CDCVF857
www.ti.com
SCAS047F – MARCH 2003 – REVISED MAY 2007
2.5-V PHASE-LOCKED-LOOP CLOCK DRIVER
FEATURES
•
•
•
•
•
•
•
•
•
•
•
•
•
•
DESCRIPTION
Spread-Spectrum Clock Compatible
Operating Frequency: 60 MHz to 220 MHz
Low Jitter (Cycle-Cycle): ±35 ps
Low Static Phase Offset: ±50 ps
Low Jitter (Period): ±30 ps
1-to-10 Differential Clock Distribution (SSTL2)
Best in Class for VOX = VDD/2 ±0.1 V
Operates From Dual 2.6-V or 2.5-V Supplies
Available in a 40-Pin MLF Package, 48-Pin
TSSOP Package, 56-Ball MicroStar Junior™
BGA Package
Consumes < 100-µA Quiescent Current
External Feedback Pins (FBIN, FBIN) Are Used
to Synchronize the Outputs to the Input
Clocks
Meets/Exceeds JEDEC Standard (JESD82-1)
For DDRI-200/266/333 Specification
Meets/Exceeds Proposed DDRI-400
Specification (JESD82-1A)
Enters Low-Power Mode When No CLK Input
Signal Is Applied or PWRDWN Is Low
The CDCVF857 is a high-performance, low-skew,
low-jitter, zero-delay buffer that distributes a
differential clock input pair (CLK, CLK) to 10
differential pairs of clock outputs (Y[0:9], Y[0:9]) and
one differential pair of feedback clock outputs
(FBOUT, FBOUT). The clock outputs are controlled
by the clock inputs (CLK, CLK), the feedback clocks
(FBIN, FBIN), and the analog power input (AVDD).
When PWRDWN is high, the outputs switch in phase
and frequency with CLK. When PWRDWN is low, all
outputs are disabled to a high-impedance state
(3-state) and the PLL is shut down (low-power
mode). The device also enters this low-power mode
when the input frequency falls below a suggested
detection frequency that is below 20 MHz (typical 10
MHz). An input frequency detection circuit detects
the low frequency condition and, after applying a
>20-MHz input signal, this detection circuit turns the
PLL on and enables the outputs.
When AVDD is strapped low, the PLL is turned off
and bypassed for test purposes. The CDCVF857 is
also able to track spread spectrum clocking for
reduced EMI.
Because the CDCVF857 is based on PLL circuitry, it
requires a stabilization time to achieve phase-lock of
the PLL. This stabilization time is required following
power up. The CDCVF857 is characterized for both
commercial and industrial temperature ranges.
APPLICATIONS
•
•
DDR Memory Modules (DDR400/333/266/200)
Zero-Delay Fan-Out Buffer
A
A
AVAILABLE OPTIONS
TA
TSSOP (DGG)
–40°C to 85°C
CDCVF857DGG
–40°C to 85°C
(1)
40-Pin MLF
56-Ball BGA (1)
CDCVF857RTB
CDCVF857GQL
CDCVF857RHA
CDCVF857ZQL
Maximum load recommended is 12 pf for 200 MHz. At 12-pf load, maximum TA allowed is 70°C.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
MicroStar Junior is a trademark of Texas Instruments.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 2003–2007, Texas Instruments Incorporated
CDCVF857
www.ti.com
SCAS047F – MARCH 2003 – REVISED MAY 2007
FUNCTION TABLE
(Select Functions)
INPUTS
OUTPUTS
AVDD
PWRDWN
CLK
CLK
Y[0:9]
Y[0:9]
FBOUT
FBOUT
GND
H
L
H
L
H
L
H
Bypassed/off
GND
H
H
L
H
L
H
L
Bypassed/off
X
L
L
H
Z
Z
Z
Z
Off
X
L
H
L
Z
Z
Z
Z
Off
2.5 V (nom)
H
L
H
L
H
L
H
On
2.5 V (nom)
H
H
L
H
L
H
L
On
2.5 V (nom)
X
VDDQ
±50 mA
IO
Continuous output current
VO = 0 to VDDQ
IDDC
Continuous current to GND or VDDQ
Tstg
Storage temperature range
(1)
(2)
(3)
0.5 V to 3.6 V
–0.5 V to VDDQ + 0.5 V
–0.5 V to VDDQ + 0.5 V
±50 mA
±100 mA
–65°C to 150°C
Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.
This value is limited to 3.6 V maximum.
THERMAL CHARACTERISTICS
RθJA for TSSOP (DGG) Package (1)
(1)
(2)
RθJA for MLF (RHA/RTB) Package
RθJA for BGA (GQL/ZQL) Package (2)
Airflow
Low K
High K
Airflow
With 4 Thermal Vias
Airflow
High K
0 ft/min
89.1°C/W
70°C/W
0 ft/min
44.7°C/W
0 ft/min
132.2°C/W
150 ft/min
78.5°C/W
65.3°C/W
150 ft/min
150 ft/min
126.4°C/W
The package thermal impedance is calculated in accordance with JESD 51.
Connecting the NC-balls (C3, C4, D3, D4, G3, G4, H3, H4) to a ground plane improves the θJA to 114.8°C/W (0 airflow).
Submit Documentation Feedback
5
CDCVF857
www.ti.com
SCAS047F – MARCH 2003 – REVISED MAY 2007
RECOMMENDED OPERATING CONDITIONS
MIN
VDDQ
Supply voltage
PC1600 – PC3200
AVDD
VIL
Low-level input voltage
VIH
High-level input voltage
DC input signal voltage
NOM
MAX
2.3
2.7
VDDQ – 0.12
2.7
CLK, CLK, FBIN, FBIN
VDDQ/2 – 0.18
PWRDWN
–0.3
CLK, CLK, FBIN, FBIN
VDDQ/2 + 0.18
PWRDWN
(1)
(2)
0.7
1.7
VDDQ + 0.3
–0.3
VDDQ + 0.3
DC
CLK, FBIN
0.36
VDDQ + 0.6
AC
CLK, FBIN
0.7
VDDQ + 0.6
VDDQ/2 – 0.2
VDDQ/2 + 0.2
UNIT
V
V
V
V
VID
Differential input signal voltage
VIX
Input differential pair cross voltage
IOH
High-level output current
–12
IOL
Low-level output current
12
mA
SR
Input slew rate
1
4
V/ns
TA
Operating free-air temperature
–40
85
°C
(1)
(2)
(3)
(4)
(3) (4)
V
V
mA
The unused inputs must be held high or low to prevent them from floating.
The dc input signal voltage specifies the allowable dc execution of the differential input.
The differential input signal voltage specifies the differential voltage |VTR – VCP| required for switching, where VTR is the true input
level and VCP is the complementary input level.
The differential cross-point voltage tracks variations of VCC and is the voltage at which the differential signals must cross.
ELECTRICAL CHARACTERISTICS
over recommended operating free-air temperature range (unless otherwise noted)
PARAMETER
VIK
TEST CONDITIONS
Input voltage, all inputs
VDDQ = min to max, IOH = –1 mA
High-level output voltage
VOL
Low-level output voltage
VOD
Output voltage swing
VOX
Output differential
cross-voltage (3)
II
Input current
IOZ
High-impedance-state output
VDDQ = 2.7 V, VO = VDDQ or GND
current
IDDPD
Power-down current on VDDQ CLK and CLK = 0 MHz; PWRDWN =
+ AVDD
Low; Σ of IDD and AIDD
AIDD
Supply current on AVDD
CI
Input capacitance
VDDQ = 2.3 V, IOH = –12 mA
(3)
6
MAX
UNIT
–1.2
V
V
1.7
VDDQ = min to max, IOL = 1 mA
0.1
VDDQ = 2.3 V, IOL = 12 mA
0.6
Differential outputs are terminated with
120 Ω, CL = 14 pF (see Figure 3)
1.1
VDDQ/2 – 0.1
VDDQ/2
VDDQ = 2.7 V, VI = 0 V to 2.7 V
20
V
VDDQ/2 + 0.1
V
±10
µA
±10
µA
100
µA
6
8
fO = 200 MHz
8
10
2.5
3.5
fO = 170 MHz
120
140
fO = 200 MHz
125
150
Differential outputs
fO = 170 MHz
terminated with 120 Ω, CL
fO = 200 MHz
= 0 pF
220
270
230
280
Differential outputs
fO = 170 MHz
terminated with 120 Ω, CL
fO = 200 MHz
= 14 pF
280
330
300
350
VDDQ = 2.5 V, VI = VDDQ or GND
2
V
VDDQ – 0.4
fO = 170 MHz
Without load
(1)
(2)
(1)
VDDQ – 0.1
(2)
Dynamic current on VDDQ
TYP
VDDQ = 2.3 V, II = –18 mA
VOH
IDD
MIN
mA
pF
mA
All typical values are at nominal VDDQ.
The differential output signal voltage specifies the differential voltage |VTR – VCP|, where VTR is the true output level and VCP is the
complementary output level.
The differential cross-point voltage tracks variations of VDDQ and is the voltage at which the differential signals must cross.
Submit Documentation Feedback
CDCVF857
www.ti.com
SCAS047F – MARCH 2003 – REVISED MAY 2007
ELECTRICAL CHARACTERISTICS (continued)
over recommended operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
(1)
MAX
UNIT
∆C
Part-to-part input
capacitance variation
VDDQ = 2.5 V, VI = VDDQ or GND
1
pF
CI(∆)
Input capacitance difference
between CLK and CLK,
FBIN, and FBIN
VDDQ = 2.5 V, VI = VDDQ or GND
0.25
pF
TIMING REQUIREMENTS
over recommended ranges of supply voltage and operating free-air temperature
PARAMETER
fCLK
MIN
MAX
Operating clock frequency
60
220
Application clock frequency
90
220
40%
60%
Input clock duty cycle
Stabilization time (PLL mode)
(1)
Stabilization time (bypass mode)
(1)
(2)
(2)
UNIT
MHz
10
µs
30
ns
The time required for the integrated PLL circuit to obtain phase lock of its feedback signal to its reference signal. For phase lock to be
obtained, a fixed-frequency, fixed-phase reference signal must be present at CLK and VDD must be applied. Until phase lock is obtained,
the specifications for propagation delay, skew, and jitter parameters given in the switching characteristics table are not applicable. This
parameter does not apply for input modulation under SSC application.
A recovery time is required when the device goes from power-down mode into bypass mode (AVDD at GND).
SWITCHING CHARACTERISTICS
over operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
(1)
Low-to-high level propagation delay time
Test mode/CLK to any output
3.5
tPHL (1)
High-to-low level propagation delay time
Test mode/CLK to any output
3.5
tPLH
ns
–65
65
133/167/200 MHz (PC2100/2700/3200)
–30
30
100 MHz (PC1600)
–50
50
133/167/200 MHz (PC2100/2700/3200)
–35
35
–100
100
–75
75
Jitter (period), see Figure 7
tjit(cc) (2)
Jitter (cycle-to-cycle), see Figure 4
tjit(hper) (2)
Half-period jitter, see Figure 8
tslr(o)
Output clock slew rate, see Figure 9
Load: 120 Ω, 14 pF
t(φ)
Static phase offset, see Figure 5
100/133/167/200 MHz
tsk(o)
Output skew, see Figure 6
Load: 120 Ω, 14 pF; 100/133/167/200 MHz
100 MHz (PC1600)
133/167/200 MHz (PC2100/2700/3200)
UNIT
ns
100 MHz (PC1600)
tjit(per) (2)
(1)
(2)
MAX
ps
ps
ps
1
2
V/ns
–50
50
ps
40
ps
Refers to the transition of the noninverting output.
This parameter is assured by design but cannot be 100% production tested.
Submit Documentation Feedback
7
CDCVF857
www.ti.com
SCAS047F – MARCH 2003 – REVISED MAY 2007
PARAMETER MEASUREMENT INFORMATION
VDD
VYx
R = 60 W
R = 60 W
VDD/2
VYx
CDCVF857
GND
S0229-01
Figure 1. IBIS Model Output Load
VDD/2
C = 14 pF
R = 10 W
Z = 60 W
–VDD/2
Scope
Z = 50 W
R = 50 W
V(TT)
Z = 60 W
R = 10 W
Z = 50 W
C = 14 pF
CDCVF857
–VDD/2
R = 50 W
V(TT)
–VDD/2
V(TT) = GND
S0230-01
Figure 2. Output Load Test Circuit
8
Submit Documentation Feedback
CDCVF857
www.ti.com
SCAS047F – MARCH 2003 – REVISED MAY 2007
PARAMETER MEASUREMENT INFORMATION (continued)
VDD
C = 14 pF
Probe
GND
Z = 60 W
C = 1 pF
R = 120 W
R = 1 MW
V(TT)
Z = 60 W
C = 1 pF
C = 14 pF
CDCVF857
R = 1 MW
V(TT)
GND
GND
V(TT) = GND
S0231-01
Figure 3. Output Load Test Circuit for Crossing Point
Yx, FBOUT
Yx, FBOUT
tc(n)
tc(n +1)
tjit(cc) = tc(n) – tc(n+1)
T0174-01
Figure 4. Cycle-to-Cycle Jitter
CLK
CLK
FBIN
FBIN
t(f)n
t(f)n+1
t(f) =
S
n=N
t(f)n
1
N
(N > 1000 Samples)
T0175-01
Figure 5. Phase Offset
Submit Documentation Feedback
9
CDCVF857
www.ti.com
SCAS047F – MARCH 2003 – REVISED MAY 2007
PARAMETER MEASUREMENT INFORMATION (continued)
Yx
Yx
Yx, FBOUT
Yx, FBOUT
tsk(o)
T0176-01
Figure 6. Output Skew
Yx, FBOUT
Yx, FBOUT
tc(n)
Yx, FBOUT
Yx, FBOUT
1
f0
1
f0
tjit(per) = tc(n) –
f0 = Average Input Frequency Measured at CLK/CLK
T0177-01
Figure 7. Period Jitter
Yx, FBOUT
Yx, FBOUT
t(hper_n)
t(hper_n+1)
1
f0
n = Any Half Cycle
tjit(hper) = t(hper_n) –
1
2´f0
f0 = Average Input Frequency Measured at CLK/CLK
T0178-01
Figure 8. Half-Period Jitter
10
Submit Documentation Feedback
CDCVF857
www.ti.com
SCAS047F – MARCH 2003 – REVISED MAY 2007
PARAMETER MEASUREMENT INFORMATION (continued)
VOH, VIH
80%
Clock Inputs
and Outputs
80%
20%
20%
VOL, VIL
tr
tslr(I/O) =
tf
V80% – V20%
tslf(I/O) =
tr
V80% – V20%
tf
T0179-01
Figure 9. Input and Output Slew Rates
(2)
Card
Via
Bead
0603
AVDD
VDDQ
4.7 mF
1206
0.1 mF
0603
GND
Card
Via
(1)
2200 pF
0603
PLL
AGND
S0232-01
(1)
Place the 2200-pF capacitor close to the PLL.
(2)
Recommended bead: Fair-Rite P/N 2506036017Y0 or equilvalent (0.8 Ω dc maximum, 600 Ω at 100 MHz).
NOTE: Use a wide trace for the PLL analog power and ground. Connect PLL and capacitors to AGND trace and connect
trace to one GND via (farthest from the PLL).
Figure 10. Recommended AVDD Filtering
Submit Documentation Feedback
11
PACKAGE OPTION ADDENDUM
www.ti.com
22-Mar-2010
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
CDCVF857DGG
ACTIVE
TSSOP
DGG
48
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
CDCVF857DGGG4
ACTIVE
TSSOP
DGG
48
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
CDCVF857DGGR
ACTIVE
TSSOP
DGG
48
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
CDCVF857DGGRG4
ACTIVE
TSSOP
DGG
48
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
CDCVF857GQLR
ACTIVE
BGA MI
CROSTA
R JUNI
OR
GQL
56
1000
SNPB
Level-2A-220C-4 WKS
CDCVF857RHAR
ACTIVE
VQFN
RHA
40
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
CDCVF857RHARG4
ACTIVE
VQFN
RHA
40
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
CDCVF857RHAT
ACTIVE
VQFN
RHA
40
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
CDCVF857RHATG4
ACTIVE
VQFN
RHA
40
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
CDCVF857ZQLR
ACTIVE
ZQL
56
1000 Green (RoHS &
no Sb/Br)
SNAGCU
Level-2-260C-1 YEAR
BGA MI
CROSTA
R JUNI
OR
Pins Package Eco Plan (2)
Qty
TBD
Lead/Ball Finish
MSL Peak Temp (3)
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com
22-Mar-2010
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
22-Mar-2010
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
CDCVF857DGGR
TSSOP
DGG
48
2000
330.0
24.4
8.6
15.8
1.8
12.0
24.0
Q1
CDCVF857GQLR
BGA MI
CROSTA
R JUNI
OR
GQL
56
1000
330.0
16.4
4.8
7.3
1.45
8.0
16.0
Q1
CDCVF857RHAR
VQFN
RHA
40
2500
330.0
16.4
6.3
6.3
1.5
12.0
16.0
Q2
CDCVF857RHAT
VQFN
RHA
40
250
180.0
16.4
6.3
6.3
1.5
12.0
16.0
Q2
ZQL
56
1000
330.0
16.4
4.8
7.3
1.45
8.0
16.0
Q1
CDCVF857ZQLR
BGA MI
CROSTA
R JUNI
OR
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
22-Mar-2010
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
CDCVF857DGGR
TSSOP
DGG
48
2000
346.0
346.0
41.0
CDCVF857GQLR
BGA MICROSTAR
JUNIOR
GQL
56
1000
346.0
346.0
33.0
CDCVF857RHAR
VQFN
RHA
40
2500
346.0
346.0
33.0
CDCVF857RHAT
VQFN
RHA
40
250
190.5
212.7
31.8
CDCVF857ZQLR
BGA MICROSTAR
JUNIOR
ZQL
56
1000
346.0
346.0
33.0
Pack Materials-Page 2
MECHANICAL DATA
MTSS003D – JANUARY 1995 – REVISED JANUARY 1998
DGG (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
48 PINS SHOWN
0,27
0,17
0,50
48
0,08 M
25
6,20
6,00
8,30
7,90
0,15 NOM
Gage Plane
1
0,25
24
0°– 8°
A
0,75
0,50
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,10
48
56
64
A MAX
12,60
14,10
17,10
A MIN
12,40
13,90
16,90
DIM
4040078 / F 12/97
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DLP® Products
www.dlp.com
Communications and
Telecom
www.ti.com/communications
DSP
dsp.ti.com
Computers and
Peripherals
www.ti.com/computers
Clocks and Timers
www.ti.com/clocks
Consumer Electronics
www.ti.com/consumer-apps
Interface
interface.ti.com
Energy
www.ti.com/energy
Logic
logic.ti.com
Industrial
www.ti.com/industrial
Power Mgmt
power.ti.com
Medical
www.ti.com/medical
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
RFID
www.ti-rfid.com
Space, Avionics &
Defense
www.ti.com/space-avionics-defense
RF/IF and ZigBee® Solutions www.ti.com/lprf
Video and Imaging
www.ti.com/video
Wireless
www.ti.com/wireless-apps
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2010, Texas Instruments Incorporated