0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRF100B201(UMW)

IRF100B201(UMW)

  • 厂商:

    UMW(友台)

  • 封装:

    TO-220AB

  • 描述:

  • 详情介绍
  • 数据手册
  • 价格&库存
IRF100B201(UMW) 数据手册
UMW R IRF100B201 100 V N-Channel MOSFET Application  Brushed Motor drive applications Battery powered circuits  Half-bridge and full-bridge topologies  Synchronous rectifier applications  Resonant mode power supplies   DC/DC and AC/DC converters DC/AC Inverters Benefits     Improved Gate, Avalanche and Dynamic dV/dt Ruggedness Fully Characterized Capacitance and Avalanche SOA Enhanced body diode dV/dt and dI/dt Capability Lead-Free, RoHS Compliant, Halogen-Free  VDS = 100V     D G S ID =192A RDS(ON) (at VGS=10V) < 4.2mΩ Absolute Maximum Rating Symbol ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS TJ TSTG EAS (Thermally limited) EAS (Thermally limited) EAS (tested) IAR EAR Parameter Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current  Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) Mounting  Torque, 6-32 or M3 Screw Single Pulse Avalanche Energy  Single Pulse Avalanche Energy  Single Pulse Avalanche Energy Tested Value  Avalanche Current  Repetitive Avalanche Energy  www.umw-ic.com 1 Max. 192 136 690 441 2.9 ± 20 Units A  W W/°C V -55 to + 175   300 10 lbf·in (1.1 N·m) °C     567 1005 240 See Fig 15, 15, 23a, 23b  mJ A mJ UTD Semiconductor Co.,Limited UMW R IRF100B201 100 V N-Channel MOSFET Static @ TJ = 25°C (unless otherwise specified) Symbol RJC RCS RJA RJA Symbol V(BR)DSS Parameter Junction-to-Case  Case-to-Sink, Flat Greased Surface Junction-to-Ambient  Junction-to-Ambient (PCB Mount)  Parameter Min. Drain-to-Source Breakdown Voltage 100 Typ. 0.50 Typ. Max. V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient 0.1 RDS(on) VGS(th) Static Drain-to-Source On-Resistance Gate Threshold Voltage 3.5 IDSS Drain-to-Source Leakage Current IGSS RG 2.0 Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Gate Resistance Max. 0.34 2.2 62 40 Units Conditions V VGS = 0V, ID = 250µA V/°C 4.2 4.0 20 250 100 -100 Units °C/W Reference to 25°C, ID = 5mA  m VGS = 10V, ID = 115A  V VDS = VGS, ID = 250µA VDS =100 V, VGS = 0V µA VDS = 80V,VGS = 0V,TJ =125°C VGS = 20V nA VGS = -20V  Notes:  Repetitive rating; pulse width limited by max. junction temperature.  Limited by TJmax, starting TJ = 25°C, L = 86µH, RG = 50, IAS = 115A, VGS =10V.  ISD  115A, di/dt  1400A/µs, VDD  V(BR)DSS, TJ 175°C.  Pulse width  400µs; duty cycle  2%.  Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS.  Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS.  R is measured at TJ approximately 90°C.  Limited by TJmax, starting TJ = 25°C, L = 1.0mH, RG = 50, IAS = 45A, VGS =10V.  This value determined from sample failure population, starting TJ =25°C, L= 86µH, RG = 50, IAS =115A, VGS =10V. www.umw-ic.com 2 UTD Semiconductor Co.,Limited UMW R IRF100B201 100 V N-Channel MOSFET Dynamic Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd Qsync td(on) tr Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain Charge Total Gate Charge Sync. (Qg– Qgd) Turn-On Delay Time Rise Time td(off) Turn-Off Delay Time 110 tf Ciss Coss Crss Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Effective Output Capacitance (Energy Related) Output Capacitance (Time Related) Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) 100 9500 Coss eff.(ER) Coss eff.(TR) Symbol IS ISM VSD Typ. 170 46 45 125 17 97 Max. Units Conditions S VDS = 10V, ID = 115A 255 ID = 115A VDS = 50V nC VGS = 10V ns 660 310 pF   Min. 950 Typ. Max. Units 192 trr Reverse Recovery Time Qrr Reverse Recovery Charge IRRM Reverse Recovery Current RG= 2.7 VGS = 10V VGS = 0V VDS = 50V ƒ = 1.0MHz, See Fig.TBD 18 47 55 90 123 VGS = 0V, VDS = 0V to 80V Conditions MOSFET symbol showing the integral reverse p-n junction diode. D A 690 1.3 Peak Diode Recovery dv/dt VDD = 65V I D = 115A VGS = 0V, VDS = 0V to 80V 725 Diode Forward Voltage dv/dt G S V TJ = 25°C,IS = 115A,VGS = 0V  V/ns TJ = 175°C,IS =115A,VDS = 100V TJ = 25°C VDD = 85V ns TJ = 125°C IF = 115A, TJ = 25°C di/dt = 100A/µs  nC J = 125°C 3.5 A TJ = 25°C  200 20 ID = 115A 18 160 16 ID, Drain Current (A) RDS(on), Drain-to -Source On Resistance (m ) Min. 278 14 12 10 T J = 125°C 8 6 80 40 T J = 25°C 4 120 0 2 2 4 6 8 10 12 14 16 18 20 25 75 100 125 150 175 T C , Case Temperature (°C) VGS, Gate -to -Source Voltage (V) Fig 1. Typical On– Resistance vs. Gate Voltage www.umw-ic.com 50 Fig 2. Maximum Drain Current vs. Case Temperature 3 UTD Semiconductor Co.,Limited UMW R IRF100B201 100 V N-Channel MOSFET 1000 1000 100 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 7.0V 6.0V 5.5V 5.0V 4.5V 4.0V 10 4.0V 100 BOTTOM VGS 15V 10V 7.0V 6.0V 5.5V 5.0V 4.5V 4.0V 10 60µs PULSE WIDTH 60µs PULSE WIDTH Tj = 175°C Tj = 25°C 1 1 100 10 1 0.1 V DS, Drain-to-Source Voltage (V) Fig 4. Typical Output Characteristics Fig 3. Typical Output Characteristics 1000 3.0 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (A) 100 10 1 0.1 V DS, Drain-to-Source Voltage (V) 100 T J = 175°C T J = 25°C 10 1 VDS = 50V 60µs PULSE WIDTH 0.1 1 6 5 4 3 2 7 ID = 115A VGS = 10V 2.5 2.0 1.5 1.0 0.5 8 -60 60 100 140 180 14 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd VGS, Gate-to-Source Voltage (V) ID = 115A C oss = C ds + C gd Ciss 10000 20 Fig 6. Normalized On-Resistance vs. Temperature Fig 5. Typical Transfer Characteristics 100000 -20 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) C, Capacitance (pF) 4.0V Coss 1000 Crss 100 12 VDS= 80V VDS= 50V 10 VDS= 20V 8 6 4 2 0 1 0.1 10 100 0 VDS, Drain-to-Source Voltage (V) 80 120 160 200 240 QG, Total Gate Charge (nC) Fig 7. Typical Capacitance vs. Drain-to-Source Voltage www.umw-ic.com 40 Fig 8. Typical Gate Charge vs.Gate-to-Source Voltage 4 UTD Semiconductor Co.,Limited UMW R IRF100B201 100 V N-Channel MOSFET 1000 OPERATION IN THIS AREA LIMITED BY RDS(on) T J = 175°C 100 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 T J = 25°C 10 1 VGS = 0V 0.5 1.0 100 10 10msec Tc = 25°C Tj = 175°C Single Pulse 1 1.5 0.1 2.0 1 10 100 VDS, Drain-to-Source Voltage (V) VSD, Source-to-Drain Voltage (V) Fig 10. Maximum Safe Operating Area Fig 9. Typical Source-Drain Diode Forward Voltage 3.5 130 Id = 5.0mA 3.0 120 2.5 Energy (µJ) V(BR)DSS , Drain-to-Source Breakdown Voltage (V) DC 0.1 0.1 0.0 100µsec 1msec 110 2.0 1.5 1.0 100 0.5 0.0 90 -10 0 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 T J , Temperature ( °C ) 10 20 30 40 50 60 70 80 90 100 VDS, Drain-to-Source Voltage (V) RDS(on), Drain-to -Source On Resistance ( m ) Fig 11. Drain-to-Source Breakdown Voltage Fig 12. Typical Coss Stored Energy 10 VGS = 5.0V VGS = 5.5V VGS = 6.0V VGS = 7.0V VGS = 8.0V VGS = 10V 8 6 4 2 0 80 40 120 160 200 ID, Drain Current (A) Fig 13. Typical On– Resistance vs. Drain Current www.umw-ic.com 5 UTD Semiconductor Co.,Limited UMW R IRF100B201 100 V N-Channel MOSFET Thermal Response ( Z thJC ) °C/W 1 D = 0.50 0.1 0.20 0.10 0.05 0.01 0.02 0.01 0.001 SINGLE PULSE ( THERMAL RESPONSE ) 0.0001 1E-006 0.001 0.0001 1E-005 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case 1000 Avalanche Current (A) Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav, assuming  Tj = 150°C and Tstart =25°C (Single Pulse) 100 0.01 0.05 0.10 10 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming j = 25°C and Tstart = 150°C. 1 1.0E-06 1.0E-05 1.0E-03 1.0E-04 1.0E-02 1.0E-01 tav (sec) Fig 15. Avalanche Current vs. Pulse Width EAR , Avalanche Energy (mJ) 600 Notes on Repetitive Avalanche Curves , Figures 15, 16: TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 115A 500 400 300 200 100 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy vs. Temperature www.umw-ic.com 1.Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 23a, 23b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 14) PD (ave) = 1/2 ( 1.3·BV·Iav) = T/ ZthJC Iav = 2T/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav   6 UTD Semiconductor Co.,Limited UMW R IRF100B201 4.0 3.5 30 3.0 25 IRRM (A) VGS(th) , Gate threshold Voltage (V) 100 V N-Channel MOSFET 35 2.5 2.0 1.5 1.0 ID = 250µA ID = 1.0mA ID = 10mA IF = 77A V R = 85V TJ = 25°C TJ = 125°C 20 15 10 5 ID = 1.0A 0 0.5 -75 -50 -25 0 100 200 300 400 500 600 700 800 900 1000 25 50 75 100 125 150 175 diF /dt (A/µs) T J , Temperature ( °C ) Fig 18. Typical Recovery Current vs. dif/dt Fig 17. Threshold Voltage vs. Temperature 35 IRRM (A) 25 800 TJ = 25°C TJ = 125°C QRR (nC) 30 1000 IF = 115A V R = 85V 20 15 IF = 77A V R = 85V TJ = 25°C TJ = 125°C 600 400 10 200 5 0 0 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000 diF /dt (A/µs) diF /dt (A/µs) Fig 19. Typical Recovery Current vs. dif/dt Fig 20. Typical Stored Charge vs. dif/dt 1000 800 IF = 115A V R = 85V TJ = 25°C QRR (nC) TJ = 125°C 600 400 200 0 100 200 300 400 500 600 700 800 900 1000 diF /dt (A/µs) Fig 21. Typical Stored Charge vs. dif/dt www.umw-ic.com 7 UTD Semiconductor Co.,Limited UMW R IRF100B201 N-Channel MOSFET Package Mechanical Data TO-220 Symbol A A1 A2 A3 B B1 C www.umw-ic.com Dimensions (mm) 10.0±0.3 8.0±0.2 0.94±0.1 8.7±0.1 15.6±0.4 13.2 ± 0.2 4.5± 0. 2 Symbol Dimensions (mm) 1.3±0.2 0.8±0.2 0.5±0.1 10.0±0.3 2.8 ± 0.1 3.6±0.1 3.1±0.2 C1 D D1 E F H K 8 Symbol L M M1 N P Q Dimensions (mm) 13.2±0.4 1.38±0.1 1.28±0.1 2.54(typ) 2.4±0.3 9.15± 0. 25 UTD Semiconductor Co.,Limited UMW R IRF100B201 100 V N-Channel MOSFET M arking Ordering information Order code UMW IRF100B201 www.umw-ic.com Package Baseqty TO-220 1000 9 Deliverymode Tube and box UTD Semiconductor Co.,Limited
IRF100B201(UMW)
物料型号为UMW IRF100B201,是一款100V N-Channel MOSFET。

它适用于刷式电机驱动、电池供电电路、半桥和全桥拓扑结构、同步整流应用、谐振模式电源、DC/DC和AC/DC转换器以及DC/AC逆变器等应用场景。

该器件具有改善的门极、雪崩和动态dV/dt的鲁棒性,完全表征的电容和雪崩SOA,增强的体二极管dV/dt和dI/dt能力,并且是无铅、符合RoHS和无卤素的。


主要特性包括: - 栅源电压(VGS):±20V - 漏源电压(VDS):100V - 连续漏电流(ID):192A(25°C时)或136A(100°C时) - 脉冲漏电流:690A - 最大功耗:441W - 存储温度范围:-55°C至+175°C - 焊接温度:300°C(10秒,距离外壳1.6mm) - 安装扭矩:10 lbf-in(1.1N-m)

绝对最大额定值和静态电气特性包括: - 栅源阈值电压(VGs(th)):2.0V至4.0V - 静态漏源导通电阻(RDs(on)):最小3.5mΩ,典型值4.2mΩ(VGs = 10V, ID= 115A) - 漏源击穿电压(VBRDSS):100V

动态电气特性包括: - 前向跨导(gfs):最小278S - 总栅电荷(Qgs):170nC至255nC - 输入电容(Ciss):9500pF - 输出电容(Coss):660pF

封装信息为TO-220,提供了详细的机械尺寸数据和标记信息。

订购信息显示,UMW IRF100B201的订购代码为UMW IRF100B201,基础数量为1000,以管状和盒装方式交付。
IRF100B201(UMW) 价格&库存

很抱歉,暂时无法提供与“IRF100B201(UMW)”相匹配的价格&库存,您可以联系我们找货

免费人工找货