Description
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Register Description
Figure 91:
SD3Voltage
Addr:03h
SD3Voltage
Bit
Bit Name
Default
Access
7
sd3_frequ
0
RW
Selects between high and low frequency
0 : 3 MHz
1 : 4 MHz
RW
The voltage select bits set the DC/DC output
voltage
level and power the DC/DC converter down.
00h : DC/DC powered down
01h-40h : V_SD3=0.6V+sd3_vsel*12.5mV
41h-70h : V_SD3=1.4V+(sd3_vsel-40h)*25mV
71h-7Fh : V_SD3=2.6V+(sd3_vsel-70h)*50mV
6:0
sd3_vsel
0
Bit Description
Figure 92:
SD4Voltage
Addr:04h
SD4Voltage
Bit
Bit Name
Default
Access
7
sd4_frequ
0
RW
Selects between high and low frequency
0 : 3 MHz
1 : 4 MHz
RW
The voltage select bits set the DC/DC output voltage
level and power the DC/DC converter down.
00h : DC/DC powered down
01h-40h : V_SD4=0.6V+sd4_vsel*12.5mV
41h-70h : V_SD4=1.4V+(sd4_vsel-40h)*25mV
71h-7Fh : V_SD4=2.6V+(sd4_vsel-70h)*50mV
6:0
sd4_vsel
ams Datasheet
[v1-01] 2015-Sep-07
0
Bit Description
Page 103
Document Feedback
AS3722 − Register Description
Figure 93:
SD5Voltage
Addr:05h
SD5Voltage
Bit
Bit Name
Default
Access
7
sd5_frequ
0
RW
Selects between high and low frequency
0 : 3 MHz
1 : 4 MHz
RW
The voltage select bits set the DC/DC output
voltage
level and power the DC/DC converter down.
00h : DC/DC powered down
01h-40h : V_SD5=0.6V+sd5_vsel*12.5mV
41h-70h : V_SD5=1.4V+(sd5_vsel-40h)*25mV
71h-7Fh : V_SD5=2.6V+(sd5_vsel-70h)*50mV
6:0
sd5_vsel
0
Bit Description
Figure 94:
SD6Voltage
Addr:06h
Bit
7
6:0
Bit Name
sd6_low_power
sd6_vsel
Page 104
Document Feedback
SD6Voltage
Default
0
0
Access
Bit Description
RW
Controls low power mode for sd6
0 : normal mode
1 : low power mode. Reduced current capability
only 1 phase enabled and reduced output current
on that phase
RW
The voltage select bits set the DC/DC output
voltage
level and power the DC/DC converter down.
(0.61..1.5V)
00h : DC/DC powered down
01h-5Ah : V_SD6=0.6V+sd6_vsel*10mV
5Bh-7Fh : NA
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Register Description
Figure 95:
GPIO0control
Addr:08h
GPIO0control
Bit
Bit Name
Default
Access
7
gpio0_invert
0
RW
Invert GPIO input/output
0 : Normal mode
1 : Invert input or output
RW
Select the GPIO special function
0 : Normal i/o operation
1 : Interrupt output
2 : VSUP_VBAT_low undebounced output
3 : GPIO interrupt input
4 : PWM input (internal PWM overide)
5 : Voltage_stby input: rising edge .. Goto Standby;
(Leave standby by arbitrary interrupt)
6 : OC_PG_SD0 function on GPIO
7 : pwr_good output
8 : Q32k output (if osc_pd=1 then internal RC
oscillator with 32kHz divider is used)
9 : Watchdog input
10 : NC
11 : Soft reset input
12 : PWM output
13 : VSUP_VBAT_low debounced output
14 : OC_PG_SD6 function on GPIO
15 : NC
RW_SM
Selects the GPIO mode (I, I/O, Tri, Pulls)
0 : Input
1 : Output (push and pull) VSUP_GPIO
2 : Output/Input (open drain, only NMOS is active)
3 : ADC input (Tristate)
4 : Input with pull-up to VDD_GPIO_lv
5 : Input with pull-down
6 : Output/Input open drain (nmos) with pull-up to
VDD_GPIO_lv,
7 : Output (push and pull) VDD_GPIO_lv
6:3
2:0
gpio0_iosf
gpio0_mode
ams Datasheet
[v1-01] 2015-Sep-07
0
3
Bit Description
Page 105
Document Feedback
AS3722 − Register Description
Figure 96:
GPIO1control
Addr:09h
GPIO1control
Bit
Bit Name
Default
Access
7
gpio1_invert
0
RW
Invert GPIO input/output
0 : Normal mode
1 : Invert input or output
RW
Select the GPIO special function
0 : Normal i/o operation
1 : Interrupt output
2 : VSUP_VBAT_low undebounced output
3 : GPIO interrupt input
4 : PWM input (internal PWM overide)
5 : Voltage_stby input: rising edge .. Goto Standby;
(Leave standby by arbitrary interrupt)
6 : OC_PG_SD0 function on GPIO
7 : pwr_good output
8 : Q32k output (if osc_pd=1 then internal RC
oscillator with 32kHz divider is used)
9 : Watchdog input
10 : NC
11 : Soft reset input
12 : PWM output
13 : VSUP_VBAT_low debounced output
14 : OC_PG_SD6 function on GPIO
15 : NC
RW_SM
Selects the GPIO mode (I, I/O, Tri, Pulls)
0 : Input
1 : Output (push and pull) VSUP_GPIO
2 : Output/Input (open drain, only NMOS is active)
3 : ADC input (Tristate)
4 : Input with pull-up to VDD_GPIO_lv
5 : Input with pull-down
6 : Output/Input open drain (nmos) with pull-up to
VDD_GPIO_lv,
7 : Output (push and pull) VDD_GPIO_lv
6:3
2:0
gpio1_iosf
gpio1_mode
Page 106
Document Feedback
0
3
Bit Description
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Register Description
Figure 97:
GPIO2control
Addr:0ah
GPIO2control
Bit
Bit Name
Default
Access
7
gpio2_invert
0
RW
Invert GPIO input/output
0 : Normal mode
1 : Invert input or output
RW
Select the GPIO special function
0 : Normal i/o operation
1 : Interrupt output
2 : VSUP_VBAT_low undebounced output
3 : GPIO interrupt input
4 : PWM input (internal PWM overide)
5 : Voltage_stby input: rising edge .. Goto
Standby; (Leave standby by arbitrary interrupt)
6 : OC_PG_SD0 function on GPIO
7 : pwr_good output
8 : Q32k output (if osc_pd=1 then internal RC
oscillator with 32kHz divider is used)
9 : Watchdog input
10 : NC
11 : Soft reset input
12 : PWM output
13 : VSUP_VBAT_low debounced output
14 : OC_PG_SD6 function on GPIO
15 : NC
6:3
2:0
gpio2_iosf
gpio2_mode
ams Datasheet
[v1-01] 2015-Sep-07
0
3
RW_SM
Bit Description
Selects the GPIO mode (I, I/O, Tri, Pulls)
0 : Input
1 : Output (push and pull) VSUP_GPIO
2 : Output/Input (open drain, only NMOS is active)
3 : ADC input (Tristate)
4 : Input with pull-up to VDD_GPIO_lv
5 : Input with pull-down
6 : Output/Input open drain (nmos) with pull-up
to VDD_GPIO_lv,
7 : Output (push and pull) VDD_GPIO_lv
Page 107
Document Feedback
AS3722 − Register Description
Figure 98:
GPIO3control
Addr:0bh
GPIO3control
Bit
Bit Name
Default
Access
7
gpio3_invert
0
RW
Invert GPIO input/output
0 : Normal mode
1 : Invert input or output
RW
Select the GPIO special function
0 : Normal i/o operation
1 : Interrupt output
2 : VSUP_VBAT_low undebounced output
3 : GPIO interrupt input
4 : PWM input (internal PWM overide)
5 : Voltage_stby input: rising edge .. Goto Standby;
(Leave standby by arbitrary interrupt)
6 : OC_PG_SD0 function on GPIO
7 : pwr_good output
8 : Q32k output (if osc_pd=1 then internal RC
oscillator with 32kHz divider is used)
9 : Watchdog input
10 : NC
11 : Soft reset input
12 : PWM output
13 : VSUP_VBAT_low debounced output
14 : OC_PG_SD6 function on GPIO
15 : NC
RW_SM
Selects the GPIO mode (I, I/O, Tri, Pulls)
0 : Input
1 : Output (push and pull) VSUP_GPIO
2 : Output/Input (open drain, only NMOS is active)
3 : ADC input (Tristate)
4 : Input with pull-up to VDD_GPIO_lv
5 : Input with pull-down
6 : Output/Input open drain (nmos) with pull-up to
VDD_GPIO_lv,
7 : Output (push and pull) VDD_GPIO_lv
6:3
2:0
gpio3_iosf
gpio3_mode
Page 108
Document Feedback
0
3
Bit Description
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Register Description
Figure 99:
GPIO4control
Addr:0ch
GPIO4control
Bit
Bit Name
Default
Access
7
gpio4_invert
0
RW
Invert GPIO input/output
0 : Normal mode
1 : Invert input or output
RW
Select the GPIO special function
0 : Normal i/o operation
1 : Interrupt output
2 : VSUP_VBAT_low undebounced output
3 : GPIO interrupt input
4 : PWM input (internal PWM overide)
5 : Voltage_stby input: rising edge .. Goto Standby;
(Leave standby by arbitrary interrupt)
6 : OC_PG_SD0 function on GPIO
7 : pwr_good output
8 : Q32k output (if osc_pd=1 then internal RC
oscillator with 32kHz divider is used)
9 : Watchdog input
10 : NC
11 : Soft reset input
12 : PWM output
13 : VSUP_VBAT_low debounced output
14 : OC_PG_SD6 function on GPIO
15 : NC
RW_SM
Selects the GPIO mode (I, I/O, Tri, Pulls)
0 : Input
1 : Output (push and pull) VSUP_GPIO
2 : Output/Input (open drain, only NMOS is active)
3 : ADC input (Tristate)
4 : Input with pull-up to VDD_GPIO_lv
5 : Input with pull-down
6 : Output/Input open drain (nmos) with pull-up to
VDD_GPIO_lv,
7 : Output (push and pull) VDD_GPIO_lv
6:3
2:0
gpio4_iosf
gpio4_mode
ams Datasheet
[v1-01] 2015-Sep-07
0
3
Bit Description
Page 109
Document Feedback
AS3722 − Register Description
Figure 100:
GPIO5control
Addr:0dh
GPIO5control
Bit
Bit Name
Default
Access
7
gpio5_invert
0
RW
Invert GPIO input/output
0 : Normal mode
1 : Invert input or output
RW
Select the GPIO special function
0 : Normal i/o operation
1 : Interrupt output
2 : VSUP_VBAT_low undebounced output
3 : GPIO interrupt input
4 : PWM input (internal PWM overide)
5 : Voltage_stby input: rising edge .. Goto
Standby; (Leave standby by arbitrary interrupt)
6 : OC_PG_SD0 function on GPIO
7 : pwr_good output
8 : Q32k output (if osc_pd=1 then internal RC
oscillator with 32kHz divider is used)
9 : Watchdog input
10 : NC
11 : Soft reset input
12 : PWM output
13 : VSUP_VBAT_low debounced output
14 : OC_PG_SD6 function on GPIO
15 : NC
RW_SM
Selects the GPIO mode (I, I/O, Tri, Pulls)
0 : Input
1 : Output (push and pull) VSUP_GPIO
2 : Output/Input (open drain, only NMOS is
active)
3 : ADC input (Tristate)
4 : Input with pull-up to VDD_GPIO_lv
5 : Input with pull-down
6 : Output/Input open drain (nmos) with pull-up
to VDD_GPIO_lv,
7 : Output (push and pull) VDD_GPIO_lv
6:3
2:0
gpio5_iosf
gpio5_mode
Page 110
Document Feedback
0
3
Bit Description
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Register Description
Figure 101:
GPIO6control
Addr:0eh
GPIO6control
Bit
Bit Name
Default
Access
7
gpio6_invert
0
RW
Invert GPIO input/output
0 : Normal mode
1 : Invert input or output
RW
Select the GPIO special function
0 : Normal i/o operation
1 : Interrupt output
2 : VSUP_VBAT_low undebounced output
3 : GPIO interrupt input
4 : PWM input (internal PWM overide)
5 : Voltage_stby input: rising edge .. Goto
Standby; (Leave standby by arbitrary interrupt)
6 : OC_PG_SD0 function on GPIO
7 : pwr_good output
8 : Q32k output (if osc_pd=1 then internal RC
oscillator with 32kHz divider is used)
9 : Watchdog input
10 : NC
11 : Soft reset input
12 : PWM output
13 : VSUP_VBAT_low debounced output
14 : OC_PG_SD6 function on GPIO
15 : NC
6:3
2:0
gpio6_iosf
gpio6_mode
ams Datasheet
[v1-01] 2015-Sep-07
0
3
RW_SM
Bit Description
Selects the GPIO mode (I, I/O, Tri, Pulls)
0 : Input
1 : Output (push and pull) VSUP_GPIO
2 : Output/Input (open drain, only NMOS is active)
3 : ADC input (Tristate)
4 : Input with pull-up to VDD_GPIO_lv
5 : Input with pull-down
6 : Output/Input open drain (nmos) with pull-up
to VDD_GPIO_lv,
7 : Output (push and pull) VDD_GPIO_lv
Page 111
Document Feedback
AS3722 − Register Description
Figure 102:
GPIO7control
Addr:0fh
GPIO7control
Bit
Bit Name
Default
Access
7
gpio7_invert
0
RW
Invert GPIO input/output
0 : Normal mode
1 : Invert input or output
RW
Select the GPIO special function
0 : Normal i/o operation
1 : Interrupt output
2 : VSUP_VBAT_low undebounced output
3 : GPIO interrupt input
4 : PWM input (internal PWM overide)
5 : Voltage_stby input: rising edge .. Goto Standby;
(Leave standby by arbitrary interrupt)
6 : OC_PG_SD0 function on GPIO
7 : pwr_good output
8 : Q32k output (if osc_pd=1 then internal RC
oscillator with 32kHz divider is used)
9 : Watchdog input
10 : NC
11 : Soft reset input
12 : PWM output
13 : VSUP_VBAT_low debounced output
14 : OC_PG_SD6 function on GPIO
15 : NC
RW_SM
Selects the GPIO mode (I, I/O, Tri, Pulls)
0 : Input
1 : Output (push and pull) VSUP_GPIO
2 : Output/Input (open drain, only NMOS is active)
3 : ADC input (Tristate)
4 : Input with pull-up to VDD_GPIO_lv
5 : Input with pull-down
6 : Output/Input open drain (nmos) with pull-up to
VDD_GPIO_lv,
7 : Output (push and pull) VDD_GPIO_lv
6:3
2:0
gpio7_iosf
gpio7_mode
Page 112
Document Feedback
0
3
Bit Description
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Register Description
Figure 103:
LDO0Voltage
Addr:10h
LDO0Voltage
Bit
Bit Name
Default
Access
7
ldo0_ilimit
0
RW
Sets limit of LDO0 (NMOS LDO)
0 : 150mA operating range
1 : 300mA operating range
RW
The voltage select bits set the LDO output voltage
0.825V...1.25V, 25mV stepFs
00h : LDO off
01h-12h : V_LDO0=0.8V+ldo0_vsel*25mV
4:0
ldo0_vsel
0
Bit Description
Figure 104:
LDO1Voltage
Addr:11h
LDO1Voltage
Bit
Bit Name
Default
Access
7
ldo1_ilimit
0
RW
Sets limit of LDO1 (PMOS1 LDO)
0 : 150mA operating range
1 : 300mA operating range
RW
The voltage select bits set the LDO output voltage
0.825V...3.3V, 25mV steps
00h : LDO off
01h-24h : V_LDO1=0.8V+ldo1_vsel*25mV
25h-3Fh : do not use
40h-7Fh : V_LDO1=1.725V+(ldo1_vsel-40h)*25mV
6:0
ldo1_vsel
0
Bit Description
Figure 105:
LDO2Voltage
Addr:12h
LDO2Voltage
Bit
Bit Name
Default
Access
7
ldo2_ilimit
0
RW
Sets limit of LDO2 (PMOS1 LDO)
0 : 150mA operating range
1 : 300mA operating range
RW
The voltage select bits set the LDO output voltage
0.825V...3.3V, 25mV steps
00h : LDO off
01h-24h : V_LDO2=0.8V+ldo2_vsel*25mV
25h-3Fh : do not use
40h-7Fh : V_LDO2=1.725V+(ldo2_vsel-40h)*25mV
6:0
ldo2_vsel
ams Datasheet
[v1-01] 2015-Sep-07
0
Bit Description
Page 113
Document Feedback
AS3722 − Register Description
Figure 106:
LDO3Voltage
Addr:13h
Bit
7:6
5:0
Bit Name
ldo3_mode
ldo3_vsel
LDO3Voltage
Default
0
0
Access
Bit Description
RW
Sets Mode of LDO3
0 : PMOS LDO mode (VIN_LDO3 used)
1 : PMOS LDO in tracking SD1/SD6 mode, if
SD1/SD6 enabled (SD1/SD6 selection in OTP)
2 : NMOS LDO mode (VIN_LDO3_LV used)
3 : Switch mode, if SD6 is enabled. (VIN_LDO3_SW
used)
RW
The voltage select bits set the LDO output voltage
0.62V...1.5V, 20mV steps
00h : LDO off
01h-2Dh : V_LDO3=0.6V+ldo3_vsel*20mV
2Eh-3Fh : do not use
Figure 107:
LDO4Voltage
Addr:14h
LDO4Voltage
Bit
Bit Name
Default
Access
7
ldo4_ilimit
0
RW
Sets limit of LDO4 (PMOS1 LDO)
0 : 150mA operating range
1 : 300mA operating range
RW
The voltage select bits set the LDO output voltage
0.825V...3.3V, 25mV steps
00h : LDO off
01h-24h : V_LDO4=0.8V+ldo4_vsel*25mV
25h-3Fh : do not use
40h-7Fh : V_LDO4=1.725V+(ldo4_vsel-40h)*25mV
6:0
ldo4_vsel
Page 114
Document Feedback
0
Bit Description
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Register Description
Figure 108:
LDO5Voltage
Addr:15h
LDO5Voltage
Bit
Bit Name
Default
Access
7
ldo5_ilimit
0
RW
Sets limit of LDO5 (PMOS1 LDO)
0 : 150mA operating range
1 : 300mA operating range
RW
The voltage select bits set the LDO output voltage
0.825V...3.3V, 25mV steps
00h : LDO off
01h-24h : V_LDO5=0.8V+ldo5_vsel*25mV
25h-3Fh : do not use
40h-7Fh : V_LDO5=1.725V+(ldo5_vsel-40h)*25mV
6:0
ldo5_vsel
0
Bit Description
Figure 109:
LDO6Voltage
Addr:16h
LDO6Voltage
Bit
Bit Name
Default
Access
7
ldo6_ilimit
0
RW
Sets limit of LDO6 (PMOS1 LDO)
0 : 150mA operating range
1 : 300mA operating range
RW
The voltage select bits set the LDO output voltage
0.825V...3.3V, 25mV steps
00h : LDO off
01h-24h : V_LDO6=0.8V+ldo6_vsel*25mV
25h-3Eh : do not use
3Fh : bypass mode
40h-7fh : V_LDO6=1.725V+(ldo6_vsel-40h)*25mV
6:0
ldo6_vsel
0
Bit Description
Figure 110:
LDO7Voltage
Addr:17h
LDO7Voltage
Bit
Bit Name
Default
Access
7
ldo7_ilimit
0
RW
Sets limit of LDO7 (PMOS1 LDO)
0 : 150mA operating range
1 : 300mA operating range
RW
The voltage select bits set the LDO output voltage
0.825V...3.3V, 25mV steps
00h : LDO off
01h-24h : V_LDO7=0.8V+ldo7_vsel*25mV
25h-3Fh : do not use
40h-7Fh : V_LDO7=1.725V+(ldo7_vsel-40h)*25mV
6:0
ldo7_vsel
ams Datasheet
[v1-01] 2015-Sep-07
0
Bit Description
Page 115
Document Feedback
AS3722 − Register Description
Figure 111:
LDO9Voltage
Addr:19h
LDO9Voltage
Bit
Bit Name
Default
Access
7
ldo9_ilimit
0
RW
Sets limit of LDO9 (PMOS1 LDO)
0 : 150mA operating range
1 : 300mA operating range
RW
The voltage select bits set the LDO output voltage
0.825V...3.3V, 25mV steps
00h : LDO off
01h-24h : V_LDO9=0.8V+ldo9_vsel*25mV
25h-3Fh : do not use
40h-7Fh : V_LDO9=1.725V+(ldo9_vsel-40h)*25mV
6:0
ldo9_vsel
0
Bit Description
Figure 112:
LDO10Voltage
Addr:1ah
LDO10Voltage
Bit
Bit Name
Default
Access
7
ldo10_ilimit
0
RW
Sets limit of LDO10 (PMOS1 LDO)
0 : 150mA operating range
1 : 300mA operating range
RW
The voltage select bits set the LDO output voltage
0.825V...3.3V, 25mV steps
00h : LDO off
01h-24h : V_LDO10=0.8V+ldo10_vsel*25mV
25h-3Fh : do not use
40h-7Fh : V_LDO10=1.725V+(ldo10_vsel-40h)*25mV
6:0
ldo10_vsel
0
Bit Description
Figure 113:
LDO11Voltage
Addr:1bh
LDO11Voltage
Bit
Bit Name
Default
Access
7
ldo11_ilimit
0
RW
Sets limit of LDO11 (PMOS1 LDO)
0 : 150mA operating range
1 : 300mA operating range
RW
The voltage select bits set the LDO output voltage
0.825V...3.3V, 25mV steps
00h : LDO off
01h-24h : V_LDO11=0.8V+ldo11_vsel*25mV
25h-3Fh : do not use
40h-7Fh : V_LDO11=1.725V+(ldo11_vsel-40h)*25mV
6:0
ldo11_vsel
Page 116
Document Feedback
0
Bit Description
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Register Description
Figure 114:
LDO3_settings
Addr:1dh
Bit
1:0
Bit Name
ldo3_vtrack_tr
LDO3_settings
Default
0
Access
RW_SM
Bit Description
Selects offset a trimming for tracking mode
0 : no offset
1 : +10mV offset of LDO3 at 1.2V Vout (+0.83%)
2 : +20mV offset of LDO3 at 1.2V Vout (+1.66%)
3 : +30mV offset of LDO3 at 1.2V Vout (+2.5%)
Figure 115:
GPIO_deb1
Addr:1eh
Bit
7:6
5:4
3:2
1:0
Bit Name
gpio3_deb
gpio2_deb
gpio1_deb
gpio0_deb
ams Datasheet
[v1-01] 2015-Sep-07
GPIO_deb1
Default
0
0
0
0
Access
Bit Description
RW
Sets debounce time on GPIO input
00h : no debounce time
01h : approx. 100 us
02h : approx. 1 ms
03h : approx. 10 ms
RW
Sets debounce time on GPIO input
00h : no debounce time
01h : approx. 100 us
02h : approx. 1 ms
03h : approx. 10 ms
RW
Sets debounce time on GPIO input
00h : no debounce time
01h : approx. 100 us
02h : approx. 1 ms
03h : approx. 10 ms
RW
Sets debounce time on GPIO input
00h : no debounce time
01h : approx. 100 us
02h : approx. 1 ms
03h : approx. 10 ms
Page 117
Document Feedback
AS3722 − Register Description
Figure 116:
GPIO_deb2
Addr:1fh
Bit
7:6
5:4
3:2
1:0
Bit Name
gpio7_deb
gpio6_deb
gpio5_deb
gpio4_deb
GPIO_deb2
Default
0
0
0
0
Access
Bit Description
RW
Sets debounce time on GPIO input
00h : no debounce time
01h : approx. 100 us
02h : approx. 1 ms
03h : approx. 10 ms
RW
Sets debounce time on GPIO input
00h : no debounce time
01h : approx. 100 us
02h : approx. 1 ms
03h : approx. 10 ms
RW
Sets debounce time on GPIO input
00h : no debounce time
01h : approx. 100 us
02h : approx. 1 ms
03h : approx. 10 ms
RW
Sets debounce time on GPIO input
00h : no debounce time
01h : approx. 100 us
02h : approx. 1 ms
03h : approx. 10 ms
Figure 117:
GPIOsignal_out
Addr:20h
GPIOsignal_out
Bit
Bit Name
Default
Access
7
gpio7_out
0
RW
This bit determines the output signal of the GPIO7
pin when selected as output source
6
gpio6_out
0
RW
This bit determines the output signal of the GPIO6
pin when selected as output source
5
gpio5_out
0
RW
This bit determines the output signal of the GPIO5
pin when selected as output source
4
gpio4_out
0
RW
This bit determines the output signal of the GPIO4
pin when selected as output source
3
gpio3_out
0
RW
This bit determines the output signal of the GPIO3
pin when selected as output source
2
gpio2_out
0
RW
This bit determines the output signal of the GPIO2
pin when selected as output source
Page 118
Document Feedback
Bit Description
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Register Description
Addr:20h
GPIOsignal_out
Bit
Bit Name
Default
Access
Bit Description
1
gpio1_out
0
RW
This bit determines the output signal of the GPIO1
pin when selected as output source
0
gpio0_out
0
RW
This bit determines the output signal of the GPIO0
pin when selected as output source
Figure 118:
GPIOsignal_in
Addr:21h
GPIOsignal_in
Bit
Bit Name
Default
Access
Bit Description
7
gpio7_in
0
RO
This bit reflects the logic level of the GPIO7 pin when
configured as digital input pin
6
gpio6_in
0
RO
This bit reflects the logic level of the GPIO6 pin when
configured as digital input pin
5
gpio5_in
0
RO
This bit reflects the logic level of the GPIO5 pin when
configured as digital input pin
4
gpio4_in
0
RO
This bit reflects the logic level of the GPIO4 pin when
configured as digital input pin
3
gpio3_in
0
RO
This bit reflects the logic level of the GPIO3 pin when
configured as digital input pin
2
gpio2_in
0
RO
This bit reflects the logic level of the GPIO2 pin when
configured as digital input pin
1
gpio1_in
0
RO
This bit reflects the logic level of the GPIO1 pin when
configured as digital input pin
0
gpio0_in
0
RO
This bit reflects the logic level of the GPIO0 pin when
configured as digital input pin
Figure 119:
Reg_sequ_mod1
Addr:22h
Reg_sequ_mod1
Bit
Bit Name
Default
Access
6
sd6_sequ_on
0
RW_SS
Step down 6 controlled by sequencer for ramping
down (reset or power_off )
5
sd5_sequ_on
0
RW_SS
Step down 5 controlled by sequencer for ramping
down (reset or power_off )
ams Datasheet
[v1-01] 2015-Sep-07
Bit Description
Page 119
Document Feedback
AS3722 − Register Description
Addr:22h
Reg_sequ_mod1
Bit
Bit Name
Default
Access
Bit Description
4
sd4_sequ_on
0
RW_SS
Step down 4 controlled by sequencer for ramping
down (reset or power_off )
3
sd3_sequ_on
0
RW_SS
Step down 3 controlled by sequencer for ramping
down (reset or power_off )
2
sd2_sequ_on
0
RW_SS
Step down 2 controlled by sequencer for ramping
down (reset or power_off )
1
sd1_sequ_on
0
RW_SS
Step down 1 controlled by sequencer for ramping
down (reset or power_off )
0
sd0_sequ_on
0
RW_SS
Step down 0 controlled by sequencer for ramping
down (reset or power_off )
Figure 120:
Reg_sequ_mod2
Addr:23h
Reg_sequ_mod2
Bit
Bit Name
Default
Access
7
ldo7_sequ_on
0
RW_SS
LDO8 controlled by sequencer for ramping down
(reset or power_off )
6
ldo6_sequ_on
0
RW_SS
LDO7 controlled by sequencer for ramping down
(reset or power_off )
5
ldo5_sequ_on
0
RW_SS
LDO6 controlled by sequencer for ramping down
(reset or power_off )
4
ldo4_sequ_on
0
RW_SS
LDO5 controlled by sequencer for ramping down
(reset or power_off )
3
ldo3_sequ_on
0
RW_SS
LDO4 controlled by sequencer for ramping down
(reset or power_off )
2
ldo2_sequ_on
0
RW_SS
LDO3 controlled by sequencer for ramping down
(reset or power_off )
1
ldo1_sequ_on
0
RW_SS
LDO2 controlled by sequencer for ramping down
(reset or power_off )
0
ldo0_sequ_on
0
RW_SS
LDO1 controlled by sequencer for ramping down
(reset or power_off )
Page 120
Document Feedback
Bit Description
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Register Description
Figure 121:
Reg_sequ_mod3
Addr:24h
Reg_sequ_mod3
Bit
Bit Name
Default
Access
Bit Description
3
ldo11_sequ_on
0
RW_SS
LDO11 controlled by sequencer for ramping down
(reset or power_off)
2
ldo10_sequ_on
0
RW_SS
LDO10 controlled by sequencer for ramping down
(reset or power_off)
1
ldo9_sequ_on
0
RW_SS
LDO9 controlled by sequencer for ramping down
(reset or power_off)
Figure 122:
SD_phsw_ctrl
Addr:27h
Bit
Bit Name
SD_phsw_ctrl
Default
Access
Bit Description
5:3
sd0_nph_min
0
RW
Select the minimum number of phases for
automatic phaseswitching of SD0
0 : 1 phase
1 : 2 phases
2 : 3 phases
3 : 4 phases
4 : NA
5 : 6 phases
6 : NA
7 : 8 phases
2
sd6_phsw_on
0
RW
Switch on automatic phase switching for sd6
1
sd1_phsw_on
0
RW
Switch on automatic phase switching for sd1
0
sd0_phsw_on
0
RW
Switch on automatic phase switching for sd0
ams Datasheet
[v1-01] 2015-Sep-07
Page 121
Document Feedback
AS3722 − Register Description
Figure 123:
SD_phsw_status
Addr:28h
Bit
7:6
4
3
2:0
Bit Name
sdmph_clk_div
sd6_nph_auto
sd1_nph_auto
sd0_nph_auto
Page 122
Document Feedback
SD_phsw_status
Default
0
0
0
0
Access
RW_SM
Bit Description
Divide clock of sd0,sd1,sd6 by 1,2 or 4
0 : 2.7MHz
1 : 1.35MHz
2 : 0.675MHz
3 : 0.675MHz
R
Status of the actual number of phases used ,if phase
switching enabled
0 : 1 phase
1 : 2 phases
R
Status of the actual number of phases used ,if phase
switching enabled
0 : 1 phase
1 : 2 phases
R
Status of the actual number of phases used ,if phase
switching enabled
0 : 1 phase
1 : 2 phases
2 : 3 phases
3 : 4 phases
4 : NA
5 : 6 phases
6 : NA
7 : 8 phases
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Register Description
Figure 124:
SD0_control
Addr:29h
Bit
7:6
5
4
3
2:0
Bit Name
sd0_trim_gm
sd0_force_pwm
sd0_fast
sd0_combine_phase
sd0_phases
ams Datasheet
[v1-01] 2015-Sep-07
SD0_control
Default
0
0
0
0
0
Access
RW_SM
Bit Description
Selects gm setting of OTA
0 : fast setting
1 : slow setting
2 : medium setting
3 : very slow setting
RW
Selects force pwm mode
0 : normal mode
1 : force pwm, inverted coil current possible to
keep the fixed frequency
RW
Selects a faster regulation mode for SD0 suitable
for larger load changes.
0 : normal mode, Cout (according spec)
1 : fast mode, 2 x Cout (according spec) required
RW_SM
Selects phase mode (set during startup
power_stage test)
0 : normal mode
1 : combine phase 1 and 2 , 3 and 4, 5 and 6, 7
and 8
RW_SM
Selects number of phases for sd0 (set during
startup power_stage test, can be changed after
that)
0 : 1 phases used
1 : 2 phases used
2 : 3 phases used
3 : 4 phases used
4 : 5 phases used
5 : 6 phases used
6 : 7 phases used
7 : 8 phases used
Page 123
Document Feedback
AS3722 − Register Description
Figure 125:
SD1_control
Addr:2ah
Bit
7:6
5
4
3
2
1
0
Bit Name
sd1_trim_gm
sd1_force_pwm
sd1_fast
sd1_combine_phase
sd0_low_noise
sd1_low_noise
sd1_phases
Page 124
Document Feedback
SD1_control
Default
0
0
0
0
0
0
1
Access
RW_SM
Bit Description
Selects gm setting of OTA
0 : fast setting
1 : slow setting
2 : medium setting
3 : very slow setting
RW
Selects force pwm mode
0 : normal mode
1 : force pwm, inverted coil current possible to
keep the fixed frequency
RW
Selects a faster regulation mode for SD1
suitable
for larger load changes.
0 : normal mode, Cout (according spec)
1 : fast mode, 2 x Cout (according spec)
required
RW_SM
Selects phase mode (set during startup
power_stage test)
0 : normal mode
1 : combine phase 1 and 2
RW
Enables low noise mode of SD0. If enabled
smaller
current pulses and output ripple are activated
0 : Normal mode. Minimum current pulses of
about 10% the current limit are applied in skip
mode
1 : Low noise mode. Only minimum on time
applied in skip mode
RW
Enables low noise mode of SD1. If enabled
smaller
current pulses and output ripple is activated
0 : Normal mode. Minimum current pulses of
about 10% the current limit are applied in skip
mode
1 : Low noise mode. Only minimum on time
applied in skip mode
RW_SM
Selects number of phases for sd1 (set during
startup power_stage test, can be changed after
that)
0 : 1 phase used
1 : 2 phases used
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Register Description
Figure 126:
SDmph_control
Addr:2bh
Bit
7
5:4
3:2
1:0
Bit Name
disable_sd0_pulld
sd6_startslew
sd1_startslew
sd0_startslew
ams Datasheet
[v1-01] 2015-Sep-07
SDmph_control
Default
0
0
0
0
Access
Bit Description
RW
Disable Regulator SD0 pull-down
0 : normal mode (pull-down if SD0 is disabled)
1 : pull-down disabled (only if sd0 controlled by
enable1/2/3 in active (ON) state)
RW
Sets the startup slew rate of SD6
0 : 5mV / us
1 : 10mV / us
2 : 20mV / us
3 : 40mV / us
RW
Sets the startup slew rate of SD1
0 : 5mV / us
1 : 10mV / us
2 : 20mV / us
3 : 40mV / us
RW
Sets the startup slew rate of SD0
0 : 5mV / us
1 : 10mV / us
2 : 20mV / us
3 : 40mV / us
Page 125
Document Feedback
AS3722 − Register Description
Figure 127:
SD23_control
Addr:2ch
Bit
6
5
4
2
1
0
Bit Name
sd3_fast
sd3_force_pwm
sd3_low_noise
sd2_fast
sd2_force_pwm
sd2_low_noise
Page 126
Document Feedback
SD23_control
Default
0
0
0
0
0
0
Access
RW_SS
Bit Description
Selects a faster regulation mode for SD3 suitable
for larger load changes.
0 : normal mode, Cout (according spec)
1 : fast mode, 2 x Cout (according spec) required
RW
Selects force pwm mode
0 : normal mode
1 : force pwm, inverted coil current possible to
keep the fixed frequency
RW
Enables low noise mode of SD3. If enabled smaller
current pulses and output ripple is activated
0 : Normal mode. Minimum current pulses of about
10% the current limit are applied in skip mode
1 : Low noise mode. Only minimum on time
applied in skip mode
RW_SS
Selects a faster regulation mode for SD2 suitable
for larger load changes.
0 : normal mode, Cout (according spec)
1 : fast mode, 2 x Cout (according spec) required
RW
Selects force pwm mode
0 : normal mode
1 : force pwm, inverted coil current possible to
keep the fixed frequency
RW
Enables low noise mode of SD2. If enabled smaller
current pulses and output ripple is activated
0 : Normal mode. Minimum current pulses of about
10% the current limit are applied in skip mode
1 : Low noise mode. Only minimum on time
applied in skip mode
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Register Description
Figure 128:
SD4_control
Addr:2dh
Bit
Bit Name
2
1
0
sd4_fast
sd4_force_pwm
sd4_low_noise
SD4_control
Default
0
0
0
Access
RW_SS
Bit Description
Selects a faster regulation mode for SD4 suitable
for larger load changes.
0 : normal mode, Cout (according spec)
1 : fast mode, 2 x Cout (according spec) required
RW
Selects force pwm mode
0 : normal mode
1 : force pwm, inverted coil current possible to keep
the fixed frequency
RW
Enables low noise mode of SD4. If enabled smaller
current pulses and output ripple is activated
0 : Normal mode. Minimum current pulses of about
10% the current limit are applied in skip mode
1 : Low noise mode. Only minimum on time applied
in skip mode
Figure 129:
SD5_control
Addr:2eh
Bit
2
1
0
Bit Name
sd5_fast
sd5_force_pwm
sd5_low_noise
ams Datasheet
[v1-01] 2015-Sep-07
SD5_control
Default
0
0
0
Access
RW_SS
Bit Description
Selects a faster regulation mode for SD5 suitable
for larger load changes.
0 : normal mode, Cout (according spec)
1 : fast mode, 2 x Cout (according spec) required
RW
Selects force pwm mode
0 : normal mode
1 : force pwm, inverted coil current possible to keep
the fixed frequency
RW
Enables low noise mode of SD5. If enabled smaller
current pulses and output ripple is activated
0 : Normal mode. Minimum current pulses of about
10% the current limit are applied in skip mode
1 : Low noise mode. Only minimum on time applied
in skip mode
Page 127
Document Feedback
AS3722 − Register Description
Figure 130:
SD6_control
Addr:2fh
Bit
7:6
5
Bit Name
sd6_trim_gm
sd6_force_pwm
4
sd6_fast
3
sd6_combine_phas
e
2
1
0
sd6_ph2c_on
sd6_low_noise
sd6_phases
Page 128
Document Feedback
SD6_control
Default
0
0
0
0
0
0
1
Access
RW_SM
Bit Description
Selects gm setting of OTA
0 : fast setting
1 : slow setting
2 : medium setting
3 : very slow setting
RW
Selects force pwm mode
0 : normal mode
1 : force pwm, inverted coil current possible to
keep the fixed frequency
RW
Selects a faster regulation mode for SD6 suitable
for larger load changes.
0 : normal mode, Cout (according spec)
1 : fast mode, 2 x Cout (according spec) required
RW_SM
Selects phase mode (set during startup subdie
test)
0 : normal mode
1 : combine phase 1 and 2
RW_SM
Selects high current mode of SD6 (doubled
current) (set during startup subdie test)
0 : normal mode (only one supdie connected)
1 : second subdie on pin TEMP2_SD6 detected
(short CTRL1 and CTRL2 of each subdie and
connect to CTRL1_SD6 and CTRL2_SD6)
RW
Enables low noise mode of SD6. If enabled
smaller
current pulses and output ripple is activated
0 : Normal mode. Minimum current pulses of
about 100f the current limit are applied in skip
mode
1 : Low noise mode. Only minimum on time
applied in skip mode
RW_SM
Selects number of phases for SD6 (set during
startup subdie test, can be changed after that)
0 : 1 phase used
1 : 2 phases used
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Register Description
Figure 131:
SD_dvm
Addr:30h
Bit
5:4
3:2
1:0
Bit Name
dvm_time_sd6
dvm_time_sd1
dvm_time_sd0
ams Datasheet
[v1-01] 2015-Sep-07
SD_dvm
Default
0
0
0
Access
Bit Description
RW
Time steps of DVM voltage change of selected step
down
If voltage of step Down is changed during operation
(sdx_vsel)
voltage is de/increased
0 : immediate change (no DVM)
1 : 40mV/us
2 : 10mV/us
3 : 5mV/us
RW
Time steps of DVM voltage change of selected step
down
If voltage of step Down is changed during operation
(sdx_vsel)
voltage is de/increased
0 : immediate change (no DVM)
1 : 40mV/us
2 : 10mV/us
3 : 5mV/us
RW
Time steps of DVM voltage change of selected step
down
If voltage of step Down is changed during operation
(sdx_vsel)
voltage is de/increased
0 : immediate change (no DVM)
1 : 40mV/us
2 : 10mV/us
3 : 5mV/us
Page 129
Document Feedback
AS3722 − Register Description
Figure 132:
Resetreason
Addr:31h
Bit
7:4
3:0
Bit Name
reset_reason
startup_reason
Page 130
Document Feedback
Resetreason
Default
0
0
Access
Bit Description
RW_SM
This flag indicates the exit of active mode reason
0 : VPOR has been reached (battery or supply
insertion from scratch)
1 : ResVoltFall reached by VBAT or vsup_min
reached by VSUP
2 : Software forced by force_reset (soft or hard)
3 : Software forced by power_off
4 : ONKEY longpress has been detected
5 : XRES_IN pin
6 : THERM pin
7 : overtemperature T140 (die, SD0, SD1, or SD6)
8 : watchdog
9 : VSUP overvoltage reached
10 : Transition to standby mode
RW_SM
This flag indicates the startup reason after power
off
0 : VPOR has been reached (battery or supply
insertion from scratch)
1 : ONKEY has been pulled high in power off mode
2 : AC_OK has been detected in power off mode
3 : LID has been detected in power off mode
4 : RTC wakeup has been detected in power off
mode
5 : Interrupt in standby mode has been detected
6 : Reset cycle
7 : Soft reset cycle
8 : ResVoltRise was reached
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Register Description
Figure 133:
Battery_voltage_monitor
Addr:32h
Battery_voltage_monitor
Bit
Bit Name
Default
Access
7
FastResEn
0
RW
6
5:3
2:0
SupResEn
ResVoltFall
ResVoltRise
ams Datasheet
[v1-01] 2015-Sep-07
0
0
0
Bit Description
0 : ResVoltFall debounce time = 4 ms
1 : ResVoltFall debounce time = 4 us
RW_SS
0 : A reset is generated if VBAT or VSUP falls below
2.5V. If VBAT falls below ResVoltFall only an
interrupt is generated (if enabled) and the
uProcessor can shut down the system)
1 : A reset is generated if VBAT falls below
ResVoltFall or VSUP falls below vsup_min
RW_SM
This value determines the reset level ResVoltFall for
falling VBAT.
For stacked battery systems (ncells>0) the level
gets multiplied with the number of cells.
It is recommended to set this value at least 200mV
lower than ResVoltRise
0 : 2.5V * (ncells+1)
1 : 2.7V * (ncells+1)
2 : 2.95V * (ncells+1)
3 : 3.1V * (ncells+1)
4 : 3.2V * (ncells+1)
5 : 3.3V * (ncells+1)
6 : 3.4V * (ncells+1)
7 : 3.6V * (ncells+1)
RW_SM
This value determines the reset level ResVoltRise
for rising VBAT.
For stacked battery systems (ncells>0) the level
gets multiplied with the number of cells.
It is recommended to set this value at least 200mV
higher than ResVoltFall
0 : 2.5V * (ncells+1)
1 : 2.7V * (ncells+1)
2 : 2.95V * (ncells+1)
3 : 3.1V * (ncells+1)
4 : 3.2V * (ncells+1)
5 : 3.3V * (ncells+1)
6 : 3.4V * (ncells+1)
7 : 3.6V * (ncells+1)
Page 131
Document Feedback
AS3722 − Register Description
Figure 134:
Startup_Control
Addr:33h
Startup_Control
Bit
Bit Name
Default
Access
3
onkey_lpress_reset
0
RW_SS
2
1
0
lid_rising_en
ac_ok_rising_en
power_off_at_vsuplow
Page 132
Document Feedback
0
0
0
Bit Description
Selects behavior on onkey_lpress
0 : change to power_off mode on long press
1 : apply reset on long press
RW
Select LID detection in power off mode
Read write
0 : Exit of Power Off mode, if LID is detected
(level detection)
1 : Exit of Power Off mode, if LID active is
detected (rising edge detection after possible
inversion)
RW
Select AC_OK detection in power off mode
Read Write
0 : Exit of Power Off mode, if AC_OK is detected
(level detection)
1 : Exit of Power Off mode, if AC_OK active is
detected (rising edge detection after possible
inversion)
RW_SS
Switch on Power_Off mode if low VBAT/VSUP is
detected during Active or Standby mode (pin
ONKEY=low and bit auto_off=0)
0 : If low VBAT/VSUP is detected, continuously
monitor battery voltage and startup if battery
voltage is above ResVoltRise
1 : If low VBAT/VSUP is detected, enter
Power_Off mode
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Register Description
Figure 135:
ResetTimer
Addr:34h
Bit
6
5
4:3
1:0
Bit Name
stby_reset_enable
auto_off
off_delay
res_timer
ResetTimer
Default
0
0
1
0
Access
Bit Description
RW
Enable Reset output signal (pin XRES_OUT) in
standby mode
0 : No reset (XRES_OUT=1) in standby mode and
during exit of standby mode
1 : Reset is active (XRES_OUT=0) in standby mode
RW_SS
Defines startup behavior at first battery insertion
or reset cycle
0 : Startup of chip if VBAT>ResVoltRise
1 : Enter power off mode (waiting for start-up
event e.g. ONKEY)
RW
Set Delay between I2C command, GPIO or Reset
signal for power_off, standby mode or reset
and execution of that command
0 : no delay
1 : 8 ms
2 : 16 ms
3 : 32 ms
RW_SM
Set Reset Time, after the last regulator has started
0 : RESTIME = 0 ms
1 : RESTIME = 5 ms
2 : RESTIME = 11 ms
3 : RESTIME = 15 ms
Figure 136:
ReferenceControl
Addr:35h
Bit
7
Bit Name
force_softreset
ReferenceControl
Default
0
Access
Bit Description
RW_SM
Setting to 1 starts a soft reset cycle
Reset_out is activated and startup sequence is
executed without switching of the regulators
(voltage preset)
5
clk_div2
0
RW_SM
Divide internal clock oscillator by 2 to reduce
quiescent current for low power operation
0 : Normal mode
1 : Internal clock frequency divided by two. All
timings are increased by two. Switching frequency
of all stepdown converters are divided by two.
Reduced transient performance of stepdown
converters.
4
standby_mode_on
0
RW_SM
Setting to 1 sets the PMU into standby mode.
ams Datasheet
[v1-01] 2015-Sep-07
Page 133
Document Feedback
AS3722 − Register Description
Addr:35h
Bit
Bit Name
3:1
0
clk_int
low_power_on
ReferenceControl
Default
0
0
Access
Bit Description
RW_SM
Sets the internal CLK frequency fCLK used for
Stepdowns, PWM, ...
0 : 4 MHz (default)
1 : 3.8 MHz
2 : 3.6 MHz
3 : 3.4 MHz
4 : 3.2 MHz
5 : 3.0 MHz
6 : 2.8 MHz
7 : 2.6 MHz
All frequencies, timings and delays in this datasheet
are based on 4MHz clk_int
RW_SM
Enable low power mode of internal reference.
0 : Standard mode
1 : Low power mode - all specification except noise
parameters are still valid. Iq reduced by approx.
45uA
Figure 137:
ResetControl
Addr:36h
Bit
4:3
Bit Name
reset_debounce
ResetControl
Default
0
Access
RW
Bit Description
Sets debounce time for RESET_IN
0 : 0.1 ms
1 : 4 ms
2 : 8 ms
3 : 16 ms
2
onkey_input
0
R_PUSH
READ : This flag represents the state of the ONkey
pad directly
WRITE : Setting to 1 resets the 2/4/8 sec. Onkey reset
timer
1
power_off
0
RW_SM
Setting to 1 starts a reset cycle, and puts the PMIC
into Power_off state
0
force_reset
0
RW
Page 134
Document Feedback
Setting to 1 starts a complete reset cycle
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Register Description
Figure 138:
OvertemperatureControl
Addr:37h
OvertemperatureControl
Bit
Bit Name
Default
Access
4
ov_temp_alarm0
0
RO
Temperature alarm0 reached if bit is set
First temperature alarm proposed to be set
at 94C, reset at 88C
RW_SMP
If the overtemperature threshold
ov_temp_max has been reached, the flag
ov_temp_shutdown is set and a reset cycle
is started.
ov_temp_shutdown should be reset by
writing 1 and afterward 0 to
rst_ov_temp_shutdown
3
rst_ov_temp_shutdown
0
Bit Description
2
ov_temp_shutdown
0
RO
Flag that the overtemperature threshold 2
(T140) has been reached - this flag is not
reset by a
overtemperature caused reset and has to be
reset by rst_ov_temp_shutdown
Shutdown temperature proposed to be set
at 140C reset at 135C
1
ov_temp_alarm1
0
RO
Temperature alarm1 reached if bit is set
Second temperature alarm proposed to be
set at 113C, reset at 107C
RW
Switch on/off temperature supervision,
default: on
Leave at 1, do not disable
all other OvertemperatureControl bits are
only valid if this bit is set
0
temp_pmc_on
1
Figure 139:
WatchdogControl
Addr:38h
Bit
2:1
0
Bit Name
wtdg_mode
wtdg_on
ams Datasheet
[v1-01] 2015-Sep-07
WatchdogControl
Default
0
0
Access
Bit Description
RW_SM
Defines actions when the watchdog expires
0 : interrupt only
1 : performs a reset cycle, then try restart
2 : power-off
3 : performs up to 2 reset cycles, then power-off
bit are set to their OTP values at startup, bit 0 can only
be set
RW_SS
Switches on the complete watchdog
0 : watchdog off
1 : watchdog on
bit is set to its OTP value at startup, bit can only be set
Page 135
Document Feedback
AS3722 − Register Description
Figure 140:
Reg_standby_mod1
Addr:39h
Bit
Bit Name
Reg_standby_mod1
Default
Access
Bit Description
7
disable_regpd
0
RW
This bit disables the pull-down of all regulators
0 : normal mode with pull-down for all internal
regulators
1 : pull-down disabled; >100kOhm for all internal
regulators
6
sd6_stby_on
0
RW
Enable Step down 6 in standby mode
5
sd5_stby_on
0
RW
Enable Step down 5 in standby mode
4
sd4_stby_on
0
RW
Enable Step down 4 in standby mode
3
sd3_stby_on
0
RW
Enable Step down 3 in standby mode
2
sd2_stby_on
0
RW
Enable Step down 2 in standby mode
1
sd1_stby_on
0
RW
Enable Step down 1 in standby mode
0
sd0_stby_on
0
RW
Enable Step down 0 in standby mode
Figure 141:
Reg_standby_mod2
Addr:3ah
Reg_standby_mod2
Bit
Bit Name
Default
Access
7
ldo7_stby_on
0
RW
Enable LDO7 in standby mode
6
ldo6_stby_on
0
RW
Enable LDO6 in standby mode
5
ldo5_stby_on
0
RW
Enable LDO5 in standby mode
4
ldo4_stby_on
0
RW
Enable LDO4 in standby mode
3
ldo3_stby_on
0
RW
Enable LDO3 in standby mode
2
ldo2_stby_on
0
RW
Enable LDO2 in standby mode
1
ldo1_stby_on
0
RW
Enable LDO1 in standby mode
0
ldo0_stby_on
0
RW
Enable LDO0 in standby mode
Page 136
Document Feedback
Bit Description
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Register Description
Figure 142:
Reg_standby_mod3
Addr:3bh
Reg_standby_mod3
Bit
Bit Name
Default
Access
Bit Description
3
ldo11_stby_on
0
RW
Enable LDO11 in standby mode
2
ldo10_stby_on
0
RW
Enable LDO10 in standby mode
1
ldo9_stby_on
0
RW
Enable LDO9 in standby mode
Figure 143:
ENABLEctrl1
Addr:3ch
Bit
7:6
5:4
3:2
1:0
Bit Name
enable_ctrl_sd3
enable_ctrl_sd2
enable_ctrl_sd1
enable_ctrl_sd0
ams Datasheet
[v1-01] 2015-Sep-07
ENABLEctrl1
Default
0
0
0
0
Access
Bit Description
RW
Enable control of SD3.
only enabled, if sd3_vsel>0
0 : no ENABLE control
1 : controlled by enable1
2 : controlled by enable2
3 : controlled by enable3
RW
Enable control of SD2.
only enabled, if sd2_vsel>0
0 : no ENABLE control
1 : controlled by enable1
2 : controlled by enable2
3 : controlled by enable3
RW
Enable control of SD1.
only enabled, if sd1_vsel>0
0 : no ENABLE control
1 : controlled by enable1
2 : controlled by enable2
3 : controlled by enable3
RW
Enable control of SD0.
only enabled, if sd0_vsel>0
0 : no ENABLE control
1 : controlled by enable1
2 : controlled by enable2
3 : controlled by enable3
Page 137
Document Feedback
AS3722 − Register Description
Figure 144:
ENABLEctrl2
Addr:3dh
Bit
Bit Name
5:4
enable_ctrl_sd6
3:2
enable_ctrl_sd5
1:0
enable_ctrl_sd4
ENABLEctrl2
Default
0
0
0
Access
Bit Description
RW
Enable control of SD6.
only enabled, if sd6_vsel>0
0 : no ENABLE control
1 : controlled by enable1
2 : controlled by enable2
3 : controlled by enable3
RW
Enable control of SD5.
only enabled, if sd5_vsel>0
0 : no ENABLE control
1 : controlled by enable1
2 : controlled by enable2
3 : controlled by enable3
RW
Enable control of SD4.
only enabled, if sd4_vsel>0
0 : no ENABLE control
1 : controlled by enable1
2 : controlled by enable2
3 : controlled by enable3
Figure 145:
ENABLEctrl3
Addr:3eh
Bit
7:6
5:4
3:2
Bit Name
enable_ctrl_ldo3
enable_ctrl_ldo2
enable_ctrl_ldo1
Page 138
Document Feedback
ENABLEctrl3
Default
0
0
0
Access
Bit Description
RW
Enable control of ldo3.
only enabled, if ldo3_vsel>0
0 : no ENABLE control
1 : controlled by enable1
2 : controlled by enable2
3 : controlled by enable3
RW
Enable control of ldo2.
only enabled, if ldo2_vsel>0
0 : no ENABLE control
1 : controlled by enable1
2 : controlled by enable2
3 : controlled by enable3
RW
Enable control of ldo1.
only enabled, if ldo1_vsel>0
0 : no ENABLE control
1 : controlled by enable1
2 : controlled by enable2
3 : controlled by enable3
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Register Description
Addr:3eh
Bit
Bit Name
1:0
enable_ctrl_ldo0
ENABLEctrl3
Default
0
Access
RW
Bit Description
Enable control of ldo0.
only enabled, if ldo0_vsel>0
0 : no ENABLE control
1 : controlled by enable1
2 : controlled by enable2
3 : controlled by enable3
Figure 146:
ENABLEctrl4
Addr:3fh
Bit
7:6
5:4
3:2
1:0
Bit Name
enable_ctrl_ldo7
enable_ctrl_ldo6
enable_ctrl_ldo5
enable_ctrl_ldo4
ams Datasheet
[v1-01] 2015-Sep-07
ENABLEctrl4
Default
0
0
0
0
Access
Bit Description
RW
Enable control of ldo7.
only enabled, if ldo7_vsel>0
0 : no ENABLE control
1 : controlled by enable1
2 : controlled by enable2
3 : controlled by enable3
RW
Enable control of ldo6.
only enabled, if ldo6_vsel>0
0 : no ENABLE control
1 : controlled by enable1
2 : controlled by enable2
3 : controlled by enable3
RW
Enable control of ldo5.
only enabled, if ldo5_vsel>0
0 : no ENABLE control
1 : controlled by enable1
2 : controlled by enable2
3 : controlled by enable3
RW
Enable control of ldo4.
only enabled, if ldo4_vsel>0
0 : no ENABLE control
1 : controlled by enable1
2 : controlled by enable2
3 : controlled by enable3
Page 139
Document Feedback
AS3722 − Register Description
Figure 147:
ENABLEctrl5
Addr:40h
Bit
7:6
5:4
3:2
ENABLEctrl5
Bit Name
Default
enable_ctrl_ldo11
Access
0
enable_ctrl_ldo10
0
enable_ctrl_ldo9
0
Bit Description
RW
Enable control of ldo11.
only enabled, if ldo11_vsel>0
0 : no ENABLE control
1 : controlled by enable1
2 : controlled by enable2
3 : controlled by enable3
RW
Enable control of ldo10.
only enabled, if ldo10_vsel>0
0 : no ENABLE control
1 : controlled by enable1
2 : controlled by enable2
3 : controlled by enable3
RW
Enable control of ldo9.
only enabled, if ldo9_vsel>0
0 : no ENABLE control
1 : controlled by enable1
2 : controlled by enable2
3 : controlled by enable3
Figure 148:
pwm_control_l
Addr:41h
Bit
7:0
Bit Name
pwm_l_time
Page 140
Document Feedback
pwm_control_l
Default
0
Access
Bit Description
RW
This bit defines the low time of the pwm generator
in 1MHz units
0 : pwm_div * 1us
1 : pwm_div * 2us
2 : pwm_div * 3us
.. : ..
254 : pwm_div * 255us
255 : pwm_div * 256us
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Register Description
Figure 149:
pwm_control_h
Addr:42h
Bit
7:0
Bit Name
pwm_control_h
Default
pwm_h_time
0
Access
Bit Description
RW
This bit defines the high time of the pwm generator
in 1MHz units
0 : pwm_div * 1us
1 : pwm_div * 2us
2 : pwm_div * 3us
.. : ..
254 : pwm_div * 255us
255 : pwm_div * 256us
Figure 150:
Watchdog_timer
Addr:46h
Bit
6:0
Bit Name
wtdg_timer
Watchdog_timer
Default
0
Access
Bit Description
RW
Watchdog timer Write watchdog timer, Read actual
countdown starting from (LSB=1s, range: 1 - 128s)
writing of wtdg_sw_sig or risigng edge of GPIO (if
GPIOx_iosf=9) resets the watchdog to wtdg_timer
0 : 1 second
1 : 2 seconds
2 : 3 seconds
3 : 4 seconds
.. : ..
126 : 127 seconds
127 : 128 seconds
Figure 151:
WatchdogSoftwareSignal
Addr:48h
Bit
Bit Name
WatchdogSoftwareSignal
Default
Access
7:6
pwm_div
0
RW
0
wtdg_sw_sig
0
PUSH
ams Datasheet
[v1-01] 2015-Sep-07
Bit Description
This bit defines the divider ratio of the prescaler for
the PWM generator
0 : Divide by 1
1 : Divide by 16
2 : Divide by 256
3 : Divide by 16384
Trigger input by the serial interface, if gpioX_iosf9
Page 141
Document Feedback
AS3722 − Register Description
Figure 152:
IOVoltage
Addr:49h
IOVoltage
Bit
Bit Name
Default
Access
0
level33
0
RW
4
5
I2C_bus_pullup
INT_pullup_dis
0
0
Bit Description
Voltage level of input signals
0 : IO voltage 1.8 V
1 : IO voltage 3.3 V
I2C data and CLK internal pull-ups
enabled/disabled
0 : pull-ups disabled
1 : pull-ups enabled
RW_SS
Interrupt signal pull-up enabled/disabled on pin
XINT
0 : pull-up enabled (open drain mode)
1 : pull-up disabled (push/pull mode)f
RW
Figure 153:
Battery_voltage_monitor2
Addr:4ah
Bit
1:0
4:2
Bit Name
ncells
vsup_min
Page 142
Document Feedback
Battery_voltage_monitor2
Default
0
0
Access
Bit Description
RW_SM
Selects number of cells that are connected to VBAT
pin
0 : 1 cell: ResVoltRise = 2.5...3.6
1 : 2 cell: ResVoltRise = 2*(2.5...3.6V) = 5.0....7.2V
2 : 3 cell: ResVoltRise = 3*(2.5...3.6V) = 7.5...10.8V
3 : 4 cell: ResVoltRise = 4*(2.5...3.6V) = 10....14.4V
RW_SM
Defines minimum value on VSUP for startup/reset
0 : 2.55V
1 : 2.7V
2 : 3.0V
3 : 3.2V
4 : 4.5V
5 : 4.7V
6 : 4.8V
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Register Description
Figure 154:
SDcontrol
Addr:4dh
SDcontrol
Bit
Bit Name
Default
Access
Bit Description
6
sd6_enable
1
RW
Global stepdown6 enable
5
sd5_enable
1
RW
Global stepdown5 enable
4
sd4_enable
1
RW
Global stepdown4 enable
3
sd3_enable
1
RW
Global stepdown3 enable
2
sd2_enable
1
RW
global stepdown2 enable
1
sd1_enable
1
RW
Global stepdown1 enable
0
sd0_enable
1
RW
Global stepdown0 enable
Figure 155:
LDOcontrol0
Addr:4eh
LDOcontrol0
Bit
Bit Name
Default
Access
7
ldo7_enable
1
RW
Global ldo7 enable
6
ldo6_enable
1
RW
Global ldo6 enable
5
ldo5_enable
1
RW
Global ldo5 enable
4
ldo4_enable
1
RW
Global ldo4 enable
3
ldo3_enable
1
RW
Global ldo3 enable
2
ldo2_enable
1
RW
Global ldo2 enable
1
ldo1_enable
1
RW
Global ldo1 enable
0
ldo0_enable
1
RW
Global ldo0 enable
ams Datasheet
[v1-01] 2015-Sep-07
Bit Description
Page 143
Document Feedback
AS3722 − Register Description
Figure 156:
LDOcontrol1
Addr:4fh
LDOcontrol1
Bit
Bit Name
Default
Access
Bit Description
3
ldo11_enable
1
RW
Global ldo11 enable
2
ldo10_enable
1
RW
Global ldo10 enable
1
ldo9_enable
1
RW
Global ldo9 enable
Figure 157:
SD0_protect
Addr:50h
Bit
Bit Name
4:0
sd0_vmax
SD0_protect
Default
0
Access
RW_SM
Bit Description
Overvoltage protection function for SD0
Will be programmed into OTP and cannot be
changed by SW.
0 : protection disabled
other : max voltage set by OTP
Figure 158:
SD6_protect
Addr:51h
Bit
4:0
Bit Name
sd6_vmax
Page 144
Document Feedback
SD6_protect
Default
0
Access
RW_SM
Bit Description
Overvoltage protection function for SD6
Will be programmed into OTP and cannot be
changed by SW.
0 : protection disabled
other : max voltage set by OTP
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Register Description
Figure 159:
PWM_vcontrol1
Addr:52h
PWM_vcontrol1
Bit
Bit Name
Default
Access
7
vpwm1_step
0
RW
6
5:0
vpwm1_on
vpwm1_vbase
0
0
RW_SM
RW
Bit Description
Select step size of PWM1 mode
0 : 10mV
1 : 20mV
Enable PWM1 control of SD0
0 : PWM1 control disabled
1 : PWM1 control enabled (if vpwm1_value is
reset, then PWM control is enabled after first
PWM1 interface word only)
Base voltage register of SD0 from 0.6V to 1.1V in
10m steps
0 : 0.6 V
1 : 0.61 V
2 : 0.62 V
.. : ..
49 : 1.09 V
50 : 1.10 V
Figure 160:
PWM_vcontrol2
Addr:53h
PWM_vcontrol2
Bit
Bit Name
Default
Access
7
vpwm2_step
0
RW
6
5:0
vpwm2_on
vpwm2_vbase
ams Datasheet
[v1-01] 2015-Sep-07
0
0
RW_SM
RW
Bit Description
Select step size of PWM2 mode
0 : 10mV
1 : 20mV
Enable PWM2 control of SD6
0 : PWM2 control disabled
1 : PWM2 control enabled (if vpwm2_value is
reset, then PWM control is enabled after first
PWM2 interface word only)
Base voltage register of SD6 from 0.6V to 1.1V in
10m steps
0 : 0.6 V
1 : 0.61 V
2 : 0.62 V
.. : ..
49 : 1.09 V
50 : 1.10 V
Page 145
Document Feedback
AS3722 − Register Description
Figure 161:
PWM_vcontrol3
Addr:54h
Bit
Bit Name
PWM_vcontrol3
Default
Access
7:6
vpwm1_reset
0
RW
5:0
vpwm1_value
0
R
Bit Description
Select reset behavior if SD0 gets disabled
0 : vpwm1_on and vpwm1_value reset
1 : vpwm1_on reset, vpwm1_value not reset
2 : vpwm1_on and vpwm1_value not reset
3 : do not use
Actual PWM1 value
SD0 voltage = vpwm1_vbase + vpwm1_step *
vpwm1_value
Figure 162:
PWM_vcontrol4
Addr:55h
Bit
Bit Name
PWM_vcontrol4
Default
Access
7:6
vpwm2_reset
0
RW
5:0
vpwm2_value
0
R
Page 146
Document Feedback
Bit Description
Select reset behavior if SD6 gets disabled
0 : vpwm2_on and vpwm2_value reset
1 : vpwm2_on reset, vpwm2_value not reset
2 : vpwm2_on and vpwm1_value not reset
3 : do not use
Actual PWM2 value
SD6 voltage = vpwm2_vbase + vpwm2_step *
vpwm2_value
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Register Description
Figure 163:
BBcharger
Addr:57h
BBcharger
Bit
Bit Name
Default
Access
7
BBCActive
0
RO
Status of backup battery charger
0 : Charger is not active
1 : Charger charges backup battery
RW
0 : Normal operation of the backup battery
charger
1 : The backup battery charger checks if it is
actually charging the battery (bit BBCActive=1)
and it is disabled if it is not. Every 10s (every 64s in
state Off ) the voltage of the backup battery is
checked again to determine if charging is
required. This practically reduces the current
consumption to 0 if the backup battery is full.
RW
This value determines the maximum charging
voltage VBBC
0 : VBBC=2.5V
1 : VBBC=3.0V
6
5
BBCPwrSave
BBCVolt
1
0
Bit Description
4:3
BBCCur
0
RW
This value determines the charge current IBBC
0 : IBBC=50uA
1 : IBBC=100uA
2 : IBBC=200uA
3 : IBBC=400uA
2
BBCResOff
0
RW
0 : Enable output resistor
1 : Bypass output resistor
RW
Enable and disable backup battery charger.
Activation in PowerOff and standby mode requires
32kHz OSC to be enabled (rtc_on=1).
0 : Backup battery charger is disabled
1 : Backup battery charger is enabled in state
Active mode
2 : Backup battery charger is enabled in states
Active mode and Standby mode
3 : Backup battery charger is enabled in states
PowerOff mode, Active mode and Standby mode
1:0
BBCMode
ams Datasheet
[v1-01] 2015-Sep-07
0
Page 147
Document Feedback
AS3722 − Register Description
Figure 164:
CTRLsequ1
Addr:58h
Bit
0
Bit Name
ac_ok_pwr_on
CTRLsequ1
Default
0
Access
Bit Description
RW_SS
Enables exit out of PWR OFF mode with pin
AC_OK (pin enabled in PWR off mode)
0 : AC_OK disabled
1 : AC_OK enabled
1
lid_pwr_on
0
RW_SS
Enables exit out of PWR OFF mode with pin LID
(pin enabled in PWR off mode)
0 : LID disabled
1 : LID enabled
2
therm_inv
0
RW_SS
Sets the polarity of the THERM pin
0 : High active for THERM event
1 : Inverted: Low active for THERM event
3
enable2_inv
0
RW_SS
Sets the polarity of the ENABLE2 pin
0 : High active for ENALBE2
1 : Inverted: Low active for ENABLE2
4
enable1_inv
0
RW
Sets the polarity of the ENABLE1 pin
0 : High active for ENABLE1
1 : Inverted: Low active for ENABLE1
5
enable1_deepsleep
0
RW
ENABLE1 signal enable for controlling
deepsleep/stand_by
0 : ENABLE1 signal not used for stand_by
entry/exit
1 : ENABLE1 signal used for stand_by entry/exit
6
onkey_nodebounce
0
RW
Sets the debounce on ONKEY
0 : debounce on
1 : debounce off
7
enable3_inv
0
RW_SS
Page 148
Document Feedback
Sets the polarity of the ENABLE3 pin
0 : High active for ENABLE3
1 : Inverted: Low active for ENABLE3
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Register Description
Figure 165:
CTRLsequ2
Addr:59h
Bit
Bit Name
CTRLsequ2
Default
Access
Bit Description
1:0
on_shutdown_delay
0
RW_SM
Sets the ONKEY shutdown delay time.
After timer expired onkey_lpress_i
interrupt status bit is set and one
additional second wait is added before
shutdown is initiated.
If interrupt status register is read out
during that second, the delay timer is reset,
and no shutdown is done.
0 : disabled
1 : 2 sec
2 : 4 sec
3 : 8 sec
2
onkey_invert
0
RW_SS
Sets the polarity of the ONKEY pin
0 : High active for ONKEY
1 : Inverted: Low active for ONKEY
5:3
on_shutdown_delay_cnt
0
R
6
ac_ok_invert
0
RW_SS
Sets the polarity of the AC_OK pin
0 : High active for AC_OK
1 : Inverted: Low active for AC_OK
7
lid_invert
0
RW_SS
Sets the polarity of the LID pin
0 : High active for LID
1 : Inverted: Low active for LID
ams Datasheet
[v1-01] 2015-Sep-07
On-reset delay counter in seconds. Starts
with 0sec when onkey is pressed.
Page 149
Document Feedback
AS3722 − Register Description
Figure 166:
OVcurrent
Addr:5ah
Bit
2:0
4:3
6:5
Bit Name
sd0_ovc_alarm
sd0_ilimit
sd1_ilimit
OVcurrent
Default
0
0
0
Access
Bit Description
RW
Selects overcurrent alarm threshold of SD0 per
phase
0 : disabled
1 : 1.6A
2 : 1.8A
3 : 2.0A
4 : 2.2A
5 : 2.4A
6 : 2.6A
7 : 2.8A
RW
Selects overcurrent trip threshold of SD0 per
phase
0 : 2.5A
1 : 3A
2 : 3.5A
3 : do not use
RW
Selects overcurrent trip threshold of SD1 per
phase
0 : 2.5A
1 : 3A
2 : 3.5A
3 : do not use
Figure 167:
OVcurrent_deb
Addr:5bh
Bit
1:0
4:3
Bit Name
sd06_ovc_alarm_deb
sd6_ilimit
Page 150
Document Feedback
OVcurrent_deb
Default
0
0
Access
Bit Description
RW
Selects debounce time of ovc_alarm0 and
ovc_alarm6 signals
0 : no debouncing
1 : 1 us
2 : 4 us
3 : 20 us
RW
Selects overcurrent trip threshold of SD6 per
phase
0 : 2.5A
1 : 3A
2 : 3.5A
3 : do not use
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Register Description
Figure 168:
SDlv_deb
Addr:5ch
Bit
7:6
Bit Name
pg_sd6_vmask_time
5:4
sd6_lv_deb
3:2
sd1_lv_deb
1:0
sd0_lv_deb
SDlv_deb
Default
0
0
0
0
Access
Bit Description
RW
Mask pwrgood_sd6 (=sd6_lv) and ovcurr after
voltage change (DVS)
0 : no masking
1 : 4us
2 : 8us
3 : do not use
RW
Selects debounce time of sd6_lv signal
0 : no debouncing
1 : 1 us
2 : 4 us
3 : 20 us
RW
Selects debounce time of sd1_lv signal
0 : no debouncing
1 : 1 us
2 : 4 us
3 : 20 us
RW
Selects debounce time of sd0_lv signal
0 : no debouncing
1 : 1 us
2 : 4 us
3 : 20 us
Figure 169:
OC_pg_ctrl
Addr:5dh
OC_pg_ctrl
Bit
Bit Name
Default
Access
0
pg_ac_ok_inv
0
RW
Invert AC_OK for OC_PG signal
1
pg_ac_ok_mask
0
RW
Mask AC_OK for OC_PG signal
2
pg_gpio3_mask
0
RW
Mask gpio3 for OC_PG signal
3
pg_gpio4_mask
0
RW
Mask gpio4 for OC_PG signal
4
pg_gpio5_mask
0
RW
Mask gpio5 for OC_PG signal
5
pg_pwrgood_sd0_mask
0
RW
Mask pwrgood for OC_PG signal
power good is the sd0_lv signal
6
pg_ovcurr_sd0_mask
0
RW
Mask ovc_alarm threshold of SD0
7
pg_vresfall_mask
0
RW
Mask ResVoltFall (alarm threshold)
ams Datasheet
[v1-01] 2015-Sep-07
Bit Description
Page 151
Document Feedback
AS3722 − Register Description
Figure 170:
OC_pg_ctrl2
Addr:5eh
OC_pg_ctrl2
Bit
Bit Name
Default
Access
0
-
0
RW
N/A, has to be set to “0”
RW
Mask pwrgood_sd0 (=sd0_lv) and ovcurr
after voltage change (DVS)
0 : no masking
1 : 4us
2 : 8us
3 : do not use
2:1
pg_vmask_time
0
Bit Description
5:3
pg_sd6_ovc_alarm
0
RW
Selects overcurrent alarm threshold of
dcdc6 per phase
0 : disabled
1 : 1.6A
2 : 1.8A
3 : 2.0A
4 : 2.2A
5 : 2.4A
6 : 2.6A
7 : 2.8A
6
pg_pwrgood_sd6_mask
0
RW
Mask power good for dcdc6 (dcdc6_lv)
signal on selected GPIO output
RW
Mask overcurrent alarm threshold of
dcdc6 on selected GPIO output
if bits 7 and 6 are 0, pg_sd6 (if selected as
GPIO out function) represents power good
and overcurrent
function of sd6
7
pg_ovcurr_sd6_mask
0
Figure 171:
CTRLstatus
Addr:5fh
CTRLstatus
Bit
Bit Name
Default
Access
0
ac_ok
0
RO
Status of AC_OK pin
1
lid
0
RO
Status of LID pin
2
therm
0
RO
Status of THERM pin
3
ov_curr
0
RO
Over current of SD0 reached
4
enable1
0
RO
Status of enable1 signal (enable1 XOR
enable1_inv)
Page 152
Document Feedback
Bit Description
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Register Description
Addr:5fh
CTRLstatus
Bit
Bit Name
Default
Access
Bit Description
5
enable2
0
RO
Status of enable2 signal (enable2 XOR
enable2_inv)
6
enable3
0
RO
Status of enable3 signal (enable3 XOR
enable3_inv)
7
sd0_pwr_ok
0
RO
Status of sd0_pwrgood
Figure 172:
RTCcontrol
Addr:60h
RTCcontrol
Bit
Bit Name
Default
Access
7
am_pm_mode
0
RW
12h/24h mode switch
0 : 24hour mode
1 : 12hour am/pm mode
5
clk32out_en
1
RW
0 : CLK32OUT pin disabled
1 : CLK32OUT pin enabled (push/pull to
VDD_GPIO_lv)
0 : generates an interrupt every second
1 : generates an interrupt every minute
2 : generates an interrupt every 2 minutes
3 : generates an interrupt every 8 minutes
4:3
rtc_irq_mode
0
RW
2
rtc_on
0
RW_SM
1
0
rtc_alarm_wakeup_en
rtc_rep_wakeup_en
ams Datasheet
[v1-01] 2015-Sep-07
0
0
Bit Description
Switch on the 32kHz RTC oscillator
0 : 32kHz oscillator disabled
1 : 32kHz oscillator enabled
RW
0 : Disables RTC alarm wakeup in power off
mode
1 : Enable RTC alarm wakeup in power off
mode
RW
0 : Disables RTC repeated wakeup in power
off mode
1 : Enable RTC repeated wakeup in power
off mode
Page 153
Document Feedback
AS3722 − Register Description
Figure 173:
RTCsecond
Addr:61h
RTCsecond
Bit
Bit Name
Default
Access
Bit Description
3:0
second0
0
RW_SM
Seconds digit (BCD coded)
RTCyear has to be written to latch the whole RTC
register
RW_SM
10-seconds digit (BCD coded),
RTCsecond counts seconds, minutes roll over
after 59 seconds to 00
RTCyear has to be written to latch the whole RTC
register
6:4
second1
0
Figure 174:
RTCminute
Addr:62h
RTCminute
Bit
Bit Name
Default
Access
Bit Description
3:0
minute0
0
=
Minutes digit (BCD coded)
RTCyear has to be written to latch the whole RTC
register
=
10-minutes digit (BCD coded),
RTCminute counts minutes, hour roll over after
59 minutes to 00
RTCyear has to be written to latch the whole RTC
register
6:4
minute1
0
Figure 175:
RTChour
Addr:63h
RTChour
Bit
Bit Name
Default
Access
3:0
hour0
0
=
Hours digit (BCD coded)
RTCyear has to be written to latch the whole RTC
register
=
10-hours digit (BCD coded),
RTChour counts hours, day roll over after 12 hours
to 01 (when am_pm_mode is 1),
after 23 hours to 00 (when am_pm_mode is 0)
RTCyear has to be written to latch the whole RTC
register
5:4
hour1
Page 154
Document Feedback
0
Bit Description
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Register Description
Addr:63h
Bit
Bit Name
7
pm
RTChour
Default
0
Access
RW
Bit Description
AM/PM flag (only valid when am_pm_mode is 1,
otherwise read returns 0)
0 : AM
1 : PM
RTCyear has to be written to latch the whole RTC
register
Figure 176:
RTCday
Addr:64h
RTCday
Bit
Bit Name
Default
Access
Bit Description
3:0
day0
1
RW_SM
Days digit (BCD coded)
RTCyear has to be written to latch the whole RTC
register
=
10-days digit (BCD coded),
RTCday counts days, month roll over after
31/30/29/28 days to 01
RTCyear has to be written to latch the whole RTC
register
5:4
day1
0
Figure 177:
RTCmonth
Addr:65h
RTCmonth
Bit
Bit Name
Default
Access
Bit Description
3:0
month0
1
=
Months digit (BCD coded)
RTCyear has to be written to latch the whole RTC
register
=
10-months digit (BCD coded),
RTCmonth counts month, year roll over after 12
months to 01
RTCyear has to be written to latch the whole RTC
register
4
month1
ams Datasheet
[v1-01] 2015-Sep-07
0
Page 155
Document Feedback
AS3722 − Register Description
Figure 178:
RTCyear
Addr:66h
RTCyear
Bit
Bit Name
Default
Access
Bit Description
3:0
year0
0
=
Years digit (BCD coded)
6:4
year1
0
=
10-years digit (BCD coded),
RTCyear counts years
Figure 179:
RTCAlarmSecond
Addr:67h
RTCAlarmSecond
Bit
Bit Name
Default
Access
Bit Description
3:0
Alarmsecond0
0
RW
Seconds digit (BCD coded)
RTCAlarmyear has to be written to latch the
whole alarm register
6:4
Alarmsecond1
0
=
10-seconds digit (BCD coded)
RTCAlarmyear has to be written to latch the
whole alarm register
Figure 180:
RTCAlarmMinute
Addr:68h
RTCAlarmMinute
Bit
Bit Name
Default
Access
3:0
Alarmminute0
0
=
Minutes digit (BCD coded)
RTCAlarmyear has to be written to latch the
whole alarm register
6:4
Alarmminute1
0
=
10-minutes digit (BCD coded)
RTCAlarmyear has to be written to latch the
whole alarm register
Page 156
Document Feedback
Bit Description
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Register Description
Figure 181:
RTCAlarmHour
Addr:69h
RTCAlarmHour
Bit
Bit Name
Default
Access
Bit Description
3:0
Alarmhour0
0
=
Hours digit (BCD coded)
RTCAlarmyear has to be written to latch the whole
alarm register
5:4
Alarmhour1
0
=
10-hours digit (BCD coded)
RTCAlarmyear has to be written to latch the whole
alarm register
=
AM/PM flag (only valid when am_pm_mode is 1,
otherwise read returns 0)
0 : AM
1 : PM
RTCAlarmyear has to be written to latch the whole
alarm register
7
Alarmpm
0
Figure 182:
RTCAlarmday
Addr:6ah
RTCAlarmday
Bit
Bit Name
Default
Access
Bit Description
3:0
Alarmday0
Fh
=
Days digit (BCD coded)
RTCAlarmyear has to be written to latch the
whole alarm register
5:4
Alarmday1
3h
=
10-days digit (BCD coded)
RTCAlarmyear has to be written to latch the
whole alarm register
Figure 183:
RTCAlarmmonth
Addr:6bh
RTCAlarmmonth
Bit
Bit Name
Default
Access
3:0
Alarmmonth0
Fh
=
Months digit (BCD coded)
RTCAlarmyear has to be written to latch the
whole alarm register
4
Alarmmonth1
1h
=
10-months digit (BCD coded)
RTCAlarmyear has to be written to latch the
whole alarm register
ams Datasheet
[v1-01] 2015-Sep-07
Bit Description
Page 157
Document Feedback
AS3722 − Register Description
Figure 184:
RTCAlarmyear
Addr:6ch
RTCAlarmyear
Bit
Bit Name
Default
Access
Bit Description
3:0
Alarmyear0
Fh
=
Years digit (BCD coded)
6:4
Alarmyear1
7h
=
10-years digit (BCD coded)
Figure 185:
SRAM
Addr:6dh
SRAM
Bit
Bit Name
Default
Access
7:0
SRAM
0
RW
Bit Description
Bits are free to store any information
Figure 186:
RTC_Access
Addr:6fh
RTC_Access
Bit
Bit Name
Default
Access
Bit Description
7
rtc_write_ena
0
RW_SS
Page 158
Document Feedback
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Register Description
Figure 187:
RegStatus
Addr:73h
RegStatus
Bit
Bit Name
Default
Access
6
sd6_lv
0
RO
Bit is set when voltage of step down6 drops
below low voltage threshold (-5%) (1ms
debounce time default)
5
sd5_lv
0
RO
Bit is set when voltage of step down5 drops
below low voltage threshold (-5%) (1ms
debounce time default)
4
sd4_lv
0
RO
Bit is set when voltage of step down4 drops
below low voltage threshold (-5%) (1ms
debounce time default)
3
sd3_lv
0
RO
Bit is set when voltage of step down3 drops
below low voltage threshold (-5%) (1ms
debounce time default)
2
sd2_lv
0
RO
Bit is set when voltage of step down2 drops
below low voltage threshold (-5%) (1ms
debounce time default)
1
sd1_lv
0
RO
Bit is set when voltage of step down1 drops
below low voltage threshold (-5%) (1ms
debounce time default)
0
sd0_lv
0
RO
Bit is set when voltage of step down0 drops
below low voltage threshold (-5%) (1ms
debounce time default)
ams Datasheet
[v1-01] 2015-Sep-07
Bit Description
Page 159
Document Feedback
AS3722 − Register Description
Figure 188:
InterruptMask1
Addr:74h
InterruptMask1
Bit
Bit Name
Default
Access
7
LowBat_int_m
1
RW
0 : Interrupt enabled
1 : Interrupt masked (disabled)
6
ovtmp_int_m
1
RW
0 : Interrupt enabled
1 : Interrupt masked (disabled)
5
onkey_int_m
1
RW
0 : Interrupt enabled
1 : Interrupt masked (disabled)
4
onkey_lpress_int_m
1
RW
0 : Interrupt enabled
1 : Interrupt masked (disabled)
3
occur_alarm_sd0_int_m
1
RW
0 : Interrupt enabled
1 : Interrupt masked (disabled)
2
enable1_int_m
1
RW
0 : Interrupt enabled
1 : Interrupt masked (disabled)
1
acok_int_m
1
RW
0 : Interrupt enabled
1 : Interrupt masked (disabled)
0
lid_int_m
1
RW
0 : Interrupt enabled
1 : Interrupt masked (disabled)
Page 160
Document Feedback
Bit Description
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Register Description
Figure 189:
InterruptMask2
Addr:75h
InterruptMask2
Bit
Bit Name
Default
Access
7
rtc_rep_int_m
1
RW
0 : Interrupt enabled
1 : Interrupt masked (disabled)
6
sd6_lv_int_m
1
RW
0 : Interrupt enabled
1 : Interrupt masked (disabled)
5
enable2_int_m
1
RW
0 : Interrupt enabled
1 : Interrupt masked (disabled)
4
PWM2_ovprot_int_m
1
RW
0 : Interrupt enabled
1 : Interrupt masked (disabled)
3
PWM1_ovprot_int_m
1
RW
0 : Interrupt enabled
1 : Interrupt masked (disabled)
2
sd2345_lv_int_m
1
RW
0 : Interrupt enabled
1 : Interrupt masked (disabled)
1
sd1_lv_int_m
1
RW
0 : Interrupt enabled
1 : Interrupt masked (disabled)
0
sd0_lv_int_m
1
RW
0 : Interrupt enabled
1 : Interrupt masked (disabled)
ams Datasheet
[v1-01] 2015-Sep-07
Bit Description
Page 161
Document Feedback
AS3722 − Register Description
Figure 190:
InterruptMask3
Addr:76h
InterruptMask3
Bit
Bit Name
Default
Access
Bit Description
7
enable3_int_m
1
RW
0 : Interrupt enabled
1 : Interrupt masked (disabled)
6
wtdg_int_m
1
RW
0 : Interrupt enabled
1 : Interrupt masked (disabled)
5
gpio5_int_m
1
RW
0 : Interrupt enabled
1 : Interrupt masked (disabled)
4
gpio4_int_m
1
RW
0 : Interrupt enabled
1 : Interrupt masked (disabled)
3
gpio3_int_m
1
RW
0 : Interrupt enabled
1 : Interrupt masked (disabled)
2
gpio2_int_m
1
RW
0 : Interrupt enabled
1 : Interrupt masked (disabled)
1
gpio1_int_m
1
RW
0 : Interrupt enabled
1 : Interrupt masked (disabled)
0
rtc_alarm_int_m
1
RW
0 : Interrupt enabled
1 : Interrupt masked (disabled)
Figure 191:
InterruptMask4
Addr:77h
InterruptMask4
Bit
Bit Name
Default
Access
0
temp_sd0_shutdown_int_m
1
RW
0 : Interrupt enabled
1 : Interrupt masked (disabled)
1
temp_sd1_shutdown_int_m
1
RW
0 : Interrupt enabled
1 : Interrupt masked (disabled)
2
temp_sd6_shutdown_int_m
1
RW
0 : Interrupt enabled
1 : Interrupt masked (disabled)
3
temp_sd0_alarm_int_m
1
RW
0 : Interrupt enabled
1 : Interrupt masked (disabled)
4
temp_sd1_alarm_int_m
1
RW
0 : Interrupt enabled
1 : Interrupt masked (disabled)
5
temp_sd6_alarm_int_m
1
RW
0 : Interrupt enabled
1 : Interrupt masked (disabled)
Page 162
Document Feedback
Bit Description
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Register Description
Addr:77h
InterruptMask4
Bit
Bit Name
Default
Access
Bit Description
6
occur_alarm_sd6_int_m
1
RW
0 : Interrupt enabled
1 : Interrupt masked (disabled)
7
adc_int_m
1
RW
0 : Interrupt enabled
1 : Interrupt masked (disabled)
Figure 192:
InterruptStatus1
Addr:78h
InterruptStatus1
Bit
Bit Name
Default
Access
Bit Description
7
LowBat_int_i
0
SS_RC
Bit is set when VSUP drops below vres_fall
6
ovtmp_int_i
0
SS_RC
Bit is set when 110deg is exceeded on main or
subdies
5
onkey_int_i
0
SS_RC
Rising and falling edge
4
onkey_lpress_int_i
0
SS_RC
Bit is set at ONkey longpress interrupt (rising
edge)
Reading out that register resets the ONkey
longreset timer
3
occur_alarm_sd0_int_i
0
SS_RC
Rising edge only
2
enable1_int_i
0
SS_RC
Rising and falling edge
1
acok_int_i
0
SS_RC
Rising and falling edge
0
lid_int_i
0
SS_RC
Rising and falling edge
ams Datasheet
[v1-01] 2015-Sep-07
Page 163
Document Feedback
AS3722 − Register Description
Figure 193:
InterruptStatus2
Addr:79h
InterruptStatus2
Bit
Bit Name
Default
Access
Bit Description
7
rtc_rep_int_i
0
SS_RC
Rising edge only
6
sd6_lv_int_i
0
SS_RC
Rising edge only
5
enable2_int_i
0
SS_RC
Rising and falling edge
4
PWM2_ovprot_int_i
0
SS_RC
Rising edge only
overvoltage protection reached with VPWM2
control
3
PWM1_ovprot_int_i
0
SS_RC
Rising edge only
overvoltage protection reached with VPWM1
control
2
sd2345_lv_int_i
0
SS_RC
Rising edge only
low voltage of sd2,3,4 or 5
1
sd1_lv_int_i
0
SS_RC
Rising edge only
0
sd0_lv_int_i
0
SS_RC
Rising edge only
Figure 194:
InterruptStatus3
Addr:7ah
InterruptStatus3
Bit
Bit Name
Default
Access
7
enable3_int_i
0
SS_RC
Rising and falling edge
6
wtdg_int_i
0
SS_RC
Watchdog expired
5
gpio5_int_i
0
SS_RC
Rising and falling edge
4
gpio4_int_i
0
SS_RC
Rising and falling edge
3
gpio3_int_i
0
SS_RC
Rising and falling edge
2
gpio2_int_i
0
SS_RC
Rising and falling edge
1
gpio1_int_i
0
SS_RC
Rising and falling edge
0
rtc_alarm_int_i
0
SS_RC
Rising edge only
Page 164
Document Feedback
Bit Description
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Register Description
Figure 195:
InterruptStatus4
Addr:7bh
InterruptStatus4
Bit
Bit Name
Default
Access
Bit Description
7
adc_int_i
0
SS_RC
Rising and falling edge
6
occur_alarm_sd6_int_i
0
SS_RC
Rising edge only
5
temp_sd6_alarm_int_i
0
SS_RC
Rising and falling edge
4
temp_sd1_alarm_int_i
0
SS_RC
Rising and falling edge
3
temp_sd0_alarm_int_i
0
SS_RC
Rising and falling edge
2
temp_sd6_shutdown_int_i
0
SS_RC
Rising and falling edge
1
temp_sd1_shutdown_int_i
0
SS_RC
Rising and falling edge
0
temp_sd0_shutdown_int_i
0
SS_RC
Rising and falling edge
Figure 196:
Temp_Status
Addr:7dh
Temp_Status
Bit
Bit Name
Default
Access
0
temp_sd0_shutdown
0
POP
Indicates over temperature >140deg in subdie
and ovtmp reset initated if mask_ovtemp=0
Bit is reset by readout only
1
temp_sd1_shutdown
0
POP
Indicates over temperature >140deg in subdie
and ovtmp reset initated if mask_ovtemp=0
Bit is reset by readout only
POP
Indicates over temperature >140deg in subdie
of sd6 and ovtmp reset initated if
mask_ovtemp=0
Bit is reset by readout only
Inhibit reset caused by over temperature of SD0,
SD1, or SD6
0 : Over temperature of SD0, SD1, or SD6 causes
reset
1 : Over temperature of SD0, SD1, or SD6 causes
interrupt only
2
temp_sd6_shutdown
0
Bit Description
3
mask_ovtemp
0
RW
4
temp_sd0_alarm
0
R
Indicates over temperature >110deg in subdie
5
temp_sd1_alarm
0
R
Indicates over temperature >110deg in subdie
6
temp_sd6_alarm
0
R
Indicates over temperature >110deg in subdie
ams Datasheet
[v1-01] 2015-Sep-07
Page 165
Document Feedback
AS3722 − Register Description
Figure 197:
ADC0_control
Addr:80h
ADC0_control
Bit
Bit Name
Default
Access
7
adc0_start_conversion
0
RW_SC
5
4:0
adc0_gpio_lv
adc0_select
Page 166
Document Feedback
0
0
Bit Description
Writing a 1 into this bit starts one ADC
conversion.
Self cleared at begin of ADC conversion
RW
0 : High voltage range of GPIO1,2,6,7,
PWM_CLK2, PWM_DAT2 (4:1 divider active)
1 : Low voltage range of GPIO1,2,4,7,
PWM_CLK2, PWM_DAT2 (1:1 divider, 1.6V max)
RW
Selects an ADC channel
0 : Output Current SD0
1 : Output Current SD1
2 : Output Current SD6
3 : Temperature sensor:DIE temperature [C] =
adc_result * 0.7698 - 274 (1:1)
4 : VSUP (4:1)
5 : GPIO1 (4:1 or 1:1 )
6 : GPIO2 (4:1 or 1:1 )
7 : GPIO3 (4:1 or 1:1 )
8 : GPIO4 (4:1 or 1:1 )
9 : GPIO6 (4:1 or 1:1 )
10 : GPIO7 (4:1 or 1:1 )
11 : VBAT (15:1) value valid below 15V only
12 : PWM_CLK2/ADC1 (4:1 or 1:1 )
13 : PWM_DAT2/ADC2 (4:1 or 1:1 )
14 : do not use
15 : do not use
16 : TEMP1_SD0: Tj = 326.5 – adc0_D[9:0] *
0.3734 (1:1)
17 : TEMP2_SD0: Tj = 326.5 - adc0_D[9:0] *
0.3734 (1:1)
18 : TEMP3_SD0: Tj = 326.5 - adc0_D[9:0] *
0.3734 (1:1)
19 : TEMP4_SD0: Tj = 326.5 - adc0_D[9:0] *
0.3734 (1:1)
20 : TEMP_SD1: Tj = 326.5 - adc0_D[9:0] *
0.3734 (1:1)
21 : TEMP1_SD6: Tj = 326.5 - adc0_D[9:0] *
0.3734 (1:1)
22 : TEMP2_SD6: Tj = 326.5 - adc0_D[9:0] *
0.3734 (1:1)
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Register Description
Figure 198:
ADC1_control
Addr:81h
ADC1_control
Bit
Bit Name
Default
Access
7
adc1_start_conversion
0
RW_SM
6
5
4:0
adc1_interval_scan
adc1_gpio_lv
adc1_select
ams Datasheet
[v1-01] 2015-Sep-07
0
0
0
Bit Description
Writing a 1 into this bit starts one ADC
conversion. Self cleared at begin of ADC
conversion
RW
ADC conversion mode
0 : no interval conversion, single shot
1 : interval conversion, convert every
500/1000ms
RW
0 : High voltage range of GPIO1,2,6,7,
PWM_CLK2, PWM_DAT2 (4:1 divider active)
1 : Low voltage range of GPIO1,2,4,7,
PWM_CLK2, PWM_DAT2 (1:1 divider, 1.6V
max)
RW
Selects an ADC channel
0 : Output Current SD0
1 : Output Current SD1
2 : Output Current SD6
3 : Temperature sensor:DIE temperature [C] =
adc_result * 0.7698 - 274 (1:1)
4 : VSUP (4:1)
5 : GPIO1 (4:1 or 1:1 )
6 : GPIO2 (4:1 or 1:1 )
7 : GPIO3 (4:1 or 1:1 )
8 : GPIO4 (4:1 or 1:1 )
9 : GPIO6 (4:1 or 1:1 )
10 : GPIO7 (4:1 or 1:1 )
11 : VBAT (15:1) value valid below 15V only
12 : PWM_CLK2/ADC1 (4:1 or 1:1 )
13 : PWM_DAT2/ADC1 (4:1 or 1:1 )
14 : do not use
15 : do not use
16 : TEMP1_SD0: Tj = 326.5 – adc1_D[9:0] *
0.3734 (1:1)
17 : TEMP2_SD0: Tj = 326.5 - adc1_D[9:0] *
0.3734 (1:1)
18 : TEMP3_SD0: Tj = 326.5 - adc1_D[9:0] *
0.3734 (1:1)
19 : TEMP4_SD0: Tj = 326.5 - adc1_D[9:0] *
0.3734 (1:1)
20 : TEMP_SD1: Tj = 326.5 - adc1_D[9:0] *
0.3734 (1:1)
21 : TEMP1_SD6: Tj = 326.5 - adc1_D[9:0] *
0.3734 (1:1)
22 : TEMP2_SD6: Tj = 326.5 - adc1_D[9:0] *
0.3734 (1:1)
Page 167
Document Feedback
AS3722 − Register Description
Figure 199:
ADC0_MSB_result
Addr:82h
ADC0_MSB_result
Bit
Bit Name
Default
Access
Bit Description
7
adc0_result_not_ready
0
RO
Indicates end of conversion
0 : result is ready
1 : conversion is running
6:0
adc0_D[9:3]
0
RO
ADC result register Bit9..Bit3
Figure 200:
ADC0_LSB_result
Addr:83h
ADC0_LSB_result
Bit
Bit Name
Default
Access
2:0
adc0_D[2:0]
0
RO
Bit Description
ADC result register Bit2..Bit0
Figure 201:
ADC1_MSB_result
Addr:84h
ADC1_MSB_result
Bit
Bit Name
Default
Access
Bit Description
7
adc1_result_not_ready
0
RO
Indicates end of conversion
0 : result is ready
1 : conversion is running
6:0
adc1_D[9:3]
0
RO
ADC result register Bit9..Bit3
Figure 202:
ADC1_LSB_result
Addr:85h
ADC1_LSB_result
Bit
Bit Name
Default
Access
2:0
adc1_D[2:0]
0
RO
Page 168
Document Feedback
Bit Description
ADC result register Bit2..Bit0
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Register Description
Figure 203:
ADC1_threshold_hi_MSB
Addr:86h
ADC1_threshold_hi_MSB
Bit
Bit Name
Default
Access
6:0
adc1_threshold_hi[9:3]
7'hff
RW
Bit Description
Upper threshold MSB bits
Figure 204:
ADC1_threshold_hi_LSB
Addr:87h
ADC1_threshold_hi_LSB
Bit
Bit Name
Default
Access
2:0
adc1_threshold_hi[2:0]
3'hf
RW
Bit Description
Upper threshold LSB bits
Figure 205:
ADC1_threshold_lo_MSB
Addr:88h
ADC1_threshold_lo_MSB
Bit
Bit Name
Default
Access
6:0
adc1_threshold_lo[9:3]
7'h00
RW
Bit Description
Lower threshold MSB bits
Figure 206:
ADC1_threshold_lo_LSB
Addr:89h
ADC1_threshold_lo_LSB
Bit
Bit Name
Default
Access
2:0
adc1_threshold_lo[2:0]
3'h0
RW
ams Datasheet
[v1-01] 2015-Sep-07
Bit Description
Lower threshold LSB bits
Page 169
Document Feedback
AS3722 − Register Description
Figure 207:
ADC_configuration
Addr:8ah
ADC_configuration
Bit
Bit Name
Default
Access
0
adc1_interval_time
0
RW
Interval time of ADC1 conversions
0 : ~500ms
1 : ~1000ms
RW
Interrupt generation when ADC1 conversion is
ready
(when adc1_interval_scan is set)
0 : when ADC1 data rises above
adc1_threshold_hi or falls below
adc1_threshold_lo
1 : always
Interrupts are only generated when the
thresholds are crossed
RW
Controls ADC0/1 presample time
0 : 32us
1 : 62us (also enables buffered 1.6V reference
voltage on GPIO 7 within conversion time)
1
adc1_interrupt_mode
2
0
adc_buf_on
0
Bit Description
Figure 208:
ASIC_ID1
Addr:90h
ASIC_ID1
Bit
Bit Name
Default
Access
7:0
ID1
0Ch
R
Bit Description
Figure 209:
ASIC_ID2
Addr:91h
ASIC_ID2
Bit
Bit Name
Default
Access
3:0
revision
1
RO
Page 170
Document Feedback
Bit Description
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Register Description
Figure 210:
Fuse7
Addr:a7h
Fuse7
Bit
Bit Name
Default
Access
Bit Description
7
sd5_slave
0
RW
Enables slave mode of SD4
0 : Normal mode of SD5
1 : SD5 is slave of SD4
6
sd4_slave
0
RW
Enables slave mode of SD4
0 : Normal mode of SD4
1 : SD4 is slave of SD2
5
sd3_slave
0
RW
Enables slave mode of SD3
0 : Normal mode of SD3
1 : SD3 is slave of SD2.
4
sd0_v_minus_200mV
0
RW
Enables low voltage mode of SD0
0 : Normal mode of SD0 Code starts with
0.61V
1 : Low voltage mode code starts with 0.41V
(-0.2V Offset)
3
trim_gpio_pulld
0
RW
Enables pulldown mode of GPIO1 and GPIO2
0 : Normal mode
1 : Pull down of GPIO1 and GPIO2 enabled
2:1
ldo10_tr
0
RW
0
ldo9_tr_1
0
RW
ams Datasheet
[v1-01] 2015-Sep-07
Page 171
Document Feedback
AS3722 − Register Description
Figure 211:
Fuse8
Addr:a8h
Fuse8
Bit
Bit Name
Default
Access
6
sd2_hcurr_tr
0
RW
Selects high current mode of SD2
RW
Selects offset for tracking mode
0 : no offset
1 : +10mV offset of LDO3 at 1.2V Vout (+0.83%)
2 : +20mV offset of LDO3 at 1.2V Vout (+1.66%)
3 : +30mV offset of LDO3 at 1.2V Vout (+2.5%)
RW
Selects a faster regulation mode for SD5 suitable
for larger load changes.
0 : normal mode, Cout (according spec)
1 : fast mode, 2 x Cout (according spec) required
RW
Selects a faster regulation mode for SD4 suitable
for larger load changes.
0 : normal mode, Cout (according spec)
1 : fast mode, 2 x Cout (according spec) required
RW
Selects a faster regulation mode for SD3 suitable
for larger load changes.
0 : normal mode, Cout (according spec)
1 : fast mode, 2 x Cout (according spec) required
RW
Selects a faster regulation mode for SD2 suitable
for larger load changes.
0 : normal mode, Cout (according spec)
1 : fast mode, 2 x Cout (according spec) required
5:4
3
2
1
0
ldo3_vtrack_tr
sd5_fast
sd4_fast
sd3_fast
sd2_fast
Page 172
Document Feedback
0
0
0
0
0
Bit Description
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Register Description
Figure 212:
Fuse9
Addr:a9h
Bit
Bit Name
Fuse9
Default
Access
Bit Description
7
auto_off
0
RW
Defines startup behavior at first battery
insertion or reset cycle
0 : Startup of chip if VBAT>ResVoltRise
1 : Enter power off mode (waiting for start-up
event e.g. ONKEY)
6
em_shutdown_direct
0
RW
Emergency shutdown
0 : use powerdown sequence
1 : direct (skip powerdown sequence)
RW
Set Reset Time, after the last regulator has
started
0 : RESTIME = 0 ms
1 : RESTIME = 5 ms
2 : RESTIME = 11 ms
3 : RESTIME = 15 ms
RW
This value determines the reset level
ResVoltRise for rising VBAT.
ResVoltFall is set to ResVoltRise - 2 steps by
default
0 : 2.7V * (ncells+1)
1 : 2.95V * (ncells+1)
2 : 3.1V * (ncells+1)
3 : 3.2V * (ncells+1)
4 : 3.3V * (ncells+1)
5 : 3.4V * (ncells+1)
6 : 3.5V * (ncells+1)
7 : 3.6V * (ncells+1)
5:4
3:1
res_timer
ResVoltRise
ams Datasheet
[v1-01] 2015-Sep-07
0
0
Page 173
Document Feedback
AS3722 − Register Description
Figure 213:
Fuse10
Addr:aah
Fuse10
Bit
Bit Name
Default
Access
Bit Description
7
unique_id
0
RW
Enable/Disable unique ID
If enabled, Fuse42..47 are used for UID and
not for startup
6
power_off_at_vsuplow
0
RW
Switch on Power_Off mode if low
VBAT/VSUP is detected during Active or
Standby mode (pin ONKEY=low and bit
auto_off=0)
0 : If low VBAT/VSUP is detected,
continuously monitor battery voltage and
startup if battery voltage is above
ResVoltRise
1 : If low VBAT/VSUP is detected, enter
Power_Off mode
5
i2c_deva_bit1
0
RW
Set to 0
RW
Switch on the 32kHz RTC oscillator
0 : 32kHz oscillator disabled
1 : 32kHz oscillator enabled. This will add 200
ms delay after POR to ensure proper
operation.
RW
Enables exit out of PWR OFF mode with pin
LID (pin enabled in PWR off mode)
0 : LID disabled
1 : LID enabled
4
3
rtc_on
lid_pwr_on
0
0
2
ac_ok_pwr_on
0
RW
Enables exit out of PWR OFF mode with pin
AC_OK (pin enabled in PWR off mode)
0 : AC_OK disabled
1 : AC_OK enabled
1
del_time
0
RW
0 : 1 ms delay time
1 : 4 ms delay time
0
sequ_on
0
RW
Set to "1" to enable the start_up sequence
Page 174
Document Feedback
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Register Description
Figure 214:
Fuse11
Addr:abh
Fuse11
Bit
Bit Name
Default
Access
Bit Description
7
onkey_lpress_reset
0
RW
Selects behavior on onkey_lpress
0 : change to power_off mode on long press
1 : apply reset on long press
6:5
onkey_shutdown_delay
0
RW
Selects default state of the bit
on_shutdown_delay
4
ac_ok_invert
0
RW
Sets the polarity of the AC_OK pin
0 : High active for AC_OK
1 : Inverted: Low active for AC_OK
3
onkey_invert
0
RW
Sets the polarity of the ONKEY pin
0 : High active for ONKEY
1 : Inverted: Low active for ONKEY
2
SupResEn
0
RW
0 : A reset is generated if VBAT or VSUP falls
below 2.5V. If VBAT falls below ResVoltFall
only an interrupt is generated (if enabled)
and the uProcessor can shut down the
system)
1 : A reset is generated if VBAT falls below
ResVoltFall or VSUP falls below vsup_min
1
gpio12_in_en
0
RW
Don't use
0
lid_invert
0
RW
Sets the polarity of the LID pin
0 : High active for LID
1 : Inverted: Low active for LID
ams Datasheet
[v1-01] 2015-Sep-07
Page 175
Document Feedback
AS3722 − Register Description
Figure 215:
Fuse12
Addr:ach
Bit
Bit Name
7:6
Fuse12
Default
sdmph_clk_div
0
Access
Bit Description
RW
Divide clock of SD0,SD1,SD6 by 1,2 or 4
0 : 2.7MHz
1 : 1.35MHz
2 : 0.675MHz
3 : 0.675MHz
5:4
wtdg_mode
0
RW
defines actions when the watchdog expires
0 : interrupt only
1 : performs a reset cycle, then try restart
2 : power-off
3 : performs up to 2 reset cycles, then
power-off
3
wtdg_on
0
RW
Enable the watch dog timer. Expiry of the timer
will reset the device (see WatchdogControl).
2
enable3_inv
0
RW
Sets the polarity of the ENABLE3 pin
0 : High active for ENABLE3
1 : Inverted: Low active for ENABLE3
1
enable2_inv
0
RW
Sets the polarity of the ENABLE2 pin
0 : High active for ENABLE2
1 : Inverted: Low active for ENABLE2
0
therm_inv
0
RW
Sets the polarity of the THERM pin
0 : High active for THERM event
1 : Inverted: Low active for THERM event
Figure 216:
Fuse13
Addr:adh
Fuse13
Bit
Bit Name
Default
Access
7:6
sd0_vmax_0
0
RW
5:4
sd6_trim_gm
0
RW
3:2
sd1_trim_gm
0
RW
1:0
sd0_trim_gm
0
RW
Page 176
Document Feedback
Bit Description
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Register Description
Figure 217:
Fuse14
Addr:aeh
Bit
7:3
2:0
Bit Name
sd6_vmax_1
sd0_vmax_1
ams Datasheet
[v1-01] 2015-Sep-07
Fuse14
Default
0
0
Access
Bit Description
RW
Overvoltage protection for SD6
Output voltages are limited to vmax
0 : protection disabled
1:1V
2 : 1.02 V
3 : 1.04 V
.. : ..
25 : 1.48 V
26 : 1.50 V
RW
Overvoltage protection for SD0
Output voltages are limited to vmax
0 : protection disabled
1:1V
2 : 1.02 V
3 : 1.04 V
.. : ..
25 : 1.48 V
26 : 1.50 V
Page 177
Document Feedback
AS3722 − Register Description
Figure 218:
Fuse15
Addr:afh
Fuse15
Bit
Bit Name
Default
Access
7
rtc_lock
0
RW
RTC write access lock/unlock state at startup
0 : unlock
1 : lock
RW
Selects number of cells that are connected to
VBAT pin
0 : 1 cell: reset_rise = 2.5...3.6
1 : 2 cell: reset_rise = 2*(2.5...3.6) = 5.0....7.2
2 : 3 cell: reset_rise = 3*(2.5...3.6) = 7.5...10.8
3 : 4 cell: reset_rise = 4*(2.5...3.6) = 10....14.4
RW
Defines minimum value on VSUP for startup/reset
: vsys_hi
0 : 2.55V
1 : 2.7V
2 : 3.0V
3 : 3.2V
4 : 4.5V
5 : 4.7V
6 : 4.8V
7 : 4.9V
RW
I2C data and CLK PMIC internal pull-ups
enabled/dissabled
0 : pull-ups disabled
1 : pull-ups enabled
1:0
ncells
4:2
vsup_min
5
I2C_bus_pullup
0
0
0
Bit Description
Figure 219:
Fuse16
Addr:b0h
Fuse16
Bit
Bit Name
Default
Access
0
Reg0_select_MSB
0
RW
1
Reg0_delay
0
RW
Selects delay before Slot0 for startup
Selects delay after Slot0 for shutdown
2
Reg1_select_MSB
0
RW
3
Reg1_delay
0
RW
4
Reg2_select_MSB
0
RW
5
Reg2_delay
0
RW
6
Reg3_select_MSB
0
RW
7
Reg3_delay
0
RW
Page 178
Document Feedback
Bit Description
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Register Description
Figure 220:
Fuse17
Addr:b1h
Bit
Bit Name
Fuse17
Default
Access
Bit Description
3:0
Reg0_select_LSB
0
RW
Selects Regulator address for startup
sequence(Slot0)
Address 00..1f selectable (use 1Ch for unused
timeslot)
00h : SD0
01h : SD1
.. : ..
06h : SD6
07h : n/a
08h : GPIO0
.. : ..
0Fh : GPIO7
10h : LDO0
.. : ..
1Bh : LDO11
1Ch : unused time slot
1Dh : LD03_settings
1Eh : GPIO_deb1
1Fh : GPIO_deb2
7:4
Reg1_select_LSB
0
RW
Figure 221:
Fuse44_uniqueID2
Addr:cch
Fuse44_uniqueID2
Bit
Bit Name
Default
Access
0
Reg16_select_MSB
0
RW
1
Reg16_delay
0
RW
2
Reg17_select_MSB
0
RW
3
Reg17_delay
0
RW
7:4
ASIC_ID3
0
RW
Additional ASIC ID
0 : for die rev. 1v0,1v1,1v2
1 : for die rev. 1v21 (OC_PG function fixed)
ams Datasheet
[v1-01] 2015-Sep-07
Bit Description
Page 179
Document Feedback
AS3722 − Register Description
Figure 222:
Reg0_control
Addr:e0h
Bit
4:0
Bit Name
Reg0_select_stby
Reg0_control
Default
1Fh
Access
Bit Description
RW
Selects regulator address for mapping;
if Reg0_select_stby>=1Fh then timeslot is
unused
00h : SD0
01h : SD1
.. : ..
06h : SD6
07h : n/a
08h : GPIO0
.. : ..
0Fh : GPIO7
10h : LDO0
.. : ..
1Bh : LDO11
1Ch : n/a
1Dh : LD03_settings
1Eh : GPIO_deb1
1Fh : timeslot unused
5
Reg0_delay_stby
0
RW
Selects delay for standby entry after reg0_select
is executed;
selects delay for standby exit before reg0_select
is executed
6
delay_time_stby
0
RW
Selects delay time for standby entry/exit
0 : 1msec delay
1 : 4msec delay
Figure 223:
Reg1_control
Addr:e1h
Reg1_control
Bit
Bit Name
Default
Access
4:0
Reg1_select_stby
1Fh
RW
Selects regulator for mapping;
if Reg1_select_stby>=1Fh then timeslot is
unused
5
Reg1_delay_stby
0
RW
Page 180
Document Feedback
Bit Description
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Register Description
Figure 224:
Reg0_Voltage
Addr:eah
Bit
7:0
Reg0_Voltage
Bit Name
Default
Reg0_voltage_stby
0
Access
RW
Bit Description
This register is mapped to the register address
0h+Reg0_select, if standby is entered.
0 ..FFh : Selects voltage, ilimit, on or frequency
bits of LDO, SD or GPIOs
Figure 225:
Reg1_Voltage
Addr:ebh
Bit
7:0
Bit Name
Reg1_voltage_stby
ams Datasheet
[v1-01] 2015-Sep-07
Reg1_Voltage
Default
0
Access
RW
Bit Description
This register is mapped to the register address
0h+Reg1_select, if standby is entered.
0 ..FFh : Selects voltage, ilimit, on or frequency
bits of LDO, SD or GPIOs
Page 181
Document Feedback
AS3722 − Register Description
Figure 226:
SpareRegister1
Addr:f4h
Bit
7
Bit Name
disable_stby_lid_int
SpareRegister1
Default
0
Access
Bit Description
RW_SM
Selection, if LID interrupt is used to exit
standby mode directly
0 : Exit stanby mode with LID interrupt
1 : Do not exit stanby mode with LID
interrupt, if enable1_deepsleep=1
6
disable_stby_acok_int
0
RW_SM
Selection, if ACOK interrupt is used to exit
standby mode directly
0 : Exit stanby mode with AC_OK interrupt
1 : Do not exit stanby mode with AC_OK
interrupt, if enable1_deepsleep=1
5
sparereg1
0
RW_SM
RW_SM
Select internal load capacitor on XIN32K and
XOUT32k
0h : 12 pF
1h : 12.5 pF
2h : 13 pF
3h : 13.5 pF
4h : 14 pF
5h : 14.5 pF
6h : 15 pF
7h : 15.5 pF
.. : .. pF
Eh : 19 pF
Fh : 19.5 pF
10h : 4 pF
11h : 4.5 pF
.. : .. pF
1E : 12 pF
1F : 12.5 pF
4:0
osc32k_trim
Page 182
Document Feedback
0
ams Datasheet
[v1-01] 2015-Sep-07
D
C
B
A
D1
HSMW-C191
1058375
1
VSUP
0603
0603
R61
0R
R62
0R
0603
C76
100uF
1658510
BU12
GND
VIN_LDO11
VIN_LDO0
C18
1u
0402
2
C19
1u
0402
J12
C20
1u
0402
R15
1M
0603
VDD_GPIO_LV
FB3
R10
220k
0402
R9
100k
C32
1u
0402
VIN_LDO11
VIN_LDO0
VIN_LDO3_4
C31
1u
0402
S2
KMR211GLFS
401-1426-1-ND
3
C36
1u
0402
#2
C38
1u
0402
#3
C37
1u
0402
#4
VIN_LDO0
VIN_LDO1_6
VIN_LDO9_10
VIN_LDO3_4
VIN_LDO2_5_7
VIN_LDO3_SW
VIN_LDO3_LV
VIN_LDO11
#5
SDA_SDI
SCLK
SDO
SCSB
PWM_DAT2
PWM_DAT1
PWM_CLK2
PWM_CLK1
C39
1u
0402
C41
1u
0402
#0
C40
1u
0402
#1
VIN_LDO0
B14
A8
VIN_LDO1_6
VIN_LDO9_10 A6
A3
VIN_LDO3_4
VIN_LDO2_5_7 A12
VIN_LDO3_SW A4
VIN_LDO3_LV B6
VIN_LDO11
B1
LDO11 B5
LDO10 B8
LDO9 A5
LDO7 A11
LDO6 A7
LDO5 A10
LDO4 A2
LDO3 B7
LDO2 A9
LDO1 B9
LDO0 A13
L9
F2
F1
D6
G6
D5
E4
B3
C2
B4
D2
F4
G4
E2
H6
B12
D10
B11
D9
B10
ONKEY
F8
ENABLE1
E11
ENABLE2
D8
THERM
J8
XRES_IN
L5
XRES_OUT
L8
AC_OK
D7
LID
C1
XINT
E1
OC_PG
VSUP H1
J2
RBIAS
H2
V2_5
J4
CREF
GND K4
EN5V
L6
D1
CLK32K
G1
XIN32K
G2
XOUT32K
H4
VBAT_BKUP
L7
HVSUP
R1
1M
0603
VSUP
VDD_GPIO_LV
VDD_GPIO_LV
GND
GPIO0
GPIO0
GPIO1
GPIO1
GPIO2
GPIO2
GPIO3
GPIO3
GPIO4
GPIO4
GPIO5
GPIO5
GPIO6
GPIO6
GPIO7
GPIO7
SDA_SDI
SCLK
SDO
SCSB
PWM_DAT2
PWM_DAT1
PWM_CLK2
PWM_CLK1
C35
1u
0402
#6
C34
1u
0402
#7
C101
1u
0402
C14
1u
0402
J11
XINT
EN5V
CLK32K
XIN32K
XOUT32K
VBAT_BKUP
HV pin HVSUP
C8
100n
0402
XRES_IN
XRES_OUT
RBIAS
V2_5
CREF
OC_PG
AC_OK
LID
ONKEY
ENABLE1
ENABLE2
THERM
C7
1u
0402
C33
1u
0402
#11 #10 #9
J53
GPIO0
R14
1M
0603
R8
1M
0603
FB_SD1
LDO11
LDO10
LDO9
LDO7
LDO6
LDO5
LDO4
LDO3
LDO2
LDO1
LDO0
FB_SD1
R13
1M
0603
R7
1M
0603
R96
1M
0603
VSUP
R12
1M
0603
R6
1M
0603
R94
R89
R90
R91
1M(nm) 1M(nm) 1M(nm) 1M (nm)
0603 0603 0603 0603
VSUP
HSMW-C191
1058375
D3
R95
1M
0603
R4
R5
1M(nm) 1M
0603 0603
R92
R93
1M(nm) 1M
0603 0603
R11
1M
0603
R16
270
0603
R3
1M
0603
GND
VSUP
J6
LID
AC_OK
VIN_LDO3_4
BU8
S1
KMR211GLFS
401-1426-1-ND
VSUP
J7
HVSUP
VBAT_BKUP
XOUT32K
VSUP
BU2
V2_5
J54
ONKEY
XIN32K
HVSUP
J9
BU1
Y1
GND
R60
0R
VSUP
VSUP
XRES_OUT
BU11
VSUP
C9
100u
1206
1
Q1
SI1304BDL-T1-E3.
1690149
R2
1k
0603
J5
BU7
VSUP
AS3722
4
VIN_LDO0
VIN_LDO1_6
VIN_LDO9_10
VIN_LDO3_4
VIN_LDO2_5_7
VIN_LDO3_SW
VIN_LDO3_LV
VIN_LDO11
LDO11
LDO10
LDO9
LDO7
LDO6
LDO5
LDO4
LDO3
LDO2
LDO1
LDO0
VSUP_GPIO
VDD_GPIO_LV
VSS_GPIO
GPIO0
GPIO1
GPIO2
GPIO
GPIO3
GPIO4
GPIO5
GPIO6
GPIO7
I2C/SPI
PWM
VSUP_SD4
VSUP_SD4
LX_SD4
LX_SD4
FB_SD4
VSS_SD4
VSS_SD4
VSUP_SD5
VSUP_SD5
LX_SD5
LX_SD5
FB_SD5
VSS_SD5
VSS_SD5
DCDC3
DCDC4
DCDC5
5
VSUP_SD3
VSUP_SD3
LX_SD3
LX_SD3
LX_SD3
FB_SD3
VSS_SD3
VSS_SD3
VSS_SD3
DCDC2
DCDC1
VSUP_SD2
VSUP_SD2
LX_SD2
LX_SD2
LX_SD2
LX_SD2
FB_SD2
VSS_SD2
VSS_SD2
VSS_SD2
VSS_SD2
TEMP_SD1
CTRL2_SD1
CTRL1_SD1
FB_SD1_N
FB_SD1_P
DCDC0
TEMP2_SD6
TEMP1_SD6
CTRL2_SD6
CTRL1_SD6
FB_SD6_N
FB_SD6_P
5
TEMP4_SD0
TEMP3_SD0
TEMP2_SD0
TEMP1_SD0
CTRL8_SD0
CTRL7_SD0
CTRL6_SD0
CTRL5_SD0
CTRL4_SD0
CTRL3_SD0
CTRL2_SD0
CTRL1_SD0
FB_SD0_N
FB_SD0_P
DCDC6
AS3722
Multi-Phase DCDC controller PMIC
SDA_SDI
SCL_SCLK
ENABLE3_SDO
SCSB
PWM_DAT2
PWM_DAT1
PWM_CLK2
PWM_CLK1
ONKEY
ENABLE1
ENABLE2
THERM
XRES_IN
XRES_OUT
AC_OK
LID
XINT
OC_PG
VSUP_ANA
RBIAS
V2_5
CREF
GNDSENSE
EN5V
CLK32K
XIN32K
XOUT32K
VBAT_BKUP
VBAT
U1
4
N11
P11
N10
P10
J1
N9
P9
N12
P12
N14
P13
L10
M13
M14
L1
L2
M1
N1
M2
K2
N3
P2
P3
LX5
LX4
L2
L3
LX3
L1
1u
0.47u
0.47u
C28
22u
0805
C22
22u
0805
1u
FB4
C16
(nm)
0805
FB3
C10
22u
0805
FB2
TEMP_SD1
CTRL2_SD1
CTRL1_SD1
6
C29
(nm)
0805
FB5
C23
(nm)
0805
C15
22u
C11
22u
0805
TEMP4_SD0
TEMP3_SD0
TEMP2_SD0
TEMP1_SD0
CTRL8_SD0
CTRL7_SD0
CTRL6_SD0
CTRL5_SD0
CTRL4_SD0
CTRL3_SD0
CTRL2_SD0
CTRL1_SD0
TEMP2_SD6
TEMP1_SD6
CTRL2_SD6
CTRL1_SD6
0R(nm)
0603
R87
L4
0R(nm)
0603
R17
TEMP_SD1
CTRL2_SD1
CTRL1_SD1
FB_SD1_N
FB_SD1_P
K14
D14
D13
H9
G9
LX2
TEMP4_SD0
TEMP3_SD0
TEMP2_SD0
TEMP1_SD0
CTRL8_SD0
CTRL7_SD0
CTRL6_SD0
CTRL5_SD0
CTRL4_SD0
CTRL3_SD0
CTRL2_SD0
CTRL1_SD0
FB_SD0_N
FB_SD0_P
K11
K13
J13
J14
H14
H13
G14
G13
F14
F13
E14
E13
J11
H11
N6
P6
N5
N7
P5
P7
K1
N4
N8
P4
P8
TEMP2_SD6
TEMP1_SD6
CTRL2_SD6
CTRL1_SD6
FB_SD6_N
FB_SD6_P
L13
L14
C14
C13
G11
F11
6
C26
2u2
0603
C24
2u2
0603
C17
2u2
0603
C12
2u2
0603
VSUP
VSUP
VSUP
VSUP
1
2
3
FB4
FB3
FB2
C4
100p
0402
J4
C5
100p
0402
SD4: master
SD4
SD3
SD2
C3
100p
0402
J3
1
2
3
7
SD5: slave
C6
100p
0402
FB4
FB3
FB2
FB_SD6_N
FB_SD6_P
FB_SD0_N
FB_SD0_P
FB_SD1_N
FB_SD1_P
FB5
Project Title
7
AS3722 Evalboard BGA
Date 18.11.2013
Originator mkc
A3
Size
SD5
R17 must be mounted
L4 must not mounted
FB5 must be connected to GND (short C28)
C2
100p
0402
J1
C1
100p
0402
J2
1
2
3
PAD
1
VSUP
VBAT
2
3
VSUP
PAD
1
3
LDO0 - LDO11
2
VSSA
System Control
&
References
VSSA
A1
VSSA
A14
VSSA
F7
VSSA
J7
VSSA
P1
ams Datasheet
[v1-01] 2015-Sep-07
P14
1
2
3
1
J10
VIN_LDO3_LV
Sheet 3
C27
1u
0402
8
of
4
Revision
1.2
VIN_LDO9_10
J15
C25
1u
0402
VIN_LDO1_6
J14
C21
1u
0402
VIN_LDO2_5_7
J13
C13
1u
0402
8
VSUP
D
C
B
A
AS3722 − Application Information
Application Information
Application Schematics
Figure 227:
Application Schematic 1/3
Application Schematic 1/3: Shows a basic application schematic for the internal DCDC/LDOs and system
functions
Page 183
Document Feedback
D
C
B
A
L5 = L6 = 0.47uH
R19 not connected
L7 = L8 = 0.47uH
R25 not connected
L9 = L10 = 0.47uH
R30 not connected
L11 = L12 = 0.47uH
R35 not connected
C47
22u
1210
C51
22u
1210
CTRL8_SD0
TEMP4_SD0
CTRL7_SD0
C55
22u
1210
J21
CTRL8_SD0
TEMP4_SD0
CTRL7_SD0
C116
22u
1210
J20
CTRL6_SD0
TEMP3_SD0
CTRL5_SD0
C114
22u
1210
J19
CTRL4_SD0
TEMP2_SD0
CTRL3_SD0
C112
22u
1210
on
set J21 to "on" if SD0d is used! off
SD0d combined mode:L
L11 = 0.47uH
L12 not connected
R35 needed
SD0d normal mode:
CTRL6_SD0
TEMP3_SD0
CTRL5_SD0
3
CTRL2_SD0
TEMP1_SD0
CTRL1_SD0
C43
22u
1210
on
set J20 to "on" if SD0c is used! off
SD0c combined mode:L9 = 0.47uH
L10 not connected
R30 needed
SD0c normal mode:
CTRL4_SD0
TEMP2_SD0
CTRL3_SD0
CTRL2_SD0
TEMP1_SD0
CTRL1_SD0
C110
22u
1210
on
set J19 to "on" if SD0b is used! off
SD0b combined mode:L
L7 = 0.47uH
L8 not connected
R25 needed
SD0b normal mode:
SD0a combined mode:L5 = 0.47uH
L6 not connected
R19 needed
SD0a normal mode:
SD0 (4A - 32A)
2
R39
0R
0603
R38
0R
0603
R36
0R
0603
R34
0R
0603
R33
0R
0603
R31
0R
0603
R28
0R
0603
R26
0R
0603
R22
0R
0603
R20
0R
0603
C56
22u
1210
C52
22u
1210
R29
0R
0603
C48
22u
1210
R24
0R
0603
C44
22u
1210
A2
B2
C2
D2
E2
F2
C113
22u
1210
HVSUP
A2
B2
C2
D2
E2
F2
C115
22u
1210
HVSUP
A2
B2
C2
D2
E2
F2
C117
22u
1210
HVSUP
A2
B2
C2
D2
E2
F2
C93
1u
0402
CTRL2_U0d E1
TEMP_U0d D1
C1
VSUP
R37
0R(nm)
0603
CTRL1_U0d B1
C92
1u
0402
CTRL2_U0c E1
TEMP_U0c D1
C1
VSUP
R32
0R(nm)
0603
CTRL1_U0c B1
C91
1u
0402
CTRL2_U0b E1
TEMP_U0b D1
C1
VSUP
R27
0R(nm)
0603
CTRL1_U0b B1
C90
1u
0402
CTRL2_U0a E1
TEMP_U0a D1
C1
VSUP
R21
0603
0R(nm)
CTRL1_U0a B1
C111
22u
1210
HVSUP
8A Power Stage
8A Power Stage
CTRL2
TEMP
5VSUP
CTRL1
8A Power Stage
LX1
LX1
LX1
LX2
LX2
LX2
LX1
LX1
LX1
LX2
LX2
LX2
A4
B4
C4
D4
E4
F4
A3
B3
C3
D3
E3
F3
Boost2_0d
PVSS1
PVSS1
PVSS1
PVSS2
PVSS2
PVSS2
LX1
LX1
LX1
LX2
LX2
LX2
Boost1_0d
Boost2_0c
A4
B4
C4
D4
E4
F4
A3
B3
C3
D3
E3
F3
Boost1_0c
Boost2_0b
A4
B4
C4
D4
E4
F4
A3
B3
C3
D3
E3
F3
Boost1_0b
PVSS1
PVSS1
PVSS1
PVSS2
PVSS2
PVSS2
AS3728
A4
B4
C4
D4
E4
F4
Boost2_0a
PVSS1
PVSS1
PVSS1
PVSS2
PVSS2
PVSS2
AS3728
HVSUP1
HVSUP1
HVSUP1
HVSUP2
HVSUP2
HVSUP2
SD0d
AS3728
CTRL2
TEMP
5VSUP
CTRL1
LX1
LX1
LX1
LX2
LX2
LX2
A3
B3
C3
D3
E3
F3
Boost1_0a
PVSS1
PVSS1
PVSS1
PVSS2
PVSS2
PVSS2
AS3728
HVSUP1
HVSUP1
HVSUP1
HVSUP2
HVSUP2
HVSUP2
SD0c
AS3728
CTRL2
TEMP
5VSUP
CTRL1
HVSUP1
HVSUP1
HVSUP1
HVSUP2
HVSUP2
HVSUP2
SD0b
AS3728
CTRL2
TEMP
5VSUP
8A Power Stage
AS3728
CTRL1
HVSUP1
HVSUP1
HVSUP1
HVSUP2
HVSUP2
HVSUP2
SD0a
AS3728
4
A1
BOOST1
BOOST2
F1
A1
BOOST1
BOOST2
F1
A1
BOOST1
BOOST2
F1
A1
BOOST1
BOOST2
Page 184
Document Feedback
F1
1
0R
0603
R80
0R
0603
R79
0R
0603
R78
0R
0603
R77
0R
0603
R76
0R
0603
R75
0R
0603
R74
0R
0603
R73
C30
100n
C83
100n
LX0d2
R35
0R(nm)
0603
LX0d1
C82
100n
C81
100n
LX0c2
R30
0R(nm)
0603
LX0c1
C80
100n
C79
100n
LX0b2
R25
0R(nm)
0603
LX0b1
C78
100n
C77
100n
LX0a2
R19
0R(nm)
0603
LX0a1
5
R69
0R(nm)
0603
L12
L11
R68
0R(nm)
0603
L10
L9
R67
0R(nm)
0603
L8
L7
R66
0R(nm)
0603
L6
L5
0.68u
0.68u
0.68u
0.68u
0.68u
0.68u
0.68u
0.68u
C57
47u
1206
FB_SD0
FB_SD0
C53
47u
1206
FB_SD0
FB_SD0
C49
47u
1206
FB_SD0
FB_SD0
C45
47u
1206
FB_SD0
FB_SD0
C109
47u
1206
C107
47u
1206
C105
47u
1206
C103
47u
1206
SD0
C54
47u
1206
C50
47u
1206
C46
47u
1206
C42
47u
1206
6
C108
47u(nm)
1206
C106
47u(nm)
1206
C104
47u(nm)
1206
C102
47u(nm)
1206
GND
SD0
PAD
PAD
R18
0R
0603
Date 18.11.2013
Oi i t
k
AS3722 Evalboard BGA
FB_SD0_N
J17
FB_SD0_P
Project Title
R23
0R
0603
R63
20k
0603
A3
J18
J16
FB_SD0
Size
BU6
1
1
BU5
7
Sh
t 4
FB_SD0_N
FB_SD0_P
f
4
Revision
1.2
8
AS3722 − Application Information
Figure 228:
Application Schematic 2/3
Application Schematic 2/3: Shows a basic application schematic for the SD0 power stages
ams Datasheet
[v1-01] 2015-Sep-07
D
C
B
L13 = L14 = 0.47uH
R41 not connected
CTRL2_SD1
TEMP_SD1
CTRL1_SD1
1
L15 = L16 = 0.47uH
R48 not connected
2
TEMP2_SD6
CTRL2_SD6
TEMP1_SD6
C59
22u
1210
C63
22u
1210
C66
22u
1210
R44
0R
0603
R42
0R
0603
3
R55
0R
0603
R54
0R
0603
R51
0R(nm)
0603
R49
0R
0603
C97
10u(nm)
0603
J32
TEMP2_SD6
C122
22u
1210
CTRL2_SD6
TEMP1_SD6
CTRL1_SD6
C120
22u
1210
CTRL2_SD1
TEMP_SD1
CTRL1_SD1
C118
22u
1210
on
off
set J32 to "on" if SD6b is used!
d
SD6a & SD6b:R49, R50, R53, R54, R55 needed
R51 not connected
SD6a alone: R49, R51, R53 needed
R50 needed if CTRL combined
SD6a combined mode:L15 = 0.47uH
L16 not connected
R48 needed
SD6a normal mode:
CTRL1_SD6
SD6 (4A - 16A)
SD1 combined mode: L13 = 0.47uH
L14 not connected
R41 needed
SD1 normal mode:
SD1 (4A - 8A)
C67
22u
1210
R53
0R
0603
C64
22u
1210
R46
0R
0603
C60
22u
1210
B1
A2
B2
C2
D2
E2
F2
VSUP
A2
B2
C2
D2
A2
B2
C2
D2
E2
F2
C123
22u
1210
HVSUP
B1
A2
B2
C2
D2
E2
F2
C96
1u
0402
E1
TEMP_U6b D1
VSUP C1
CTRL_U6b
C95
1u
0402
CTRL2_U6a E1
TEMP_U6a D1
VSUP C1
R50
0R
0603
CTRL1_U6a B1
C121
22u
1210
HVSUP
CTRL1_U1 A1
CTRL2_U1 D1
TEMP_U1 B1
C1
C98
10u(nm)
0603
C94
1u
0402
CTRL2_U1 E1
D1
TEMP_U1
VSUP C1
R43
0R(nm)
0603
CTRL1_U1
C119
22u
1210
HVSUP
LX1
LX1
LX2
LX2
8A Power Stage
8A Power Stage
CTRL2
TEMP
5VSUP
CTRL1
4
A4
B4
C4
D4
E4
F4
A3
B3
C3
D3
E3
F3
LX1
LX1
LX1
LX2
LX2
LX2
Boost2_6b
A4
B4
C4
D4
E4
F4
A3
B3
C3
D3
E3
F3
Boost1_6b
Boost2_6a
PVSS1
PVSS1
PVSS1
PVSS2
PVSS2
PVSS2
AS3728
8A Power Stage
LX1
LX1
LX1
LX2
LX2
LX2
0R
0603
R86
0R
0603
R85
0R
R84
0R
0603
R83
C84
100n
C86
100n
C89
100n
LX6b
C88
100n
0603
C87
100n
LX6a2
R48
0R
0603
LX6a1
R70
0R(nm)
0603
L14
L13
5
R72
0R(nm)
0603
L17
L20
R71
0R(nm)
0603
L16
L15
C100
47u(nm)
1206
FB_SD1
FB_SD1
LX1(29)-2
0.47u(nm)
0.47u(nm)
C85
100n
LX1(28)-2
R41
0R(nm)
0603
LX1(28)-1
0R(nm)
0603
LX1(29)-1R88
L19
LX1(29)-2
L18
0R
0603
R82
0R
0603
R81
LX1(29)-1
A4
B4
C4
D4
E4
F4
A3
B3
C3
D3
E3
F3
Boost1_6a
A4
B4
C4
D4
A3
B3
C3
D3
Boost2_1
PVSS1
PVSS1
PVSS1
PVSS2
PVSS2
PVSS2
AS3728
HVSUP1
HVSUP1
HVSUP1
HVSUP2
HVSUP2
HVSUP2
SD6b
AS3728
CTRL2
TEMP
5VSUP
CTRL1
HVSUP1
HVSUP1
HVSUP1
HVSUP2
HVSUP2
HVSUP2
SD6a
AS3728
AS3729_WLP16 (nm)
LX1
LX1
LX1
LX2
LX2
LX2
Boost1_1
PVSS1
PVSS1
PVSS1
PVSS2
PVSS2
PVSS2
AS3728
AS3729
CTRL1
PVSS
CTRL2
PVSS
TEMP
PVSS
AGND
PVSS
VSUP
VSUP
VSUP
VSUP
SD1b
CTRL2
TEMP
5VSUP
CTRL1
HVSUP1
HVSUP1
HVSUP1
HVSUP2
HVSUP2
HVSUP2
SD1a
AS3728
A1
BOOST1
BOOST2
F1
A1
BOOST1
BOOST2
F1
A1
BOOST1
BOOST2
F1
ams Datasheet
[v1-01] 2015-Sep-07
0.68u
0.68u
0.68u
0.68u
FB_SD6
C65
47u
1206
FB_SD6
FB_SD6
C61
47u
1206
FB_SD1
FB_SD1
C99
47u(nm)
1206
0.68u
0.68u
C58
47u
1206
C68
47u
1206
C62
47u
1206
C128
47u
1206
BU10
C127
47u
1206
SD6
C125
47u(nm)
1206
SD1
BU9
6
C129
47u
1206
PAD
PAD
C126
47u(nm)
1206
C124
47u
1206
FB_SD1
C130
47u(nm)
1206
GND
1
1
SD6
BU4
BU3
PAD
PAD
R45
0R
0603
FB_SD6_P
FB_SD6_N
FB_SD6_P
J26
J28
Date 18.11.2013
Originator mkc
7
3
2
1
FB_SD1_N
Project Title
FB_SD6_N
J30
FB_SD1_P
J25
AS3722 Evalboard BGA
J52
J24
R40
0R
0603
R64
82k
0603
A3
R52
0R
0603
R65
39k
R47
0R
0603
5
4
3
2
1
HVSUP
4
3
2
1
VSUP
J23
J27
FB_SD1
Size
J29
J31
FB_SD6
GND
1
1
SD1
5
4
3
2
1
A
Sheet 5
CTRL1_SD1
TEMP_SD1
CTRL2_SD1
FB_SD1_N
FB_SD1_P
8
of
4
Revision
1.2
AS3722 − Application Information
Figure 229:
Application Schematic 3/3
Application Schematic 3/3: Shows a basic application schematic for the SD1/6 power stages
Page 185
Document Feedback
AS3722 − Application Information
PCB Routing Recommendations
RBIAS
A critical line on the PMIC is RBIAS. This is a high ohmic node
and may pick up noise from nearby clock lines rather easily.
Please keep the trace as short as possible and do not route any
clock line near to it.
Internal DCDC
Attention should be paid to the routing of the VSUP, LX and GND
traces of the DCDC converter.
• Keep the VSUP traces to the input capacitor as short as
possible. Do not use vias for this connection.
• Make a common ground area for the input cap, output cap
and PVSS terminal of the DCDC. Connect this ground area
with vias to the system ground plane.
• Use short wide traces for LX node. If you need to set vias,
use it on the LX trace and not on the capacitor
connections.
Power Stage Connections
To avoid cross talk to other lines a minimum spacing of
minimum 3W should be kept. For a proper DCDC operation it’s
recommended to avoid routing other clock traces being routed
in parallel (also on other layers) to the control lines.
Figure 230:
PCB Control Line Routing
W
> 1W
CTRL4
W
CTRL3
> 1.5W
W
> 1.5W
W
TEMP1
> 1W
W
CTRL1
CTRL2
3W
H
İr
GND
PCB Control Line Routing: Shows an example PCB routing for the control lines of the multiphase controllers.
CTRL1&2, are not interfering with each other as they are
running at 180° phase shift. They can be routed with a minimum
spacing. The TEMP lines should be used as “guard traces” to
other control line pairs (e.g. CTRL3&4 or CTRL 5&6 or CTRL 7&8)
as well as to other sensitive or clock traces on the PCB. A
minimum spacing of >1.5W should be used as spacing between
TEMP and CTRL traces.
Page 186
Document Feedback
ams Datasheet
[v1-01] 2015-Sep-07
AS3722 − Application Information
To minimize the cross talk of these clock lines, the width of the
traces (W) should be the minimum acceptable width for
manufacturing (e.g. 4mil).The differential feedback lines are
less critical, nevertheless to ensure a good coupling between
the differential lines and a low coupling to other traces and
ground planes its recommended to have: S