S-85S1P Series
SUPPLY VOLTAGE DIVIDED OUTPUT,
5.5 V INPUT, 200 mA SYNCHRONOUS STEP-DOWN
SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT
www.ablic.com
Rev.1.5_01
© ABLIC Inc., 2017-2018
The S-85S1P Series introduces own distinctive low power consumption control and COT (Constant On-Time) control and
features ultra low current consumption and fast transient response. PWM / PFM switching control automatically switches to
PFM control when under light load, and the IC operates at ultra low current consumption of 260 nA quiescent current. The
S-85S1P Series realizes high efficiency in a wide range of load current consumption and provides strong support for
extended period operation of mobile devices and wearable devices which are equipped with compact batteries.
The function of the supply voltage divided output is prepared in the S-85S1P Series. The supply voltage divided output is a
function that divides the input voltage (VIN) of the DC-DC converter into VIN/2 or VIN/3 and outputs the voltage. For example,
this function makes it possible that the IC connects to a low voltage microcontroller A/D converter directly and the
microcontroller monitors a battery voltage.
Features
Applications
• Wearable device
• Bluetooth device
• Wireless sensor network device
• Healthcare equipment
• Smart meter
• Portable game device
DC-DC converter block
• Ultra low current consumption:
• Efficiency (when under 100 μA load):
• Fast transient response:
• Input voltage:
• Output voltage:
260 nA quiescent current
90.5%
COT control
2.2 V to 5.5 V
0.7 V to 2.5 V, in 0.05 V step
2.6 V to 3.9 V, in 0.1 V step
• Output voltage accuracy:
±1.5% (1.0 V ≤ VOUT ≤ 3.9 V)
±15 mV (0.7 V ≤ VOUT < 1.0 V)
• Switching frequency:
1.0 MHz (at PWM operation)
• High side power MOS FET on-resistance:
420 mΩ
• Low side power MOS FET on-resistance:
320 mΩ
• Soft-start function:
1 ms typ.
• Under voltage lockout function (UVLO):
1.8 V typ. (detection voltage)
135°C typ. (detection temperature)
• Thermal shutdown function:
• Overcurrent protection function:
450 mA (at L = 2.2 μH)
• Automatic recovery type short-circuit protection function:Hiccup control
• Input and output capacitors:
Ceramic capacitor compatible
Supply voltage divider block
• Low current consumption:
• Input voltage:
• Output voltage:
Ta = −40°C to +85°C
Typical Application Circuit
CIN
10 F
Efficiency
L
2.2 H
SW
VIN
PVSS
VOUT
VOUT
COUT
10 F
VOUT(S) = 1.8 V
100
80
60
40
EN
20
PMOUT
PMEN
VSS
• SNT-8A
( 2.46 mm × 1.97 mm × t0.5 mm max.)
280 nA typ.
1.5 V to 5.5 V
VIN/2 (S-85S1PCxx)
VIN/3 (S-85S1PDxx)
Overall
• Operation temperature range:
• Lead-free (Sn 100%), halogen-free
VIN
Package
CPM
0.22 F
0
0.01
VIN = 2.5 V
VIN = 3.6 V
VIN = 4.2 V
0.1
1
10
IOUT [mA]
100
1000
1
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 200 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT
Rev.1.5_01
S-85S1P Series
Block Diagram
CIN
VIN
VOUT
SW
−
+
+
SW
L
VOUT
−
+
+
−
EN
COUT
PVSS
UVLO
VIN
PMEN
PMOUT
+
−
CPM
VSS
Figure 1
2
VIN
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 200 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT
Rev.1.5_01
S-85S1P Series
Product Name Structure
Users can select supply voltage divider block output voltage and DC-DC converter block output voltage for the
S-85S1P Series. Refer to "1. Product name" regarding the contents of product name, "2. Package" regarding
the package, "3. Product name list" regarding details of the product name.
1.
Product name
S-85S1P x xx
-
I8T1
U
Environmental code
U:
Lead-free (Sn 100%), halogen-free
Package name abbreviation and packing specification*1
I8T1: SNT-8A, Tape
*2, *3
DC-DC converter block output voltage
07 to 39
(e.g., when the output voltage is 0.7 V, it is expressed as 07.)
Supply voltage divider block output voltage
C: VIN/2
D: VIN/3
*1.
*2.
*3.
2.
Refer to the tape drawing.
Refer to "3. Product name list".
In the range from 0.7 V to 2.5 V, the products which have 0.05 V step are also available.
Contact our sales office when the product is necessary.
Package
Table 1
Package Name
SNT-8A
Dimension
PH008-A-P-SD
Package Drawing Codes
Tape
PH008-A-C-SD
Reel
PH008-A-R-SD
Land
PH008-A-L-SD
3
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 200 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT
Rev.1.5_01
S-85S1P Series
3.
Product name list
Table 2
Output Voltage (VOUT)
0.7 V ± 15 mV
0.8 V ± 15 mV
0.9 V ± 15 mV
1.0 V ± 1.5%
1.1 V ± 1.5%
1.2 V ± 1.5%
1.3 V ± 1.5%
1.4 V ± 1.5%
1.5 V ± 1.5%
1.6 V ± 1.5%
1.7 V ± 1.5%
1.8 V ± 1.5%
1.9 V ± 1.5%
2.0 V ± 1.5%
2.1 V ± 1.5%
2.2 V ± 1.5%
2.3 V ± 1.5%
2.4 V ± 1.5%
2.5 V ± 1.5%
2.6 V ± 1.5%
2.7 V ± 1.5%
2.8 V ± 1.5%
2.9 V ± 1.5%
3.0 V ± 1.5%
3.1 V ± 1.5%
3.2 V ± 1.5%
3.3 V ± 1.5%
3.4 V ± 1.5%
3.5 V ± 1.5%
3.6 V ± 1.5%
3.7 V ± 1.5%
3.8 V ± 1.5%
3.9 V ± 1.5%
Remark
4
S-85S1PCxx
S-85S1PC07-I8T1U
S-85S1PC08-I8T1U
S-85S1PC09-I8T1U
S-85S1PC10-I8T1U
S-85S1PC11-I8T1U
S-85S1PC12-I8T1U
S-85S1PC13-I8T1U
S-85S1PC14-I8T1U
S-85S1PC15-I8T1U
S-85S1PC16-I8T1U
S-85S1PC17-I8T1U
S-85S1PC18-I8T1U
S-85S1PC19-I8T1U
S-85S1PC20-I8T1U
S-85S1PC21-I8T1U
S-85S1PC22-I8T1U
S-85S1PC23-I8T1U
S-85S1PC24-I8T1U
S-85S1PC25-I8T1U
S-85S1PC26-I8T1U
S-85S1PC27-I8T1U
S-85S1PC28-I8T1U
S-85S1PC29-I8T1U
S-85S1PC30-I8T1U
S-85S1PC31-I8T1U
S-85S1PC32-I8T1U
S-85S1PC33-I8T1U
S-85S1PC34-I8T1U
S-85S1PC35-I8T1U
S-85S1PC36-I8T1U
S-85S1PC37-I8T1U
S-85S1PC38-I8T1U
S-85S1PC39-I8T1U
S-85S1PDxx
S-85S1PD07-I8T1U
S-85S1PD08-I8T1U
S-85S1PD09-I8T1U
S-85S1PD10-I8T1U
S-85S1PD11-I8T1U
S-85S1PD12-I8T1U
S-85S1PD13-I8T1U
S-85S1PD14-I8T1U
S-85S1PD15-I8T1U
S-85S1PD16-I8T1U
S-85S1PD17-I8T1U
S-85S1PD18-I8T1U
S-85S1PD19-I8T1U
S-85S1PD20-I8T1U
S-85S1PD21-I8T1U
S-85S1PD22-I8T1U
S-85S1PD23-I8T1U
S-85S1PD24-I8T1U
S-85S1PD25-I8T1U
S-85S1PD26-I8T1U
S-85S1PD27-I8T1U
S-85S1PD28-I8T1U
S-85S1PD29-I8T1U
S-85S1PD30-I8T1U
S-85S1PD31-I8T1U
S-85S1PD32-I8T1U
S-85S1PD33-I8T1U
S-85S1PD34-I8T1U
S-85S1PD35-I8T1U
S-85S1PD36-I8T1U
S-85S1PD37-I8T1U
S-85S1PD38-I8T1U
S-85S1PD39-I8T1U
Please contact our sales office for products with specifications other than the above.
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 200 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT
Rev.1.5_01
S-85S1P Series
Pin Configuration
1.
SNT-8A
Table 3
Top view
1
2
3
4
8
7
6
5
Figure 2
Pin No.
1
2
3
4
5
6
Symbol
PMOUT
VOUT
VSS
SW
PVSS
VIN
7
EN
8
PMEN
Description
Supply voltage divided output pin
Voltage output pin
GND pin
External inductor connection pin
Power GND pin
Power supply pin
Enable pin
"H"
: Enable (normal operation)
"L"
: Disable (standby)
Supply voltage divided output enable pin
"H"
: Enable (normal operation)
"L"
: Disable (standby)
5
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 200 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT
Rev.1.5_01
S-85S1P Series
Absolute Maximum Ratings
Table 4
(Unless otherwise specified: Ta = +25°C, VSS = 0 V)
Item
Symbol
VIN pin voltage
EN pin voltage
DC-DC converter block
PMEN pin voltage
Supply voltage divider block
VOUT pin voltage
DC-DC converter block
PMOUT pin voltage Supply voltage divider block
SW pin voltage
PVSS pin voltage
Operation temperature
Storage temperature
VIN
VEN
VPMEN
VOUT
VPMOUT
VSW
VPVSS
Topr
Tstg
Absolute Maximum Rating
Unit
VSS − 0.3 to VSS + 6.0
VSS − 0.3 to VIN + 0.3 ≤ VSS + 6.0
VSS − 0.3 to VSS + 6.0
VSS − 0.3 to VIN + 0.3 ≤ VSS + 6.0
VSS − 0.3 to VIN + 0.3 ≤ VSS + 6.0
VSS − 0.3 to VIN + 0.3 ≤ VSS + 6.0
VSS − 0.3 to VSS + 0.3 ≤ VSS + 6.0
−40 to +85
−40 to +125
V
V
V
V
V
V
V
°C
°C
Caution The absolute maximum ratings are rated values exceeding which the product could suffer physical
damage. These values must therefore not be exceeded under any conditions.
Thermal Resistance Value
Table 5
Item
Symbol
Condition
Board A
Board B
Junction-to-ambient thermal resistance*1 θJA
SNT-8A
Board C
Board D
Board E
*1. Test environment: compliance with JEDEC STANDARD JESD51-2A
Remark Refer to " Power Dissipation" and "Test Board" for details.
6
Min.
−
−
−
−
−
Typ.
211
173
−
−
−
Max.
−
−
−
−
−
Unit
°C/W
°C/W
°C/W
°C/W
°C/W
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 200 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT
Rev.1.5_01
S-85S1P Series
Electrical Characteristics
1.
DC-DC converter block
Table 6
(VIN = 3.6 V*1, Ta = +25°C unless otherwise specified)
Item
Operating input voltage
Output voltage*2
Symbol
VIN
Condition
Min.
Typ.
Max.
Unit
−
2.2
VOUT(S)
× 0.985
VOUT(S)
− 0.015
3.6
5.5
VOUT(S)
× 1.015
VOUT(S)
+ 0.015
V
1.0 V ≤ VOUT ≤ 3.9 V, no external parts
VOUT
0.7 V ≤ VOUT 3.3 V)
Manufacturer
Part Number
Capacitance
Withstanding
Voltage
Dimensions (L × W × H)
TDK Corporation
Murata Manufacturing Co., Ltd.
C1608X5R0J106K080AB
GRM185R60J106ME15
10 μF
10 μF
6.3 V
6.3 V
1.6 mm × 0.8 mm × 0.8 mm
1.6 mm × 0.8 mm × 0.5 mm
3.
DC-DC converter block inductor (L)
When selecting L, note the allowable current. If a current exceeding this allowable current flows through the inductor,
magnetic saturation may occur, and there may be risks which substantially lower efficiency and damage the IC as a
result of large current.
Therefore, select an inductor so that peak current value (IPK), even during overcurrent detection, does not exceed the
allowable current.
When prioritizing the load response, select an inductor with a small L value such as 2.2 μH. When prioritizing the
efficiency, select an inductor with a large L value such as 10 μH. IPK is calculated using the following expression.
IPK = IOUT +
1
(VIN − VOUT) × VOUT
×
VIN
2 × L × fSW
Table 14
Recommended Inductors (L) List
Manufacturer
Part Number
Inductance
ALPS ELECTRIC CO., LTD.
Murata Manufacturing Co., Ltd.
Würth Elektronik GmbH & Co. KG
Murata Manufacturing Co., Ltd.
TDK Corporation
Coilcraft, Inc.
GLUHK2R201A
DFE201210S-2R2M=P2
74438343022
LQM2MPN2R2MGH
MLP2016G2R2M
PFL2015-222ME
2.2 μH
2.2 μH
2.2 μH
2.2 μH
2.2 μH
2.2 μH
18
Rated
Current
1700 mA
2000 mA
1100 mA
1300 mA
850 mA
1050 mA
Dimensions (L × W × H)
2.0 mm × 1.6 mm × 1.0 mm
2.0 mm × 1.2 mm × 1.0 mm
2.0 mm × 1.6 mm × 1.0 mm
2.0 mm × 1.6 mm × 0.9 mm
2.0 mm × 1.6 mm × 1.0 mm
2.2 mm × 1.45 mm × 1.5 mm
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 200 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT
Rev.1.5_01
S-85S1P Series
4.
Supply voltage divider block output capacitor (CPM)
When selecting CPM, take into consideration the operation stability. If the capacitance is large, the rising time until
VPMOUT reaches the intended voltage (set-up time (tPU)) will be longer.
Table 15
Recommended Capacitors (CPM) List
Manufacturer
Part Number
Capacitance
Withstanding
Voltage
Dimensions (L × W × H)
TDK Corporation
TDK Corporation
Murata Manufacturing Co., Ltd.
Murata Manufacturing Co., Ltd.
CGA2B2X5R1A104M050BA
C0603X5R0J224M030BB
GRM033R60J104ME19
GRM033R60J224ME90
0.10 μF
0.22 μF
0.10 μF
0.22 μF
6.3 V
6.3 V
6.3 V
6.3 V
1.0 mm × 0.5 mm × 0.5 mm
0.6 mm × 0.3 mm × 0.3 mm
0.6 mm × 0.3 mm × 0.3 mm
0.6 mm × 0.3 mm × 0.3 mm
19
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 200 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT
Rev.1.5_01
S-85S1P Series
Board Layout Guidelines
Note the following cautions when determining the board layout for the S-85S1P Series.
• Place CIN as close to the VIN pin and the PVSS pin as possible.
• Make the VIN pattern and GND pattern as wide as possible.
• Place thermal vias in the GND pattern to ensure sufficient heat dissipation.
• Keep thermal vias near CIN and COUT approximately 3 mm to 4 mm away from capacitor pins.
• Large current flows through the SW pin. Make the wiring area of the pattern to be connected to the SW pin small to
minimize parasitic capacitance and emission noise.
• Do not wire the SW pin pattern under the IC.
Total size: 5.7 mm × 2.4 mm = 13.7 mm2
Figure 13
Reference Board Pattern
Caution The above pattern diagram does not guarantee successful operation. Perform thorough evaluation
using the actual application to determine the pattern.
Remark
20
Refer to the land drawing of SNT-8A and "SNT Package User's Guide".
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 200 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT
Rev.1.5_01
S-85S1P Series
Precautions
•
Mount external capacitors and inductors as close as possible to the IC, and make single GND.
•
Characteristic ripple voltage and spike noise occur in the IC containing switching regulators. Moreover rush current
flows at the time of a power supply injection. Because these largely depend on the inductor, the capacitor and
impedance of power supply to be used, fully check them using an actually mounted model.
•
The 10 μF capacitor connected between the VIN pin and the VSS pin is a bypass capacitor. It stabilizes the power
supply in the IC when application is used with a heavy load, and thus effectively works for stable switching
regulator operation. Allocate the bypass capacitor as close to the IC as possible, prioritized over other parts.
•
Although the IC contains a static electricity protection circuit, static electricity or voltage that exceeds the limit of
the protection circuit should not be applied.
•
The power dissipation of the IC greatly varies depending on the size and material of the board to be connected.
Perform sufficient evaluation using an actual application before designing.
•
ABLIC Inc. assumes no responsibility for the way in which this IC is used on products created using this IC or for
the specifications of that product, nor does ABLIC Inc. assume any responsibility for any infringement of patents or
copyrights by products that include this IC either in Japan or in other countries.
21
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 200 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT
Rev.1.5_01
S-85S1P Series
Characteristics (Typical Data)
1.
Example of major power supply dependence characteristics (Ta = +25°C)
DC-DC converter block
Current consumption during switching off (ISS1)
vs. Input voltage (VIN)
1. 2
100
400
80
300
200
100
40
0
2.0
2.5
3.0
3.5 4.0
VIN [V]
4.5
5.0
5.5
1. 3
Output voltage (VOUT) vs. Input voltage (VIN)
VOUT(S) = 1.2 V
1.230
2.0
1. 4
1.220
2.5
3.0
3.5 4.0
VIN [V]
4.5
5.0
5.5
Output voltage (VOUT) vs. Input voltage (VIN)
VOUT(S) = 1.8 V
1.840
1.820
VOUT [V]
1.210
1.200
1.190
1.800
1.780
1.180
1.170
60
20
0
VOUT [V]
Current consumption during shutdown (ISSS)
vs. Input voltage (VIN)
500
ISSS [nA]
ISS1 [nA]
1. 1
1.760
2.0
2.5
3.0
3.5 4.0
VIN [V]
4.5
5.0
5.5
2.0
2.5
3.0
3.5 4.0
VIN [V]
4.5
5.0
5.5
1. 5
Output voltage (VOUT) vs. Input voltage (VIN)
VOUT(S) = 2.5 V
2.600
VOUT [V]
2.400
2.200
2.000
1.800
2.0
1. 6
2.5
3.0
3.5 4.0
VIN [V]
4.5
5.0
5.5
ON time (tON) vs. Input voltage (VIN)
VOUT(S) = 1.8 V
1.0
1. 7
fSW [MHz]
tON [s]
0.8
0.6
0.4
0.2
1.2
1.0
0.8
0.6
0.0
2.0
22
Switching frequency (fSW) vs. Input voltage (VIN)
VOUT(S) = 1.8 V
1.4
2.5
3.0
3.5 4.0
VIN [V]
4.5
5.0
5.5
2.0
2.5
3.0
3.5 4.0
VIN [V]
4.5
5.0
5.5
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 200 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT
Rev.1.5_01
S-85S1P Series
Soft-start wait time (tSSW) vs. Input voltage (VIN)
1. 9
2.50
2.00
2.00
1.50
1.00
0.50
3.0
3.5 4.0
VIN [V]
4.5
5.0
5.5
2.0
800
700
600
500
400
300
200
100
0
RHFET [m]
RHFET [m]
2.5
High side power MOS FET on-resistance (RHFET) 1. 11
vs. Input voltage (VIN)
2.0
2.5
3.0
3.5 4.0
VIN [V]
4.5
5.0
2.0
80
ILSW [nA]
80
20
4.5
5.0
5.5
2.5
3.0
3.5 4.0
VIN [V]
4.5
5.0
5.5
60
40
20
0
0
2.0
2.5
3.0
3.5 4.0
VIN [V]
4.5
5.0
5.5
1. 14 High level input voltage (VSH) vs. Input voltage (VIN)
2.0
1.0
1.0
0.8
0.8
VSL [V]
1.2
0.6
0.4
0.2
2.5
3.0
3.5 4.0
VIN [V]
4.5
5.0
5.5
1. 15 Low level input voltage (VSL) vs. Input voltage (VIN)
1.2
0.0
3.5 4.0
VIN [V]
1. 13 Low side power MOS FET leakage current (ILSW)
vs. Input voltage (VIN)
100
40
3.0
800
700
600
500
400
300
200
100
0
100
60
2.5
Low side power MOS FET on-resistance (RLFET)
vs. Input voltage (VIN)
5.5
1. 12 High side power MOS FET leakage current (IHSW)
vs. Input voltage (VIN)
IHSW [nA]
1.00
0.00
2.0
1. 10
1.50
0.50
0.00
VSH [V]
Soft-start time (tSS) vs. Input voltage (VIN)
2.50
tSS [ms]
tSSW [ms]
1. 8
0.6
0.4
0.2
2.0
2.5
3.0
3.5 4.0
VIN [V]
4.5
5.0
5.5
0.0
2.0
2.5
3.0
3.5 4.0
VIN [V]
4.5
5.0
5.5
23
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 200 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT
Rev.1.5_01
S-85S1P Series
Supply voltage divider block
1. 16
Output voltage (VPMOUT) vs. Input voltage (VIN)
1. 17
Output voltage (VPMOUT) vs. Input voltage (VIN)
VPMOUT(S) = VIN/3
3.0
2.5
2.5
VPMOUT [V]
VPMOUT [V]
VPMOUT(S) = VIN/2
3.0
2.0
1.5
1.0
0.5
0.0
1. 18
1.0
0.0
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
VIN [V]
Current consumption during operation (ISS1P)
vs. Input voltage (VIN)
20
VPOF [mV]
800
ISS1P [nA]
40
600
400
1. 20
10
1. 21
VPMOUT(S) = VIN/2, CPM = 0.22 μF
tPU [ms]
tPU [ms]
6
4
Set-up time (tPU) vs. Input voltage (VIN)
VPMOUT(S) = VIN/3, CPM = 0.22 μF
6
4
2
0
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
VIN [V]
PMEN pin input voltage "H" (VPSH)
vs. Input voltage (VIN)
1. 23
1.0
0.8
0.8
VPSL [V]
1.2
1.0
0.6
0.4
0.2
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
VIN [V]
PMEN pin input voltage "L" (VPSL)
vs. Input voltage (VIN)
1.2
0.0
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
VIN [V]
8
2
1. 22
−20
10
8
0
0
−40
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
VIN [V]
Set-up time (tPU) vs. Input voltage (VIN)
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
VIN [V]
1. 19 Output offset voltage (VPOF) vs. Input voltage (VIN)
1000
0
VPSH [V]
1.5
0.5
200
24
2.0
0.6
0.4
0.2
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
VIN [V]
0.0
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
VIN [V]
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 200 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT
Rev.1.5_01
S-85S1P Series
2.
Example of major temperature characteristics (Ta = −40°C to +85°C)
DC-DC converter block
2. 1
Current consumption during switching off (ISS1)
vs. Temperature (Ta)
2. 2
500
200
VDD = 5.5 V
VDD = 2.2 V
300
200
VDD = 3.6 V
100
2. 3
−40 −25
150
ISSS [nA]
ISS1 [nA]
400
0
Current consumption during shutdown (ISSS)
vs. Temperature (Ta)
VDD = 2.2 V
100
25
Ta [C]
50
75 85
Output voltage (VOUT) vs. Temperature (Ta)
VDD = 5.5 V
50
0
0
VDD = 3.6 V
2. 4
−40 −25
0
25
Ta [C]
VOUT(S) = 1.8 V
1.840
1.210
1.200
1.190
VDD = 3.6 V
2. 5
−40 −25
1.800
1.760
0
25
Ta [C]
50
VDD = 5.5 V
1.780
1.180
1.170
VDD = 2.2 V
VDD = 3.6 V
1.820
VOUT [V]
VOUT [V]
VDD = 2.2 V
VDD = 5.5 V
75 85
Output voltage (VOUT) vs. Temperature (Ta)
VOUT(S) = 1.2 V
1.230
1.220
50
75 85
−40 −25
0
25
Ta [C]
50
75 85
Output voltage (VOUT) vs. Temperature (Ta)
VOUT(S) = 2.5 V
2.560
VOUT [V]
2.540
VDD = 5.5 V
2.520
2.500
2.480
VDD = 3.6 V
2.460
2.440
2. 6
40 25
0
25
Ta [C]
50
75 85
ON time (tON) vs. Temperature (Ta)
2. 7
1.2
1.4
0.8
VDD = 3.6 V
0.6
fSW [MHz]
tON [s]
1.0
VDD = 2.2 V
0.4
0.2
0.0
Switching frequency (fSW) vs. Temperature (Ta)
VDD = 5.5 V
−40 −25
0
25
Ta [C]
1.2
1.0
0.8
0.6
50
75 85
VDD = 3.6 V
VDD = 5.5 V
−40 −25
0
VDD = 2.2 V
25
Ta [C]
50
75 85
25
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 200 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT
Rev.1.5_01
S-85S1P Series
Soft-start wait time (tSSW) vs. Temperature (Ta)
2.00
2.00
1.50
VDD = 5.5 V
1.00
VDD = 3.6 V
40 25
VDD = 2.2 V
25
Ta [C]
50
RLFET [m]
RHFET [m]
2. 11
VDD = 5.5 V
25
0
25
Ta [C]
50
250
200
200
100
50
0
−40 −25
0
25
Ta [C]
50
0.6
0.2
0.0
VDD = 2.2 V
−40 −25
VDD = 3.6 V
25
Ta [C]
25
0
VDD = 3.6 V
25
Ta [C]
50
75 85
VDD = 5.5 V
VDD = 3.6 V
100
VDD = 2.2 V
50
0
25
Ta [C]
50
75 85
VDD = 5.5 V
1.0
0.8
0.6
0.4
0.2
75 85
−40 −25
1.2
0.0
0
75 85
2. 15 Low level input voltage (VSL) vs. Temperature (Ta)
VSL [V]
0.8
0.4
VDD = 5.5 V
150
0
75 85
VDD = 5.5 V
1.0
50
50
2. 14 High level input voltage (VSH) vs. Temperature (Ta)
1.2
25
Ta [C]
2. 13 Low side power MOS FET leakage current (ILSW)
vs. Temperature (Ta)
250
VDD = 5.5 V
0
VDD = 2.2 V
40
300
VDD = 3.6 V
VDD = 2.2 V
40 25
800
700
600
500
400
300
200
100
0
300
150
VDD = 3.6 V
VDD = 5.5 V
Low side power MOS FET on-resistance (RLFET)
vs. Temperature (Ta)
75 85
2. 12 High side power MOS FET leakage current (IHSW)
vs. Temperature (Ta)
IHSW [nA]
0.50
VDD = 2.2 V
40
1.00
75 85
VDD = 3.6 V
VDD = 2.2 V
1.50
0.00
0
2. 10 High side power MOS FET on-resistance (RHFET)
vs. Temperature (Ta)
800
700
600
500
400
300
200
100
0
tSS [ms]
2.50
0.00
VSH [V]
Soft-start time (tSS) vs. Temperature (Ta)
2.50
0.50
26
2. 9
ILSW [nA]
tSSW [ms]
2. 8
VDD = 2.2 V
40 25
0
VDD = 3.6 V
25
Ta [C]
50
75 85
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 200 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT
Rev.1.5_01
S-85S1P Series
2. 17 UVLO release voltage (VUVLO+) vs. Temperature (Ta)
2.2
2.2
2.1
2.1
2.0
2.0
VUVLO [V]
VUVLO [V]
2. 16 UVLO detection voltage (VUVLO−) vs. Temperature (Ta)
1.9
1.8
1.7
1.6
1.9
1.8
1.7
40 25
0
25
Ta [C]
50
75 85
1.6
40 25
0
25
Ta [C]
50
75 85
27
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 200 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT
Rev.1.5_01
S-85S1P Series
Supply voltage divider block
2. 18
Output voltage (VPMOUT) vs. Temperature (Ta)
2. 19
Output voltage (VPMOUT) vs. Temperature (Ta)
VPMOUT(S) = VIN/2
VPMOUT(S) = VIN/3
3.0
2.0
VDD = 5.5 V
2.0
1.5
VDD = 1.5 V
VDD = 3.6 V
1.0
VPMOUT [V]
VPMOUT [V]
2.5
0.5
0.0
2. 20
−40 −25
25
Ta [C]
50
2. 21
VDD = 5.5 V
VDD = 3.6 V
−40 −25
VDD = 3.6 V
VDD = 1.5 V
−40 −25
0
25
Ta [C]
50
2. 23
75 85
VDD = 5.5 V
VDD = 1.5 V
−40 −25
0
VDD = 3.6 V
25
Ta [C]
50
75 85
Set-up time (tPU) vs. Temperature (Ta)
VPMOUT(S) = VIN/2, CPM = 0.22 μF
VPMOUT(S) = VIN/3, CPM = 0.22 μF
10
10
VDD = 3.6 V
6
4
VDD = 1.5 V
−40 −25
VDD = 5.5 V
VDD = 3.6 V
8
VDD = 5.5 V
tPU [ms]
8
tPU [ms]
50
0
−40
75 85
2. 22 Set-up time (tPU) vs. Temperature (Ta)
0
25
Ta [C]
Output offset voltage (VPOF) vs. Temperature (Ta)
−20
200
2
0
20
VPOF [V]
ISS1P [nA]
VDD = 1.5 V
40
800
0
VDD = 5.5 V
0.5
75 85
1000
400
1.0
0.0
0
Current consumption during operation (ISS1P)
vs. Temperature (Ta)
600
1.5
6
VDD = 1.5 V
4
2
0
25
Ta [C]
50
0
75 85
−40 −25
0
25
Ta [C]
50
75 85
2. 24 PMEN pin input voltage (VPSH) vs. Temperature (Ta) 2. 25 PMEN pin input voltage (VPSL) vs. Temperature (Ta)
1.2
1.2
0.8
0.6
0.4
0.2
0.0
28
VDD = 3.6 V
VDD = 5.5 V
1.0
VPSL [V]
VPSH [V]
1.0
VDD = 1.5 V
−40 −25
0
50
75 85
VDD = 5.5 V
0.6
0.4
0.2
25
Ta [C]
VDD = 3.6 V
0.8
0.0
VDD = 1.5 V
−40 −25
0
25
Ta [C]
50
75 85
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 200 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT
Rev.1.5_01
S-85S1P Series
Transient response characteristics
The external parts shown in Table 16 are used in "3.
Transient response characteristics".
Table 16
Element Name
Inductor
Input capacitor
Output capacitor
Part Number
GLUHK2R201A
C1608X5R0J106K080AB
C1608X5R0J106K080AB
Power-on (VOUT = 1.8 V, VIN = 0 V → 3.6 V, Ta = +25°C)
VIN
VOUT
IL
4
3. 1. 2
4
3
2
1
0
1
2
3
4
IOUT = 200 mA
5
700
600
500
400
300
200
100
0
100
VIN
VOUT
IL
0
1
2
3
Time [ms]
4
IL [mA]
700
600
500
400
300
200
100
0
100
VIN [V], VOUT [V]
3. 1. 1 IOUT = 0.1 mA
4
3
2
1
0
1
2
3
4
0
1
2
3
Time [ms]
3. 2
Manufacturer
ALPS ELECTRIC CO., LTD.
TDK Corporation
TDK Corporation
IL [mA]
VIN [V], VOUT [V]
3. 1
Constant
2.2 μH
10 μF
10 μF
5
Transient response characteristics of EN pin
VOUT
IL
1
2
3
Time [ms]
4
IOUT = 200 mA
5
700
600
500
400
300
200
100
0
100
VEN
VOUT
IL [mA]
VEN
3. 2. 2
4
3
2
1
0
1
2
3
4
IL
0
1
2
3
Time [ms]
4
5
Power supply fluctuation (VOUT = 1.8 V, Ta = +25°C)
IOUT = 0.1 mA
5
3. 3. 2
VIN = 3.6 V → 4.2 V → 3.6 V
2.10
5
2.00
4
4
VIN
3
VOUT
2
1
0
10
20
30
Time [ms]
40
50
1.90
IOUT = 200 mA
VIN = 3.6 V → 4.2 V → 3.6 V
2.10
2.00
VIN
1.90
3
1.80
2
1.70
1
VOUT
VOUT [V]
3. 3. 1
VIN [V]
700
600
500
400
300
200
100
0
100
VIN [V]
3. 3
IOUT = 0.1 mA
VEN [V], VOUT [V]
3. 2. 1
4
3
2
1
0
1
2
3
4
0
IL [mA]
VEN [V], VOUT [V]
(VOUT = 1.8 V, VIN = 3.6 V, VEN = 0 V → 3.6 V, Ta = +25°C)
VOUT [V]
3.
1.80
1.70
0
10
20
30
Time [ms]
40
50
29
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 200 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT
Rev.1.5_01
S-85S1P Series
Load fluctuation (VOUT = 1.8 V, VIN = 3.6 V, Ta = +25°C)
IOUT [mA]
20
10
IOUT
0
10
30
0.0
0.2
0.4
0.6
Time [ms]
0.8
3. 4. 2
300
1.95
200
1.90
100
1.85
1.80
VOUT
20
2.00
1.75
1.70
1.0
IOUT = 0.1 mA → 200 mA → 0.1 mA
2.00
1.95
IOUT
0
100
1.90
1.85
1.80
VOUT 1.75
200
300
0.0
0.2
0.4
0.6
Time [ms]
0.8
VOUT [V]
IOUT = 0.1 mA → 10 mA → 0.1 mA
IOUT [mA]
3. 4. 1
30
VOUT [V]
3. 4
1.70
1.0
Reference Data
The external parts shown in Table 17 are used in " Reference Data".
Table 17
Condition
Input Capacitor (CIN)
C1005X5R0J106M050BC (10 μF)
TDK Corporation
C1005X5R0J106M050BC (10 μF)
TDK Corporation
[%]
1. 1
Efficiency (η) vs. Output current (IOUT)
1. 2
1.5
80
1.4
60
40
0
0.001
VIN = 3.6 V
VIN = 5.5 V
VIN = 5.5 V
1.3
1.2
1.1
0.01
0.1
1
IOUT [mA]
10
1.0
0.001
100
VIN = 3.6 V
0.01
0.1
1
IOUT [mA]
10
100
VOUT = 1.8 V (External parts: Condition)
Efficiency (η) vs. Output current (IOUT)
2. 2
Output voltage (VOUT) vs. Output current (IOUT)
100
2.0
80
1.9
60
40
VOUT [V]
[%]
2. 1
VIN = 3.6 V
VIN = 5.5 V
20
0
0.001
30
Output voltage (VOUT) vs. Output current (IOUT)
100
20
2.
Output Capacitor (COUT)
C1005X5R0J106M050BC (10 μF)
TDK Corporation
C1005X5R0J106M050BC (10 μF)
TDK Corporation
VOUT = 1.2 V (External parts: Condition)
VOUT [V]
1.
Inductor (L)
GLUHK2R201A (2.2 μH)
ALPS ELECTRIC CO., LTD
DFE201210S (2.2 μH)
Toko Ink.
VIN = 5.5 V
1.8
1.7
VIN = 3.6 V
1.6
0.01
0.1
1
IOUT [mA]
10
100
1.5
0.001
0.01
0.1
1
IOUT [mA]
10
100
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 200 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT
Rev.1.5_01
S-85S1P Series
VOUT = 1.2 V (External parts: Condition)
[%]
3. 1
Efficiency (η) vs. Output current (IOUT)
3. 2
1.5
80
1.4
60
40
VIN = 3.6 V
VIN = 5.5 V
20
0
0.001
VIN = 5.5 V
1.3
1.2
1.1
0.01
0.1
1
IOUT [mA]
10
1.0
0.001
100
VIN = 3.6 V
0.01
0.1
1
IOUT [mA]
10
100
VOUT = 1.8 V (External parts: Condition)
Efficiency (η) vs. Output current (IOUT)
4. 2
Output voltage (VOUT) vs. Output current (IOUT)
100
2.0
80
1.9
60
40
VOUT [V]
4. 1
[%]
4.
Output voltage (VOUT) vs. Output current (IOUT)
100
VOUT [V]
3.
VIN = 3.6 V
VIN = 5.5 V
20
0
0.001
VIN = 5.5 V
1.8
1.7
VIN = 3.6 V
1.6
0.01
0.1
1
IOUT [mA]
10
100
1.5
0.001
0.01
0.1
1
IOUT [mA]
10
100
31
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 200 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT
Rev.1.5_01
S-85S1P Series
Power Dissipation
SNT-8A
Tj = 125C max.
Power dissipation (PD) [W]
1.0
0.8
B
0.6
A
0.4
0.2
0.0
0
25
50
75
100
125
150
Ambient temperature (Ta) [C]
32
Board
Power Dissipation (PD)
A
0.47 W
B
C
0.58 W
−
D
−
E
−
175
SNT-8A Test Board
IC Mount Area
(1) Board A
Item
Size [mm]
Material
Number of copper foil layer
Copper foil layer [mm]
1
2
3
4
Thermal via
Specification
114.3 x 76.2 x t1.6
FR-4
2
Land pattern and wiring for testing: t0.070
74.2 x 74.2 x t0.070
-
(2) Board B
Item
Size [mm]
Material
Number of copper foil layer
Copper foil layer [mm]
Thermal via
1
2
3
4
Specification
114.3 x 76.2 x t1.6
FR-4
4
Land pattern and wiring for testing: t0.070
74.2 x 74.2 x t0.035
74.2 x 74.2 x t0.035
74.2 x 74.2 x t0.070
-
No. SNT8A-A-Board-SD-1.0
ABLIC Inc.
1.97±0.03
8
7
6
5
3
4
+0.05
1
0.5
2
0.08 -0.02
0.48±0.02
0.2±0.05
No. PH008-A-P-SD-2.1
TITLE
SNT-8A-A-PKG Dimensions
No.
PH008-A-P-SD-2.1
ANGLE
UNIT
mm
ABLIC Inc.
+0.1
ø1.5 -0
2.25±0.05
4.0±0.1
2.0±0.05
ø0.5±0.1
0.25±0.05
0.65±0.05
4.0±0.1
4 321
5 6 78
Feed direction
No. PH008-A-C-SD-2.0
TITLE
SNT-8A-A-Carrier Tape
No.
PH008-A-C-SD-2.0
ANGLE
UNIT
mm
ABLIC Inc.
12.5max.
9.0±0.3
Enlarged drawing in the central part
ø13±0.2
(60°)
(60°)
No. PH008-A-R-SD-1.0
TITLE
SNT-8A-A-Reel
No.
PH008-A-R-SD-1.0
QTY.
ANGLE
UNIT
mm
ABLIC Inc.
5,000
0.52
2.01
2
0.52
0.2 0.3
1.
2.
1
(0.25 mm min. / 0.30 mm typ.)
(1.96 mm ~ 2.06 mm)
1.
2.
3.
4.
0.03 mm
SNT
1. Pay attention to the land pattern width (0.25 mm min. / 0.30 mm typ.).
2. Do not widen the land pattern to the center of the package (1.96 mm to 2.06mm).
Caution 1. Do not do silkscreen printing and solder printing under the mold resin of the package.
2. The thickness of the solder resist on the wire pattern under the package should be 0.03 mm
or less from the land pattern surface.
3. Match the mask aperture size and aperture position with the land pattern.
4. Refer to "SNT Package User's Guide" for details.
1.
2.
(0.25 mm min. / 0.30 mm typ.)
(1.96 mm ~ 2.06 mm)
TITLE
No. PH008-A-L-SD-4.1
SNT-8A-A
-Land Recommendation
PH008-A-L-SD-4.1
No.
ANGLE
UNIT
mm
ABLIC Inc.
Disclaimers (Handling Precautions)
1.
All the information described herein (product data, specifications, figures, tables, programs, algorithms and
application circuit examples, etc.) is current as of publishing date of this document and is subject to change without
notice.
2.
The circuit examples and the usages described herein are for reference only, and do not guarantee the success of
any specific mass-production design.
ABLIC Inc. is not liable for any losses, damages, claims or demands caused by the reasons other than the products
described herein (hereinafter "the products") or infringement of third-party intellectual property right and any other
right due to the use of the information described herein.
3.
ABLIC Inc. is not liable for any losses, damages, claims or demands caused by the incorrect information described
herein.
4.
Be careful to use the products within their ranges described herein. Pay special attention for use to the absolute
maximum ratings, operation voltage range and electrical characteristics, etc.
ABLIC Inc. is not liable for any losses, damages, claims or demands caused by failures and / or accidents, etc. due to
the use of the products outside their specified ranges.
5.
Before using the products, confirm their applications, and the laws and regulations of the region or country where they
are used and verify suitability, safety and other factors for the intended use.
6.
When exporting the products, comply with the Foreign Exchange and Foreign Trade Act and all other export-related
laws, and follow the required procedures.
7.
The products are strictly prohibited from using, providing or exporting for the purposes of the development of
weapons of mass destruction or military use. ABLIC Inc. is not liable for any losses, damages, claims or demands
caused by any provision or export to the person or entity who intends to develop, manufacture, use or store nuclear,
biological or chemical weapons or missiles, or use any other military purposes.
8.
The products are not designed to be used as part of any device or equipment that may affect the human body, human
life, or assets (such as medical equipment, disaster prevention systems, security systems, combustion control
systems, infrastructure control systems, vehicle equipment, traffic systems, in-vehicle equipment, aviation equipment,
aerospace equipment, and nuclear-related equipment), excluding when specified for in-vehicle use or other uses by
ABLIC, Inc. Do not apply the products to the above listed devices and equipments.
ABLIC Inc. is not liable for any losses, damages, claims or demands caused by unauthorized or unspecified use of
the products.
9.
In general, semiconductor products may fail or malfunction with some probability. The user of the products should
therefore take responsibility to give thorough consideration to safety design including redundancy, fire spread
prevention measures, and malfunction prevention to prevent accidents causing injury or death, fires and social
damage, etc. that may ensue from the products' failure or malfunction.
The entire system in which the products are used must be sufficiently evaluated and judged whether the products are
allowed to apply for the system on customer's own responsibility.
10. The products are not designed to be radiation-proof. The necessary radiation measures should be taken in the
product design by the customer depending on the intended use.
11. The products do not affect human health under normal use. However, they contain chemical substances and heavy
metals and should therefore not be put in the mouth. The fracture surfaces of wafers and chips may be sharp. Be
careful when handling these with the bare hands to prevent injuries, etc.
12. When disposing of the products, comply with the laws and ordinances of the country or region where they are used.
13. The information described herein contains copyright information and know-how of ABLIC Inc. The information
described herein does not convey any license under any intellectual property rights or any other rights belonging to
ABLIC Inc. or a third party. Reproduction or copying of the information from this document or any part of this
document described herein for the purpose of disclosing it to a third-party is strictly prohibited without the express
permission of ABLIC Inc.
14. For more details on the information described herein or any other questions, please contact ABLIC Inc.'s sales
representative.
15. This Disclaimers have been delivered in a text using the Japanese language, which text, despite any translations into
the English language and the Chinese language, shall be controlling.
2.4-2019.07
www.ablic.com