0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
DEV-16829

DEV-16829

  • 厂商:

    SPARKFUNELECTRONICS

  • 封装:

  • 描述:

    数据记录器 数据采集 MicroMod 平台评估扩展板

  • 数据手册
  • 价格&库存
DEV-16829 数据手册
  MicroMod Data Logging Carrier Board Hookup Guide Introduction The MicroMod Data Logging Carrier Board is similar the SparkFun Logomatic to offer users a dedicated data logging board but adds the ability for you to pick a MicroMod Processor Board to customize it for your next data logger project. The Data Logging Carrier board was designed specifically for low power control and sensor data harvesting with the MicroMod ecosystem. SparkFun MicroMod Data Logging Carrier Board  DEV-16829 The Data Logging Carrier Board allows you to control power to both the Qwiic connector on the board as well as a dedicated power pin for non-Qwiic peripherals such as serial UART or SPI devices so you can pick and choose when to power the peripherals you are monitoring the data from. It also features a charging circuit for single-cell Lithium-ion batteries along with an RTC battery-backup circuit to maintain power for a real-time clock circuit on your Processor Board. Required Materials Like all of our MicroMod Carrier Boards, there is no processor included but instead you can plug in a Processor Board of your choice to the MicroMod M.2 connector on the carrier. Below are a few options to choose for your processor: SparkFun MicroMod Artemis Processor SparkFun MicroMod ESP32 Processor  DEV-16401  WRL-16781 SparkFun MicroMod SAMD51 Processor  DEV-16791 You'll also need a USB-C cable to connect the Carrier Board to your computer to program your Processor and for serial USB communication. If you want to add some Qwiic breakouts to your MicroMod project you'll want at least one Qwiic cable to connect it all together. Below are some options for both of those cables: SparkFun Qwiic Cable Kit Qwiic Cable - 100mm  KIT-15081  PRT-14427 Reversible USB A to C Cable - 2m USB 3.1 Cable A to C - 3 Foot  CAB-15424  CAB-14743 Along with a Processor Board, the pertinent cables and sensors or other items you intend to log the data from, you'll need a microSD card. Lastly, if you would like to have your MicroMod Data Logging project be battery powered, you'll want a single-cell Lithium-ion battery. Below are a few options for both of those accessories: Lithium Ion Battery - 1Ah Lithium Ion Battery - 2Ah  PRT-13813  PRT-13855 microSD Card - 16GB (Class 10) microSD Card with Adapter - 32GB (Class 10)  COM-15051  COM-14832 Suggested Reading The SparkFun MicroMod ecosystem is designed to allow users to customize their project to their needs. Do you want to send your weather data via a wireless signal (eg. Bluetooth or WiFi)? There's a MicroMod processor for that. Looking to instead maximize efficiency and processing power? You guessed it, there's a MicroMod processor for that. If you are not familiar with the SparkFun MicroMod system, take a look here: If you aren't familiar with the MicroMod ecosystem, we recommend reading here for an overview: MicroMod Ecosystem We also recommend reading through the following tutorials if you are not familiar with the concepts covered in them: Serial Communication Serial Peripheral Interface (SPI) Asynchronous serial communication concepts: packets, signal levels, baud rates, UARTs and more! SPI is commonly used to connect microcontrollers to peripherals such as sensors, shift registers, and SD cards. w! Ne SD Cards and Writing Images Getting Started with MicroMod How to upload images to an SD card for Raspberry Pi, PCDuino, or your favorite SBC. Dive into the world of MicroMod - a compact interface to connect a microcontroller to various peripherals via the M.2 Connector! Hardware Overview In this section we'll cover the components on the MicroMod Data Logging Carrier Board, how a specific MicroMod Processor Board interacts with it and highlight a few unique features on the board. Common Components Most SparkFun MicroMod Carrier Boards will have some common components and all MicroMod Carrier Boards will have the keyed M.2 MicroMod Connector to plug your processor into. The photo and list below outline some of the components included on most SparkFun MicroMod Carrier Boards. M.2 MicroMod Connector - This special keyed M.2 connector lets you install your MicroMod Processor Board of choice on your Carrier Board. USB-C Connector - Connect to your computer to program your Processor Board and also can provide power to your MicroMod system. 3.3V Regulator - Provides a regulated 3.3V and sources up to 1A. Qwiic Connector - The standard Qwiic connector so you can add Qwiic devices to your MicroMod system. Boot/Reset Buttons - Push buttons to enter boot mode on Processor Boards and to reset your MicroMod circuit. RTC Backup Battery & Charge Circuit - 1mAh backup battery for the RTC for certain MicroMod Processor Boards . Receives charge voltage from 3.3V. microSD Slot - Insert a µSD card formatted to FAT32(?) here to log your data. Power Control Circuit The Data Logging Carrier Board features two 3.3V/600mA voltage regulators that have their Enable pins tied to I/O pins on an attached MicroMod Processor Board. This allows control of the regulators' output with a few lines of code making it extremely simple to control and conserve power in battery-powered applications. The G1-3V3 line is controlled by G1 on the MicroMod Processor and the G2-3.3V circuit is (as you may suspect) is controlled by G2 on the MicroMod Processor. The G1-3.3V power circuit is tied to several pins highlighted in the below photo for extra flexibility powering external devices. The G2-3V3 output is tied to the 3.3V pin on the Qwiic connector as well as a dedicated PTH pin labeled G2-3V3. Battery Charging Circuit The board also has a MCP73831 Single-Cell Lithium-Ion/Lithium-Polymer Charge IC so you can charge an attached single-cell LiPo battery. The charge IC receives power primarily from USB and can source up to 450mA to charge an attached battery. Data Logging Connections Along with the Qwiic connector mentioned in the Common Components, the Data Logging Carrier Board breaks out several other pins to connect UART, SPI and other I/O devices. The primary SPI pins are netted to the µSD slot and a PTH header near the LiPo battery connector. A second Chip Select pin tied to G0 is broken out to that same header. Note: µSD Chip Select is tied to the SPI_CS chip select pin on the M.2 Connector. Refer to your Processor Board's documentation for information on how to properly define that pin in your code. A UART PTH header connects to RX1 and TX1 for serial data logging and A0, A1, PWM0, PWM1, D0 and D1 are routed to dedicated PTH pins as well. Lastly, if users prefer a soldered connection instead of Qwiic, the primary I2C bus is broken out to PTH pins. JTAG An unpopulated JTAG footprint is available for more advanced users who need breakpoint level debugging. We recommend checking out our JTAG section for the compatible male header and a compatible JTAG programmer and debugger. Solder Jumpers If you have never worked with solder jumpers and PCB traces before or would like a quick refresher, check out our How to Work with Solder Jumpers and PCB Traces tutorial for detailed instructions and tips. There are seven solder jumpers on the Data Logging Carrier Board labeled I2C, MEAS, BYP, VIN, 3V3, VE, and BATT. In this section we'll detail the functionality and default states of each jumper. Jumper Name/Label Description Default State I2C Pull-Up / I2C Pulls the Qwiic SDA/SCL lines to 3.3V via two 2.2KΩ resistors CLOSED Measure / MEAS Open this jumper to probe the current draw at the 3.3V output of the regulator. For help measuring current, take a look at our How to Use a Multimeter tutorial. CLOSED Bypass / BYP The "penny-in-the-fuse" jumper. Bypasses the 6V/2A fuse and nets VIN and V_USB together to allow >2A current flows. Close only if you know what you are doing! OPEN VIN / VIN_LED Connects the 5V/VIN LED to 3.7-6V (typ. 5V from USB) via a 4.1KΩ resistor. Open to disable the VIN LED. CLOSED 3V3 / 3V3_LED Connects the 3.3V LED to 3.3V via a 1KΩ resistor. Open to disable the 3.3V LED. CLOSED Voltage Enable / VE Close this jumper to enable processor control of the 3.3V bus. OPEN Battery / BATT Open this jumper to measure current draw from the battery or to switch primary power from USB to battery. CLOSED Having trouble viewing the detail in either photo? Click on them for a larger view! Board Dimensions The MicroMod Data Logging Carrier Board measures 2.40" x 1.60" (60.96mm x 40.64mm) and has five mounting holes that fit a 4-40 screw. Take note of the mounting hole labeled "Qwiic Mount" above the µSD slot as it can work as single mount for a Qwiic breakout (or other sensor) or you can pair it with the outer mount in the "top-right" corner for a more secure mounting option. We demonstrate using these two mounts for a Qwiic breakout in the following section, Hardware Assembly. Now that we're familiar with the hardware on the MicroMod Data Logging Carrier Board, it's time to plug your Processor Board and peripheral sensors in and start logging some data. Next up we'll cover some assembly tips. Hardware Assembly Inserting the Processor Board With the M.2 MicroMod connector, connecting your processor board is easy. Match up the key on your processor's beveled edge connector to the key on the M.2 connector on your Carrier Board. At a 45° angle, insert the processor board to the M.2 connector. The Processor Board will stick up at an angle as seen here: Once the board is in the socket, gently press the Processor Board down, grab the set screw and tighten it with a Phillip's head screwdriver: Once the Processor Board is secure, your assembled MicroMod system should look similar to the image below! Note: There is technically no way to insert the processor backward since the key prevents it from mating with the M.2 connector. As an extra safeguard to prevent inserting a processor improperly or with a poor connection, the mounting screw will not match up if the Processor Board is not plugged in entirely. Data Logging Peripherals As we mentioned previously, the Data Logging Carrier Board offers several ways to connect your sensors or other peripherals you intend to log data from. If you are using a Qwiic breakout just connect it using a Qwiic cable to the Qwiic connector on the Carrier Board. If your I2C device is not Qwiic-enabled, you can either use a Qwiic adapter cable or connect the peripheral to the Carrier Board using the 0.1"-spaced PTH pins for I2C. Soldering is strongly recommended for this approach but if you just want a temporary connection for prototyping you can use IC Hooks like these or these. For alternate data inputs using SPI, Serial UART or other inputs (analog, digital, etc.), you will need to connect them to the 0.1"-spaced PTH pins broken out on either side of the Data Logging Carrier Board using one of the methods covered above. Take note of which 3.3V rail you are connecting them to for easy reference when controlling power to your devices after everything is soldered together. Before powering everything up, insert your microSD card into the card slot and press it in to lock it into place. Connecting Everything Up With your processor inserted and secured it's time to connect your MicroMod Data Logging Carrier Board to your computer using the USB-C connector. Depending on which Processor Board you choose and which drivers you already have installed, you may need to install drivers for your processor board. Refer to your Processor Board's Hookup Guide for detailed instructions on how to install them. At this point you can also connect your battery for charging or to power the circuit once USB power is removed. This demo circuit uses the SparkFun GPS Breakout - ZOE-M8Q (Qwiic) and GPS/GNSS Magnetic Mount Antenna.  Note: Make sure that for whichever processor board you choose, you have the correct board definitions installed. For this particular tutorial, we are using the Artemis MicroMod Processor Board. Board definitions for this processor board can be found in the Software Setup and Programming section of the Artemis MicroMod Processor Board Hookup Guide. If you are using a different processor board, go to our MicroMod Processor Boards landing page, find your processor board, and head on over to that tutorial for help installing your board definition. Arduino Examples Note: This example assumes you are using the latest version of the Arduino IDE on your desktop. If this is your first time using Arduino, please review our tutorial on installing the Arduino IDE. If you have not previously installed an Arduino library, please check out our installation guide. GPS Demo Circuit Example We've written a quick example for the demo circuit from the Hardware Assembly section using the SparkFun GPS Breakout - ZEO-M8Q (Qwiic) to showcase how to log data from the GPS module to a µSD card. To assemble the circuit, simply plug in your GPS module to the Data Logging Carrier Board via a Qwiic cable and attach the GPS Antenna to the board using a u.Fl to SMA Adapter. If you've never worked with u.Fl connectors before this tutorial offers a few quick tips for using them. Also, the SparkFun u-blox Arduino library works with all of our u-blox modules so you can swap in a different u-blox GPS if you prefer. In order to run this example you will need to have the SparkFun U-blox Arduino library installed. You can install it with the Arduino Library Manager by searching 'SparkFun Ublox' or you can download the zip here from the GitHub repository: SPARKFUN U-BLOX ARDUINO LIBRARY (ZIP) Copy the code below into a blank Arduino sketch, select your Processor Board (for the demo circuit we select, "SparkFun Artemis MicroMod") and the Port your board has enumerated on. If you are not using the MicroMod Artemis Processor, you'll need to adjust the define for Chip Select: /* MicroMod Data Logging Carrier Board - ZOE-M8Q GPS Example This example code is in the public domain. */ #include #include #include #include "SparkFun_Ublox_Arduino_Library.h" #define chipSelect = CS //Primary SPI Chip Select is CS for Artemis MicroMod. Adjust for your pr ocessor if necessary. SFE_UBLOX_GPS myGPS; long lastTime = 0; //Simple local timer. Limits amount if I2C traffic to Ublox module. File myFile; void setup() { // Open serial communications and wait for port to open: Serial.begin(115200); while (!Serial) { ; // wait for serial port to connect. Needed for native USB port only } Wire.begin(); if (myGPS.begin() == false) //Connect to the Ublox module using Wire port { Serial.println(F("Ublox GPS not detected at default I2C address. Please check wiring. Freezi ng.")); while (1); } myGPS.setI2COutput(COM_TYPE_UBX); //Set the I2C port to output UBX only (turn off NMEA noise) myGPS.saveConfiguration(); //Save the current settings to flash and BBR Serial.print("Initializing SD card..."); // see if the card is present and can be initialized: if (!SD.begin(chipSelect)) { Serial.println("Card failed, or not present"); // don't do anything more: while (1); } Serial.println("card initialized."); myFile = SD.open("data.txt", FILE_WRITE); // Create or open a file called "data.txt" on the SD card if(myFile) { if(myFile.size() == 0) // Only create the header if there isn't any data in the file yet { myFile.println("Date\t\tTime\t\tLatitude\tLongitude\tAlt"); myFile.println("MM/DD/YYYY\tHH/MM/SS\tdeg\t\tdeg\t\tmm"); myFile.println("------------------------------------------------------------------------------------"); } myFile.close(); // Close the file to properly save the data } else { // if the file didn't open, print an error: Serial.println("error opening data.txt"); } } void loop() { char gpsDate[10], gpsTime[10]; //Query module only every 10 seconds. Adjust this value for more/less frequent GPS logs. if (millis() - lastTime > 10000) { lastTime = millis(); //Update the timer long latitude = myGPS.getLatitude(); long longitude = myGPS.getLongitude(); long altitude = myGPS.getAltitude(); uint8_t fixType = myGPS.getFixType(); if(fixType != 0){ myFile = SD.open("data.txt", FILE_WRITE); // Open file "data.txt" if(myFile) { // Get date and time sprintf(gpsDate,"%d/%d/%d", myGPS.getMonth(),myGPS.getDay(),myGPS.getYear()); if(myGPS.getSecond() < 10){ sprintf(gpsTime,"%d/%d/0%d", myGPS.getHour(),myGPS.getMinute(),myGPS.getSecond()); } else { sprintf(gpsTime,"%d/%d/0%d", myGPS.getHour(),myGPS.getMinute(),myGPS.getSecond()); } // Save data to SD card myFile.print(gpsDate); myFile.print('\t'); myFile.print(gpsTime); myFile.print('\t'); myFile.print(latitude); myFile.print('\t'); myFile.print(longitude); myFile.print('\t'); myFile.println(altitude); } Serial.print(gpsDate); Serial.print('\t'); Serial.print(gpsTime); Serial.print('\t'); Serial.print(latitude); Serial.print('\t'); Serial.print(longitude); Serial.print('\t'); Serial.println(altitude); myFile.close(); } else // GPS is looking for satellites, waiting on fix { uint8_t SIV = myGPS.getSIV(); Serial.print("Satellites in view: "); Serial.println(SIV); } } } With the code adjusted, click the Upload button. For debugging, open your serial monitor and set the baud 115200. The code will print out if the SD card or GPS do not initialize properly. If the SD initialization fails, check that the card is inserted and locked and that it is formatted to FAT32. If the GPS initialization fails, check the connection to your GPS board or verify it is at the default I2C address. If everything initializes properly, the code will open the "data.txt" file and begin logging data once the GPS has a fix and will also print the same data over serial. If the GPS does not have a lock, the code will print out the number of satellites in view over serial. Power Control Examples In addition to this GPS example, we've written two example sketches specifically for the Data Logging Carrier Board demonstrating how to control the 3.3V regulators powering the Qwiic connector/G2-3V3 pin and G1-3V3 rail. They can be found in the MicroMod Data Logging Carrier Board GitHub Repo or you can download the Zip of the repository by clicking the button below DATA LOGGING CARRIER BOARD TEST SKETCHES (ZIP) Take note both Qwiic and 3V3 peripheral power are controlled with a P-Channel MOSFET so the logic is reversed (Power ON = LOW and Power OFF = HIGH ). Troubleshooting  Need help? If your product is not working as you expected or you need technical assistance or information, head on over to the SparkFun Technical Assistance page for some initial troubleshooting. SPARKFUN TECHNICAL ASSISTANCE PAGE If you don't find what you need there, the SparkFun Forums are a great place to find and ask for help. If this is your first visit, you'll need to create a Forum Account to search product forums and post questions. CREATE NEW FORUM ACCOUNT LOG INTO SPARKFUN FORUMS Resources and Going Further Hopefully this guide has got you all set to get started with your own MicroMod logging project using the SparkFun MicroMod Data Logging Carrier Board. For more information about the Carrier Board, check out the resources below: Schematic (PDF) Eagle Files (ZIP) Board Dimensions (PNG) Hardware GitHub Repository For more information on the MicroMod ecosystem, check out these resources: Getting Started with MicroMod Designing with MicroMod MicroMod Info Page MicroMod Forums Not sure where to start with your own data logging project? The tutorials below may give you some ideas to get the creative juices flowing: GPS Logger Shield Hookup Guide Hazardous Gas Monitor How to assemble and hookup the SparkFun GPS Logger Shield. Never lose track of your Arduino again! Build a portable gas monitor to check for dangerous levels of hazardous gases. SparkFun gator:log Hookup Guide OpenLog Artemis Hookup Guide The gator:log is a serial communication based data logger. This tutorial will get you started using the gator:log with the micro:bit platform. How to use and re-program the OpenLog Artemis, an open source datalogger. The OLA comes preprogrammed to automatically log data with the builtin ICM-20948 Inertial Measurement Unit (IMU) 9Degrees-Of-Freedom (9-DOF) sensor. The OLA can also record serial data, analog voltages, or readings from external Qwiic-enabled I2C devices. Some of these Qwiic-enabled devices include GPS/GNSS modules, pressure, altitude, humidity, temperature, air quality, environment, distance, and weight sensors.
DEV-16829 价格&库存

很抱歉,暂时无法提供与“DEV-16829”相匹配的价格&库存,您可以联系我们找货

免费人工找货
DEV-16829
    •  国内价格
    • 1+188.62585

    库存:0