TE0745 TRM
Revision: V.80
Exported on: 04/11/2018
TE0745 TRM
V.80
1 Table of Contents
1
Table of Contents........................................................................................................................................... 2
2
Overview......................................................................................................................................................... 4
2.1
Key Features................................................................................................................................................... 4
2.2
Block Diagram ................................................................................................................................................ 5
2.3
Main Components.......................................................................................................................................... 6
2.4
Initial Delivery State....................................................................................................................................... 6
3
Signals, Interfaces and Pins........................................................................................................................... 8
3.1
Board to Board (B2B) I/O's ............................................................................................................................ 8
3.2
MGT Lanes ...................................................................................................................................................... 8
3.3
JTAG Interface.............................................................................................................................................. 10
3.4
System Controller I/O's................................................................................................................................ 10
3.5
Quad SPI Interface ....................................................................................................................................... 11
3.6
Gigabit Ethernet Interface ........................................................................................................................... 11
3.7
USB Interface................................................................................................................................................ 12
3.8
I2C Interface ................................................................................................................................................. 13
4
Boot Process................................................................................................................................................. 14
5
On-board Peripherals .................................................................................................................................. 15
5.1
System Controller CPLD .............................................................................................................................. 15
5.2
Quad SPI Flash Memory............................................................................................................................... 15
5.3
Gigabit Ethernet PHY ................................................................................................................................... 15
5.4
High-speed USB ULPI PHY ........................................................................................................................... 15
5.5
MAC Address EEPROM.................................................................................................................................. 15
5.6
RTC - Real Time Clock .................................................................................................................................. 16
5.7
Programmable PLL Clock (Phase-Locked Loop)........................................................................................ 16
5.8
Oscillators..................................................................................................................................................... 17
5.9
On-board LEDs ............................................................................................................................................. 17
6
Power and Power-On Sequence ................................................................................................................. 18
6.1
Power Consumption .................................................................................................................................... 18
6.2
Power Distribution Dependencies .............................................................................................................. 18
6.3
Power-On Sequence Diagram ..................................................................................................................... 20
6.4
Voltage Monitor Circuit ................................................................................................................................ 20
6.5
Power Rails................................................................................................................................................... 21
6.6
Bank Voltages............................................................................................................................................... 21
7
B2B connectors ............................................................................................................................................ 22
7.1
Features........................................................................................................................................................ 22
Copyright © 2018 Trenz Electronic GmbH
2 of 30
http://www.trenz-electronic.de
TE0745 TRM
V.80
7.2
Connector Stacking height .......................................................................................................................... 22
7.3
Current Rating .............................................................................................................................................. 22
7.4
Connector Speed Ratings ............................................................................................................................ 23
7.5
Manufacturer Documentation.................................................................................................................... 23
8
Variants Currently In Production ................................................................................................................ 24
9
Technical Specification ............................................................................................................................... 25
9.1
Absolute Maximum Ratings......................................................................................................................... 25
9.2
Recommended Operating Conditions ........................................................................................................ 25
9.3
Operating Temperature Ranges.................................................................................................................. 26
9.4
Physical Dimensions .................................................................................................................................... 26
10
Revision History ........................................................................................................................................... 28
10.1
Hardware Revision History .......................................................................................................................... 28
10.2
Document Change History .......................................................................................................................... 28
11
Disclaimer..................................................................................................................................................... 29
11.1
Document Warranty..................................................................................................................................... 29
11.2
Limitation of Liability................................................................................................................................... 29
11.3
Copyright Notice .......................................................................................................................................... 29
11.4
Technology Licenses.................................................................................................................................... 29
11.5
Environmental Protection ........................................................................................................................... 29
11.6
REACH, RoHS and WEEE .............................................................................................................................. 29
Copyright © 2018 Trenz Electronic GmbH
3 of 30
http://www.trenz-electronic.de
TE0745 TRM
V.80
2 Overview
Refer to https://wiki.trenz-electronic.de/display/PD/TE0745+TRM for online version of this manual and the rest of
the available documentation.
The Trenz Electronic TE0745 is an industrial-grade module integrating a Xilinx Zynq SoC (XC7Z-030, XC7Z-035 or
XC7Z-045), 1 GByte DDR3/L SDRAM, 32 MByte SPI Flash memory for configuration and operation and powerful
switch-mode power supplies for all on-board voltages. A large number of configurable I/O's is provided via rugged
high-speed stacking strips.
2.1 Key Features
• Industrial grade Xilinx Zynq SoC (XCZ7030, XC7Z035, XC7Z045)
• Dual-core ARM Cortex-A9 MPCore™ with CoreSight™
• 250 FPGA PL I/Os (120 LVDS pairs possible)
• 17 PS MIOs on B2B connector available
• 16-bit wide 1GB DDR3L SDRAM
• 32 MByte QSPI Flash memory
• 4 or 8 GTX transceiver lanes (XC7Z030 variant has 4)
• Gigabit Ethernet transceiver PHY
• EEPROM for storing Ethernet MAC Address
• Hi-speed USB 2.0 ULPI transceiver with full OTG support
• Programmable quad clock generator
• Temperature compensated RTC (real-time clock)
• Plug-on module with 3 × 160-pin high-speed hermaphroditic strips
• On-board high-efficiency DC-DC converters
• System management
• eFUSE bit-stream encryption
• AES bit-stream encryption
• User LED
• Evenly-spread supply pins for good signal integrity
• Rugged for shock and high vibration
Additional assembly options are available for cost or performance optimization upon request.
Copyright © 2018 Trenz Electronic GmbH
4 of 30
http://www.trenz-electronic.de
TE0745 TRM
V.80
2.2 Block Diagram
Figure 1: TE0745-02 Block Diagram.
Copyright © 2018 Trenz Electronic GmbH
5 of 30
http://www.trenz-electronic.de
TE0745 TRM
V.80
2.3 Main Components
Figure 2: TE0745-02 SoC module.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
Xilinx Zynq XC7Z family SoC, U1
256 Mbit Quad SPI Flash memory Micron N25Q256A, U12
Reference clock signal oscillator SiTime SiT8008BI @33.333333 MHz, U12
Reference clock signal oscillator SiTime SiT8008BI @25.000000 MHz, U9
Marvell Alaska 88E1512 Gigabit Ethernet PHY, U3
Intelligent Memory 512 MByte DDR3L-1600 SDRAM (8 Banks a 32 MWords, 16-bit word width), U3
TI TPS51206 DDR3 memory termination regulator with buffered reference voltage VTTREF, U18
Intersil ISL12020MIRZ Real-Time-Clock, U24
TI TCA9517 level-shifting I2C bus repeater, U17
Red LED, D2
Green LED, D1
Intelligent Memory 512 MByte DDR3L-1600 SDRAM (8 banks a 32 MWords, 16 Bit word width), U5
Altera Enpirion EN63A0QI 12A DC-DC PowerSoC @1.0V (VCCINT), U4
TI TPS74401RGW LDO DC-DC regulator @1.2V (MGTAVTT), U8
TI TPS72018DRVR LDO DC-DC regulator @1.8V (MGTAUX), U6
TI TPS74401RGW LDO DC-DC regulator @1.0V (MGTAVCC), U11
Silicon Labs Si5338A I2C Programmable Quad Clock Generator, U13
Reference clock signal oscillator SiTime SiT8008BI @25.000 MHz, U21
Samtec ST5-80-1.50-L-D-P-TR 160-pin stacking strips (2 rows a 80 positions), J3
Samtec ST5-80-1.50-L-D-P-TR 160-pin stacking strips (2 rows a 80 positions), J1
Samtec ST5-80-1.50-L-D-P-TR 160-pin stacking strips (2 rows a 80 positions), J2
256 Mbit Quad SPI Flash memory (Micron N25Q256A), U14
Microchip USB3320 USB transceiver PHY , U32
Reference clock signal oscillator SiTime SiT8008BI @52.000000 MHz, U33
Microchip 24AA025E48 EEPROM for MAC address, U23
Lattice Semiconductor MachXO2-256HC System Controller CPLD, U2
2.4 Initial Delivery State
Storage Device Name Content
24AA025E48 EEPROM
User
content,
programmed
Copyright © 2018 Trenz Electronic GmbH
Notes
not Valid MAC Address from manufacturer.
6 of 30
http://www.trenz-electronic.de
TE0745 TRM
V.80
Storage Device Name Content
Notes
SPI Flash OTP Area
Except serial number programmed by flash
vendor.
Empty, not programmed
SPI Flash Quad Enable Programmed
bit
-
SPI Flash main array
Not programmed
-
eFUSE USER
Not programmed
-
eFUSE Security
Not programmed
-
Si5338 OTP NVM
Not programmed
OTP not re-programmable after delivery
from factory
Table 1: Initial delivery state.
Copyright © 2018 Trenz Electronic GmbH
7 of 30
http://www.trenz-electronic.de
TE0745 TRM
V.80
3 Signals, Interfaces and Pins
3.1 Board to Board (B2B) I/O's
The B2B connectors are high-speed hermaphroditic stacking strips providing modular interface to the SoC's PL and
PS I/Os. Both single ended and differential signaling LVDS pairs are supported.
Ban Typ B2B
k
e
Connector
12 HR J1
I/O Signal
Count
50
LVDS Pairs
Count
24
Bank Voltage Notes
13
HR J1
50
24
33
HP J3
50
24
34
HP J2
50
24
35
HP J2
50
24
500 MIO J2
5
-
VCCIO_12
pins J1-54,
J1-55
VCCIO_13
pins J1-112,
J1-113
VCCIO_33
pins J3-115,
J3-120
VCCIO_34
pins J2-29,
J2-30
VCCIO_35
pins J2-87,
J2-88
1.8V
501 MIO J3
12
-
1.8V
Voltage range 1.2V to
3.3V
Voltage range 1.2V to
3.3V
Voltage range 1.2V to
1.8V
Voltage range 1.2V to
1.8V
Voltage range 1.2V to
1.8V
MIO0, MIO12 ... MIO15,
user configurable I/O's
on B2B
MIO40 ... MIO51, user
configurable I/O's on B2B
Table 2: Count, type and voltage range of SoC's PL and PS I/O banks pins available through B2B connectors.
All MIO banks are powered from on-module DC-DC power rail. All PL I/O Banks have separate VCCO pins in the B2B
connectors, valid VCCO should be supplied from the baseboard.
For detailed information about the pin-out, please refer to the Pin-out Table.
The configuration of the I/O's MIO0, MIO12 ... MIO15 and MIO40 ... MIO51 are depending on the base-board
peripherals connected to these pins.
3.2 MGT Lanes
MGT (Multi Gigabit Transceiver) lane consists of one transmit and one receive (TX/RX) differential pair, two signals
each or four signals total per one MGT lane. Following table lists lane number, MGT bank number, transceiver type,
signal schematic name, board-to-board pin connection and FPGA pins connection:
Copyright © 2018 Trenz Electronic GmbH
8 of 30
http://www.trenz-electronic.de
TE0745 TRM
V.80
LaneBank TypeSignal Name B2B PinFPGA Pin
0 112 GTX • MGT_RX0_P • J3-50 • MGTHRXP0_112, AB4
• MGT_RX0_N • J3-52 • MGTHRXN0_112, AB3
• MGT_TX0_P • J3-51 • MGTHTXP0_112, AA2
• MGT_TX0_N • J3-53 • MGTHTXN0_112, AA1
1
112 GTX • MGT_RX1_P • J3-56 • MGTHRXP1_112, Y4
2
112 GTX • MGT_RX2_P • J3-62 • MGTHRXP2_112, V4
3
112 GTX • MGT_RX3_P • J3-68 • MGTHRXP3_112, T4
• MGT_RX1_N • J3-58 • MGTHRXN1_112, Y3
• MGT_TX1_P • J3-57 • MGTHTXP1_112, W2
• MGT_TX1_N • J3-59 • MGTHTXN1_112, W1
• MGT_RX2_N • J3-64 • MGTHRXN2_112, V3
• MGT_TX2_P • J3-63 • MGTHTXP2_112, U2
• MGT_TX2_N • J3-65 • MGTHTXN2_112, U1
• MGT_RX3_N • J3-70 • MGTHRXN3_112, T3
• MGT_TX3_P • J3-69 • MGTHTXP3_112, R2
• MGT_TX3_N • J3-71 • MGTHTXN3_112, R1
4 111 1) GTX • MGT_RX4_P • J1-23 • MGTHRXP0_111, AD8
• MGT_RX4_N • J1-21 • MGTHRXN0_111, AD7
• MGT_TX4_P • J1-22 • MGTHTXP0_111, AF8
• MGT_TX4_N • J1-20 • MGTHTXN0_111, AF7
5 111 1) GTX • MGT_RX5_P • J1-17 • MGTHRXP1_111, AE6
• MGT_RX5_N • J1-15 • MGTHRXN1_111, AE5
• MGT_TX5_P • J1-16 • MGTHTXP1_111, AF4
• MGT_TX5_N • J1-14 • MGTHTXN1_111, AF3
6 111 1) GTX • MGT_RX6_P • J1-11 • MGTHRXP2_111, AC6
• MGT_RX6_N • J1-9 • MGTHRXN2_111, AC5
• MGT_TX6_P • J1-10 • MGTHTXP2_111, AE2
• MGT_TX6_N • J1-8 • MGTHTXN2_111, AE1
7 111 1) GTX • MGT_RX7_P • J1-5
• MGT_RX7_N • J1-3
• MGT_TX7_P • J1-4
• MGT_TX7_N • J1-2
•
•
•
•
MGTHRXP3_111, AD4
MGTHRXN3_111, AD3
MGTHTXP3_111, AC2
MGTHTXN3_111, AC1
Table 3: SoC's MGT lanes connections to the B2B connectors.
Below are listed MGT banks reference clock sources.
Clock signal Bank Source
FPGA Pin
MGT_CLK0_P 112 B2B, J3-75 MGTREFCLK0P_112, R6
MGT_CLK0_N112 B2B, J3-77 MGTREFCLK0N_112, R5
MGT_CLK1_P 112 U16, CLK0A MGTREFCLK1P_112, U6
MGT_CLK1_N112 U16, CLK0BMGTREFCLK1N_112, U5
MGT_CLK2_P 111 1) B2B, J3-81 MGTREFCLK0P_111, W6
Notes
Supplied by the carrier board.
Supplied by the carrier board.
On-module Si5338A.
On-module Si5338A.
Supplied by the carrier board.
MGT_CLK2_N 111 1) B2B, J3-83 MGTREFCLK0N_111, W5 Supplied by the carrier board.
MGT_CLK3_P 111 1) U16, CLK3A MGTREFCLK1P_111, AA6 On-module Si5338A.
MGT_CLK3_N 111 1) U16, CLK3BMGTREFCLK1N_111, AA5On-module Si5338A.
Copyright © 2018 Trenz Electronic GmbH
9 of 30
http://www.trenz-electronic.de
TE0745 TRM
V.80
Table 4: MGT reference clock sources.
1)
Note: MGT bank 111 not available at XC7Z030 Zynq SoC.
3.3 JTAG Interface
JTAG interface access is provided through the SoC's PS configuration bank 0 and is available on B2B connector J1.
JTAG SignalB2B Connector Pin
TCK
J1-143
TDI
J1-142
TDO
J1-145
TMS
J1-144
Table 5: JTAG interface signals.
JTAG_EN pin 148 in B2B connector J1 should be kept low or grounded for normal operation!
3.4 System Controller I/O's
Following special purpose pins are connected to System Controller CPLD:
Pin
Mod Functio B2B
Default Configuration
Name e
n
Connector
Pin
During normal operating mode the JTAG_EN pin should be in
JTAG_E Inpu JTAG J1-148
the low state for JTAG signals to be forwarded to the Zynq SoC.
N
t
select
If JTAG_EN pin is set to high or left open the JTAG signals are
forwarded to the System Controller CPLD.
RST_IN Inpu Reset
_N
t
PS_SR Inpu Reset
ST
t
BOOTM Out Boot
ODE put mode
J2-131
J2-152
J2-133
Low-active Power-On reset pin, controls POR_B-signal (bank
500, pin C23) of Zynq chip.
Low-active PS system-reset pin of Zynq chip.
Control line which sets in conjunction with signal
'BOOTMODE1' (B2B-pin J2-133)
the boot source of the Zynq chip. See section "Boot Modes".
Permanent logic high in standard SC-CPLD firmware.
PWR_P Inpu Power J2-135
L_OK t
good
PWR_P Inpu Power J2-139
S_OK t
good
EN_PL Out Enable put signal
Copyright © 2018 Trenz Electronic GmbH
Indicates stable state of PL supply voltage (low-active) after
power-up sequence.
Indicates stable state of PS supply voltage (low-active) after
power-up sequence.
Low active Enable-signal for activating PL supply voltage.
Permanent logic high in standard SC-CPLD firmware.
10 of 30
http://www.trenz-electronic.de
TE0745 TRM
V.80
Pin
Mod Functio B2B
Default Configuration
Name e
n
Connector
Pin
MIO8 Inpu PS MIO User I/O (pulled-up to PS_1.8V).
t
MIO0 Inpu PS MIO J2-137
User I/O.
t
RTC_IN Inpu Interru Interrupt-signal from on-board RTC.
T
t
pt
signal
LED
Out LED
Green LED D1, indicates SC-CPLD activity by blinking.
put control
Table 6: System Controller CPLD special purpose I/O pins.
3.5 Quad SPI Interface
Quad SPI Flash (U14) is connected to the Zynq PS QSPI0 interface via PS MIO bank 500, pins MIO1 ... MIO6.
MIOSignal NameU14 Pin
1 SPI-CS
C2
2 SPI-DQ0/M0 D3
3 SPI-DQ1/M1 D2
4 SPI-DQ2/M2 C4
5 SPI-DQ3/M3 D4
6 SPI-SCK/M4 B2
Table 7: MIO-pin assignment of the Quad SPI Flash memory IC.
3.6 Gigabit Ethernet Interface
On-board Gigabit Ethernet PHY (U7) is provided with Marvell Alaska 88E1512 IC. The Ethernet PHY RGMII interface is
connected to the Zynq Ethernet0 PS GEM0. I/O voltage is fixed at 1.8V for HSTL signaling. The reference clock input
of the PHY is supplied from the on-board 25.000000 MHz oscillator (U9). The 125MHz PHY output clock
(PHY_CLK125M) is routed to the B2B connector J2 pin 150.
PHY Pin
MDC/MDIO
PHY LEDs
ZYNQ PS
B2B
MIO52, MIO53 PHY_LED0: J2-144
PHY_LED1: J2-146
PHY_LED2 / INTn:J2-148
PHY_CLK125M J2-150
CONFIG
RESETn
MIO9
RGMII
MIO16 ... MIO27-
Copyright © 2018 Trenz Electronic GmbH
Notes
Active low interrupt line.
125 MHz Ethernet PHY clock out.
Permanent logic high.
Active low reset line.
Reduced Gigabit Media Independent
Interface.
11 of 30
http://www.trenz-electronic.de
TE0745 TRM
V.80
PHY Pin
SGMII
ZYNQ PS
-
B2B
-
MDI
-
PHY_MDI0: J2-120 /
J2-122
PHY_MDI1: J2-126 /
J2-128
PHY_MDI2: J2-132 /
J2-134
PHY_MDI3: J2-138 /
J2-140
Notes
Serial Gigabit Media Independent
Interface.
Media Dependent Interface.
Table 8: Ethernet PHY interface connections.
3.7 USB Interface
USB PHY (U32) is provided by USB3320 from Microchip. The ULPI interface is connected to the Zynq PS USB0. I/O
voltage is fixed at 1.8V and PHY reference clock input is supplied from the on-board 52.000000 MHz oscillator (U33).
PHY Pin
ULPI
ZYNQ PS
MIO28 ...
MIO39
REFCLK REFSEL[0.. 2]
RESETB MIO7
CLKOUT MIO36
DP, DM
-
CPEN
-
VBUS
-
ID
-
B2B
-
Notes
Zynq USB0 MIO pins are connected to the PHY.
-
52MHz from on board oscillator (U33).
All pins set to GND selects the external reference clock
frequency (52.000000 MHz).
Low active USB PHY Reset (pulled-up to PS_1.8V).
Set to logic high to select reference clock (oscillator U33)
operation mode.
OTG_D_P, USB data lines.
OTG_D_N
,
pin
J2-149 /
J2-151
VBUS_V_ External USB power switch active-high enable signal.
EN,
pin
J2-141
USB_VBU Connect to USB VBUS via a series of resistors, see reference
S,
schematics.
pin
J2-145
OTG_ID, For an A-device connect to the ground. For a B-device, leave
pin
floating.
J2-143
Table 9: USB PHY interface connections.
Copyright © 2018 Trenz Electronic GmbH
12 of 30
http://www.trenz-electronic.de
TE0745 TRM
V.80
The schematics for the USB connector and required components is different depending on the USB usage. USB
standard A or B connectors can be used for Host or Device modes. A Mini USB connector can be used for USB Device
mode. A USB Micro connector can be used for Device mode, OTG Mode or Host Mode.
3.8 I2C Interface
The I2C interface on B2B connector J2 has PS_3.3V as reference voltage and is connected to the Zynq SoC via
voltage level translating (3.3V ↔ 1.8V) I2C bus repeater (U17).:
B2B pinSignal Schematic NameNotes
J2-119 I2C_33_SCL
3.3V reference voltage
J2-121 I2C_33_SDA
3.3V reference voltage
Table 10: Pin assignment of the B2B I2C interface.
The on-module I2C interface works with reference voltage 1.8V:
PS Bank 500Signal Schematic NameNotes
MIO 10
I2C_SCL
1.8V reference voltage
MIO 11
I2C_SDA
1.8V reference voltage
Table 11: MIO-pin assignment of the on-module I2C interface.
Except the on-module RTC (U24), all other on-module I2C slave devices are operating with the reference voltage
PS_1.8V.
I2C addresses for on-module devices are listed in the table below:
I2C Device
Zynq chip U1, bank 500 (PS MIO), pins MIO10 (SCL),
MIO11 (SDA)
I2C Address
Notes
User
Configured as I2C by
programmable. default.
Quad programmable PLL clock generator U16: pins 12 0x70
(SCL), 19 (SDA)
MAC Address EEPROM U23, pins 1 (SCL), 3 (SDA)
0x53
SC CPLD U2, bank 2, pins 16 (SDA), 17 (SCL)
User
programmable.
RTC, U24
0x6F
RTC RAM, U24
0x57
Table 12: Module's I2C-interfaces overview.
Copyright © 2018 Trenz Electronic GmbH
13 of 30
http://www.trenz-electronic.de
TE0745 TRM
V.80
4 Boot Process
TE0745 module supports different boot modes which are configurable by the control line 'BOOTMODE' and
'BOOTMODE_1'. The line 'BOOTMODE' is available on B2B connector pin J2-133, the line 'BOOTMODE_1' is
connected to the System Controller CPLD on bank 1, pin 21 (permanent logic high in standard SC-CPLD
firmware).The boot mode selection will be set by the Zynq's PS MIO pins MIO3...MIO5.
Following table describes how to set the control lines to configure the boot mode:
Boot Mode
JTAG
MIO5 (BOOTMODE_1), SC
CPLD
0
MIO4 (BOOTMODE),
J2-133
0
1
0
1
1
QSPI Flash
Memory
SD-Card
Note
standard mode in
current configuration.
SD-Card on base
board necessary.
Table 13: Selectable boot modes.
In delivery state of the SoM the boot mode depends on the configured SC-CPLD firmware. Basically MIO5 is set to 1
and JTAG is in cascade.
Copyright © 2018 Trenz Electronic GmbH
14 of 30
http://www.trenz-electronic.de
TE0745 TRM
V.80
5 On-board Peripherals
5.1 System Controller CPLD
The System Controller CPLD (U2) is provided by Lattice Semiconductor LCMXO2-256HC (MachXO2 Product Family).
The SC-CPLD is the central system management unit where essential control signals are logically linked by the
implemented logic in CPLD firmware, which generates output signals to control the system, the on-board
peripherals and the interfaces. Interfaces like JTAG and I2C between the on-board peripherals and to the FPGAmodule are by-passed, forwarded and controlled by the System Controller CPLD.
Other tasks of the System Controller CPLD are the monitoring of the power-on sequence and to display the
programming state of the FPGA module.
5.2 Quad SPI Flash Memory
On-board QSPI flash memory (U14) on the TE0745-02 is provided by Micron Serial NOR Flash Memory N25Q256A
with 256 Mbit (32 MByte) storage capacity. This non volatile memory is used to store initial FPGA configuration.
Besides FPGA configuration, remaining free flash memory can be used for user application and data storage. All
four SPI data lines are connected to the FPGA allowing x1, x2 or x4 data bus widths. Maximum data rate depends on
the selected bus width and clock frequency used.
SPI Flash QE (Quad Enable) bit must be set to high or FPGA is unable to load its configuration from flash
during power-on. By default this bit is set to high at the manufacturing plant.
5.3 Gigabit Ethernet PHY
On-board Gigabit Ethernet PHY (U7) is provided with Marvell Alaska 88E1512 IC (U8). The Ethernet PHY RGMII
interface is connected to the Zynq Ethernet0 PS GEM0. I/O voltage is fixed at 1.8V for HSTL signaling. The reference
clock input of the PHY is supplied from an on-board 25.000000 MHz oscillator (U9), the 125MHz output clock signal
CLK_125MHZ is connected to the pin J2-150 of B2B connector J2.
5.4 High-speed USB ULPI PHY
Hi-speed USB ULPI PHY (U32) is provided with USB3320 from Microchip. The ULPI interface is connected to the
Zynq PS USB0 via MIO28..39, bank 501 (see also section). The I/O voltage is fixed at 1.8V and PHY reference clock
input is supplied from the on-board 52.000000 MHz oscillator (U33).
5.5 MAC Address EEPROM
A Microchip 24AA025E48 serial EEPROM (U23) contains a globally unique 48-bit node address, which is compatible
with EUI-48(TM) specification. The device is organized as two blocks of 128 x 8-bit memory. One of the blocks stores
the 48-bit node address and is write protected, the other block is available for application use. It is accessible over
I2C bus with slave device address 0x53.
Copyright © 2018 Trenz Electronic GmbH
15 of 30
http://www.trenz-electronic.de
TE0745 TRM
V.80
5.6 RTC - Real Time Clock
An temperature compensated Intersil ISL12020M is used as Real Time Clock (U24). Battery voltage must be supplied
to the clock from the base board via pin 'VBAT_IN' (J1-146). Battery backed registers can be accessed over I2C bus
at slave address 0x6F. General purpose RAM of the RTC can be accessed at I2C slave address 0x57. RTC IC is
supported by Linux so it can be used as hwclock device. The interrupt line 'RTC_INT' of the RTC is connected to
System Controller CPLD bank 3 pin 4.
5.7 Programmable PLL Clock (Phase-Locked Loop)
There is a Silicon Labs I2C programmable quad PLL clock generator Si5338A (U16) on-board. It's output frequencies
can be programmed by using the I2C-bus with address 0x70.
A 25 MHz (U21) oscillator is connected to pin 3 (IN3) and is used to generate the output clocks.
Once running, the frequency and other parameters can be changed by programming the device using the I2C-bus
connected between the Zynq module (master) and reference clock signal generator (slave).
Si5338A Signal Name /
Pin
Description
IN1
CLKIN_P
IN5
Connected To Directio Note
n
B2B, J3-76
Input Reference input clock from base
board.
CLKIN_N
B2B, J3-74
Input
Reference input clock. Oscillator U21, Input 25.000000 MHz oscillator, Si8008BI.
pin 3
GND
Input I2C slave device address LSB (0x70
default address).
Not connected. Input Not used.
IN6
CLK0A
MGT_CLK1_P
CLK0B
MGT_CLK1_N
CLK1A
CLK1B
CLK2A
CLK2B
CLK3A
CLK1_P
CLK1_N
CLK2_P
CLK2_P
MGT_CLK3_P
CLK3B
MGT_CLK3_N
IN2
IN3
IN4
GND
Zynq Soc U1,
pin U6
Zynq Soc U1,
pin U5
B2B, J3-80
B2B, J3-82
B2B, J3-86
B2B, J3-88
Zynq Soc U1,
pin AA6
Zynq Soc U1,
pin AA6
Input Not used.
Output MGT bank 112 reference clock.
Output
Output
Output
Output
Output
Output
Reference clock output to base
board.
Reference clock output to base
board.
MGT bank 111 reference clock.
Output
Table 14: Programmable quad PLL clock generator inputs and outputs.
Copyright © 2018 Trenz Electronic GmbH
16 of 30
http://www.trenz-electronic.de
TE0745 TRM
V.80
5.8 Oscillators
The SoC module has following reference clocking signals provided by external baseboard sources and on-board
oscillators:
Clock Source
Schematic NameFrequency
SiTime SiT8008BI oscillator, 25.000000
U21
MHz
SiTime SiT8008BI oscillator, PS_CLK
33.333333
U12
MHz
Clock Input Destination
Quad PLL clock generator U16,
pin 3
Bank 500 (MIO0 bank), pin B24
SiTime SiT8008BI oscillator, OTG-RCLK
U33
SiTime SiT8008BI oscillator, ETH_CLKIN
U9
USB 2.0 transceiver PHY U32, pin
26
Gigabit Ethernet PHY U7, pin 34
52.000000
MHz
25.000000
MHz
Table 15: Clock sources overview.
5.9 On-board LEDs
LEDColo Connected to
Description and Notes
r
D1 Gree System Controller CPLD, bank System main status LED, blinking indicates system
n
3, pin 5
activity
D2 Red Zynq chip (U1), bank 0 (config Reflects inverted DONE signal. ON when FPGA is not
bank), 'DONE' (pin W9)
configured, OFF as soon as PL is configured.
This LED remains OFF if System Controller CPLD can
not power up the PL supply voltage.
Table 16: LEDs of the module.
Copyright © 2018 Trenz Electronic GmbH
17 of 30
http://www.trenz-electronic.de
TE0745 TRM
V.80
6 Power and Power-On Sequence
6.1 Power Consumption
The maximum power consumption of a module mainly depends on the design which is running on the FPGA.
Xilinx provide a power estimator excel sheets to calculate power consumption. It's also possible to evaluate the
power consumption of the developed design with Vivado. See also Trenz Electronic Wiki FAQ.
Power Input PinTypical Current
PL_VIN
TBD*
PS_VIN
TBD*
PS_3.3V
TBD*
Table 17: Typical power consumption. *to be determined soon with reference design setup.
Power supply with minimum current capability of 3A for system startup is recommended.
For the lowest power consumption and highest efficiency of on board DC-DC regulators it is recommended to
powering the module from one single 3.3V supply. All input power supplies have a nominal value of 3.3V. Although
the input power supplies can be powered up in any order, it is recommended to power them up simultaneously.
The on-board voltages of the TE0745 SoC module will be powered-up in order of a determined sequence after the
external voltages 'PL_VIN', 'PS_VIN' and 'PS_3.3V' are available. All those power-rails can be powered up, with 3.3V
power sources, also shared.
To avoid any damage to the module, check for stabilized on-board voltages should be carried out(i.e.
power good and enable signals) before powering up any SoC's I/O bank voltages VCCO_x. All I/Os should
be tri-stated during power-on sequence.
Core voltages and main supply voltages have to reach stable state and their "Power Good"-signals have to be
asserted before other voltages like PL bank's I/O voltages can be powered up.
It is important that all baseboard I/Os are tri-stated at power-on until the "Power Good"-signals
'PWR_PS_OK' (J2-139) and 'PWR_PL_OK' (J2-135) are high, meaning that all on-module voltages have become
stable and module is properly powered up.
6.2 Power Distribution Dependencies
There are following dependencies how the initial voltages of the power rails on the B2B connectors are distributed
to the on-board DCDC converters, which power up further DCDC converters and the particular on-board voltages:
Copyright © 2018 Trenz Electronic GmbH
18 of 30
http://www.trenz-electronic.de
TE0745 TRM
V.80
Figure 3: Power Distribution Diagram
See Xilinx data sheet DS191 for additional information. User should also check related base board documentation
when intending base board design for TE0745 module.
Current rating of Samtec Razor Beam LP Terminal/Socket Strip ST5/SS5 B2B connectors is 1.5 A per pin (1
pin powered per row).
Copyright © 2018 Trenz Electronic GmbH
19 of 30
http://www.trenz-electronic.de
TE0745 TRM
V.80
6.3 Power-On Sequence Diagram
The TE0745 SoM meets the recommended criteria to power up the Xilinx Zynq MPSoC properly by keeping a specific
sequence of enabling the on-board DCDC converters dedicated to the particular functional units of the Zynq chip
and powering up the on-board voltages.
Following diagram clarifies the sequence of enabling the particular on-board voltages, which will power-up in
descending order as listed in the blocks of the diagram:
Figure 4: Power-On Sequence
The Enable-Signal 'EN_PL' is permanently logic high in standard SC-CPLD firmware. The "Power Good"-signals
'PWR_PS_OK' and 'PWR_PL_OK' (latter low-active, extern pull-up needed) are available B2B-connector J2 (pins
J2-139, J2-135) and on the SC-CPLD.
6.4 Voltage Monitor Circuit
The voltages 'VCCPINT' and 'PS_1.8V' are monitored by the voltage monitor circuit U41, which generates the POR_B
reset signal at Power-On. A manual reset is also possible by driving the MR-pin (available on J2-131 or SC-CPLD) to
GND. Leave this pin unconnected or connect to VDD (PS_1.8V) when unused.
Figure 5: Voltage monitor circuit.
Copyright © 2018 Trenz Electronic GmbH
20 of 30
http://www.trenz-electronic.de
TE0745 TRM
V.80
6.5 Power Rails
Voltages on B2B B2B J1 Pin
Connectors
B2B J2 Pin B2B J3 PinInput/ Note
Output
PL_VIN
147, 149, 151, 153,
155, 157, 159
-
Input module supply voltage
PS_VIN
-
-
Input module supply voltage
PS_3.3V
VCCIO12
VCCIO13
VCCIO33
54, 55
112, 113
-
154, 156,
158
160
-
115, 120
Input
Input
Input
Input
VCCIO34
29, 30
-
VCCIO35
87, 88
-
VBAT_IN
146
-
-
PS_1.8V
-
130
-
module supply voltage
high range bank I/O voltage
high range bank I/O voltage
high performance bank I/O
voltage
Input high performance bank I/O
voltage
Input high performance bank I/O
voltage
Input RTC (battery-backed) supply
voltage
Output internal 1.8V voltage level
(Process System)
Table 18: Power rails of the SoC module on B2B connectors.
6.6 Bank Voltages
Bank
Schematic Name
0 (config)
VCCIO_0
500 (MIO0)
501 (MIO1)
502 (DDR3)
12 HR
13 HR
33 HP
34 HP
35 HP
PS_1.8V
PS_1.8V
1.35V
VCCIO_12
VCCIO_13
VCCIO_33
VCCIO_34
VCCIO_35
Voltage
Voltage Range
PL_1.8V, if R67 is equipped
PS_1.8V, if R68 is equipped
1.8V
1.8V
1.35V
User
User
User
User
User
HR: 1.2V to 3.3V
HR: 1.2V to 3.3V
HP: 1.2V to 1.8V
HP: 1.2V to 1.8V
HP: 1.2V to 1.8V
Table 19: Range of SoC module's bank voltages.
Copyright © 2018 Trenz Electronic GmbH
21 of 30
http://www.trenz-electronic.de
TE0745 TRM
V.80
7 B2B connectors
5.2 x 7.6 cm SoM Kintex modules use three Samtec Razor Beam LP Terminal Strip (ST5) on the bottom side.
• 3x REF-192552-02 (160-pins)
• ST5 Mates with SS5
5.2 x 7.6 cm SoM Kintex carrier use three Samtec Razor Beam LP Socket Strip (SS5) on the top side.
• 3x REF192552-01 (160-pins)
• SS5 Mates with ST5
7.1 Features
•
•
•
•
•
•
•
•
•
•
Board-to-Board Connector 160-pins, 80 contacts per row
Ultrafine .0197" (0.50 mm) pitch
Narrow body design saves space on board
Lead style -03.5
Samtec 28+ Gbps Solution
Mates with: ST5
Insulator Material: Liquid Crystal Polymer, schwarz
Operating Temperature Range: -55°C bis +125°C
Lead-Free Solderable: Yes
RoHS Konform: Yes
7.2 Connector Stacking height
When using the standard type on baseboard and module, the mating height is 5 mm.
Other mating heights are possible by using connectors with a different height:
Order
number
27219
REF
number
REF19255
2-01
Samtec
Type
Contribution to
Number
stacking height
SS5-80-3.50-L- Baseboard 3.5mm
D-K-TR
connector
Comment
27018
REF-18954 SS5-80-3.00-L- Baseboard 3 mm
5-02
D-K-TR
connector
Assembly option on
request
27220
REF-19255 ST5-80-1.50-L- Module
2-02
D-P-TR
connector
1.5 mm
Standard connector
used on modules
27017
REF-18954 ST5-80-1.00-L- Module
5-01
D-P-TR
connector
1 mm
Assembly option on
request
Standard connector
used on modules
The module can be manufactured using other connectors upon request.
7.3 Current Rating
Current rating of Samtec Razor Beam LP Terminal/Socket Strip ST5/SS5 B2B connectors is 1.5 A per pin (1 pin
powered per row).
Copyright © 2018 Trenz Electronic GmbH
22 of 30
http://www.trenz-electronic.de
TE0745 TRM
V.80
7.4 Connector Speed Ratings
The connector speed rating depends on the stacking height:
Stacking height
Speed rating
4 mm, Single-Ended13GHz/26Gbps
4 mm, Differential 13.5GHz/27Gbps
5 mm, Single-Ended13.5GHz/27Gbps
5 mm, Differential 20GHz/40 Gbps
The SS5/ST5 series board-to-board spacing is currently available in 4mm (0.157"), 4.5mm (0.177") and 5mm
(0.197") stack heights.
The data in the reports is applicable only to the 4mm and 5mm board-to-board mated connector stack height.
7.5 Manufacturer Documentation
Copyright © 2018 Trenz Electronic GmbH
23 of 30
http://www.trenz-electronic.de
TE0745 TRM
V.80
8 Variants Currently In Production
Module Variant
Zynq SoC
SoC Junction TemperatureOperating Temperature
Range
TE0745-02-30-1I XC7Z030-1FBG67
–40°C to +100°C
Industrial
6I
TE0745-02-35-1 XC7Z035-1FBG67
0°C to +85°C
Commercial
C
6C
TE0745-02-45-1 XC7Z045-1FBG67
0°C to +85°C
Commercial
C
6C
TE0745-02-45-2I XC7Z045-2FBG67
–40°C to +100°C
Industrial
6I
Table 20: Module variants.
Copyright © 2018 Trenz Electronic GmbH
24 of 30
http://www.trenz-electronic.de
TE0745 TRM
V.80
9 Technical Specification
9.1 Absolute Maximum Ratings
Parameter
Min Max
PL_VIN
PS_VIN
PS_3.3V
-0.3 5
-0.3 7
3.13 3.465
5
Unit Notes
s
V TI TPS720 data sheet
V TI TPS82085 data sheet
V 3.3V nominal ± 5%
Attention: PS_3.3V is directly connected
to numerous
on-board peripherals as supply and I/O
voltage.
VBAT supply voltage
-1 6.0
PL IO bank supply voltage for HR -0.5 3.6
I/O banks (VCCO)
PL IO bank supply voltage for HP -0.5 2.0
I/O banks (VCCO)
V ISL12020MIRZ data sheet
V
V
-
I/O input voltage for HR I/O
-0.4 VCCO_X
banks
+0.55
I/O input voltage for HP I/O banks-0.55 VCCO_X
+0.55
GT receiver (RXP/RXN) and
-0.5 1.26
transmitter (TXP/TXN)
Voltage on module JTAG pins
-0.3 3.6
V
-
V
-
V
-
Storage temperature
°C Limits of ISL12020MIRZ RTC chp.
-40 +85
Storage temperature without the -55 +100
ISL12020MIRZ
V MachX02 Family data sheet
°C Limits of DDR3 memory chips.
Table 21: Module absolute maximum ratings.
Assembly variants for higher storage temperature range are available on request.
9.2 Recommended Operating Conditions
Parameter
PL_VIN
PS_VIN
PS_3.3V
VBAT_IN supply voltage
Copyright © 2018 Trenz Electronic GmbH
Min Max
3.3 4.5
3.3 6.0
3.1353.465
2.7 5.5
UnitsNotes
V
V
V
V
-
25 of 30
Reference Document
TI TPS720 data sheet
TI TPS82085 data sheet
3.3V nominal ± 5%
ISL12020MIRZ data sheet
http://www.trenz-electronic.de
TE0745 TRM
V.80
Parameter
Min Max
PL I/O bank supply voltage for HR 1.14 3.465
I/O banks (VCCO)
UnitsNotes
V
-
Reference Document
Xilinx datasheet DS191
PL I/O bank supply voltage for HP 1.14 1.89
I/O banks (VCCO)
V
-
Xilinx datasheet DS191
I/O input voltage for HR I/O banks -0.20 VCCO_X+
0.20
I/O input voltage for HP I/O banks -0.20 VCCO_X+
0.20
GT receiver (RXP/RXN) and
(*) (*)
transmitter (TXP/TXN)
Voltage on Module JTAG pins
3.1353.6
V
-
Xilinx datasheet DS191
V -
Xilinx datasheet DS191
V (*) Check Xilinx datasheet DS191
datasheet
V JTAG
MachX02 Family Data Sheet
signals
forwarded
to
Zynq
module
config bank
0
Table 22: Module recommended operating conditions.
Please check Xilinx datasheet DS191 (for XC7Z030) for complete list of absolute maximum and
recommended operating ratings.
9.3 Operating Temperature Ranges
Commercial grade: 0°C to +70°C.
Industrial grade: -40°C to +85°C.
Extended grade: 0°C to +85°C.
The module operating temperature range depends also on customer design and cooling solution. Please contact us
for options.
9.4 Physical Dimensions
•
•
•
•
Module size: 52 mm × 76 mm. Please download the assembly diagram for exact numbers
Mating height with standard connectors: 4mm
PCB thickness: 1.6mm
Highest part on PCB: approx. 3mm. Please download the step model for exact numbers
All dimensions are given in millimeters.
Copyright © 2018 Trenz Electronic GmbH
26 of 30
http://www.trenz-electronic.de
TE0745 TRM
V.80
Figure 6: Physical dimensions of the TE0745 SoC module.
Copyright © 2018 Trenz Electronic GmbH
27 of 30
http://www.trenz-electronic.de
TE0745 TRM
V.80
10 Revision History
10.1 Hardware Revision History
Date
2016-10-11
RevisionNotes
02
Link to PCNDocumentation Link
• First Production release
• Refer to Changes list in Schematic for
TE0745-02
further details in changes to REV01
2016-04-18
01
• Prototypes
-
TE0745-01
Table 23: Module hardware revision history.
Hardware revision number is written on the PCB board together with the module model number separated by the
dash.
Figure 7: TE0745 module revision number.
10.2 Document Change History
Date
RevisionContributors
2017-11-14 V.80
2017-11-13
V.79
Description
• Update B2B Section
John Hartfiel
Ali Naseri, Jan Kumann, John Hartfiel • First TRM release
Table 24: Document change history.
Copyright © 2018 Trenz Electronic GmbH
28 of 30
http://www.trenz-electronic.de
TE0745 TRM
V.80
11 Disclaimer
11.1 Document Warranty
The material contained in this document is provided “as is” and is subject to being changed at any time without
notice. Trenz Electronic does not warrant the accuracy and completeness of the materials in this document.
Further, to the maximum extent permitted by applicable law, Trenz Electronic disclaims all warranties, either
express or implied, with regard to this document and any information contained herein, including but not limited to
the implied warranties of merchantability, fitness for a particular purpose or non infringement of intellectual
property. Trenz Electronic shall not be liable for errors or for incidental or consequential damages in connection
with the furnishing, use, or performance of this document or of any information contained herein.
11.2 Limitation of Liability
In no event will Trenz Electronic, its suppliers, or other third parties mentioned in this document be liable for any
damages whatsoever (including, without limitation, those resulting from lost profits, lost data or business
interruption) arising out of the use, inability to use, or the results of use of this document, any documents linked to
this document, or the materials or information contained at any or all such documents. If your use of the materials
or information from this document results in the need for servicing, repair or correction of equipment or data, you
assume all costs thereof.
11.3 Copyright Notice
No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval
or translation into a foreign language) without prior agreement and written consent from Trenz Electronic.
11.4 Technology Licenses
The hardware / firmware / software described in this document are furnished under a license and may be used /
modified / copied only in accordance with the terms of such license.
11.5 Environmental Protection
To confront directly with the responsibility toward the environment, the global community and eventually also
oneself. Such a resolution should be integral part not only of everybody's life. Also enterprises shall be conscious of
their social responsibility and contribute to the preservation of our common living space. That is why Trenz
Electronic invests in the protection of our Environment.
11.6 REACH, RoHS and WEEE
REACH
Trenz Electronic is a manufacturer and a distributor of electronic products. It is therefore a so called downstream
user in the sense of REACH. The products we supply to you are solely non-chemical products (goods). Moreover and
under normal and reasonably foreseeable circumstances of application, the goods supplied to you shall not release
any substance. For that, Trenz Electronic is obliged to neither register nor to provide safety data sheet. According to
present knowledge and to best of our knowledge, no SVHC (Substances of Very High Concern) on the Candidate List
are contained in our products. Furthermore, we will immediately and unsolicited inform our customers in
compliance with REACH - Article 33 if any substance present in our goods (above a concentration of 0,1 % weight by
weight) will be classified as SVHC by the European Chemicals Agency (ECHA).
Copyright © 2018 Trenz Electronic GmbH
29 of 30
http://www.trenz-electronic.de
TE0745 TRM
V.80
RoHS
Trenz Electronic GmbH herewith declares that all its products are developed, manufactured and distributed RoHS
compliant.
WEEE
Information for users within the European Union in accordance with Directive 2002/96/EC of the European
Parliament and of the Council of 27 January 2003 on waste electrical and electronic equipment (WEEE).
Users of electrical and electronic equipment in private households are required not to dispose of waste electrical
and electronic equipment as unsorted municipal waste and to collect such waste electrical and electronic
equipment separately. By the 13 August 2005, Member States shall have ensured that systems are set up allowing
final holders and distributors to return waste electrical and electronic equipment at least free of charge. Member
States shall ensure the availability and accessibility of the necessary collection facilities. Separate collection is the
precondition to ensure specific treatment and recycling of waste electrical and electronic equipment and is
necessary to achieve the chosen level of protection of human health and the environment in the European Union.
Consumers have to actively contribute to the success of such collection and the return of waste electrical and
electronic equipment. Presence of hazardous substances in electrical and electronic equipment results in potential
effects on the environment and human health. The symbol consisting of the crossed-out wheeled bin indicates
separate collection for waste electrical and electronic equipment.
Trenz Electronic is registered under WEEE-Reg.-Nr. DE97922676.
02.09.2017
Copyright © 2018 Trenz Electronic GmbH
30 of 30
http://www.trenz-electronic.de