0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
XL2902-TS

XL2902-TS

  • 厂商:

    XINLUDA(信路达)

  • 封装:

    TSSOP-14_5X4.4MM

  • 描述:

  • 数据手册
  • 价格&库存
XL2902-TS 数据手册
XL/XD224, XL/XD324, XL/XD2902 Quadruple Operational Amplifiers t 1. DESCRIPTION The XL324 series are low−cost, quad operational amplifiers with true differential inputs. They have several distinct advantages over standard operational amplifier types in single supply applications. The quad amplifier can operate at supply voltages as low as 3.0 V or as high as 32 V. The common mode input range includes the negative supply, thereby eliminating the necessity for external biasing components in many applications. The output voltage range also includes the negative power supply voltage. 2. FEATURES  Short Circuited Protected Outputs  True Differential Input Stage  Single Supply Operation: 3.0 V to 32 V  Four Amplifiers Per Package  Internally Compensated  Common Mode Range Extends to Negative Supply  Industry Standard Pinouts  ESD Clamps on the Inputs Increase Ruggedness without Affecting Device Operation  These Devices are Pb−Free and RoHS Compliant www.xinluda.com 1 / 14 Rev 2.3 XL/XD224, XL/XD324, XL/XD2902 Quadruple Operational Amplifiers t 3. PIN CONFIGURATIONS AND FUNCTIONS XL/XD224 XL224-TS XL/XD324 XL324TSS XL2902 XL2902-TS XD2902N (TOP VIEW) Pin Functions PIN NAME SOP14, DIP14, TSSOP14 I/O Out 1 1 O Output 1IN - 2 I Negative input 1IN + 3 I Positive input VCC 4 - Positive (Maximum) Power 2IN + 5 I Positive input 2IN - 6 I Negative input Out 2 7 O Output Out 3 8 O Output 3IN - 9 I Negative input 3IN + 10 I Positive input VEE,GND 11 - Negative (lowest) power or ground (for single power supply) 4IN + 12 I Positive input 4IN - 13 I Negative input Out 4 14 O Output www.xinluda.com DESCRIPTION 2 / 14 Rev 2.3 XL/XD224, XL/XD324, XL/XD2902 Quadruple Operational Amplifiers t 4. FUNCTIONAL BLOCK DIAGRAM Vcc Q15 Q16 Q14 Q22 Q13 40 k Q19 5.0 pF Q12 Q24 25 Q23 + Q20 Q18 Inputs - Q21 Q17 Q2 Q5 Q3 Q4 Q11 Q 9 Q6 Q25 Q7 Q26 Q8 Q10 Q 1 2.4 k 2.0 k VEE/GND Representative Circuit Diagram (one-Fourth of Circuit Shown) www.xinluda.com 3 / 14 Rev 2.3 XL/XD224, XL/XD324, XL/XD2902 Quadruple Operational Amplifiers t 5. SPECIFICATIONS 5.1. Absolute Maximum Ratings (TA = + 25C, unless otherwise noted.) Rating Symbol Value Unit Power Supply Voltages VCC 32 Single Supply Split Supplies VCC, VEE 16 Input Differential Voltage Range (Note 1) VIDR 32 Vdc Input Common Mode Voltage Range (Note 2) VICR −0.3 to 32 Vdc Output Short Circuit Duration tSC Continuous Junction Temperature TJ 150 Vdc C Thermal Resistance, Junction−to−Air (Note 3) Case 646 (DIP14) 118 RθJA Case 751A (SOP14) C/W 156 Case 948G (TSSOP14) 190 Storage Temperature Range Tstg −50 to +150 C Vesd 2000 V ESD Protection at any Pin Human Body Model Machine Model 200 Operating Ambient Temperature Range XL/XD224, XL224-TS −25 to +85 TA XL/XD324, XL324TSS XL2902, XD2902N,XL2902-TS C 0 to +70 −40 to +105 Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. [1] Split Power Supplies. [2] For supply voltages less than 32 V, the absolute maximum input voltage is equal to the supply voltage. [3] All RθJA measurements made on evaluation board with 1 oz. copper traces of minimum pad size. All device outputs were active. 5.2. Operating Conditions VCC = ±15 V, TA = 25°C PARAMETER TEST CONDITIONS TYP UNIT SR Slew rate at unity gain RL = 1 MΩ, CL = 30 pF, VI = ±10 V (see Figure 5-1) 0.5 V/μs B1 Unity-gain bandwidth RL = 1 MΩ, CL = 20 pF (see Figure 5-1) 1.2 MHz VCC + 100 Ω − VI + VCC − VO CL VI = 0 V RL + − + VO VCC − Figure 5-1. Unity-Gain Amplifier www.xinluda.com RS VCC Figure 5-2. Noise-Test Circuit 4 / 14 Rev 2.3 XL/XD224, XL/XD324, XL/XD2902 Quadruple Operational Amplifiers t 5.3. Electrical Characteristics (VCC = 5 V, VEE - = GND, TA = 25 °C (unless otherwise specified) Characteristics XL224, XD224, XL224-TS Symbol Min Input Offset Voltage Typ XL324, XD324, XL324TSS Max Min Typ XL2902, XD2902N, XL2902-TS Max Min Typ VIO VCC = 5.0 V to 30 V VICR = 0 V to VCC −1.7 V, VO = 1.4 V, RS = 0 Ω TA = 25C TA = Thigh (Note 4) TA = Tlow (Note 4) mV − 2.0 5.0 − 2.0 7.0 − 2.0 7.0 − − 7.0 − − 9.0 − − 10 − − 7.0 − − 9.0 − − 10 Average Temperature Coefficient of Input Offset Voltage TA = Thigh to Tlow (Notes 4 and 6) ΔVIO/ΔT − 7.0 − − 7.0 − − 7.0 − µV/C Input Offset Current IIO − 3.0 30 − 5.0 50 − 5.0 50 nA − − 100 − − 150 − − 200 TA = Thigh to Tlow (Note 4) Average Temperature Coefficient of Input Offset Current TA = Thigh to Tlow (Notes 4 and 6) ΔIIO/ΔT − 10 − − 10 − − 10 − pA/C Input Bias Current IIB − −90 −150 − −90 −250 − −90 −250 nA − − −300 − − −500 − − −500 TA = Thigh to Tlow (Note 4) Input Common Mode Voltage Range (Note 5) VICR V VCC = 30 V TA = +25C 0 − 28.3 0 − 28.3 0 − 28.3 TA = Thigh to Tlow (Note 4) 0 − 28 0 − 28 0 − 28 − − VCC − − VCC − − VCC Differential Input Voltage Range VIDR Large Signal Open Loop Voltage Gain AVOL V V/mV RL = 2.0 kΩ, VCC = 15 V, for Large VO Swing 50 100 − 25 100 − 25 100 − TA = Thigh to Tlow (Note 4) 25 − − 15 − − 15 − − [4] Unit Max Channel Separation 10 kHz ≤ f ≤ 20 kHz, Input Referenced CS − −120 − − −120 − − −120 − dB Common Mode Rejection, RS ≤ 10 kΩ CMR 70 85 − 65 70 − 50 70 − dB Power Supply Rejection PSR 65 100 − 65 100 − 50 100 − dB XL/XD224, XL224-TS: Tlow = −25C, Thigh = +85C XL/XD324, XL324TSS: Tlow = 0C, Thigh = +70C XL2902, XD2902N, XL2902-TS: Tlow = −40C, Thigh = +105C [5] The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common mode voltage range is VCC −1.7 V, but either or both inputs can go to +32 V without damage, independent of the magnitude of VCC. [6] Guaranteed by design. www.xinluda.com 5 / 14 Rev 2.3 XL/XD224, XL/XD324, XL/XD2902 Quadruple Operational Amplifiers t Electrical Characteristics (VCC = 5 V, VEE - = GND, TA = 25 °C (unless otherwise specified) Characteristics XL224, XD224, XL224-TS Symbol Min Output Voltage − High Limit VCC = 30 V RL = 2.0 kΩ (TA = Thigh to Tlow) (Note 7) VCC = 30 V RL = 10 kΩ (TA = Thigh to Tlow) (Note 7) Output Source Current (VID = +1.0 V, VCC = 15 V) TA = 25°C TA = Thigh to Tlow (Note 7) Output Sink Current (VID = −1.0 V, VCC = 15 V) TA = 25°C Max Min Typ XL2902, XD2902N, XL2902-TS Max Min Typ VOL V 3.3 3.5 − 3.3 3.5 − 3.3 3.5 − 26 − − 26 − − 26 − − 27 28 − 27 28 − 27 28 − − 5.0 20 − 5.0 20 − 5.0 100 IO + mV mA 20 10 40 20 − − 20 10 40 20 − − 20 10 40 20 − − 10 20 − 10 20 − 10 20 − 5.0 8.0 − 5.0 8.0 − 5.0 8.0 − 12 50 − 12 50 − − − − µA − 40 60 − 40 60 − 40 60 mA IO − TA = Thigh to Tlow (Note 7) (VID = −1.0 V, Unit Max VOH VCC = 5.0 V, RL =2.0 kΩ, TA = 25°C Output Voltage − Low Limit, VCC = 5.0 V, RL = 10 kΩ, TA = Thigh to Tlow (Note 7) Typ XL324, XD324, XL324TSS mA VO = 200 mV, TA = 25°C) Output Short Circuit to Ground Power Supply Current (TA = Thigh to Tlow) (Note 7) VCC = 30 V VO = 0 V, RL =  VCC = 5.0 V, VO = 0 V, RL =  [7] ISC ICC mA − − 3.0 − − 3.0 − − 3.0 − − 1.2 − − 1.2 − − 1.2 XL/XD224, XL224-TS: Tlow = −25°C, Thigh = +85°C XL/XD324, XL324TSS: Tlow = 0°C, Thigh = +70°C XL2902, XD2902N, XL2902-TS: Tlow = −40°C, Thigh = +105°C [8] The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common mode voltage range is VCC −1.7 V, but either or both inputs can go to +32 V without damage, independent of the magnitude of VCC. www.xinluda.com 6 / 14 Rev 2.3 XL/XD224, XL/XD324, XL/XD2902 Quadruple Operational Amplifiers t 6. CIRCUIT DESCRIPTION The XL324 series is made using four internally compensated, two−stage operational amplifiers. The first stage of each consists of differential input devices Q20 and Q18 with input buffer transistors Q21 and Q17 and the differential to single ended converter Q3 and Q4. The first stage performs not only the first stage gain function but also performs the level shifting and transconductance reduction functions. By reducing the transconductance, a smaller compensation capacitor (only 5.0pF) can be employed, thus saving chip area. The transconductance reduction is accomplished by splitting the collectors of Q20 and Q18. Another feature of this input stage is that the input common mode range can include the negative supply or ground, in single supply operation, without saturating either the input devices or the differential to single−ended converter. The second stage consists of a standard current source load amplifier stage. Each amplifier is biased from an internal−voltage regulator which has a low temperature coefficient thus giving each amplifier good temperature characteristics as well as excellent power supply rejection. VCC = 15 Vdc RL = 2.0 kΩ 1.0 V/DIV TA = 25C 5.0 µs/DIV Figure 6-1. Large Signal Voltage Follower Response 3.0 V to V CC(max) VCC VCC 1 1 2 2 3 3 4 4 Single Supply 1.5 V to V CC(max) 1.5 V to V CC(max) VEE VEE /GND Split Supply Figure 6-2. www.xinluda.com 7 / 14 Rev 2.3 XL/XD224, XL/XD324, XL/XD2902 Quadruple Operational Amplifiers 70 70 Phase Margin 60 50 50 40 40 30 30 Gain Margin 20 20 10 PHASE MARGIN () GAIN MARGIN (dB) 60 0 t 10 1.0 10 100 LOAD CAPACITANCE (pF) 1000 10000 0 Figure 6-3. Gain and Phase Margin 120 VCC = 15V VEE = GND 80 TA = 25°C AVOL,LARGE-SIGNAL OPEN LOOP VOLTAGE GAIN (dB) 100 60 40 20 0 -20 f, FREQUENCY (Hz) Figure 6-4. Input Voltage Range Figure 6-5. Open Loop Frequency VOR, OUTPUT VOLTAGE RANGE (Vpp) 14 RL = 2.0 kΩ VCC = 15 V VEE = GND Gain = -100 RI = 1.0 kΩ RF = 100 kΩ 12 10 8.0 6.0 4.0 2.0 0 1.0 10 100 1000 f, FREQUENCY (kHz) Figure 6-6. Large−Signal Frequency Response www.xinluda.com 8 / 14 Figure 6-7. Small−Signal Voltage Follower Pulse Response (Noninverting) Rev 2.3 XL/XD224, XL/XD324, XL/XD2902 Quadruple Operational Amplifiers t 2.4 2.1 TA = 25C 1.8 RL = ∞ 1.5 1.2 0.9 0.6 0.3 0 0 5.0 10 15 20 25 30 35 I IB, INPUT BIAS CURRENT (nA) ICC , POWER SUPPLY CURRENT (mA) 6.1. Electrical characteristic curve 90 80 70 VCC, POWER SUPPLY VOLTAGE (V) 0 5.0 10 15 20 25 30 35 VCC, POWER SUPPLY VOLTAGE (V) Figure 6-8. Power Supply Current versus Power Supply Voltage Figure 6-9. Input Bias Current versus Power Supply Voltage 50k R1 VCC XL/XD1403 5.0k VCC R2 - 2.5V 10k Vref 1/4 1/4 XL324 + Vo XL324 + R + 1/4 R = 16 kΩ Figure 6-11. Wien Bridge Oscillator R C R2 R Hysteresis XL324 R1 e2 - a R1 b R1 1/4 XL324 + 1/4 XL324 1 Vref e0 VOH R1 + Vin VO 1/4 XL324 - VO VOL R VinL VinH Vref C R VinL  R1 VOL  Vref   Vref R1  R2 VinH  R1 VOH  Vref   Vref R1  R2 e o = C (1 + a + b) (e 2 - e 1 ) H Figure 6-12. High Impedance Differential Amplifier www.xinluda.com For: f o = 1.0 kHz C C C = 0.01 μF Figure 6-10. Voltage Reference e1 VO R R1   VO  2.5V 1    R2  1 VCC - 9 / 14 R1 VOH  VOL  R1  R2 Figure 6-13. Comparator with Hysteresis Rev 2.3 XL/XD224, XL/XD324, XL/XD2902 Quadruple Operational Amplifiers t R R C1 R2 Vin - 100k C C 1/4 XL324 + 1/4 XL324 + - 1/4 XL324 + Vref Bandpass Output Vref R1 R2 100k - 1/4 XL324 + C1 Notch Output Vref 1 fo  2RC R1 QR R2  R1 TBP R3  TNR2 For: fo = 1.0 kHz Q = 10 C1  10C TBP= 1 TN=1 Where:TBP =Center Frequency Gain Where:TN =Passband Notch Gain R = 160 kΩ C = 0.001 μF R1 = 1.6 MΩ R2 = 1.6 MΩ R3 = 1.6 MΩ Figure 6-13. Bi−Quad Filter Vref = 1 VCC Triangle Wave Output 2 Vre + R3 1/4 XL324 - 75 k R1 100 k 300 k + C R1 1/4 C XL324 - VCC Co Square VO Co=10C Wave Output if R3 Vin Vref C R1  RC f 4CRfR1 R2 Vref Vref = 1 VCC 2 R 2R1 R3  R2  R1 Figure 6-15. Multiple Feedback Bandpass Filter Figure 6-14. Function Generator Given:fo =center frequency A(f o )=gain at center frequency Choose value fo , C Then: R3  Q foC R1  R3 2A(fo) R2  R1R3 4Q 2 R1  R3 Qo fo For less than 10% error from operational amplifier, BW where f o and BW are expressed in Hz. If source impedance varies, filter may be preceded with voltage follower buffer to stabilize filter parameters. www.xinluda.com 10 / 14  0 .1 Rev 2.3 XL/XD224, XL/XD324, XL/XD2902 Quadruple Operational Amplifiers t 7. ORDERING INFORMATION Ordering Information Part Device Package Transport Package Number Marking Type (mm) (°C) Media Quantity XL324 XL324 SOP14 8.75  4.00 -40 to +85 MSL3 T&R 2500 XL324TSS XL324TSS TSSOP14 5.00  4.40 -40 to +85 MSL3 T&R 2500 XD324 XD324 DIP14 19.05  6.35 -40 to +85 MSL3 Tube 25 1000 XL224 XL224 SOP14 8.75  4.00 -40 to +85 MSL3 T&R 2500 XL224-TS XL224-TS TSSOP14 5.00  4.40 -40 to +85 MSL3 T&R 2500 XD224 XD224 DIP14 19.05  6.35 -40 to +85 MSL3 Tube 25 1000 XL2902 XL2902 SOP14 8.75  4.00 -40 to +85 MSL3 T&R 2500 XL2902-TS XL2902-TS TSSOP14 5.00  4.40 -40 to +85 MSL3 T&R 2500 XD2902N XD2902N DIP14 19.05  6.35 -40 to +85 MSL3 Tube 25 1000 www.xinluda.com Body size Temperature 11 / 14 MSL Rev 2.3 XL/XD224, XL/XD324, XL/XD2902 Quadruple Operational Amplifiers t 8. DIMENSIONAL DRAWINGS DIP14 PIN1 www.xinluda.com 12 / 14 Rev 2.3 XL/XD224, XL/XD324, XL/XD2902 Quadruple Operational Amplifiers t SOP14 Mark Size Min Max Mark Size Min Max PIN1 Ball Marking www.xinluda.com 13 / 14 Rev 2.3 XL/XD224, XL/XD324, XL/XD2902 Quadruple Operational Amplifiers t TSSOP14 PIN1 if you need help contact customer service staff Xinluda reserves the right to change the above information without prior notice www.xinluda.com 14 / 14 Rev 2.3
XL2902-TS 价格&库存

很抱歉,暂时无法提供与“XL2902-TS”相匹配的价格&库存,您可以联系我们找货

免费人工找货